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Abstract

In this dissertation we solve several combinatorial problems in different areas of

mathematics: automata theory, combinatorics of partially ordered sets and extremal

combinatorics.

Firstly, we focus on some new automata that do not seem to have occurred much

in the literature, that of solvability of mazes. For our model, a maze is a countable

strongly connected digraph together with a proper colouring of its edges (without

two edges leaving a vertex getting the same colour) and two special vertices: the

origin and the destination. A pointer or robot starts in the origin of a maze and

moves naturally between its vertices, according to a sequence of specific instructions

from the set of all colours; if the robot is at a vertex for which there is no out-edge

of the colour indicated by the instruction, it remains at that vertex and proceeds

to execute the next instruction in the sequence. We call such a finite or infinite

sequence of instructions an algorithm. In particular, one of the most interesting and

very natural sets of mazes occurs when our maze is the square lattice Z2 as a graph

with some of its edges removed. Obviously, we need to require that the origin and

the destination vertices are in the same connected component and it is very natural

to take the four instructions to be the cardinal directions. In this set-up, we make

progress towards a beautiful problem posed by Leader and Spink in 2011 which asks

whether there is an algorithm which solves the set of all such mazes.

Next, we address a problem regarding symmetric chain decompositions of posets.

We ask if there exists a symmetric chain decomposition of a 2 × 2 × . . . × 2 × n

cuboid (k 2’s) such that no chain has a subchain of the form (a1, . . . , ak, 0) ≺ . . . ≺
(a1, . . . , ak, n−1)? We show this is true precisely when k ≥ 5 and n ≥ 3. This question

arises naturally when considering products of symmetric chain decompositions which

induce orthogonal chain decompositions — the existence of the decompositions

provided in this chapter unexpectedly resolves the most difficult case of previous

work by Spink on almost orthogonal symmetric chain decompositions (2017) which

makes progress on a conjecture of Shearer and Kleitman. Moreover, we generalize

our methods to other finite graded posets.

Finally, we address two different problems in extremal combinatorics related to

mathematical physics. Firstly, we study metastable states in the Ising model. We

propose a general model for 1-flip spin systems, and initiate the study of extremal

properties of their stable states. By translating local stability conditions into Sperner-

type conditions, we provide non-trivial upper bounds which are often tight for large

classes of such systems. The last topic we consider is a deterministic bootstrap

percolation type problem. More specifically, we prove several extremal results about

fast 2-neighbour percolation on the two dimensional grid.
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CHAPTER 1

Introduction

1. Structure

This dissertation is divided into five chapters. In the present chapter, we

briefly present the problems and results that appear in the rest of the work. In

the second chapter, which is the longest, we solve a problem in automata theory.

In the third chapter we address a question regarding decomposition of posets

into symmetric chains. In the last two chapters we consider two problems in

extremal combinatorics, one regarding the metastable states in interaction spin

glasses, and the last one in bootstrap percolation.

2. Solvability of Mazes by Blind Robots

Automata theory, the subject in discrete mathematics and theoretical

computer science which is concerned with the study of a certain type of machines

called automata, was introduced by von Neumann (see [42]) in 1966. Though

studied for decades, recent important breakthroughs in automata theory, such

as Trahtman’s solution to the road coloring problem [41], have turned it into

an important field in discrete mathematics and theoretical computer science.

For a comprehensive introduction in the theory and other related subjects, see

the book of Hopcroft, Motwani and Ullman [21].

Informally, an automaton is made of states, it receives inputs from a formal

alphabet (which is a finite set of symbols), and for each state it determines to

which state to switch when a new input is received. This model leads to the

work done in Chapter 2, which is joint work with M. Tiba. There we introduce

and study an automaton which so far has not received much serious attention,

which is related to solvability of mazes. Though there were numerous maze
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solving questions asked over the years, giving raise to maze solving algorithms

or shortest path algorithms for mazes, our model is quite different in nature

and it is more difficult. It is motivated by a question of I. Leader and H. Spink

which was passed to us by P. Balister and is discussed in detail in Section 1 of

Chapter 2. After we introduce our model, we solve some particular instances

of this problem. As our main result, we construct an algorithm for a robot

to visit all accessible vertices in a set of mazes which arises as a collection of

special subgraphs of Z2.

3. Products of posets with long chains

The consideration of symmetric chain decompositions of posets first started

with Kleitman’s proof of the Littlewood-Offord theorem on concentration

of sums of Bernoulli random variables [24]. One of the key observations in

that paper is that we can inductively create symmetric chain decompositions

of the hypercube Qn = {0, 1}n (which can alternatively be viewed as the

power set of {1, 2, . . . , n}), through a certain “duplication method”. This

observation is the special case with Q a two-element chain poset of a more

general claim that given two posets P,Q with symmetric chain decompositions,

we can decompose the product P ×Q into symmetric chains by decomposing

the rectangle posets formed by the product of a chain in P with a chain in

Q. The literature is abundant with both necessary and sufficient conditions

for the existence of symmetric chain decompositions on finite graded posets

(see for example the works of Griggs [19] and Stanley [38]). However, the

further study of commonalities between all symmetric chain decompositions is

somewhat lacking, mostly due to the largely unstructured nature of a generic

such decomposition of a typical poset.

In Chapter 3, which is joint work with H. Spink and M. Tiba, we address a

problem which arises naturally when considering products of symmetric chain

decompositions which induce orthogonal chain decompositions. The existence

of the decompositions proved in this chapter unexpectedly resolves the most
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difficult case in a paper by H. Spink on almost orthogonal symmetric chain

decompositions [37], which makes progress on a conjecture of Shearer and

Kleitman [35]. We show that there exists a symmetric chain decomposition of

a 2× 2× . . .× 2× n cuboid (k 2’s) such that no chain has a subchain of the

form (a1, . . . , ak, 0) ≺ . . . ≺ (a1, . . . , ak, n− 1) precisely when k ≥ 5 and n ≥ 3.

Moreover, we show how our methods generalize to other finite graded posets.

4. Metastable States in the Ising Model

The Ising model was introduced in 1920 by the physicist Wilhelm Lenz in

[27], who passed it as a problem to his student, Ernst Ising (see [22]). Since

then, this model has received serious attention in the literature, for example

see Lee and Young [26], Glauber [16] and Kazakov [23]. For a comprehensive

description of the model and closely related subjects, see the book of McCoy

and Wu [29].

In the Ising model, a collection V of interacting particles are arranged in

an underlying dependency graph G with vertex set V . Each particle v ∈ V has

a magnetic spin σv ∈ {±1} and it can interact only with its neighbours in G.

The energy of a certain spin configuration, which is an assignment of ±1 to

each σv, is given by the Hamiltonian function

H = −
∑

Jijσiσj −
∑

hiσi,

where the Jij are typically Gaussian random variables with Jij = 0 if ij is

not an edge of G, and hi are constants corresponding to an external magnetic

field. When the Hamiltonian is locally maximized, in the sense that for any

v, negating σv strictly decreases the Hamiltonian, we say that the system is

metastable or, equivalently, that we have a metastable state. An important

question in mathematical physics is to understand the distribution of metastable

states.

In Chapter 4, which is joint work with H. Spink and M. Tiba we initiate

the study of the associated extremal problem, namely what is the maximal
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number of metastable states possible under various restrictions. To do so, we

propose a generalization of these spin systems, capturing what we believe to be

the combinatorial essence of the Ising model. Specifically, for each particle v,

we show how the Ising model imposes constraints on the possible configurations

of spins in Γ(v) (the neighbourhood of v in G) for any metastable state. The

conjunction of these constraints then imposes combinatorial conditions on the

metastable states in {±1}V which, as we will see, are very analogous to the

Sperner antichain condition in extremal set theory.

5. Fast Bootstrap Percolation on the Grid

Cellular automata models are systems in which particles interact according

to local and homogeneous rules and were introduced by von Neumann in 1966

(see [42]), but no general theory of such models has been developed until the

recent work of Bollobás, Smith and Uzzell [9] (also see the paper of Bollobás,

Duminil-Copin, Morris and Smith [8]). However, there are special cases that had

been studied broadly, for example the bootstrap percolation model introduced

in 1979 by Chalupa, Leath and Reich in [13], originating in the context of

disordered magnetic systems.

In Chapter 5, which is joint work with S. Binski, we consider the determin-

istic 2-neighbour bootstrap percolation model on the grid and we address a

question of B. Bollobás which asks about the minimal infection time in this

set-up. We first present an easy but very nice argument establishing the exact

minimal infection time for n+ 1 initially infected sites, and we then provide

some general upper and lower bounds for the minimal infection time in terms

of the number of initially infected sites.
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CHAPTER 2

Solvability of Mazes by Blind Robots

1. Introduction

This chapter is joint work with Marius Tiba.

One of the long standing conjectures in automata theory is the road colouring

problem introduced in 1970 by Adler, Goodwyn and Weiss in [2], [3]. This

conjecture states that a strongly connected digraph
−→
G in which all vertices have

the same out-degree has a synchronising colouring, provided
−→
G is aperiodic,

i.e. the gcd of the lengths of all of its oriented cycles is one. A synchronising

colouring of a strongly connected digraph
−→
G of uniform out-degree k is a

labelling of the edges of
−→
G with colours 1, . . . , k such that all the vertices have

out-edges of all colours and for every vertex v of
−→
G there exists a word Wv

in the alphabet of colours such that every path in
−→
G corresponding to Wv

terminates at v. We note that the existence of a synchronising colouring makes

it possible to reset the automaton to its original state after the detection of

an error. In fact, this important property is the reason why the road coloring

problem has received so much attention over the past few decades. There have

been many positive partial results published over the years, such as Carbone

[10], Friedman [15], and O’Brien [31]. In 2009, Trahtman made one of the most

notable advances in the field by proving this conjecture in [41].

Another well-known related problem in the field is Černý’s conjecture which

appeared in [12] in 1964 and states that the length of the shortest synchronising

word for any n-state deterministic finite automaton is bounded above by (n−1)2

(for more details see Pin [33] and Trahtman [40]). There are many partial
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results concerning Černý’s conjecture, see e.g. Grech and Kisielewicz [18] and

Steinberg [39].

In this chapter we introduce and study a new model of automata which

turns out to be deep and interesting, motivated by the following coffee time

problem of Leader.

Problem 1.1. Consider the classical 8 × 8 chessboard as a maze, where

every small square is a room, such that between any two adjacent rooms there

is either a wall that prevents the transit between them, or there is no wall

and transit is possible. Additionally, the boundary of the board is formed only

by walls. Say that a robot starts in one of the 64 squares and it receives a

series of instructions from the cardinal directions: north, south, east, west.

Each time the robot receives such an instruction, it executes it by moving to

the corresponding adjacent room, provided there is no wall to prevent it from

moving as instructed; if there is such a wall, the robot simply does not move and

it continues with the following instruction. The robot does not give any feedback

whether it moves or not when executing an instruction. Naturally, the maze

can be regarded as a subgraph of the square lattice 8× 8 where there is an edge

between two vertices if and only if there is no wall between the corresponding

squares. Without knowing the subgraph and the starting vertex of the robot, can

one write a sequence of instructions such that at the end the robot is guaranteed

to have visited all accessible vertices?

To see the existence of such an algorithm, simply enumerate all the possible

boards and solve them one by one, keeping track of the updated position of

the robot when passing to a new board. Another related problem which can

be solved similarly is the following.

Problem 1.2. Consider a subgraph of some finite dimensional hypercubes

Q1, Q2, . . . as a maze. Say that a robot starts in one of the vertices and it receives

a sequence of instructions from the set of coordinate directions ±e1,±e2, . . ..

Each time the robot receives such an instruction, it executes it by moving to
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the corresponding adjacent vertex, provided there is an edge between these two

vertices; if there is no such edge, the robot simply does not move and it continues

with the following instruction. Without knowing the subgraph and the starting

vertex of the robot, can one write a sequence of instructions such that at the

end the robot is guaranteed to have visited all accessible vertices?

Problem 1.1 lead Spink and Leader to ask the following research question,

which was later passed to us by P. Balister.

Question 1.3. What happens if in Problem 1.1 we replace the (finite) 8× 8

square lattice with the infinite square lattice Z2?

Having worked on it for a long time, we believe that Question 1.3 is extremely

difficult. In this chapter we make progress towards answering this question, by

constructing algorithms which solve certain subsets of mazes arising from the

infinite square lattice Z2, thus establishing the following main result.

Theorem 1.4. There exists an infinite sequence of instructions for a robot

to visit all accessible vertices in any maze for which the board is the graph Z2

with arbitrarily many horizontal edges removed but only finitely many vertical

edges removed, and the columns with missing vertical edges are consecutive, i.e.,

they form an interval.

We note that Theorem 1.4 follows immediately from two separate results,

Theorem 3.1 and Theorem 3.2 which are of interest by themselves, and a rather

technical result, Proposition 3.3.

