Configurable memory systems for embedded many-core
processors

Daniel Bates

Alex Chadwick

Robert Mullins

Computer Laboratory
University of Cambridge

UK

FirstName.LastNameQcl.cam.ac.uk

ABSTRACT

The memory system of a modern embedded processor con-
sumes a large fraction of total system energy. We explore
a range of different configuration options and show that a
reconfigurable design can make better use of the resources
available to it than any fixed implementation, and provide
large improvements in both performance and energy con-
sumption. Reconfigurability becomes increasingly useful as
resources become more constrained, so is particularly rele-
vant in the embedded space.

For an optimised architectural configuration, we show that
a configurable cache system performs an average of 20%
(maximum 70%) better than the best fixed implementation
when two programs are competing for the same resources,
and reduces cache miss rate by an average of 70% (maximum
90%). We then present a case study of AES encryption and
decryption, and find that a custom memory configuration
can almost double performance, with further benefits being
achieved by specialising the task of each core when paral-
lelising the program.

CCS Concepts

eHardware — On-chip resource management; Recon-
figurable logic applications; Emerging architectures;

Keywords

many-core architecture; memory system; software special-
ization

1. INTRODUCTION

Consumers expect a relentless increase in performance of
their mobile devices while also demanding longer battery
lives. Since battery capacities are increasing only slowly,
these requirements combine such that a huge improvement
in energy efficiency is necessary. There is a precedent for

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

(© 2016 Copyright held by the owner/author(s).

this kind of progress, but many factors now conspire to
slow this development to a halt. Virtually all modern con-
sumer devices are thermally limited, so cannot run at a
higher power to compute more quickly. Dennard scaling
has slowed significantly, along with the energy efficiency im-
provements it brings. While improvements such as larger
caches and wider-issue pipelines can improve performance,
that improvement diminishes as more resources are spent,
and power consumption tends to increase. Transistor scaling
as dictated by Moore’s Law is also showing signs of slowing,
meaning we will need to use the same transistors for more
design iterations, and therefore use them more intelligently.

All of these factors point towards a need for specialisa-
tion, and indeed, this is a direction that processor architects
have been exploring lately. Specialisation allows unneces-
sary resources to be pruned away and specific optimisations
to be applied without hurting the common case, leaving
less area and energy overhead and improved performance.
This approach of application-specific design has its own pit-
falls, however, so we believe that the current trend is only a
temporary deviation from the long-term pattern. Hardware
specialisation adds to the already ballooning NRE costs in-
volved in chip manufacture, since those costs now apply to a
more restricted design, and more designs are needed to cover
a general-purpose set of applications. There have been no
recent breakthroughs in the productivity of microarchitects,
so a more-complex design takes longer to build, and risks
being obsolete by the time it is complete. We are entering
an era of unreliable transistors, and having a large number
of unique designs means that each one must be addressed
individually to protect it from faults, increasing complexity
further. The costs of testing and verification are also in-
creasing super-linearly, and will only continue to do so if we
continue along this path.

For the reasons outlined above, we advocate the use of
software specialisation, where a simple, homogeneous fabric
is used as a substrate for a specialised software overlay which
can be reconfigured rapidly at runtime. By creating this
substrate from a small selection of simple building blocks,
we sidestep the problems of increased complexity, while also
improving energy efficiency by eliminating hardware over-
heads. Depending on the type of computation required, we
expect the design of this substrate to lie somewhere between
an FPGA and a multi/many core processor. Such an archi-
tecture will consist of a large number of identical elements
capable of computation, and interconnection to allow them
to communicate efficiently.

' '

-l GO gy Inter-tile <] Credit [
router communication router
unit t
—>|
Y
Core 0 e Core 7
-+
core-to-
core
X + >< ? >< f buses
requests data |« |instructions
Bank O 'R Bank 7
Miss
handling 2x
Response| !
™ outer [|og|c <»{Request[<¢>
router

v v

Figure 1: One tile of the Loki architecture.

In this paper, we focus on the memory system and explore
ways in which a homogeneous architecture can be effectively
reconfigured to improve efficiency.

2. LOKI

We use the Loki architecture as a baseline for our discus-
sion [4]. Loki is a tiled architecture where each tile contains
eight simple cores and eight memory banks (see Figures 1
and 2). A chip is made up of a large number of identi-
cal tiles, with each tile occupying approximately 1mm? in
a 40nm process. We plan to produce a modestly-sized test
chip in 2016 containing 16 tiles (128 cores), so we restrict
ourselves to this size for the rest of the paper.

Loki’s design can be described as network-centric — com-
munication between components is fast and efficient, allow-
ing the boundaries between cores to be blurred. Commu-
nication within a tile takes a single clock cycle, and com-
munication between routers on adjacent tiles also takes a
single cycle. Network buffers are mapped to registers, allow-
ing any instruction to read network data as though it was
stored locally. Almost all instructions also allow their results
to be sent over the network, in addition to being stored lo-
cally. Network communication is blocking: a component
which attempts to read from an empty buffer will stall until
data arrives, and a component which attempts to write to
a full buffer will stall until space becomes available. All as-
pects of the network were designed with deadlock avoidance
in mind: deadlock detection and recovery was deemed too
complicated for such a simple architecture.

Both cores and memory banks can be accessed over the

NETWORK

I I !
o oL |] e

cache

Output
buffers

Instruction
buffer

Register

read Register

write

Decode

Immediate
sign-extend

FETCH DECODE

Figure 2: Loki core microarchitecture. IPK: instruc-
tion packet (Section 2.1), CMT: channel map table
(Section 2.3).

network, and it is possible for cores to send both instructions
and data between each other. Sending of data allows the ex-
ecution of multiple cores to be tightly-coupled. Additional
cores can be used not just for parallel execution, but also to
add resources (e.g. registers, memory bandwidth, network
bandwidth) to another core. When used in this way, it may
be possible to simplify cores to an extent where an individual
core is rarely appropriate for executing a program, but re-
sources can be added from other cores in a fine-grained way
to suit the needs of each specific application. This would al-
low cores to be even smaller and more efficient. Sending of
instructions between cores allows a range of interesting use-
cases including inspection of remote state, rapid spawning
of tasks and dynamic code rewriting.

Memory access also takes place over the network, with
the memory request decoupled from the data access. A
load instruction has no result, and simply sends a request
to memory. Loki’s ability to send the result of almost any
operation over the network allows a rich variety of address-
ing modes. For example, the result of any bitwise operation
can be treated as a memory address and sent to a memory
bank to trigger the loading of data. This reduces the need
for explicit load instructions, and goes some way towards re-
ducing the impact of the relatively high memory latency (3
cycles: 1 cycle on the network to memory, 1 cycle memory
access, 1 cycle on the network from memory). The memory
bank returns data to one of the core’s input buffers, to be
accessed when the core is ready to do so. It is often possible
to hide memory latency by scheduling independent instruc-
tions between the memory request and the data access.

In return for this relatively high L1 cache latency, Loki
enjoys access to a larger cache than might otherwise be pos-
sible, since multiple memory banks are available to access.
We find that different programs have different preferences:
some are very sensitive to cache latency and do not suffer
with a smaller capacity, while others are highly dependent
on the amount of cache available and are able to tolerate
higher latencies. Across a range of benchmarks, we found
that there was not much difference between a smaller, faster
cache and a larger, slower cache, so chose the latter as it
allows for increased flexibility at runtime.

Loki contains a number of features which aid reconfigura-
tion, and these are detailed in the following subsections. Our
alm is to show that these features are justified and we hope

to inspire the reader with possible ways in which a homoge-
neous architecture can be used to implement specialisation.

2.1 Instruction transfer

As mentioned previously, cores are able to send instruc-
tions to each other. Each core has two instruction channels
to prevent these instructions from interfering with a program
which is already executing. The primary channel connects
to a small level-0 cache with a FIFO replacement policy.
The secondary channel is typically used for these core-to-
core communications and is uncached.

Instructions sent to a core could form a self-contained unit
of work, such as inspecting the state of the target core and
possibly returning a value, or the execution of the target
core could be completely redirected with a request to begin
executing from a given program counter. This feature allows
additional state to be accessed quickly and efficiently, and
also provides a mechanism for rapidly spawning new tasks
or interrupting cores.

Loki’s network-centric design lends itself to a packet-based
instruction stream. Cores request instructions in atomic
units which roughly correspond to basic blocks, and once
a core begins execution of an instruction packet, it is guar-
anteed to continue to the end. Any scheduling decisions be-
tween the two instruction channels are made at the bound-
aries between instruction packets. If both channels hold
instructions, the secondary channel has priority, otherwise
instructions are executed from whichever channel has an in-
struction available.

2.2 sendconfig instruction

Loki supports an instruction called sendconfig which at-
taches arbitrary metadata to a payload. This is not expected
to be used in regular execution, but proves itself useful in
situations where low-level control over the hardware is de-
sirable.

The metadata can describe information including the fol-
lowing:

e End-of-packet marker: wormhole routing is used through-

out all networks, so once a packet starts being sent,
network resources are reserved for it until the packet
terminates.

e Connection set-up/tear-down between remote cores.
e Memory operation type.

The memory operation field, in particular, exposes oper-
ations which are usually only used within the memory sys-
tem, such as invalidation, flushing and fetching of whole
cache lines. Using these is much more efficient than request-
ing words individually, and can prevent unnecessary data
movement. The network’s packet system can be used when
accessing memory to implement arbitrary atomic memory
operations: a packet can be started with a request to load
some data, and only terminated after some complex compu-
tation has been performed and a result written back. During
this time, no other core will be able to access the same mem-
ory bank.

2.3 Channel map table

The channel map table maps logical network addresses to
physical ones. Almost all instruction encodings include a
field which allows the result of that instruction to be sent

addu rll, rl12, rl3 -3

Channel map table

v ! '

Remote core: Local core: Memory:

- Tile - Core bitmask - Banks

- Core - Channel - Return address

- Channel - Bypass L1/L2?