This chapter is divided into nine sections. In Section 2 we start by developing

a general set-up that encompasses a class of similar problems which we call

“solvability of mazes by blind robots”. We then return to the Leader-Spink

problem and state all our main results in Section 3. In Section 4 we present

a toy model that represents the foundation on which the general model is

constructed. As part of this toy model, we prove Theorem 3.1; this allows us

to introduce and investigate some generic algorithms that are used as building
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blocks in the proof of Theorem 3.2. In Section 5 we present a series of technical

definitions that are used to construct a countable cover of the set of mazes in

Theorem 3.2 with subsets of mazes that we can treat individually. In Section 6

and Section 7 we prove Theorem 3.2 by a suitable construction. We continue

with the proof of the technical result and the proof of Theorem 1.4 in Section 8.

Finally, in Section 9 we present several further directions of research and some

of our conjectures.

2. Preliminaries

In this section we give a precise definition of our model and present some

examples.

A maze is a quadruple (M, c, o, d), where M is a countable strongly con-

nected digraph called the board and c : E(M) −→ N is a proper colouring

of the directed edges of M , i.e. one in which the out-edges from any vertex

have distinct colours. Further, o and d are two special vertices of M called the

origin and the destination, respectively.

An instruction I ∈ N is an element from the set of colours N. An algorithm

A = (Ii)
n
i=1 or A = (Ii)

∞
i=1

is a finite or infinite sequence of instructions. Further, this is also how we define

finite and infinite algorithms, respectively. A subalgorithm A′ of an infinite

algorithm A as above is a truncation of A of the form

A′ = (Ii)
j
i=k or A′ = (Ii)

∞
i=k,

for some k ≤ j. Similarly, a subalgorithm A′ of a finite algorithm A = (Ii)
n
i=1 is

a truncation of A of the form A′ = (Ii)
j
i=k for some k ≤ j ≤ n. Finally, a robot

is an element form the set of vertices of M . In order to describe dynamically

our process of visiting the graph we look at the following model.

Given an algorithm A = (Ii)
∞
i=1 and a maze (M, c, o, d), the robot is initially

o and then it changes its value or it updates to different vertices of M , as it
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follows the instructions I1, I2, . . . one by one in order: for n ∈ N the robot

updates given the n-th instruction In ∈ N by changing its value from the

current element v to the new vertex w if and only if there exists an oriented

edge e of colour In from v to w; if there is no such oriented edge e, the robot’s

value remains v.

In order to use a more natural language, for the rest of the chapter we

use the following notation. We view the robot as a pointer that indicates to

different vertices of M and we say that it starts at o and then it moves between

the vertices of M according to the instructions, as described above. In short,

we say that the robot follows the algorithm A in the maze (M, c, o, d). Given a

maze (M, c, o, d), a vertex v of M and an algorithm A, we say that the robot

visits v as it follows A in (M, c, o, d) if the value of the robot is v at some

point while it follows the algorithm A in the maze (M, c, o, d). We say that an

algorithm A solves the maze (M, c, o, d) if the robot visits the destination d as

it follows A in (M, c, o, d). Similarly, we say that an algorithm A solves a set

M of mazes if it solves every maze in M.

We remark that each connected graph can be regarded as a strongly con-

nected digraph by doubling edges. This is done in order to allow us to give the

desired colouring of the directed edges. Throughout the chapter all the boards

of the mazes arise in this way and hence from now on we define the board

of a maze to be a graph. Moreover, we omit the condition that the graph is

connected and we require instead that the origin and the destination are in the

same connected component of the graph. Finally, we call every vertex in the

connected component of the origin accessible.

In this chapter we are interested in the fundamental question, whether there

exist algorithms that solve certain natural sets of mazes. As we shall see from

the arguments which appear in this chapter, and also from our conclusions and

open questions in Section 9, this set up is quite rich in deep insights related to

the phenomenon of state automata.
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For example, we note that there is no algorithm that solves the set of all

mazes. Indeed, let us assume for a contradiction that A = (Ii)
∞
i=1 does the

job. We construct M to be the path with vertices v0, v1, . . . and its only edges

vi → vi−1 and vi−1 → vi for all i ∈ N. We set o = v1, d = v0 and colour the

edge vi → vi+1 with colour Ii and the rest of the edges in any way that does not

violate the proper colouring condition. A robot that starts in this maze and

follows A will visit in order v1, v2, v3, . . . as it follows I1, I2, . . ., never reaching

v0 = d. As M was constructed to be strongly connected, we have reached a

contradiction.

As another warm-up example let us note that for any countable set of

mazes there exist algorithms that solve it. In particular, this solves Prob-

lem 1.1 and more importantly it shows that there exist algorithms that solve

the set of all finite mazes. Indeed, let (M1, c1, o1, d1), (M2, c2, o2, d2) . . . be an

enumeration of a countable set of mazes M. Considering the strongly con-

nectedness property, given any maze (M, c, o, d) one can write by inspection

a finite algorithm that solves the maze. Then, let A1 be any finite algorithm

that solves (M1, c1, o1, d1); let o′2 be the position of the robot after it follows

the algorithm A1 in (M2, c2, o2, d2); let A2 be any finite algorithm that solves

(M2, c2, o
′
2, d2) with origin o′2; let o′3 be the position of the robot after it follows

the algorithm A1A2 in (M3, c3, o3, d3), etc. Continue in this way to create

algorithms A1, A2, . . .. We claim that the algorithm A = A1A2 . . . obtained by

concatenating A1, A2, . . . solves the set of mazesM. Indeed, consider the maze

(Mi, ci, oi, di) ∈M for some i ≥ 2. After the robot follows the initial subalgo-

rithm A1A2 . . . Ai−1 of A it gets to the vertex o′i of Mi and then after it follows

Ai it gets to the destination point di. Trivially, for the maze (M1, c1, o1, d1), the

robot gets to the destination point d1 after it follows the initial subalgorithm

A1 of A. This shows that A solves M.

We can see from these two examples that the most interesting cases of our

model occur “in between”, when we consider natural uncountable sets of mazes
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for which we seek to construct algorithms to solve them. Let us present below

an uncountable set of mazes, for which it is not hard to find such algorithms.

Let Q = Q1 ∪Q2 ∪ . . . be the nested union of all finite dimensional hyper-

cubes i.e. the graph with vertices all possible infinite {0, 1} sequences with

trailing zeros and edges between those pairs of vertices which differ in only

one coordinate. Let Q be the set of mazes for which the board is a connected

subgraph of Q and the colouring assigns to each directed edge the corresponding

coordinate direction ±e1,±e2, . . ..

Our main aim in this chapter, though, is to solve a problem resembling Prob-

lem 1.1. One of the most fundamental sets of mazes is the setM =M(Z2) for

which the board is the square lattice Z2 considered as a graph with arbitrarily

many edges deleted, the colouring assigns to each directed edge the correspond-

ing cardinal direction from the set {N,S,E,W} = {S−1, N−1,W−1, E−1}, and

the origin and destination are in the same connected component. From now

on we define a maze to be a triple (M,o,d) ∈ M, where M is the board,

o = (xo, yo) is the origin, and d = (xd, yd) is the destination.

An algorithm A is a finite or infinite sequence of instructions. We say that a

robot follows A in a given maze (M,x) starting from v = (x, y) if it starts from

v and then it executes in order one by one the instructions in A as described

above.

We label the rows and columns of Z as ri = {(x, i) | x ∈ Z} and ci =

{(i, y) | y ∈ Z}, respectively. Finally, for a point (x, y) ∈ Z2 we refer to the

x-coordinate as its longitude and to the y-coordinate as its latitude.

In Figure 1 we mark the destination point (3,−2) with a cross and we note

that in every maze there is a path from the origin to the destination point.

When the robot follows the algorithm SNWWN in M it gets to the point

(−1, 2) it follows the path (0, 0), (0, 0), (0, 1), (−1, 1), (−1, 1), (−1, 2); the robot

does not move when it executes the first and fourth instructions, as there is no

edge between (0, 0) and (0,−1) and between (−1, 1) and (−2, 1).
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Figure 1. A representation of a piece of a general maze M ,
where edges are marked by red lines.

Regarding notation, we often create new algorithms by concatenations of

instructions and other algorithms, and it is very convenient to use multiplication

to denote concatenation. For example

SNSSNS = SNS2NS = (SNS)2

denotes the algorithm A = (Ai)
6
i=1 with A1 = S,A2 = N,A3 = S,A4 = S,A5 =

N,A6 = S. For our convenience, let us further set N−1 := S, S−1 := N ,

E−1 := W , W−1 := E by convention. For a finite algorithm A, we write |A|

for the number of instructions in A; similarly we write |A|I for the number of

occurrences of I in A, for I ∈ {N,S,E,W}. For example, taking A = (NSN)2

as above, |A| = 6 and |A|N = 4.

3. Our Results

Our main result, Theorem 1.4, follows almost directly from Theorem 3.1,

Theorem 3.2 and Proposition 3.3, all of which are interesting results on their

own.
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Theorem 3.1. Let C ⊆ M(Z2) be the set of all mazes for which the board

has arbitrarily many horizontal edges removed but no vertical edges removed.

Then there exists an algorithm that solves C.

Theorem 3.2. Let F ⊆M(Z2) be the set of all mazes for which the board

has arbitrarily many horizontal edges removed and nonzero finitely many vertical

edges removed in consecutive columns. Then there exists an algorithm that

solves F .

We should note that the proofs of Theorem 3.1 and Theorem 3.2 are both

constructive. Moreover, and as one might expect, the proof of Theorem 3.2

turns out to be much more difficult than the proof of Theorem 3.1. One might

see that Theorem 1.4 is stronger than both Theorem 3.1 and Theorem 3.2 as

it shows that there exists algorithms that solves C ∪ F . As a final note, from

the way we prove Theorem 3.1 and Theorem 3.2, it is clear how Theorem 1.4

follows directly, obtaining a constructive proof of Theorem 1.4. However,

Proposition 3.3 is a more general result which enables us to gain more insight

and deduce further properties about our model, e.g. see Corollary 3.4.

In Section 4, in which we give the proof of Theorem 3.1, we also introduce

some generic algorithms which constitute the main building blocks of the

algorithm which solves F . In Lemma 4.1, which is the key technical result of

the chapter, we present the properties of these generic algorithms that will be

used multiple times in the proof of Theorem 3.2.

Proposition 3.3. Let E(Z2) be the set of edges of Z2. We can regard any

board of a maze as an indicator function f : E(Z2) −→ {0, 1}. Hence, the set

of boards of mazes equipped with the product topology is a compact metrizable

space. Let {Ai}∞i=1, Ai ⊆M for all i, be a countable collection of mazes with

the following properties:

(1) for all i ∈ N, all origins o ∈ Z2, all destination d ∈ Z2 and all

paths P between o and d, the sets of boards Bi = {M | (M, o, d) ∈

Ai, P is a subgraph of M} are compact;
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(2) for all i ∈ N, if (M, o, d) ∈ Ai, then (M, o′, d′) ∈ Ai for all o′, d′ in the

same connected component as o, d;

(3) for every i there exists an algorithm Ai that solves the set Ai.

Then there exists an algorithm A that solves the set A =
⋃∞
i=1Ai and

that furthermore guides the robot to visit the destination of every maze in the

set infinitely often. Moreover, if we cut or add an initial segment to A, the

algorithm obtained in this way has the same property.

Proposition 3.3, which is proved in Section 8, allows us to go back to the

original problem regarding existence of algorithms that solve the set M of all

mazes. The following immediate corollary which follows from Proposition 3.3

by taking A = Ai =M for all i ascertains the intuitive fact that there exists

an algorithm such that if the robot follows it, the robot visits all accessible

points in any given maze at least once if and only if there exists an algorithm

such that if the robot follows it, the robot visits all accessible points in any

given maze infinitely often.

Corollary 3.4. The following statements are equivalent:

(1) there exists an algorithm A1 such that if the robot follows it in any

given maze (M,x) ∈M, the robot visits all accessible points of (M,x)

at least once;

(2) for any d ∈ N there exists a finite algorithm A2(d) such that if the

robot follows it in any given maze (M,x) ∈ M, the robot visits all

points at distance at most d from the origin in (M,x);

(3) there exists an algorithm A3 such that if the robot follows it in any

given maze (M,x) ∈M, the robot visits all accessible points of (M,x)

infinitely often.

Corollary 3.4 is an interesting result on its own, also because one could try

to prove the existence of an algorithm that solves the set M of all mazes by

constructing A2(1), A2(2), . . .. Remarkably, even if A2(1) which we constructed

exists, it is not trivial to find.
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4. Our Toy Model

The aim of this section is to prove Theorem 3.1 and to introduce the general

strategy and some generic algorithms that are used in the proof of Theorem 3.2

as well.

For our toy model we consider C, the set of mazes with no vertical edges

removed from Theorem 3.1. Without loss of generality, we assume that for any

maze in C the origin is the point (0, 0). The main property of this set of mazes

is that at each step of the algorithm we know the robot’s latitude.

We start with a short proof of Theorem 3.1 and we then provide a more

complex proof which introduces more profound ideas that are needed for our

proof of Theorem 3.2.

Proof of Theorem 3.1. For any positive integer a, we define the oscil-

lation O(a) to be the algorithm NaS2aNa. We begin by defining the class of

algorithms easy move east:

EME(a) := (O(a) E O(a) NES O(a) SEN O(a) N2ES2 . . . O(a) NaESa

O(a) SaENa O(a))a.