- Credits - Scratchpad mode?

Figure 3: Channel map table access.

over the network in addition to being stored in a local regis-
ter. Each core has its own channel map table which is con-
sulted in the decode stage, at the same time as the register
file is read. The channel map table contains rich information
on which component should be contacted, and also the way
in which it should be contacted (Figure 3).

A core on another tile is specified using a unique identifier,
and the index of the input buffer to which data should be de-
livered. End-to-end flow control is used on these connections
using a credit-based system, and the number of credits for
each connection can be optionally configured in the channel
map table. The default number of credits is the maximum
number of spaces in the target buffer, as this ensures that
any flit sent can be safely removed from the network at the
other end. The credit count can be increased or decreased
in software to control the rate of communication. Increasing
the credit count is only safe if the target core is guaranteed
to consume all data it receives, otherwise there is a risk of
deadlock.

Cores on the local tile do not need to use credits since all
networks within a tile are non-blocking and do not admit
a new flit if it cannot be buffered at its destination. An
arbitrary subset of cores on the local tile can be specified
using a bitmask, and any data sent to them will be sent to
all cores simultaneously.

Memory access provides the widest range of configura-
tion options. Memory banks on the local tile can be com-
bined into virtual groups, with cache lines distributed evenly
across banks. Groups may overlap, and software is respon-
sible for ensuring that all views of the same memory banks
are consistent since no hardware coherence between banks
is provided. Virtual memory groups can be used to provide
dedicated storage space for different types of information:
typically instructions and data, but a much finer granular-
ity is possible, with separate space being provided for the
stack and heap, or even individual data structures. Each
group can be accessed in either cache or scratchpad mode,
and each level of the memory hierarchy can be individually
bypassed, allowing direct access to a shared L2 cache, or
direct memory access, for example. It has previously been
shown that scratchpad mode can be used frequently and
can save around 10% of total system energy by reducing the
number of tag checks [11]. Typically, memory banks will
return information to the core that made the request, but it
is possible to direct responses to another core if the software
can guarantee that the target core will consume the data.

2%

Replacement bits [Responsible tile

Laddress |

forward request to tile (X,Y)

Figure 4: Memory directory access.

Updating the channel map table requires a single instruc-
tion and takes a single clock cycle. In many cases, the local
core is the only component which needs to know about the
update. The worst case is when reconfiguring the memory
system in such a way that all dirty data must be written
back to the next level of the memory hierarchy. This takes
one clock cycle per word to be flushed back, plus one cycle
per cache line.

2.4 Level 2 cache directory

In order to simplify Loki’s implementation, L2 caches are
built out of the same memory banks as L1 caches. Each tile
is dynamically allocated as either a compute tile or an L2
tile. All 8 banks on an L2 tile are accessed in parallel to
form an 8-way set-associative cache. Since the mapping of
addresses to banks is not deterministic in a set-associative
cache, the cores in an L2 tile cannot directly access the con-
tents of their local memory banks. We are looking into lifting
this restriction by dividing a tile’s cache banks between L1
and L2 caches.

Each tile contains a directory which is consulted after
a cache miss (Figure 4). The directory tells which tile is
responsible for caching a given memory address, and also
allows the substitution of a few bits of the address to al-
low a simple implementation of virtual memory. The target
tile may be an L2 cache tile, or a memory controller which
accesses off-chip memory. The directory is indexed using
a few bits of the memory address which caused the cache
miss. The position of these bits is reconfigurable: using
less-significant bits tends to result in an even distribution of
cache lines across L2 tiles, while using more-significant bits
results in contiguous data being stored together with better
locality. As with the L1 cache, it is possible to control which
L2 tile(s) are responsible for storing particular information.

Having identical implementations for L1 and L2 memory
banks means that both levels of the cache hierarchy are ca-
pable of high-bandwidth cache line operations and efficient
sub-line accesses.

3. EVALUATION

To evaluate the benefits of a configurable memory sys-
tem, we use versions 1.1 and 2.0 of the EEMBC benchmark
suite [6]. We use only those benchmarks which compile us-
ing the Loki toolchain [4], and only benchmarks which run

to completion in a reasonable amount of time. This leaves
benchmarks from all of the available sub-categories.

Benchmarks are executed on our SystemC simulator. The
simulator has been validated against a SystemVerilog im-
plementation, but runs much more quickly, allowing more
interesting experiments to be performed. We instantiate a
Loki architecture which is suited to these small benchmarks:
memory banks are 2kB each, giving a total L1 cache capacity
of 16kB per tile. Latency to main memory is set to 35 clock
cycles — a conservative figure which is likely to underesti-
mate the penalty of a poorly-performing cache system, and
therefore reduce any benefits observed by making better use
of on-chip memory. Benchmarks are run once to warm the
caches before any statistics are collected, and then execute
repeatedly until all running benchmarks have completed at
least one timed iteration.

Since the performance of the memory system correlates
with the performance of running applications and with their
energy efficiency (a higher hit rate means less data move-
ment and fewer off-chip memory accesses), we only collect
performance data in these experiments. We expect that any
improvement in performance is very likely to be coupled
with an improvement in energy consumption. We have pre-
viously performed extensive power modelling work for the
Loki architecture [4].

3.1 Single program

First, we run all benchmarks with all possible general L1
cache configurations and no L2 cache. We do not test any
application-specific configurations, such as allocating mem-
ory banks to a particular data structure. We aim to find
the best configuration to use for each benchmark when run-
ning in isolation, and to quantify the benefits of allowing
configuration of the L1 cache.

Figure 5 compares the performance of two 8-bank con-
figurations and two 4-bank configurations. In each case, a
unified cache and a cache split evenly between instructions
and data is considered. With eight memory banks available,
many benchmarks do not find the configuration to be very
important — the cache is used well with either configuration,
or is inadequate with either configuration. For some, how-
ever, a large change is observed; iirflt01 performs over
20% worse with a unified cache than with a split cache. On
average, since a configurable cache is able to select the best
configuration for each application, a configurable L1 cache
performs 3% better than a fixed unified cache and 2% better
than a fixed split cache with eight memory banks.

This effect is magnified as cache contention increases. Ex-
tra contention could be due to larger applications having
larger working sets, or from multiple applications needing
to share the same memory banks. We can see the result of
this by looking at the configurations which use fewer banks.
With four banks, being able to select the best configuration
gives an average 1% improvement over a fixed unified cache
and 10% over a fixed split cache.

Again, 1irf1t01 is the most variable benchmark, but in-
terestingly, this time it prefers a unified cache, with perfor-
mance almost 40% worse when the cache is split. This seems
to be because iirflt01 is very sensitive to its instruction
supply. When fewer memory banks are available, it prefers
to have as many of them as possible capable of holding in-
structions. After about 4 banks, the instruction hit rate is
close to 100%, and it instead prefers to allocate additional

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

aifftr0] I —
A0 ———
a0 I ——
PR S L]
basefpl] I —
DN | ————————
cachehl] I e
T) =
R LT Ll —
TDItal00
hUffde I ———— —————

Relative performance
o
A2Mel] —
OO I ——

10—
R ——
pntrch01 g
puwmod01 —
rgbcmy01 I

M 8 banks unified

B 8 banks split

B 4 banks unified
4 banks split

TGO I ————————
rgbyig01 I
routelookup I
rspeed01 T
thlook0] I—
tcpmixed R
VIO | ———
Ceomea

Figure 5: Performance of a selection of cache configurations, relative to an infinite-capacity, zero-latency L1
cache. Split caches are divided evenly between instructions and data.

banks to storing data, and splits the cache to avoid conflict
misses.

Table 1 shows how the different benchmarks behave with
different amounts of cache. The ‘penalty’ terms are some-
what subjective and take into account both how much and
how quickly performance degrades when insufficient cache
is available. Interestingly, there is little correlation between
the number of banks required, and the penalty when fewer
banks are provided. fbital0OO0, for example, requires much
more instruction cache than data cache. However, its per-
formance is much more sensitive to the amount of data cache
provided.

3.2 Multiprogramming

We now explore how programs interact when competing
for cache space. We select five benchmarks with various
combinations of cache requirements and sensitivities, and
then run each possible pair of benchmarks with each pos-
sible L1 cache configuration. There are a total of 64 con-
figurations, with each cache also having the option of being
shared between the two benchmarks or private. We scale
each result relative to the best possible configuration when
the application is running in isolation.

Figure 7 shows the best configuration for each pair of
benchmarks when the performance of each benchmark is
given an equal priority. (In practice, there is a range of
optimal solutions in each case, depending on the relative
priorities of the two applications.)

Ten of the fifteen combinations work best when the two
programs are completely isolated from each other, with the
remaining five performing best when some cache banks are
shared. We also see a range of different decisions being
made: some combinations prefer unified caches, some pre-
fer split caches, some share the cache fairly between bench-
marks, and some prefer to allocate more of the cache banks
to one of the programs. Applications which are less sensi-
tive to cache size are more likely to prefer a shared cache,
but this is not always the case. aiifft01, for example, is
not sensitive to either instruction or data cache capacity, yet
always works best with private caches. This suggests that
it is instead sensitive to cache latency, and prefers to have
exclusive access to its memory banks to avoid contention.

Banks required for Penalty when
Benchmark . .
<10% miss rate requirements not met

Instructions Data | Instructions Data
a2time01 >8 1 High -
aifftr01 8 2 Moderate Low
aifirf0l 2 1 Extreme -
aiifft01 8 2 Low Low
autcor00 >8 1 High -
basefp01 4 1 High -
bitmnp01 2 1 Low -
cacheb01 4 >8 High Moderate
canrdrQ1 2 1 Moderate -
conven00 1 1 - -
fbital00 8 2 Low Extreme
huffde 1 2 - Moderate
idctrn01 4 1 High -
iirflt01 4 1 Extreme -
ospfv2 1 2 - Moderate
pntrchO1 4 1 High -
puwmod01 4 4 Low Low
rgbcmy01 1 1 - -
rgbhpg01 1 1 - -
rgbyiq01 1 1 - -
routelookup 4 4 Low Low
rspeed01 2 1 Low -
tblook01 >8 1 High -
tcpmixed >8 1 Extreme -
viterb00 1 1 - -

Table 1: Benchmark sensitivities to different cache
configurations. Bolded entries were selected for fur-
ther examination in the following section.