The counterpart of this class of algorithms is easy move west defined as

EMW (a) := (O(a) W O(a) NWS O(a) SWN O(a) N2WS2 . . . O(a)

NaWSa O(a) SaWNa O(a))a.

We note that for each a, |EME(a)| = |EMW (a)| and we define the

unbounded sequence of positive integers (xi)
n
i=1 by the rules x1 = 1, x2 =

2|EME(1)| = 46, and in general xi = 2(|EME(x1)| + |EME(x2)| + . . . +

|EME(xi−1)|) for all i > 1.

We claim that the (infinite) algorithm finish defined as

F = EMW (x1) EME(x2) EMW (x3) . . .

solves the class C of mazes. Indeed, let us assume without loss of generality

that the destination point has longitude at least that of the origin. Let a be

the smallest positive integer which is at least twice the difference in longitude
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between the destination point and the origin, at least the absolute value of

the latitude of the destination and at least the smallest positive integer b such

that every pair of consecutive columns at longitude between the origin and the

destination point is connected by a horizontal edge at some latitude between

−b and b. Let xk be any number in the sequence (xi)
n
i=1 greater than a with k

even, k ≥ 3; such a k exists because the sequence (xi)
n
i=1 is unbounded. We

claim that if the robot starts in the origin and it follows the finite algorithm

EMW (x1)EME(x2)EMW (x3) . . . EMW (xk−1)EME(xk), which is an initial

segment of F , the robot visits the destination point.

Indeed, we note first of all that after the robot follows EMW (x1)EME(x2)

EMW (x3) . . . EMW (xk−1) starting from the origin, it has a longitude at most

that of the longitude of the origin (i.e. the robot is to the west of the origin).

Indeed, after the robot follows EMW (x1)EME(x2)EMW (x3) . . . EME(xk−2)

in every maze in C it gets to a point x = (x, 0) on the x-axis, as |EME(a)|N =

|EME(a)|S and |EMW (a)|N = |EMW (a)|S for all a and every maze in C has

no vertical edges removed. Moreover, after the robot followsEMW (x1)EME(x2)

EMW (x3) . . . EME(xk−2) in every maze in C it cannot be at longitude more

than λ := |EMW (x1)EME(x2)EMW (x3) . . . EME(xk−2)| = |EME(x1)| +

|EME(x2)| + . . . + |EME(xk−2)| and if it is at longitude x > 0, then every

pair of consecutive columns at longitude between 0 and x are connected by a

horizontal edge at some latitude between −λ and λ. Therefore, if the robot

starts at (x′, 0) which is any of the points (0, 1), . . . (0, x) and it follows the al-

gorithm O(xk−1) W O(xk−1) NWS O(xk−1) SWN . . . O(xk−1) N
xk−1WSxk−1

O(xk−1) S
xk−1WNxk−1 O(xk−1) =: A, then its longitude is at most x′ − 1, as

xk−1 ≥ λ. As, again, xk−1 ≥ λ ≥ x, after the robot follows Axk−1 starting

from (x, 0), it has longitude at most 0. This shows that after the robot fol-

lows EMW (x1)EME(x2)EMW (x3) . . . EMW (xk−1) starting from the origin,

it gets to a point (x1, 0) with x1 ≤ 0. Finally, remark that the same argument

still holds if we replace xk−1 by any value at least λ.
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Our initial claim is that if the robot starts at (x1, 0) and it follows EME(xk),

it visits the destination point. For this it is enough to show that the robot visits

the column of the destination point, as the robot follows an oscillatory move

O(xk) starting from latitude 0 in every column it visits. By applying the exactly

same argument as above, after the robot follows (O(xk) E O(xk) NES O(xk)

SEN . . . O(xk) N
xkESxk O(xk) S

xkENxk O(xk))
xk/2 starting from (x1, 0), it

has longitude at least 0. From the fact that every pair of columns between

the origin and the destination point is connected by a horizontal edge at some

latitude between −xk and xk and that the difference in longitude between the

destination point and the origin is at most xk/2, the robot is guaranteed to

visit the column of the destination point by the same argument as above. This

finishes the proof. �

We are now ready to introduce our general strategy and present a more

general proof of Theorem 3.1.

For a subset of mazes C ⊆ M, in order to construct an algorithm A that

solves C we adopt the following natural strategy: we find a countable cover

C =
⋃∞
i=1 Ci such that for each i ∈ N and each finite algorithm X we are able to

find a finite algorithm AiX such that the concatenated algorithm XAiX solves Ci.

Then we are able to find an algorithm A that solves C. Indeed, we construct

recursively the finite algorithms (Bn)n≥0 with B0 = ∅ and Bn = AnB0B1...Bn−1
,

then we take A = B1B2 . . ..

Second proof of Theorem 3.1. We begin this proof by defining two

classes of algorithms. The aim of the first one is to move the robot eastwards

in a certain organised pattern and we call it move east; it is defined as follows

for all a, e ≥ 1:

ME(a, e) := (((((E)eNES)eSEN)eN2ES2)e . . . SaENa)e.

We view ME(a, e) as being composed from the multiple concatenation of

2a + 1 different building blocks which we call locomotory moves: E, NES,
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SEN, N2ES2, . . . NaESa, SaENa. We constructed the class of algorithms

move east in such a way so that the following holds:

Let a, e be two natural numbers. Assume that the robot starts at the point

x = (x, y) in any maze M ∈ C with no vertical edges removed. Take the

maximal k ≤ e such that in M the columns ci and ci+1 are joined at some

latitude in {−a+ y, . . . , a+ y} for all x ≤ i ≤ x+ k − 1. Then, as the robot

follows the algorithm ME(a, e), it oscillates about the row ry at latitudes

between y − a and y + a. After the algorithm is followed, the robot gets to a

point x’ = (x′, y) with x′ ≥ x+ k, in particular x′ = x+ k if k < e. Moreover

if we well order Z by y < 1 + y < −1 + y < 2 + y < −2 + y < . . ., then for

all x ≤ i ≤ x+ k − 1 the robot passes from the column ci to the column ci+1

through the edge at the lowermost latitude with respect to this order.

This holds as a particular case of Lemma 4.1, which is a technical result used

extensively, proved later in this section. One can also see how this statement

follows from the construction of ME(a, e), more specifically from the order

in which the locomotory moves appear in the algorithm. The counterpart of

move east is called move west, and we have:

MW (a, e) := (((((W )eNWS)eSWN)eN2WS2)e . . . SaWNa)e.

The second class of algorithms that we define is called oscillating move east,

which is a slight alteration of move east formed by inserting the oscillatory

algorithm (N bS2bN b)e in between some locomotory moves; it is defined as

follows for all a, e ≥ 1 and b ∈ Z:

OME(a, e, b) := ((((((N bS2bN b)eE)eNES)eSEN)eN2ES2)e . . . SaENa)e.

We note that in every maze with no vertical edge removed, after the robot

follows the oscillatory algorithm (N bS2bN b)e, it gets back to the starting point.

Therefore, for any parameters a, e, b, as the robot follows OME(a, e, b) in any

maze M ∈ C, it has the same dynamics as it follows ME(a, e) in M and in

addition the robot visits some consecutive columns, beginning with the one

which contains its starting point x = (x, y), at all latitudes between y − b and

y+ b. Finally, we use the oscillatory algorithm (N bS2bN b)e instead of N bS2bN b
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which works just as well for this purpose, only because we want OME(a, e, b)

to be a particular case of a much more general algorithm, SME(a, e,K) that

is defined later in this section.

The counterpart of oscillating move east is called oscillating move west,

and we have:

OMW (a, e, b) = ((((((N bS2bN b)eW )eNWS)eSWN)eN2WS2)e . . . SaWNa)e.

We are now ready to prove the theorem using the general strategy described

at the beginning of the section. In order to produce the desired countable cover,

define Cn,x to be the set of all mazes with no vertical edges removed, with

the destination point x = (x, y) and such that any two consecutive columns

at longitude between 0 and x are joined at some latitude between −n and n.

Then C =
⋃
n,xCn,x is a countable cover.

We let X be any finite algorithm and we fix the values n,x. We now consider

just the set of mazes Cn,x and we aim to construct an algorithm A such that

XA solves Cn,x, which by the discussion of our strategy at the beginning of

the section is enough to conclude.

Say that the robot starts in any maze M ∈ Cn,x (as always, it starts in the

origin) and it gets to the point (a, 0) after it follows some finite algorithm Y . The

following observation is crucial: for each pair {i, i+1} ⊂ {0, . . . , a}, the columns

ci and ci+1 are joined at some latitude in {−|Y |S, . . . , |Y |N} ⊆ {−|Y |, . . . , |Y |}.

Therefore, after the robot follows the algorithm Y ME(a, |Y |W ) in M it gets

to some point (a′, 0) with a′ ≥ 0.

Now we build A as a concatenation of three algorithms A := A1A2A3.

We construct A1 := S|X|N−|X|S ; then after the robot follows the algorithm

XA1 in any maze M ∈ Cn,x it gets to the row r0.

Define a := max{|XA1|S, |XA1|N , n}; e := |XA1|W + |x|. Define A2 :=

ME(a, e). Then after the robot follows the algorithm XA1A2 in any maze

M ∈ Cn,x it gets to some point (x+, 0) with x+ ≥ x.
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Define a := max{|XA1A2|S, |XA1A2|N , n}; w := |XA1A2|E+|x|+1; b := |y|.

Define A3 := OMW (a, w, b). Then after the robot follows the algorithm

XA1A2A3 in any maze M ∈ Cn,x, it gets to some point (x−, 0) with x− ≤ x

and it visits every intermediate column ci with x− ≤ i ≤ x+ including cx at

every latitude in {−b, . . . , b} including y.

Therefore, after the robot follows XA = XA1A2A3 in any maze M ∈ Cn,x,

it visits the destination point x. Hence there exists an algorithm A such that

XA solves Cn,xy. This finishes the proof. �

We note that the missing vertical edges in the general model usually make

the latitude of the robot unknown but it turns out that we can actually make

use of the missing edges to regain the latitude of the robot. However, the

unknown longitude and the missing edges require the robot to use a very subtle

path to get to the destination point. As a result of these difficulties in the

proof of Theorem 3.2 we need to make a much finer covering than in the proof

of Theorem 3.1.

In the remainder of this section we introduce an algorithm which is a

generalisation of ME(a, e) and OME(a, e, b) called special move east which

is the main building block of the algorithms used in the general model. We

then group all its properties in Lemma 4.1, which makes it one of the main

results of the chapter. For a, e ≥ 1 and a finite algorithm K we define:

SME(a, e,K) := (((((KeE)eNES)eSEN)eN2ES2)e...SaENa)e. We view

SME(a, e,K) as being composed from the multiple concatenation of 2a + 2

different building blocks: the 2a + 1 locomotory moves E, NES, SEN, . . .

SaENa and the special algorithm K.

Its counterpart, special move west is defined as:

SMW (a, e,K) := (((((KeW )eNWS)eSWN)eN2WS2)e...SaWNa)e.

Recall that C ⊂ M is the set of mazes with no vertical edges removed. The

following result encompasses the main properties of SME(a, e,K) that are

used countless times in the proof of Theorem 3.2.
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Lemma 4.1. Let a, e ≥ 1 and K be a finite algorithm such that for any

maze M ∈ C, if the robot follows K in M starting from the origin, it returns to

the x-axis and it has a non-negative longitude. Let C ′ ⊆ C be a subset of mazes

for which there exists 0 ≤ l ≤ e− 2 with the following properties:

(1) for every maze in C ′ and for any 0 ≤ x ≤ l the columns cx and cx+1 are

joined at some latitude between −a and a;

(2) for any v = (xv, 0) with 0 ≤ xv ≤ l, if the robot starts from v and

follows K in any maze in C ′ it reaches some point w = (xw, 0) with xv ≤ xw ≤ l

without visiting any vertex on the column cl+1, i.e. without visiting any point

of longitude at least l + 1.

Then after the robot follows SME(a, e,K) in any maze in C ′, (i) it gets

to some point v = (xv, 0) on the x-axis with xv ≥ l + 1; (ii) it does not pass

from the column cl to the column cl+1 for the first time while executing K;

(iii) it passes from the column cl to the column cl+1 for the first time while

executing a locomotory move NmESm, where m ∈ Z is the lowermost latitude

with respect to the standard well order on Z : 0 < 1 < −1 < 2 < −2 < . . . such

that the columns cl and cl+1 are joined at latitude m; (iv) immediately after

this locomotory move NmESm is executed, the robot follows K.

Proof. Let M be any maze in C ′. As we prove the result for M , we make

the convention that every time we say that the robot follows an algorithm, it

follows that algorithm in M .

By the hypothesis on K, if the robot is on the x-axis and follows K (or

N bESb, b ∈ {−a, . . . a}), it returns to the x-axis and its longitude does not

strictly decrease. We fix x between 0 and l, so that the columns cx and cx+1

are joined at some latitude b between −a and a. Hence, if the robot starts from

the point (x, 0) and follows N bESb it gets to the point (x+ 1, 0). Therefore, if

the robot is on the x-axis at some longitude between 0 and l, then after each

instance of the algorithm (((((KeE)eNES)eSEN)eNNESS)e...SaENa)1, the

longitude of the robot increases by at least one. This proves (i).
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The conclusion (ii) follows directly from the hypothesis: indeed, for any

v = (xv, 0) with 0 ≤ xv ≤ l, if the robot starts from v and follows K, it gets at

some point w = (xw, 0) with xv ≤ xw ≤ l without visiting any vertex on the

column cl+1, i.e. without visiting any point of longitude at least l + 1.

From (i) and (ii) it follows that the robot passes for the first time from the

column cl to the column cl+1 while executing some instance of the move of the

form N bESb, −a ≤ b ≤ a. Assume for a contradiction that b 6= 0 is not the

lowermost latitude with respect to the well order on Z at which the columns

cl and cl+1 are joined. Let b′ ∈ Z be the predecessor of b in the well order on

Z. Let Y be the largest initial segment of the algorithm SME(a, e,K) strictly

before this specific instance of this specific locomotory move, N bESb.

We define A = (((((KeE)eNES)eSEN)eNNESS)e...N b′ESb
′
)1 and note

that A′ := Ae = (((((KeE)eNES)eSEN)eNNESS)e...N b′ESb
′
)e is a last

segment of Y . Let B be the first segment of Y strictly before A′, i.e. Y = BA′.

For some 0 ≤ x ≤ l we denote by (x, 0) the vertex where the robot gets if it

starts from the origin and follows B. If the robot starts from (x, 0) and follows

A′, it gets to the point (l, 0). Also notice that if the robot starts from (l, 0) and

follows A, it gets to some point (l′, 0) with l′ ≥ l+ 1. Say the robot starts from

the point (x, 0) and follows the algorithm Ae+1. If the robot starts from the x-

axis and follows A it advances eastwards at least 0 columns. When the robot

starts from the x- axis and follows the e+ 1-th instance of A, it returns to the

x-axis and advances eastwards at least one column. This means that if the

robot starts from the x-axis and follows the w-th instance of A it returns to

the x-axis and advances eastwards at least one column for each 1 ≤ w ≤ e+ 1.

Therefore, if the robot starts from (x, 0) and follows A′ = Ae, it gets to the

point (l, 0) and advances eastwards at least e columns. This is a contradiction

as l + 1 ≤ e. This proves (iii).

By (iii), we know that the robot passes for the first time from the column

cl to the column cl+1 while executing the move NmESm. Assume K does not

follow immediately that after this move is executed. Say Y is the first segment
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of the algorithm SME(a, e,K) before and including this specific instance of

this specific locomotory move, NmESm.

We define A = (((((KeE)eNES)eSEN)eNNESS)e...NmESm)1 and note

that A′ = Ae = (((((KeE)eNES)eSEN)eNNESS)e...NmESm)e is the last

segment of Y . Let B be the first segment of Y strictly before A′, i.e. Y = BA′.

For some 0 ≤ x ≤ l we denote by (x, 0) the vertex where the robot gets if it

starts from the origin and follows B. If the robot starts from (x, 0) and follows

A′, it gets to the point (l+ 1, 0). Say the robot starts from the point (x, 0) and

it follows the algorithm Ae. If the robot starts from the x- axis and follows A,

it advances eastwards at least 0 columns. When the robot starts from the x-

axis and follows the e-th instance of A, it returns to the x-axis and advances

eastwards at least one column. This means that if the robot starts from the

x-axis and follows the w-th instance of A it returns to the x-axis and advances

eastwards at least one column for each 1 ≤ w ≤ e.

Therefore, if the robot starts from (x, 0) and it follows A′ = Ae, it gets to the

point (l, 0) and advances eastwards at least e columns. This is a contradiction

as l + 2 ≤ e, proving (iv). This finishes the proof. �

We end this section with the following immediate corollary of Lemma 4.1.

Corollary 4.2. Under the assumptions of Lemma 4.1, let us choose

another order on Z, say the n-special order on Z: 0 < n < 1 < −1 < . . .

instead of the well order on Z we considered in Lemma 4.1. Then if we construct

SME(n)(a, e,K) := ((((((K)eNnESn)eE)eNES)eSEN)e . . . SaENa)e,

the results in Lemma 4.1 still hold, with the amendment that after the robot

follows SME(n)(a, e,K) in any maze in C, it passes for the first time from the

column cl to the column cl+1 while executing NmESm, where m is the lowermost

latitude with respect to the n-special order on Z.
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5. The Cover

In the general model, let F ⊂M be the set of mazes with nonzero finitely

many vertical edges removed in consecutive columns. Without loss of generality,

we assume that for any maze in F the origin is the point (0, 0). In this section,

we introduce a series of technical definitions that are used to classify the mazes

in F in order to prove Theorem 3.2.

-4 -3 -2 -1 0 1 2 3 4
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-1

0

1
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Figure 2. A local representation of a general maze M ∈ F
that we use in order to illustrate our definitions. The destination
point (3,−2) is marked with an ’X’. We assume that there are no
vertical edges removed from M other than the ones shown in the
figure. For simplicity, we further assume that M is connected,
though this may not be true for all mazes.

We recall that in order to construct an algorithm A that solves the set of

mazes F ⊂ M we adopt the following strategy: we find a countable cover

F =
⋃∞
i=1 Fi with (Fi)i≥1 ⊆ F such that for each i ∈ N and each finite algorithm

X we are able to find a finite algorithm AiX such that the concatenated algorithm

XAiX solves Fi.

The aim of this section is to introduce the definitions that we need to use

in order to construct the cover (Fi)i≥1.

For any maze M ∈ F we denote by HE, HNE, VE, VNE a horizontal edge,

horizontal non edge, vertical edge and vertical non edge, respectively. For M
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as in Figure 2, between (2, 2) to (3, 2) there is a HE, between (−1,−2) and

(0,−2) there is a HNE, between (0, 0) and (0, 1) there is a VE and between

(1, 2) and (1, 3) there is a VNE.

From any maze M ∈ F we construct the maze M ∈ F by adding all the

possible VEs such that the connected component of the origin is unchanged

as a graph in the process. In other words we add all the possible VEs with

both endvertices not in the connected component of the origin. The new maze

M has the nice property that the robot can get from the origin to one vertex

of every VNE in M . We note that an algorithm solves M if and only if it

solves M . Therefore, in order to prove Theorem 3.2 it is enough to construct

an algorithm A which solves F = {M |M ∈ F} ⊆ F .

The rest of the section will only address mazes in F , so for any maze M ∈ F

we introduce the following definitions.

We define a vertical strip to be any subgraph of a maze in F obtained by

taking the union between the restriction of the maze to a set C of consecutive

columns and all the horizontal edges which have at least one vertex in C.

For such a vertical strip S we call its restriction to C its interior and the

complement of the interior in S the boundary. Let S be the smallest vertical

strip that contains in its interior all the VNEs, the origin and the destination

point. As there is only a finite number of VNEs, S contains a finite number of

(consecutive) columns. For M as in Figure 2, S is the subgraph formed from

the columns c−2, . . . , c3 together with all the HEs between c−3 and c−2 and

all the HEs between c3 and c4; in particular the vertex (−3,−2) and the edge

between (3, 1) and (4, 1) are in S, but the vertex (−3, 2) is not.

Considering the maze with all its HEs deleted, we can label the con-

nected components obtained in this way by upper infinite columns, lower

infinite columns, infinite columns, and finite columns accordingly. For M

as in Figure 2, there are 4 upper infinite columns, e.g. the infinite path

(−2, 2), (−2, 3), . . .; there are also 4 lower infinite columns, e.g. the infinite

path (−2,−4), (−2,−5), . . .; the infinite columns are c−3, c−4, . . . and c2, c3, . . .;
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examples of finite columns are (−2, 1), the path (−2,−1), (−2, 0) or the path

(0, 0), (0, 1), (0, 2), (0, 3).

Considering only the HEs in S, we call a pass any of the following edges:

(1) the HE of smallest latitude with respect to the usual order on Z

between two upper infinite columns, or between an upper infinite

column and an infinite column, e.g. the edge between (−2, 4) and

(−1, 4) or the edge between (1, 3) and (2, 3), respectively in Figure 2;

(2) the HE of largest latitude with respect to the usual order on Z between

two lower infinite columns, or between an lower infinite column and

an infinite column, e.g. the edge between (0,−3) and (1,−3) or the

edge between (1, 1) and (2, 1), respectively in Figure 2;

(3) the HE of smallest latitude between two infinite columns with respect

to the well order on Z : 0 < 1 < −1 < 2 < −2 < . . ., e.g. the edge

between (2, 0) and (3, 0) in Figure 2.

Every maze has a finite number of VNEs, so every maze has a finite number

of passes. We further note that between two consecutive columns in S there

might not be a pass, if there is no HE between them. Finally, as a few more

revealing examples, we note that in Figure 2 the edge between (−3, 1) and

(−2, 1) is not a pass, and neither is the one between (−4,−1) and (−3,−1)

which is not in S; however, the edge between (3, 1) and (4, 1) is in S and it is

also a pass.

Furthermore, we define the following regions: the obstacle strip is the

smallest vertical strip that contains all VNEs in its interior. For example, in

Figure 2 the obstacle strip is formed from the columns c−2, . . . c1 together with

all the HEs incident with any vertex on c−2 or c1. The west strip and east

strip are the subgraphs situated at the left and right of the obstacle strip,

respectively; they are both formed by a union of consecutive columns and all

horizontal edges with both endpoints belonging to these columns. For example,

in Figure 2 is formed from the columns c−3, c−4, . . . and the east strip is formed
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from the columns c2, c3, . . .. We note that the obstacle strip and the east or

west strip may intersect only in a certain set of vertices, i.e. the eastern or

western endvertices of the edges that emerge on the right or left side of the

obstacle strip, respectively; they have no edges in common.

We define the primary rectangle to be the induced subgraph contained in

the smallest rectangle that contains the origin, the destination point, all the

passes and all the VNEs. The primary rectangle is well defined, as there is a

finite number of passes and VNEs. Let p be the smallest positive integer such

that the primary rectangle is strictly contained in the interior of the square

centred at the origin with the set of vertices {(±p,±p)} (see Figure 3). We call

p the parameter of the primary rectangle.
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Figure 3. We assume that there are no vertical edges removed
other than the ones shown in the figure. The destination point is
(3,−2). All the passes are marked with green edges. The primary
rectangle has vertices (−3, 4), (4, 4), (−4, 4), (−3,−4) and p = 5.
The special vertices are drawn larger.

We define the special vertices to be all the vertices in S that are connected

to the destination point and have the same latitude as an endpoint of a VNE

(see Figure 3). Notice that there is a finite number of special vertices and label

them 1, 2, . . . , s. We note that there must exist a path contained in the primary

rectangle between each special vertex and the destination point. Indeed, the
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fact that all all VNEs are contained in the primary rectangle and the way

we define passes allows us to find paths contained in the primary rectangle

between the accessible infinite/upper and lower infinite and finite columns of

the primary rectangle; this further allows us to find paths contained in the

primary rectangle from the special points to the destination point.

Let li be the length of a shortest path contained in the primary rectangle

from i ∈ {1, 2, . . . , s} to the destination point and set the following constant

which depends only on the local configuration of the maze inside the primary

rectangle:

l′ = 1 + ((((l1)2 + l2)2 + l3)2 + . . .+ ls−1)2 + ls.

The secondary rectangle is obtained from the primary rectangle by aug-

menting it l′ units in each of the four directions. Note that given the local

configuration of the maze inside the secondary rectangle, we can construct a

finite algorithm L′ such that if the robot follows L′ starting from any special

point, it visits the destination point without leaving the secondary rectangle.

Indeed, assume the robot starts at the special point labeled 1. We construct

firstly a finite algorithm L1 that takes the robot to the destination point with

|L1| = l1. Then assume that the robot starts at the special point labeled 2

and that it first follows the algorithm L1. We write the algorithm L2 as a

concatenation of two sub-algorithms. The first cancels the action of L1 and

brings the robot back to the special point 2 and the second sub-algorithm takes

the robot further to the destination point. This can be done with at most

l1 + l2 instructions, so without loss of generality |L2| ≤ l1 + l2. Moreover, if

the robot starts at any of the special points labeled 1 or 2 and follows L1L2 it

gets to the destination point. We continue in this way: given L1, L2, . . . , Li−1

and assuming that the robot starts at the special point i, we construct Li

as a concatenation of two sub-algorithms. The first brings the robot back to

the special point i and the second takes the robot further to the destination

point. This can be done with |Li| ≤ (|L1| + . . . + |Li−1|) + li. Finally, take

L′ = L1L2 . . . Ls with |L′| ≤ l′ which has the property that if the robot follows
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L′ starting from any special point, it visits the destination point. The role of

adding 1 to the sum is that to ensure that the secondary rectangle augments

non-trivially the primary rectangle.

In the rest of the section we define a series of very technical configurations.

We group the mazes according to these configurations and obtain the desired

countable cover at the end of the section. The importance of these configurations

only becomes clear in Section 6 and Section 7, where we will recall them when

appropriate.