0.9

Relative performance

a2time-aifftr
a2time-aifirf
a2time-aiifft
aifftr-aifftr
aifftr-aifirf
aifftr-aiifft

a2time-a2time
aztime-bitmnp

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

aifftr-bitmnp

B Shared unified
M Shared split
Optimal

aifirf-aifirf
aifirf-aiifft
aifirf-bitmnp
aiifft-aiifft
aiifft-bitmnp
bitmnp-bitmnp
Geomean

Figure 6: Performance of the best two-program L1 cache configuration and two fixed configurations, relative
to the programs each running in isolation with access to all cache banks.

o a2time01 Memory bank

g e

'g ([T B instructions only
aztime01 B Instructions and data
a2time01 aifftro1 Data only

3 T BB Not used

2

£ lllalll
aifftrol aifftrol
a2time01 aifftrol aifirfol

Epomn _pp »

t

P o =
aifirfol aifirf01 aifirfol
a2time01 aifftrol aifirfol aiifftol

A ______ B BOB_

£ lllf lllf lllf ([[[]
aiifftol aiifftol aiifftol aiifftol

- a2time01 aifftrol aifirfol aiifftol bitmnp01

SPRRE_ _PERR__ ERE_ UPNE_ PERD

c

£ [[] [[] [[]

< b|tmnp01 bitmnp01 bitmnp01 bitmnp01 bltmnpOl
a2time01 aifftro1 aifirf01 aiifftol bitmnp01

Figure 7: Optimal cache bank allocations for pairs
of programs with equal priority.

Figure 6 compares these configurations with the possible
fixed configurations: unified and split shared caches. When
sharing a tile’s memory banks between two programs, each
takes an average of 9% longer compared to having all mem-
ory banks to itself. This compares very well with the 34%
(unified cache) and 49% (split cache) slowdowns seen when
using fixed configurations across all tests.

These performance improvements are due to better use of
the available resources. The average L1 miss rate for the
optimal cache configuration is reduced by a factor of 3 over
the best fixed configuration. This results in considerably
less off-chip communication, and less data movement in the
on-chip memory, which leads to lower energy consumption.

The wide variety of optimal configurations for different sit-
uations shows that many degrees of freedom are necessary
when configuring the memory system if maximum perfor-
mance is to be achieved. The large gains over fixed configu-
rations shows how much performance may be lost by more
traditional architectures which are not able to implement
application-specific configurations.

3.3 Level 2 cache configuration

We next look into changing the L2 cache. We give all
benchmarks a unified L1 cache consisting of all 8 banks in
the local tile, and vary the number of L2 tiles from 0 to 4.
We ensure that all L2 tiles are adjacent to the compute tile.
Other configurations would be possible and would simply
introduce an extra cycle of latency in each direction for each
additional tile traversed. Results are presented in Figure 8.

As might be expected, different applications have different
sensitivities to the varying L2 cache size. Most benchmarks
exhibit a modest speedup; it would probably not be worth
repurposing a computation tile as an L2 cache tile unless
trying to accelerate a high-priority task, but if the tile was
otherwise unused, it could be a simple and effective way to
increase performance.

Some benchmarks perform worse when given an L2 cache.
This is because they do not use any amount of cache ef-
fectively, and adding an extra level to the cache hierarchy
simply adds to the latency when data is required from main
memory. Conversely, Loki’s flexibility allows these interme-
diate cache layers to be removed when they do not help,
improving performance and allowing the resources to be al-

15

~— a2time0l
== aifftr01
aifirf01
== aiifft01
=p—= autcorOOdata_2
basefp01
== bitmnpO1
cacheb01
=& canrdr01
conven0Odata_1
== fbital00data_2
" == huffde
=te= idctm01
e firfItO1

14

Relative performance

. ospfv2
~#— pntrch01
—4— puwmodo1
rgbcmy01
=2 i 1gbhpgOL
rgbyiqo1
—<— routelookup
rspeedol
—%— tblook01
09 —&— tcpmixed
o 1 2 3 4 e viterbOOdata_1

L2tiles

Figure 8: Performance with varying L2 cache size,
relative to no L2 cache.

located elsewhere.

The most interesting benchmark shown is tcpmixed. With
a small L2 cache, performance is no better than with no L2
cache at all, indicating poor cache use. However, when the
L2 cache increases in size enough to accommodate the work-
ing set of the benchmark, performance improves greatly.

Most of the benchmarks tested are not affected by L2
cache capacity beyond one tile. A flexible memory system
allows the minimum necessary cache to be provided to each
individual application, with the remaining resources being
used elsewhere or power-gated to save energy.