For simplicity we use cardinal directions in our definitions. We say that

the row ri is to the north of the row rj or above row rj, provided i > j. By an

easternmost H(N)E e with a certain property P we mean that e has P and

no other H(N)E with P has longitude greater than e. These definitions easily

extend to the other directions: westernmost, uppermost, lowermost. In pairings

(e.g.“the lowermost easternmost HNE with P”) we always give priority to the

first direction and then to the second one. For example, in order to find the

uppermost easternmost HNE below all VNEs in the west strip, we first look

for the row of highest latitude below all VNEs on which there is a HNE in the

west strip and then on this row we pick the one HNE in the west strip with

the largest longitude.

Define a west bump to be any of the easternmost HNE in the west strip

or at the border between the west strip and the obstacle strip (i.e. with at

least one vertex in the west strip) on a row that intersects some finite column.

For example in Figure 2, the HNE between (−4, 1) and (−3, 1) and the HNE

between (−3, 2) and (−2, 2) are both west bumps with the rows r1 and r2

intersecting the finite column (−1, 1), (−1, 2), (−1, 3). Using symmetry, define

similarly an east bump. We note that there are a finite number of west and

east bumps.

If there exists a row which is a path when restricted to the west strip, but

contains a HNE, then call the smallest such row with respect to the standard
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well order on Z a magical west row ; define its west cutoff to be its westernmost

HNE. Define similarly a magical east row and its east cutoff.

We define a west pipe to be any of the easternmost configurations in the

west strip of three vertices (x, y), (x + 1, y), (x + 2, y) where between (x, y)

and (x + 1, y) there is a HE and between (x + 1, y) and (x + 2, y) there is a

HNE, which can be at the border between the west strip and the obstacle strip.

For example in Figure 2, (−4, 2), (−3, 2), (−2, 2) is a west pipe. Note that a

maze may have infinitely many west pipes. We define similarly an east pipe

to be any of the westernmost configurations in the east strip of three vertices

(x, y), (x + 1, y), (x + 2, y) where between (x + 1, y) and (x + 2, y) there is a

HE and between (x, y) and (x + 1, y) there is a HNE, which can be at the

border between the east strip and the obstacle strip. For example in Figure 2,

(2, 1), (3, 1), (4, 1) is an east pipe.

Furthermore, we define the special west pipe to be the west pipe on the

smallest row that has a west pipe, with respect to the standard well order on

Z, if such a row exists. Note that in Figure 2 the special west pipe may not be

(−4,−1), (−3,−1), (−2,−1) as we do not know from the picture whether there

are west pipes on r0 or r1, but we do know that it is the west pipe on r−1. We

define similarly the special east pipe. Note that if a maze does not have any

special west pipe, then in the west strip any row is either a path or it is the

complement of an infinite path followed by a finite path.

We define an almost empty west row to be a row that in the west strip

is the complement of an infinite path followed by a non-empty finite path.

Thus, in Figure 2, both r0 and r1 cannot be almost empty west rows as the

non-empty finite path in the west strip is missing for both of these columns; the

edge between (−3, 1) and (−2, 1) does not belong to the west strip. We define

similarly an almost empty east row. We define the special almost empty west

row to be the smallest almost empty west row with respect to the standard

well order on Z, if such a row exists. We define the west cutoff of a special

almost empty west row to be its easternmost HNE in the west strip. We define
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similarly the special almost empty east row and its east cutoff. For example,

if in Figure 2 r2 was the special almost empty east row, its east cutoff would

be the edge between (3, 2) and (4, 2). Finally, we define an empty west row to

be a row that in the west strip is empty; for the ‘special’ label in this context,

we need in addition that the latitude of the row is large in absolute value. So

we define the special empty west row to be the empty west row of smallest

latitude, greater than −3p (where the parameter of the primary rectangle, p,

is defined above) with respect to the standard well order on Z, if such a row

exists. We define the natural special empty west row to be the empty west row

of smallest latitude, without the additional constraint. We define similarly the

special empty east row and the natural special empty west row.

We define the upper west pass to be the lowermost HE between the east-

ernmost infinite column of the west strip and the westernmost upper infinite

column with the property that its latitude k is greater than that of any pass

in the obstacle strip, if such a HE exists. We define similarly the upper east

pass, lower west pass and lower east pass. For example, in Figure 3 the edge

between (−3,−4) and (−2,−4) is the lower west pass. Also, in Figure 4 the

upper/lower west/east passes are the green edges.

Let us call the pair of columns at the border between the west strip and

the obstacle strip (ca, ca+1), so ca is in the west strip and ca+1 is in the obstacle

strip. Let us call the pair of columns at the border between the obstacle strip

and the east strip (cb, cb+1), so cb is in the obstacle strip and cb+1 is in the east

strip. We define the west ascending chain (if such a structure exists) to be the

finite sequence of HEs: HEa, HEa+1, . . . , HEb such that HEa is the upper west

pass and HEm is the lowermost HE between the pair of columns (cm, cm+1) at

latitude at least that of HEm−1 for m = a+ 1, . . . , b (see Figure 4). Similarly,

we define the east ascending chain, west descending chain and east descending

chain. If a west ascending chain HEa, . . . , HEb exists with HEb on some row

rt, we define the upper west constant cuw := t+ p, where p is the parameter of
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the primary rectangle. We define similarly the constants lower west constant,

upper east constant and lower east constant.
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Figure 4. We assume that there are no vertical edges removed
other than the ones shown in the figure. The green edges are the
upper/lower west/east passes. Neither the HE (−4,−2), (−3,−2)
nor (−4, 1), (−3, 1) is the upper west pass, as they are not above
all the passes in the obstacle strip. The blue coloured edges in
order from left to right form the west ascending chain.

Assume that the upper west pass is on some row rk. We define an upper

west paired HNEs to be any pair of HNEs with the same longitude in the

west strip such that the upper HNE is at latitude k and the lower HNE is at

latitude at most k − cuw, where cuw defined above is the upper-west constant.

We define similarly the upper east paired HNEs, lower west paired HNEs and

lower east paired HNEs with respect to the corresponding constants cue, clw,

and cle, respectively. We define the special upper west paired HNEs (if such a

structure exists) to be the upper west paired HNEs with the uppermost and

easternmost lower HNE. We recall that in all such instances we give priority
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to the first condition and then the second one. We define similarly the special

upper east paired HNEs, special lower west paired HNEs and special lower east

paired HNEs.

With k being as always the latitude of the upper west pass, we define the

upper west pipe to be the west pipe on the row rk, if one exists. We define

similarly the lower west pipe, the upper east pipe and the lower east pipe. We

define the upper west cutoff to be the easternmost HNE on the row rk in the

west strip, if one exists. We define similarly the lower west cutoff, the upper

east cutoff and the lower east cutoff.

We define the upper west HNE (if such a structure exists) to be the lowermost

westernmost HNE at the north-east of the uppermost westernmost VNE. We

define similarly the upper east HNE, lower west HNE and the lower east HNE.

Being consistent with the constants a and b introduced in the definition of

the west ascending chain, we define the parameters h(m,m+1) to be the latitude of

the uppermost HE between two consecutive upper infinite columns or between

an infinite column and an upper infinite column on cm and cm+1 if such a HE

exists and ∞ otherwise for m = a, . . . , b.

We define similarly the parameters l(m,m+1) to be the latitude of the lower-

most HE between two consecutive lower infinite columns or between an infinite

column and a lower infinite column on cm and cm+1 if such a HE exists and

infinity otherwise for m = a, . . . , b.

We define the parameters w1, e1, w2, e2, w3, e3, w4, e4 to be the latitude of

the magical west/east row, the special almost empty west/east row, the special

empty west/east row, and the natural special empty west/east row if such a

configuration exists and infinity otherwise, respectively.

We finally define the tertiary rectangle to be the subgraph contained in the

smallest rectangle that contains the secondary rectangle and all the west/east

bumps, upper/lower west/east cutoffs, upper/lower west/east pipes, special

west/east pipes, upper/lower west/east passes, west/east ascending/descending
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chains, upper/lower west/east paired HNEs and the upper/lower west/east

HNEs.

As in the case of the primary rectangle, let q be the smallest positive

integer such that the tertiary rectangle is strictly contained in the interior of

the square centred at the origin with vertices {± q
3
,± q

3
}. We call q, together

with the upper/lower west/east constants, h(m,m+1), l(m,m+1) for m = a, . . . , b,

w1, e1, w2, e2, w3, e3, w4, e4 the parameters of the tertiary rectangle. Therefore,

when we construct an algorithm by inspecting the tertiary rectangle, we have

access to the subgraph contained in the tertiary rectangle and the values of all

its parameters.

We group the mazes in F according to agreeing on the destination point,

the subgraph contained in the square {±q,±q} and the set of parameters of

the tertiary rectangle. We thus obtain a countable cover F =
⋃∞
i=1 Fi. It is

obvious directly from the definitions that we set above that such a construction

is achievable.

All of these definitions are used in the following section to prove Theorem 3.2

and the relevant ones will be recalled where appropriate.

6. The General Model, Preliminaries

In this section and Section 7 we prove Theorem 3.2. Considering that the

proof is very complex, we split it into two parts: in this part, we present the

set-up and we show that we are able to assume without loss of generality that

the robot is in the east/west strip on the x-axis or it has already visited the

destination point; in Section 7 we show that we are able to write an algorithm

that further guides the robot to visit the destination point.

Following our strategy, we assume that we are given Fi and a finite algorithm

X and we aim to construct a finite algorithm A such that XA visits the

destination point of Fi. We construct the algorithm A from several sub-

algorithms treated in separate subsections, each with a specific task: in Part

I we position the robot in the east strip, in Part II we position the robot
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in the west strip at latitude 0 and in Part III we guide the robot through

the destination point. In each part we consider a finite number of cases for

the subsets Fi so that although a sub-algorithm depends quantitatively on

Fi and X, it does depend qualitatively only on the case. We treat each case

separately. According to their degree of generality, we label the broader cases

as “Propositions”, and the more specific cases as “Claims”.

In fact, at the end of most parts, we prove something more. We show how

our methods can be generalised in order to produce algorithms that achieve

the desired goal in the more general case of a finite number the VEs removed

(in other words, we do not need the condition that the VNEs are in consecutive

columns). The only case where we do not provide such a generalisation is Case

4 of Part III.

Proof of Theorem 3.2. Let Fi be any of the classes of mazes defined

above and assume we are given a finite algorithm X. Let λ := |X|.

6.1. Reset latitude.

Part 0. We recall the finite algorithm L′ defined in Section 5 for a particular

maze M , which had the property that if the robot starts at any special point of

M and follows L′, it visits the destination point. Take M ∈ Fi and construct

its L′ as described in Section 5. We claim that for any M ′ ∈ Fi, the algorithm

L′ has the same property in M ′, i.e. if the robot starts at any special point

of M ′ and follows L′, it visits the destination point of M ′. This follows from

the fact that all the mazes in Fi share the destination point, the secondary

rectangle and in particular the set of special points. Therefore, we pick this L′

as a representative for the set of mazes Fi.

We now define the algorithm

L = LE = L′ N ε ME(|L′N ε|, |L′N ε|),

where the correcting constant ε ∈ Z is picked such that |L′N ε|N = |L′N ε|S and

therefore |L|N = |L|S. We recall that the algorithm move east, ME used in
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constructing L was defined in Section 4:

ME(a, e) := (((((E)eNES)eSEN)eN2ES2)e . . . SaENa)e. Let l := |L|. The

counterpart of L = LE is

LW = L′ N ε MW (|L′N ε|, |L′N ε|),

and as before we have |LW |N = |LW |S and also |LW | = l.

The algorithm L is a generic algorithm used in several other algorithms

below. We remark that if the robot starts from a special point and it follows L

in any maze in Fi, it gets to the destination point; this property is inherited

from L′. We further note that if the robot is at the origin on a maze with no

VNEs and it follows L, then it returns to the x-axis and its longitude does not

decrease. These properties are crucial in order to apply Lemma 4.1.

We finally note that all mazes in Fi also share the same parameter of the

primary rectangle p and parameter of the tertiary rectangle q and we keep this

notation consistent for the rest of the proof.

Part I. The algorithm rough positioning east defined in this part aims

to either position the robot in the east strip or to make the robot visit the

destination point. We define

RPE := ME(λ+ p, λ+ p) N l+λ+4p L S2(l+λ+4p) L.

Proposition 6.1. For any maze in Fi, after the robot follows the algorithm

X RPE, it is either in the east strip or it has visited the destination point.

Proof. Pick any maze in Fi. We claim that by our choice of parameters

of ME, after the robot follows X ME(λ + p, λ + p), it is either in the east

strip or in the obstacle strip, but not in the west strip. Indeed, assume for a

contradiction that after the robot follows X ME(λ+ p, λ+ p), it is in the west

strip. Denote by x = (x, y) the position of the robot after it follows X starting

from the origin. By assumptionm x must be in the west strip as the algorithm

ME has no instruction W . Therefore, as the robot follows ME(λ+ p, λ+ p),
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it does not visit any endvertex of a VNE. We recall that all mazes in Fi ⊂ F

have the property that for every VNE at least one of its vertices is accessible,

hence the westernmost column of the obstacle strip ca+1 is accessible from

x. The robot starts in the origin which is at most p units in longitude away

from the obstacle strip as the primary rectangle contains the origin and all the

VNEs. Hence the column cy+λ+p is not in the west strip. Moreover, every pair

of consecutive columns at longitude between y and a+ 1 are connected by a

HE at some latitude between x+ λ+ p and x− λ− p, as the primary rectangle

contains all the passes and the VNEs. Therefore, if the robot starts from x and

follows ME(λ+ p, λ+ p), it gets to a longitude at least y + λ+ p, which is not

in the west strip. This contradiction proves the claim.

Hence, after the robot follows X ME(λ+ p, λ+ p), its longitude is at least

a+ 1 and so it is either in the east strip or in the obstacle strip. In the former

case, after the robot follows X RPE, it remains in the east strip. Indeed, while

the robot follows N l+λ+4p L starting in the east strip, its latitude is too high to

meet any VNE and on a maze with no VNE if the robot follows L its longitude

does not decrease so the robot remains in the east strip. Therefore, after the

robot follows also S2(l+λ+4p) L its latitude is too low to meet any VNE, and it

remains in the east strip by a similar argument. To conclude, if the robot gets

to the east strip after it follows the initial segment X ME(λ+ p, λ+ p), then

it remains in the east strip after it follows X RPE.

In the latter case, after the robot follows X ME(λ + p, λ + p), it is in

the obstacle strip either in (1) a lower infinite column or a finite column or

(2) an upper infinite column. In case (1), after the robot follows X ME(λ +

p, λ+ p) N l+λ+4p it gets to a special point. Therefore after the robot follows

X ME(λ+p, λ+p) N l+λ+4p L, it gets to the destination point. In case (2), while

the robot follows N l+λ+4p L it does not meet any VNE and its longitude does not

decrease, so after it follows the initial segment X ME(λ+ p, λ+ p) N l+λ+4p L,

it is either in the east strip or in the obstacle strip in an upper infinite column.
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In both cases, it is clear that after the robot follows X RPE it is either in the

east strip or it has visited the destination point. �

Remark. In the first part of the proof of Proposition 6.1 we argue that

the parameters (λ + p, λ + p) of ME are large enough for the robot to have

longitude at least a+ 1. The key of this argument is two-fold: firstly, all the

passes are in the primary rectangle which has parameter p; secondly, if the

robot starts from the origin and follows the algorithm X with |X| = λ, it

can not advance more than λ columns east or west and any two consecutive

columns between its initial and final position are connected at latitude no more

than λ in absolute value. We do not expand this argument every time we use it,

but instead we use the phrase “by our choice of parameters” to mark that the

same reasoning is used in similar instances to prove that the robot advances

westwards/eastwards to the desired longitude.

To finish Part I, we note that although we used in the proof of Proposi-

tion 6.1 the fact there are no infinite columns in the obstacle strip, a variation

of RPE can be used to position the robot in the east strip, even if we drop

this assumption. This note is important, because it shows that Part I can

be generalised to improve Theorem 3.2 by dropping the consecutive column

condition for the finite number of VNEs. To present this variation, assume

that infinite columns are allowed in the obstacle strip, i.e. the (finitely many)

VNEs need not be in consecutive columns.

We define now the algorithm RPE ′ that generalises RPE as described

above. It is formed by λ+ p subalgorithms S1, . . . Sλ+p concatenated in order.

We define

Si = Nλi+p+2l L Sµi+p+2l ME(γi, 1),

for i = 1, . . . , λ + p. The parameters λi, µi, γi ∈ N are chosen to be at

least the number of instructions written in the whole algorithm until they

occur, for example we can take λ1 = |X| = λ, µ1 = |X Nλ1+p+2l L|, γ1 =
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|X Nλ1+p+2l L Sµ1+p+2l|, etc. Finally, let

RPE ′ = S1 S2 . . . Sλ+p.

Note that for the mazes we consider, we first replace all the VNEs with

VEs which do not change the connected component of the origin, so every pair

of consecutive columns in the obstacle strip must be connected by an accessible

HE. The reason why RPE ′ indeed generalises RPE is similar to the argument

in the proof of Proposition 6.1: here, after the robot follows every Si it either

moves at least one column to the east or it has visited the destination point.

Moving on from this digression, by Proposition 6.1 we may assume that we

are given Fi and a finite algorithm X with λ = |X| such that after the robot

follows X in any maze in Fi, it is either in the east strip or it has visited the

destination point. Without loss of generality, we assume that the robot is in

the east strip and our aim is to build a finite algorithm A such that XA solves

Fi.

Part II. The algorithm reset latitude west defined in this part aims to

either position the robot in the west strip on the x-axis (i.e. at latitude 0) or

to make the robot visit the destination point.

Case (1). We assume that the mazes in Fi do not contain a pass between

the obstacle strip and the east strip. Then from the assumptions on the mazes

in Fi, the east strip is connected to a finite column in the easternmost column

of the obstacle strip cb. This follows from the fact that for every VNE of every

maze in Fi, at least one of its vertices is accessible from the origin. Let R be

the lowermost finite column in cb such that there exists a HE between R and

the east strip. Let v = (b, i) be the lowermost vertex of the finite column R.

In this case, we define the algorithm

RLW := Sλ+p+l SMW (2λ+ 2p+ l, λ+ 2p, L).

39



Claim 6.2. For any maze in Fi, after the robot follows the algorithm

X RLW , it visits the destination point.

Proof. After the robot follows X Sλ+p+l, it is in the east strip at a certain

point x = (x, j), with j ≤ i− l. By the choice of parameters and by Lemma 4.1,

while the robot follows SMW (2λ + 2p + l, λ + 2p, L) it advances westwards

in the east strip oscillating about the row rj. It passes for the first time from

the column cb+1 to the column cb not while executing L, but while executing

a locomotory move. Moreover, if we well order Z by j < 1 + j < −1 + j <

2 + j < −2 + j < . . ., then the robot passes for the first time from the column

cb+1 to the column cb through the smallest HE with respect to this order and

so it gets to the point v, which is a special point. Immediately afterwards, it

follows L and it reaches the destination point. The conclusion follows. �
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Figure 5. Part II, Case (1). There is no pass between the
obstacle strip and the east strip. We assume that there are no
VEs removed other than the ones shown in the figure.
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Let us examine the example shown in Figure 5. Let us suppose that the

position of the robot after following X is (6, 3). The first segment Sλ+p+l of

RLW takes the robot to some very small latitude j such that if it follows L

starting from any point of rj in the east strip, it will always remain in the

east strip. This can be done, as there is no pass between the obstacle strip

and the east strip. For our example, we may assume that after the robot

follows XSλ+p+l it gets to the point (6,−4), though this latitude should be

much smaller. The green route to the special point (1, 2) is the route of the

robot if it would follow the algorithm MW . The algorithm SMW used in

RLW generalises MW by inserting the algorithm L between locomotory moves.

However, L is constructed in such a way that if the robot follows it while it

is in the east strip, its longitude does not increase. Moreover, the latitude

of the robot is so small that it will never pass from the column cb+1 to cb

while following L. By Lemma 4.1 and the choice of parameters of SMW ,

the robot reaches the special point (1, 2) while executing a locomotory move.

Immediately afterwards, it executes L and it gets to the destination point.

Finally, we remark that when the robot reaches the obstacle strip from the east

strip for the first time, it does not enter the finite column (1, 2), (1, 3), (1, 4) via

the HE (1, 4), (2, 4) or indeed it does not enter any other finite column which

is above R. This follows from the order of locomotory moves in SMW , i.e.

priority is given to smaller latitudes.

Case (2). We assume without loss of generality that the mazes in Fi

contain a pass π between the easternmost lower infinite column and the east

strip. In this case, we define the algorithm

RLW := Sλ+p SMW (2λ+ 2p, λ+ 2p,K) N2λ+6p+l LW S2p+l−k,

where K = N2λ+4pS2λ+4p and k is the latitude of the lowermost special vertex.

Proposition 6.3. For any maze in Fi, after the robot follows the algorithm

X RLW , it is either in the west strip on the x-axis or it has visited the

destination point.
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Proof. After the robot follows X Sλ+p it is in the east strip at a certain

latitude say j, smaller than the latitude of the pass π. By the choice of

parameters and by Lemma 4.1, while the robot follows SMW (2λ+2p, λ+2p,K)

it advances westwards in the east strip oscillating about the row rj. It passes

for the first time from the east strip to the obstacle strip not while executing

K. Moreover, if we well order Z by j < 1 + j < −1 + j < 2 + j < . . . ,

then the robot passes from the east strip to the easternmost lower infinite

column in the obstacle strip through the smallest HE with respect to this order.

Immediately afterwards, it follows K and gets at latitude 2λ+ 4p below the

easternmost lowermost special vertex. By the choice of parameters the robot

advances westwards only through lower infinite columns while in the obstacle

strip. Therefore, after the robot follows X Sλ+p SMW (2λ+ 2p, λ+ 2p,K), it

is either (1) in the west strip at latitude 2λ+ 4p below the lowermost special

vertex, i.e. at latitude k− 2λ− 4p or (2) in the obstacle strip in a lower infinite

column cm at latitude 2λ+ 4p below some special vertex (see Figure 6).

In case (1), while the robot follows N2λ+6p+l LW its latitude is too large

for it to hit any VNE and after it follows N2λ+6p+l LW its longitude does not

increase, so it remains in the west strip. Hence, after it follows X RLW , the

robot is in the west strip on the x-axis.

In case (2), after the robot follows N2λ+6p+l it gets to a special point,

more specifically to the uppermost vertex of the lower infinite column cm.

Immediately afterwards, it follows LW and it reaches the destination point.

The conclusion follows. �

In Part II we see an example on how we divide all the sets of mazes Fi in

two classes in such a way that our algorithm RLW depends qualitatively only

on the class. This is why we treat each class in a separate case. In Part III

the principle is the same, but we need to consider many more cases and write

a different algorithm for each one of them.

42



-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

Figure 6. Part II, Case (2). There is a pass π between a
lower infinite column and the east strip. We assume that there
are no VEs removed other than the ones shown in the figure.

Let us examine the example shown in Figure 6. Let us suppose that

the position of the robot after following X is (6, 3). The pass π is the HE

{(1, 0), (2, 0)}. The first segment Sλ+p of RLW takes the robot at a latitude

lower than that of the pass π. For our example, we may assume that after

the robot follows XSλ+p it gets to the point (6,−4), though this latitude

should be much smaller. While the robot is in the east strip, after it executes

K = N2λ+4pS2λ+4p, it returns to the starting point. By the choice of parameters,

the robot enters the easternmost lower infinite column at longitude b for the

first time via a locomotory move (in our case, b = 1). Ignoring, as we may,

the action of K in the east strip, the path of the robot to the column cb is

coloured in green. Immediately after the robot enters the column cb, it executes

K which sets it latitude so small that the parameters of SMW are not large
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enough to make the robot visit any other configurations in the obstacle strip

other than the lower infinite columns.

To finish Part II, we note that although we used in this part the fact

there are no infinite columns in the obstacle strip, a variation of RLW can be

used to position the robot in the west strip on the x-axis, even if we drop this

assumption. This note is important, because it shows that Part II can also

be generalised to improve Theorem 3.2 by dropping the consecutive column

condition for the finite number of VNEs. To present this variation, assume

that infinite columns are allowed in the obstacle strip, i.e. the (finitely many)

VNEs need not be in consecutive columns.

We begin with the remark that Case (1) considered above can be treated

in the exact same way with or without infinite columns in the obstacle strip, so

we may assume without loss of generality that Case (2) holds, i.e. that every

maze in the class of mazes we consider contain a pass π between a lower infinite

column and the east strip. We recall that by the () transformation we apply on

mazes, there are always passes between any two consecutive infinite columns

in the obstacle strip. We now need to consider 2 cases: (i) there exist passes

between all consecutive lower infinite columns and between consecutive lower

infinite columns and infinite columns; this case can be treated similarly with

Case (2) above; (ii) there exist two entities, one of which is a lower infinite

column and the other is either a lower infinite column or an infinite column

with no pass between them. In this case we define the algorithm RLW ′ which

generalises RLW as described above,

RLW ′ := Sλ+p OMW (2λ+ 2p, λ+ p, 2λ+ 4p) N2λ+4p L.

The reason why RLW ′ indeed generalises RLW in this case is that after

the robot follows X Sλ+p OMW (2λ+ 2p, λ+ p, 2λ+ 4p), it remains trapped

in the lower infinite column or infinite column in the obstacle strip with largest

longitude m which is not connected with the lower infinite column or infinite

column at longitude m− 1. The robot’s latitude is 2λ+ 4p below the lowermost
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VNE at longitude between m and b. Hence from this starting position, after

the robot follows N2λ+4p it gets to a special vertex (by definition) and therefore,

X RLW ′ takes the robot to the destination point.