3.4 Case study

As a case study of the Loki architecture, AES-128-CTR
mode encryption/decryption was implemented. This library
was designed to use one whole tile, and have a network-
centric API to allow easy embedding in a larger applica-
tion. This would allow data to be streamed in or out of the
AES library using message passing, or alternatively read and
written directly from shared memory as a conventional AES
hardware DMA block might. The application was designed,
implemented, debugged and optimised in approximately two
person-days by a programmer familiar with Loki’s capabili-
ties. A mixture of assembly language and C code was used
— it would be possible to have a pure C implementation,
but our compiler is not yet able to optimise for many Loki-
specific features.

The basic behaviour of AES-128 is to apply a round func-
tion 10 times on a block of data to generate the encrypted
block. Each round, a fixed round key is used to modify the
behaviour of the function. Mathematically, this could be
represented as f(ko, f(ks,...f(k1, f(ko,data))...)). The last
round should be a slightly different function to the other
round functions according to the specification, but this can
be re-expressed as a final correction function being applied
after the final round, allowing all rounds to share a code-
base. The size of the data block is always 128 bits, or 16
bytes. In CTR mode encryption and decryption, bulk data
is encrypted by splitting the data into 16 byte blocks, and
processing each separately.

The workload lends itself to several possible mappings to
multiple Loki cores, for example processing the many inde-

Core
to

» Core

Router

...... = I

Bank 0 | Bank 1 | Bank 2 i Bank 3 : Bank 4 i Bank 5 | Bank 6 | Bank 7

Memory | Memory
e| Request’
Router | Router

N L e i e s s i et

Core 0 | Core 1 | Core 2 | Core 3 | Core 4 | Core 5 | Core 6 | Core 7

Figure 9: Resource allocation and communication
patterns within the AES tile.

pendent blocks in parallel, exploiting ILP within each round
function or forming a ‘software pipeline’ in which each core
applies two rounds and passes the data on to the next. A
quick analysis suggested that this last mapping with the
software pipeline would achieve the highest performance, so
this was chosen and implemented (Figure 9). Core 0 is given
the responsibility of communicating with other tiles to pro-
vide the API for this library. Once a task is specified, this
core starts the pipeline by preprocessing the data as required
by CTR mode and sending it via message passing to core
1. Cores 1 to 5 all contain identical code to perform two
rounds of AES on their input and pass it on. This takes
61 instructions, so fits in the 64-instruction L0 instruction
cache, eliminating instruction fetch access to the L1 cache.
The round keys can also be kept in registers, as each core
must only remember two round keys, a total of 8 registers’
worth of data. The final round correction function is then
applied by core 6, which passes the data on to core 7. Core
7 is responsible for final output, either over the network or
to memory.

The tile’s memory banks are also specialised for various
purposes. Bank 0 is left as a general purpose L1 instruction
and data cache, mostly for convenience. It is not used at
all during any of the tight loops. Bank 1 is dedicated to
input memory operations as these will almost always result
in cache misses, as input data is not frequently reused. By
dedicating a bank to this, these misses never interfere with
other memory requests. A sendconfig instruction is used
to load a full cache line rather than issuing 8 individual
loads. Another sendconfig instruction is used to prefetch
the next cache line and avoid stalling the software pipeline
on memory. Banks 2 to 5 are used as four individual lookup
tables. These are used by the round functions on cores 1 to
5. These memory banks operate in scratchpad mode: their
contents are pre-loaded, and it is known in advance that all
required data fits in the banks. While the amount of data
stored would fit entirely into one bank, using separate banks
for each table simplifies the addressing and provides greater
bandwidth. On average, each of these banks receives a load
request every 2 clock cycles. Analysis of the interleaving
of these loads allows us to compute the worst case response
time of the banks, and thus schedule the reads to avoid stalls
in the steady state interleaving. Bank 6 has a similar role,
storing the tables needed by core 6’s correction function.
Finally, bank 7 has a similar role to bank 1, but for output
rather than input. It is used exclusively for writeback of

Architecture Clock Frequency Power Area Speed
One Loki core ~450MHz ~0.0lW 0.5mm? 64.3 cycles/byte = TMB/s
One Loki core + specialised L1 cache ~450MHz ~0.01W 0.5mm? 34.8 cycles/byte = 13MB/s
Eight Loki cores ~450MHz ~0.06W 1mm? 9.8 cycles/byte = 46MB/s
Eight Loki cores + specialised L1 cache ~450MHz ~0.06W 1mm? 6.5 cycles/byte = 69MB/s
One specialised Loki tile (as described) ~450MHz ~0.06W 1mm? 5.1 cycles/byte = 88MB/s
Sixteen specialised Loki tiles ~450MHz ~1W 16mm? 0.32 cycles/byte = 1411MB/s
One core of Intel® Core™™ i7-980X [1] 3.33 GHz 33.5W 60mm? 1.3 cycles/byte = 2500MB/s
ARMITDMI [3, 14] 150 MHz 0.12W 6.55mm? 45 cycles/byte = 3.3MB/s
ATT Mobility Radeon™ HD 5650 [8] 650 MHz 19W 104mm?® 1.9 cycles/byte = 340MB/s
GeForce 8300 GTS [13] 1.625 GHz 135W 484mm? 17.1 cycles/byte = 95MB/s

Table 2: AES implementations for a range of architectures.

the results. This again makes use of sendconfig to store a
whole cache line, thus avoiding have to first load the cache
line as would be needed for 8 independent store instructions.