Moving on from this digression, by Case (1) and Case (2), we may assume

that we are given Fi and a finite algorithm X with λ = |X| such that after the

robot follows X it is either in the west strip on the x-axis or it has visited the

destination point. Without loss of generality, we assume that the robot is in

the west strip on the x-axis and our aim is to build a finite algorithm F such

that XF solves Fi. �

7. The General Model, Finish

Proof of Theorem 3.2, continued. In this section we define the al-

gorithm finish which makes the robot visit the destination point.

Part III. Case (1). We assume that the destination point is in an

infinite column in the west strip. We define the algorithm:

F = MW (p, 2p) OME(λ+ µ, λ+ µ, p),

where µ = |MW (p, 2p)|.

Claim 7.1. For any such maze in Fi, after the robot follows X F , it visits

the destination point.

Proof. After the robot follows X MW (p, 2p) it is in the west strip, to

the west of the origin or it has already visited the destination point. By the

choice of parameters and by the consequence of Lemma 4.1 when applied

to the particular algorithm OME, after it follows X F , the robot visits the

destination point. �

To finish Case (1), we note that we note that although we used the fact

there are no infinite columns in the obstacle strip, a variation of F can be
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used in order to make the robot visit the destination point, even if we drop

this assumption. To present this variation, we assume that infinite columns

are allowed in the obstacle strip, i.e. the (finitely many) VNEs need not be in

consecutive columns. Let us assume for now that the destination point is in an

infinite column in the east strip or obstacle strip.

In this case, given any finite algorithm A we will construct a finite algorithm

U(A) with the following 2 properties: if the robot starts in the origin of any

maze in Fi, it follows A and it gets to the west of the destination point then

(1) after the robot follows U(A), either its latitude strictly increases or the

robot remains stuck in a finite column, or upper/lower infinite column at some

longitude i with no HE connecting that column to points at longitude i + 1;

(2) as the robot follows U(A), if the robot visits the infinite column which

contains the destination point, then the robot visits the destination point. We

will construct our algorithm U from bricks of the form

B(k,A) = N |A|+2pS2|A|+4pN |A|+2pNkESk

where k is an integer and A is a finite algorithm. Every time we insert a brick

B(k,A) as a subalgorithm of X F , we take A to be the entire algorithm written

until that instance of B(k,A). Hence, every brick depends on the length of the

algorithm written up to it in X F . With this convention, from now on we shall

drop the second argument from the definition of a brick and let B(k) = B(k,A).

We note in advance that the aim of the first segment N |A|+2pS2|A|+4pN |A|+2p

of a brick B(k,A) is the following: for any maze in Fi, if the robot is in the

same column as the destination point after it follows a finite algorithm A, if

the robot then follows N |A|+2pS2|A|+4pN |A|+2p, it visits the destination point.

Hence we regard the first segment N |A|+2pS2|A|+4pN |A|+2p of a brick just as an

oscillation large enough to make the robot visit the destination point after it

reaches the right longitude.
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We note that for any k, if the robot follows B(k) starting in any point of

any maze, its longitude does not decrease. We define four types of steps by

concatenating bricks, so each of the steps also have this property.

The first step U1 is designed to have the following property: if the robot

starts in the origin of any maze in Fi, it follows a finite algorithm A and it gets

to an infinite column strictly at the west of the destination point, if the robot

then follows U1, its longitude strictly increases. For instance we can take

U1(A) := B(−|A| − p) B(−|A| − p+ 1) . . . B(|A|+ p),

where A is always taken to be the entire algorithm written before the occurrence

of this step. With this convention, we drop the argument A and U1 has the

desired property (cf. steps 3 and 4 below). We also note that formally, the first

brick in U1(A) is B(−|A|−p,A), the second brick is B(−|A|−p+1, A B(−|A|−

p,A)), etc.

The second step U2 is designed to have the following property: if the robot

starts in the origin of any maze in Fi, it follows a finite algorithm A and it gets

to a finite column at longitude i which is connected to any point at longitude

i+ 1 by a HE (i.e. no HEs emerging in the east part of the finite column), if

the robot then follows U2, its longitude strictly increases. For instance we can

take

U2(A) := B(0) B(1) . . . B(2p),

where the definition of U2(A) does not depend on A, as every finite column has

at most 2p vertices. Therefore, let U2 = U2(A) have the desired property (cf.

steps 3 and 4 below).

The third and forth step U3 and U4 are designed to have the following

property: if the robot starts in the origin of any maze in Fi, it follows a finite

algorithm A and it gets to an upper infinite or lower infinite column at longitude

i which is connected to any point at longitude i+ 1 by a HE, if the robot then

follows U3 or U4, respectively, its longitude strictly increases. For instance we
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can take both U3 and U4 to be a concatenation of 2p bricks in the following

way

U3(A) = B(−|A| − 2p) B(−|A| − |B(−|A| − 2p)| − 2p+ 1)

B(−|A| − |B(−|A| − 2p)| − |B(−|A| − |B(−|A| − 2p)| − 2p+ 1)| − 2p+ 2) . . . ,

U4(A) = B(|A|+ 2p) B(|A|+ |B(|A|+ 2p)|+ 2p− 1)

B(|A|+ |B(|A|+ 2p)|+ |B(|A|+ |B(|A|+ 2p)|+ 2p− 1)|+ 2p− 2) . . . ,

where A is always taken to be the entire algorithm written before the occurrence

of this step. With this convention, we drop the argument A and U3, U4 have

the desired property. Indeed, let’s assume that the robot is in an upper

infinite column c = (i, y), (i, y + 1), . . . at longitude i which is connected to

any point at longitude i+ 1 by a HE, and it follows U3. Let j be the smallest

non-negative integer such that the vertices (i, y + j) and (i + 1, y + j) are

connected by a HE. From the definition of passes and the primary rectangle,

we first note that −p ≤ y + j ≤ p and j ≤ 2p. As the robot follows the first

brick B(−|A|−2p) = N |A|+2pS2|A|+4pN |A|+2pS|A|+2pEN |A|+2p in U3, it oscillates

in c, executing an E instruction at the vertex (i, y) in c. If j = 0 we are

done; otherwise, after the robot follows B(−|A| − 2p), it gets at the vertex

(i, y + |A|+ 2p). Therefore, we can track the position of the robot as it follows

the second brick B(−|A| − |B(−|A| − 2p)| − 2p+ 1) in U3, and we observe that

it oscillates in c, executing an E instruction at the vertex (i, y + 1) in c. We

continue in the same way; as −p ≤ y + j ≤ p, j ≤ 2p, we are done.

Let us make one more remark regarding these steps. If the robot follows a

concatenation of bricks and it reaches a finite column, an upper infinite column

or a lower infinite column at longitude i with no HE connecting it to points at

longitude i+ 1, the robot remains stuck in that structure while it follows the

rest of the algorithm. Let us define

U(A) = U1U2U3U4,
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or formally U(A) = U1(A) U2(A U1(A)) U3(A U1(A) U2(A U1(A))) U4(. . .). As

usual, every time we use the algorithm U(A) as a subalgorithm, we take A to

be the entire algorithm written before the occurrence of U(A), so with this

convention we drop the argument of U . Therefore, it is clear that the algorithm

U has the two promised properties at the beginning of the case: if the robot

starts in the origin of any maze in Fi, it follows a finite algorithm A and it gets

to the west of the destination point then (1) after the robot follows U , either

its latitude strictly increases or the robot remains stuck in a finite column, or

upper/lower infinite column at some longitude i with no HE connecting that

column to points at longitude i + 1; (2) as the robot follows U , if the robot

visits the infinite column which contains the destination point, then the robot

visits the destination point. Furthermore, let V (A) = UU . . . U︸ ︷︷ ︸
λ+p

, or formally

V (A) = U(A) U(A U(A)) U(A U(A) U(A U(A))) . . .︸ ︷︷ ︸
λ+p terms

.

We finally define the algorithm

F = V (X) N |V (X)|+l+p L S2|V (X)|+l+2pL.

Let us see that indeed, after the robot follows X F , it visits the destination

point. We may assume without loss of generality that after the robot follows

X it is in the west strip on the X axis, clearly to the west of the destination

point (which is assumed to be in the east strip or in the obstacle strip).

From property (1) of U , after the robot follows X V (X), it either visits the

destination point or it remains stuck in a finite, lower or upper infinite column

at longitude i, at the west of the destination point, with no HE connecting

it to points at longitude i + 1. In the first two cases, it is clear that after

the robot follows XV(X) N |V (X)|+l+p L it visits the destination point. In the

third case, the robot is stuck in an upper infinite column c after it follows

XV(X) N |V (X)|+l+p. We claim that the robot returns to the same vertex in

c after it follows XV(X) N |V (X)|+l+p L. Indeed, as the robot follows L its
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latitude is too large to meet any VNE, so by the construction of L the latitude

of the robot does not change after it follows L. Moreover, the fact that c has

no HE connecting it to points at longitude i + 1 makes the robot return at

longitude i after it follows L. After that, the robot follows S2|V (X)|+l+2p and

it gets to a special point, and then it follows L which further takes it to the

destination point.

Moving on from this digression, we have solved Case (1) in which the

destination point is in an infinite column in the west strip. By the symmetry of

this case and Part II, we similarly solve the case when the destination point is

in an infinite column in the east strip. Likewise, the generalisation of Case (1)

proved at the end of the section generalises to the case when the destination

point is in an infinite column in the west strip. In fact, in the generalisation of

Case (1) we could have only considered the case when the destination point

is in an infinite column in the obstacle strip, as Case (1) itself works just as

well even in the generalised set up, when the destination point is either in the

west strip or east strip. That would not have simplified the argument, though.

Case (2). We assume that the destination point is in the obstacle strip

in a finite column, upper infinite column or lower infinite column and it is

connected to the west strip via a path through a (finite) sequence of finite

columns. Let R1, R2, . . . , Rk be a sequence of finite columns and R be a finite

column, upper infinite column or lower infinite column such that R contains

the destination point and there exists a HE between the west strip and R1,

between Rm and Rm+1 for 1 ≤ m ≤ k, where by convention Rk+1 = R. Let

w = (a+ 1, u) be the uppermost point of the finite column R1.

We consider the following sub-cases:

2(i) We assume that there exists a row ri that intersects the finite column R1

and that it has a west bump. We recall that the west bumps are the easternmost

HNEs with at least one vertex in the west strip on a row that intersects some

finite column. Assume first that the eastern vertex v of that west bump is in

the west strip. By inspecting the longitude of the west bump and the primary
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rectangle we can construct an algorithm of the form H ′ :=
∏h

m=1N
kmN−kmEεm ,

where εm ∈ {−1, 1} and km is an integer for all 1 ≤ m ≤ h, such that if the

robot starts at v and follows H ′, it visits the destination point. Indeed if

the robot is at some specified latitude in the finite column Rm and follows

NkmN−kmE for suitable km, it gets to some specified latitude in the finite

column Rm+1. Let H = H ′E|H
′|. We define the algorithm

F = N i W q SME(λ+ q, λ+ q,H).

Proposition 7.2. For any maze in Fi, after the robot follows X F , it

visits the destination point.

Proof. We may assume without loss of generality that after the robot

follows X N i, it is on the row ri. Hence after the robot follows X N i W q it is

on the row ri at a longitude at most that of v. By the choice of parameters

and by Lemma 4.1, while the robot follows SME(λ+ q, λ+ q,H) it advances

eastwards in the west strip oscillating about row ri and passing through the

smallest HE with respect to the well order on Z: i < 1+i < −1+i < 2+i < . . ..

Considering that |H|N = |H|S, while the robot is in the west strip, after it

follows H its latitude does not change and its longitude does not decrease. It

eventually arrives at the point v on ri not while executing H (from the form

of H and the shape of the maze which has a HNE with its eastern vertex at

v). Immediately after the robot reaches v, it follows H and it gets to the

destination point (see Figure 7). �

Let us examine the example shown in Figure 7. In this example we

take R1 = (1, 1), (1, 2), (1, 3), R2 = (2, 0), (2, 1), (2, 2), R3 = (3, 1), (3, 2),

R4 = (4,−3), ...(4, 1), R5 = R = (3,−1), (3,−2), (3,−3) and ri = r2 is

the row that intersects R1 with its west bump (−3, 2), (−2, 2) and v =

(−2, 2). In general, we do not require R to be a finite column. Let H ′ =

EEEENN−1EEN3N−3E−1N2N−2E and note that if the robot starts at v
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Figure 7. Part III, Case (2)(i). We assume that there exists
a row ri that intersects the finite column R1 and that ri has a
west bump. We assume that there are no VEs removed other
than the ones shown in the figure.

and follows H ′ it follows the green path and gets to the destination point. How-

ever, if the robot starts at the west of v on ri and it follows H ′, its longitude

is always strictly smaller than that of v. Therefore, it does not hit any VNE

and as |H ′|N = |H ′|S its latitude does not change. In our case, H = H ′E20

which has the extra property that after the robot follows H in a maze with

no VNEs, its longitude does not decrease - in fact, it can be proven that there

always exits a certain H ′ that has this property itself, but we do not wish to

complicate the argument.