The ability for cores to send instructions to each other is
used by core 0 to ‘rekey’ the library. Whenever the encryp-
tion key changes (infrequently), the round keys are recom-
puted and then instructions are sent to each of the round
function cores which change their round key registers appro-
priately. This allows the round function cores’ code to be
an infinite loop, saving a control flow instruction from this
tight loop kernel.

The implementation is able to achieve a sustained perfor-
mance of 5.1 cycles/byte on bulk encryption and decryption.
This is quite an impressive figure, given that there is no ar-
chitectural specialisation for AES. The implementation is
also scalable to any number of tiles, by splitting the work-
load evenly between them all, which the library supports.
Thus, with 6 or more tiles, we reach the point of multiple
bytes per cycle.

Some figures published for other architectures are given in
Table 2. The Intel processor achieves its impressive perfor-
mance using the specialised AES-NI instruction set exten-
sion. When using a whole Loki chip, performance is compa-
rable, while energy consumption and area are much lower.

Among the Loki implementations, we see that a highly-
specialised memory configuration almost doubles performance
in the single core case. This is partly due to improved cache
behaviour, and partly due to fewer instructions being re-
quired to compute addresses when accessing scratchpads.
Specialising the tile as a whole gives better results than sim-
ply repeating the single-core program on each core for two
reasons:

1. There is less contention between cores trying to access
the same memory bank at the same time.

2. Each core’s task is much simpler, fitting in its private
L0 cache, and reducing the strain on lower levels of the
memory hierarchy. This is another example of speciali-
sation allowing better utilisation of available resources.

3.5 Summary

It has been shown that a configurable memory system can
give significant gains in performance over a fixed memory
system. Since performance gains in the memory system tend
to correlate with a higher hit rate and therefore less data
movement, we believe that large energy reductions are also
possible. A side effect of improved cache performance is
that execution time becomes more predictable — this can be

particularly useful in embedded systems which often must
handle complex input and output data streams in real time.
A large number of different configurations perform best in
different situations, many of which are impossible for an in-
flexible architecture to emulate. This shows the value in hav-
ing a wide range of configuration options available. Adding
configurability to a system does add an overhead, and will
not be beneficial in every case, but we have found that the
benefits outweigh the costs in the majority of cases.

4. DISCUSSION

We have seen in this paper how careful choice of memory
configuration can have a large impact on performance. An
architecture capable of dynamic reconfiguration is able to
go further than this, however. Some applications may ben-
efit from changing the memory configuration mid-execution
to adapt to different phases of computation. For example,
when entering its main loop, a program may benefit from
reallocating some of its instruction banks to provide extra
data capacity.

Finding which memory configuration is best can be a time-
consuming task, however. It would be useful to extract infor-
mation from a program, either statically or dynamically, and
use it to predict which configuration would be best. Alterna-
tively, a configuration could be selected, and then adjusted
during execution based on performance metrics. We leave
this automatic selection of configurations for future work.

While Loki is much more configurable than conventional
architectures, some restrictions still remain. Lifting these
remaining limitations could yield interesting results:

e Loki does not support a set-associative L1 cache, but
some applications would certainly benefit from one.
The L2 cache is capable of associativity by broadcast-
ing requests to all banks on a tile; this is not possible
in other situations as it adds too much complexity.

e The size of virtual memory groups is restricted to powers-
of-two to simplify the channel map table. In some
cases, more control over bank allocation would be ben-
eficial.

e Loki guarantees deadlock freedom in its multi-level
memory hierarchy by dedicating physically separate
networks to different types of traffic. L1 — L2, L2 —
main memory, and their responses all have their own
networks. Deeper hierarchies on-chip are supported,
but must be arranged in software to ensure that no
messages of one type block the progress of messages of

S.

th
co

another type. In practice, this is straightforward: the
lower levels of hierarchy should be placed physically
closer to the off-chip memory controller.

RELATED WORK

Reconfiguration of a memory system is not a new idea:
e Smart Memories architecture demonstrated that this
uld be a useful feature in the early 2000s [12]. Each cache

line has four bits of metadata which can be manipulated
by a configurable logic block. This allows more reconfig-

ur

ation options including cache line sizes and replacement

policies, but comes with a higher overhead. More recently,
NVIDIA’s Echelon project explored configurable memory hi-
erarchies [10]. Each memory bank is given one or more ‘par-
ent’ banks, across which cache lines are evenly distributed.
On a cache miss, data is requested from one of the parent
banks. Neither of these works have examined their configu-
ration spaces and potential benefits as we have here.

tu

AsAP [17], ACRES [2] and Raw [16] are all tiled architec-
res which exploit software specialisation to improve perfor-

mance and energy efficiency, but none explore the memory

Sy

ber of cache conflicts and make cache access more predictable.

stem to the extent that we have here.
Various techniques have been proposed to reduce the num-

These can involve pinning data in the cache to indicate that

it

tween different threads or cores [5, 9] or different types of

should not be replaced [15] and partitioning the cache be-

data [7], so they do not interfere with each other.

6.

CONCLUSIONS

A large amount of the energy consumed by a modern em-

bedded processor is in the memory system. By adding recon-
figurability, it is possible for software to tailor the memory

Sy

stem to each application. This allows for less data move-

ment and fewer accesses to large hardware structures, and
improves both performance and energy consumption.

In this paper, we have explored the reconfiguration op-

tions of the Loki architecture’s memory system. We found

that despite its overheads, a reconfigurable system was worth-

while, and could significantly outperform any fixed imple-

mentation.

Reconfigurability becomes more useful as re-

sources become more constrained — this is particularly rel-

evant in embedded systems, where power constraints may

limit the size of caches, while applications are getting in-
creasingly complex and numerous. By adding reconfigura-
tion options to a cache architecture, it is possible to make
better use of the available cache, or to achieve the same
performance with a smaller, more efficient cache.

7.

va

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
luable feedback. This work was funded by the European

Research Council grant number 306386.

8.

REFERENCES

[1] K. Akdemir, M. Dixon, W. Feghali, P. Fay, V. Gopal,

J. Guilford, E. Ozturk, G. Wolrich, and R. Zohar.
Breakthrough AES performance with Intel® AES
New Instructions. White paper, 2010.

[2] B. S. Ang and M. Schlansker. ACRES architecture

and compilation. Technical report, Hewlett-Packard,
April 2004.

3]

[4]

[5]

(10]

(1]

(12]

(13]

(14]

(15]

(16]

(17]

ARM Limited. ARM922T with AHB system-on-chip
platform OS processor, 2007.

D. Bates, A. Bradbury, A. Koltes, and R. Mullins.
Exploiting tightly-coupled cores. Journal of Signal
Processing Systems, 80(1):103-120, 2015.

J. Chang and G. S. Sohi. Cooperative cache
partitioning for chip multiprocessors. In Proceedings of
the 21st Annual International Conference on
Supercomputing, ICS 07, pages 242-252, New York,
NY, USA, 2007. ACM.

Embedded Microprocessor Benchmark Consortium
and others. EEMBC benchmark suite.
http://www.eembc.org/, 2009.

A. Gonzélez, C. Aliagas, and M. Valero. A data cache
with multiple caching strategies tuned to different
types of locality. In Proceedings of the 9th
International Conference on Supercomputing, ICS ’95,
pages 338-347, New York, NY, USA, 1995. ACM.

S. U. Haq, J. Masood, A. Majeed, and U. Aziz. Bulk
encryption on GPUs. White paper, October 2011.

R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni,

D. Newell, Y. Solihin, L. Hsu, and S. Reinhardt. Qos
policies and architecture for cache/memory in cmp
platforms. SIGMETRICS Perform. Fval. Rev.,
35(1):25-36, June 2007.

S. Keckler, W. Dally, B. Khailany, M. Garland, and
D. Glasco. GPUs and the future of parallel computing.
Micro, IEEE, 31(5):7-17, 2011.

A. Koltes. Reconfigurable memory systems for
embedded microprocessors. PhD thesis, University of
Cambridge, 2014.

K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally,
and M. Horowitz. Smart Memories: a modular
reconfigurable architecture. In Proceedings of the 27th
annual International Aymposium on Computer
Architecture, ISCA ’00, pages 161-171, New York, NY,
USA, 2000. ACM.

H. Nguyen. GPU Gems 3. Addison-Wesley, 2008.
Chapter 36. AES Encryption and Decryption on the
GPU.

R. Shamsuddin. A comparative study of AES
implementations on ARM processors. Master’s thesis,
Oregon State University, 2005.

S. Srikantaiah, M. Kandemir, and M. J. Irwin.
Adaptive set pinning: Managing shared caches in chip
multiprocessors. SIGARCH Comput. Archit. News,
36(1):135-144, Mar. 2008.

M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff,

F. Ghodrat, B. Greenwald, H. Hoffman, P. Johnson,
J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,

N. Shnidman, V. Strumpen, M. Frank,

S. Amarasinghe, and A. Agarwal. The Raw
microprocessor: A computational fabric for software
circuits and general-purpose programs. IEEE Micro,
22:25-35, March 2002.

D. Truong, W. Cheng, T. Mohsenin, Z. Yu,

A. Jacobson, G. Landge, M. Meeuwsen, C. Watnik,
A. Tran, Z. Xiao, E. Work, J. Webb, P. Mejia, and
B. Baas. A 167-processor computational platform in
65 nm CMOS. Solid-State Circuits, IEEE Journal of,
44(4):1130 —1144, April 20009.