In the case that there exists a west bump positioned at the border between

the obstacle strip and the west strip on a row ri that intersects R1, we consider

rj to be a row on which there exists a HE between the west strip and R1. As

before, let v be the eastern vertex of the west bump, v ∈ R1. We recall the
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algorithm

SME(j−i)(a, e,H) := ((((((H)eN j−iESj−i)eE)eNES)eSEN)e . . . SaENa)e

introduced in Corollary 4.2. We further define the algorithm

F = N i W q SME(j−i)(λ+ q, λ+ q,H).

Claim 7.3. For any maze in Fi after the robot follows X F , it visits the

destination point.

Proof. The conclusion follows by the same reasoning as in the proof of

Proposition 7.2 and by Corollary 4.2. �

2(ii) We assume that the previous case does not hold, so every row that

intersects the column R1 does not have a west bump, i.e. each such row is a

path in the west strip. In addition, we assume there exists a special west pipe

on some row rj . We recall that the west pipes are easternmost configurations in

the west strip formed by a HE followed by a HNE. Denote by v the easternmost

vertex of the HE of the special west pipe. Assume without loss of generality

that j > u, where w = (a+ 1, u) is the uppermost point of the finite column

R1.

We start by defining a new algorithm called west pipe finder:

WPF (a, e) := (EeWSaENa)e,

with its counterpart east pipe finder. This is used directly in the final algo-

rithm F and it will be analysed later (see Figure 8).

We then define the algorithm

K = Sj−uEdN j−uWSj−uW dN j−uE,

where d is the difference in longitude between ca+1 and v.

Claim 7.4. For any maze in Fi, if the robot starts at v and follows K it

reaches a certain known point z (given the tertiary rectangle) on the row ru.
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Proof. Starting at v, after the robot follows Sj−u it gets on the row ru;

after it follows Sj−uEd it gets to w; after it follows Sj−uEdN j−u it remains

fixed at w; after it follows Sj−uEdN j−uW it gets to (a, u), on the row ru to the

west of w; finally, while it executes Sj−uW dN j−uE starting at (a, u) it does

not leave the square {(±q, ±q)}; while it executes both the subalgorithms

Sj−u and N j−u of Sj−uW dN j−uE it does not hit any VNE (see Figure 8). The

conclusion follows. �

Remark. It is easy to check that if the robot starts from the easternmost

vertex v’ of a HE followed by a HNE on rj with v’ strictly at the west of v

and it follows K, then the robot remains in the west strip while following K

and after it follows K, it returns back to the starting point v’ (see Figure 8).

The algorithm K was constructed specifically to have this property, together

with the one proved in the Claim above.

By inspecting the tertiary rectangle, we construct an algorithm H ′ of the

form H ′ =
∏h

i=1N
kiN−kiEεi , where εi ∈ {−1, 1} and ki is an integer for all

1 ≤ i ≤ h, such that if the robot starts at z and it follows H ′ it visits the

destination point. Let H = H ′E|H
′|. We observe that if the robot starts from

the easternmost vertex v’ of a HE followed by a HNE on the row rj in the west

strip and follows H, it remains in the west strip and it returns to the same

point v’. We finally define the algorithm:

F = Nu W q N j−u (WPF (j − u, λ+ q) K H Sj−u E N j−u)λ+q.

Proposition 7.5. For any maze in Fi, after the robot follows X F , it

visits the destination point.

Proof. We may assume without loss of generality that after the robot

follows X Nu W q N j−u it gets on the row rj , to the west of the point v. While

the robot is at the west of the point v on the row rj, after each instance of

WPF (j − u, λ + q) it advances eastwards to the easternmost vertex v’ of a

HE followed by a HNE on the row rj. While v’ is strictly at the west of v,
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the robot follows the algorithm K H and returns back to v’; while the robot

follows the algorithm Sj−uEN j−u it advances one unit to the east of v’ on the

row rj. By the choice of parameters, the robot eventually arrives at v’ = v.

Immediately afterwards, it follows K H and it visits the destination point (see

Figure 8). �

vv’

wz

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-4

-3

-2

-1

0

1

2

3

4

5

6

Figure 8. Part III, Case (2)(ii). Every row that intersects
R1 does not have a west bump and there exists a special west
pipe on some row rj . We assume that there are no VEs removed
other than the ones shown in the figure.

Let us examine the example shown in Figure 8. In this example we have

rj = r4 and so the special west pipe is (−2, 4), (−1, 4), (0, 4) with v = (−1, 4)

and w = (1, 3). Let us observe that after the robot follows WPF (1, 1000)

starting at (−6, 4) it gets to v’ = (−4, 4) which is the middle vertex of the

“fake” west pipe (−5, 4), (−4, 4), (−3, 4). Further note that after the robot

follows WPF (1, 1000) starting at (−3, 4) it gets to v. For this example we have

K = SE2NWSW 2NE and after the robot follows K starting from v it gets to

z = (−1, 3), which is indeed on ru = r3 (see the blue walk). In addition, note

that if the robot starts from v’ and follows K it gets back to v’ (see the green
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circuit). We can take H ′ = EENSENSEEN3S3E−1N2S2E which has the

required form and the property that after the robot starts from z = (−1, 3) and

follows H ′ it visits the destination point. The reader may assume that the robot

starts at (−4, 0) and it follows F = N3W 2N(WPF (1, 1000) K H SEN)10 to

see how the algorithm F solves the maze: after it follows N3W 2N , the robot

gets to (−6, 4); further, after the first iteration of WPF (1, 1000) K H SEN ,

it gets to (−3, 4) as K and H do not change the position of the robot while it is

strictly at the west of v; after the second iteration of WPF (1, 1000) K H SEN ,

the robot visits the destination point.

2(iii) We assume there exists a magical west row rj. We recall that a magical

west row is a row which is a path when restricted to the west strip, and it

contains a HNE; its west cutoff is its westernmost HNE. Denote by v the

westernmost vertex of the west cutoff of rj. Then, by inspecting the tertiary

rectangle, we can construct an algorithm K such that if the robot starts from

v and follows K it gets to the destination point. We define the algorithm

F = N jEλ+qK.

Claim 7.6. For any maze in Fi, after the robot follows X F , it visits the

destination point.

Proof. We may assume without loss of generality that after the robot

follows X N j, it gets on the row rj. Therefore, after it follows X N j Eλ+q the

robot gets to the point v. Hence, after the robot follows X F it gets to the

destination point. �

2(iv) We assume that every row that intersects the finite column R1 does not

have a west bump and there exists a special almost empty west row rj. We

recall that a special almost empty west row is a row that in the west strip is the

complement of an infinite path followed by a non-empty finite path; its west

cutoff is its easternmost HNE in the west strip. We recall that w = (a+ 1, u)

is the uppermost point of R1 and let v be the easternmost vertex of the west
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cutoff of rj. Then, by inspecting the tertiary rectangle, we can construct an

algorithm K such that if the robot starts from v and follows K it gets to the

destination point. We define the algorithm

F = N j W λ+q (Sj−uEN j−uW )λ+q K.

Claim 7.7. For any maze in Fi, after the robot follows X F , it visits the

destination point.

Proof. We may assume without loss of generality that after the robot

follows X N j W λ+q it gets on the row rj to the west of the point v. While

the robot follows one instance of Sj−uEN j−uW it returns on the row rj and

advances one unit eastwards if it is at the westernmost vertex of a HNE; it

returns to the same point if it is at the westernmost vertex of a HE. By the

choice of exponent, after the robot follows N j W λ+q (Sj−uEN j−uW )λ+q it

remains stuck at the point v. Immediately afterwards, it follows K and it gets

to the destination point (see Figure 9). �

Let us examine the example shown in Figure 9. In this example we have

R1 = (1, 1), (1, 2), (1, 3), so r1, r2, r3 are paths in the west strip, moreover

j = −1, so r−1 is the special almost empty west row. Its west cutoff is the

HNE {(−4,−1),v = (−3,−1)}. We construct an algorithm K by inspecting

the tertiary rectangle such that if the robot starts from v and follows K, it

gets to the destination point. For example we may take K = N3E5SE2S3WS.

We may assume that the robot starts at (−5, 0) and it follows F = N−1 W 100

(S−4EN−4W )100 K. After the robot follows N−1 W 100, it gets to (−5,−1) on

the row rj = r−1 at a longitude not greater than that of v. Let us see what is

the position of the robot after it follows one instance of (S−4EN−4W ), starting

from r−1: while it starts strictly at the west of v, its longitude increases by 1

(see the blue path); if it starts at v, it comes back to v (see the green path).

The exponent of (S−4EN−4W ) is large enough for the robot to reach v after
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Figure 9. Part III, Case (2)(iv). Every row that intersects
R1 does not have a west bump, i.e. all such rows are paths in
the west strip and there exists a special almost empty west row
rj. We assume that there are no VEs removed other than the
ones shown in the figure.

it follows (S−4EN−4W )100. After that, the robot follows K and it visits the

destination point.

2(v) We assume that every row that intersects the column R1 does not have a

west bump. In addition we assume that there exists a special empty west row

rw3 . We recall that an empty west row is a row that in the west strip is empty

and the special empty west row is the empty west row of smallest latitude

greater than −3p with respect to the standard well order on Z. We recall that

w = (a+ 1, u) is the uppermost point of the finite column R1 and let v be the

easternmost vertex in the west strip on the row rw3 . We may assume without

loss of generality that w3 > u.

By inspecting the primary rectangle, we construct an algorithm H ′ of the

form H ′ =
∏h

m=1N
kmN−kmEεm , where εm ∈ {−1, 1} and km is an integer with

|km| ≤ 2p for all 1 ≤ m ≤ h, such that if the robot starts at w and it follows

H ′, it visits the destination point (see H ′ in Figure 8). Let H = H ′W |H′|. We

58



note that if the robot is in the origin in a maze with no VNEs and it follows

H it returns to the x-axis and its latitude does not increase. We further note

that if the robot starts from v and it follows H, it oscillates about latitude w3

without hitting any VNE and at the end it returns back to the starting point

v.

We define the algorithm

F = Nw3(Sw3−uENw3−uH)λ+q.

Claim 7.8. For any maze in Fi, after the robot follows X F , it visits the

destination point.

Proof. We may assume without loss of generality that after the robot

follows X Nw3 it gets on the row rw3 at the west of the point v. While the

robot follows each instance of Sw3−uENw3−uH in the west strip, it advances

eastwards one unit making an oscillation about the row rw3 . By the choice

of exponent, after a certain instance of Sw3−uENw3−uH, the robot eventually

gets to the point v. Immediately afterwards, it follows another instance of

Sw3−uENw3−uH and it gets to the destination point. Indeed, if the robot starts

at the point v and it follows Sw3−uENw3−u, it gets to the point w. If the robot

starts at w and it follows H, it gets to the destination point. The conclusion

follows. �

2(vi) This is the final case, where we may assume all of the following: every

row that intersects the column R1 does not have a west bump; there does not

exist a west pipe; there does not exist a magical west row; there does not exist

a special almost empty west row; there does not exist a special empty west row.

Then every row at latitude greater than −3p with respect to the well order on

Z is a path in the west strip and indeed a path in the maze; every row that

intersects the finite column R1 is a path in the west strip and indeed a path in

the maze; each row at latitude at most 3p with respect to the standard well

order on Z is known to be either a path or the complement of a path in the
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west strip. We recall that w = (a+ 1, u) is the uppermost point of the finite

column R1.

By inspecting the primary rectangle we can construct an algorithm H ′ of

the form H ′ =
∏h

m=1N
kmN−kmEεm , where εm ∈ {−1, 1} and km is an integer

with |km| ≤ 2p for all 1 ≤ m ≤ h, such that if the robot starts at w and follows

H ′ it visits the destination point (see H ′ in Figure 8). Let H = H ′Er, where r

is an integer such that if the robot follows H on a maze without meeting any

VNE and HNE then it returns back to its starting point. We construct the

algorithm

F = Nu(EN6pHS6p)λ+p.

Claim 7.9. For any maze in Fi, after the robot follows X F , it visits the

destination point.

Proof. We may assume without loss of generality that after the robot

follows X Nu it gets in the west strip on the row ru. While the robot executes

one instance of EN6pHS6p it advances one unit eastwards in the west strip on

the row ru without meeting any VNE or HNE. Indeed, every row at latitude

greater than 3p is a path in the maze. The robot eventually eventually gets at

w. Immediately afterwards, it follows N6p, remaining at w and then H, hence

it gets to the destination point. �

This finally solves Case (2) in which the destination point was connected

with the west strip by a finite number of finite columns. It is immediate to see

that the presence of infinite columns in the obstacle strip does not affect any

of the arguments made in this case.

Case (3). We assume that the destination point is in the obstacle strip and

there exists some parameter h(i,i+1) <∞. We recall that this is equivalent to

the existence of a pair of consecutive upper infinite columns (or a consecutive

upper infinite column and an infinite column at the border of the obstacle strip

and either the east or west strip) which are not connected by HEs at arbitrarily

high latitudes. By symmetry, treating this case also solves the case in which
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there exists some parameter l(i,i+1) <∞.

3(i) We assume h(a,a+1) <∞. We recall that the pair of columns (ca, ca+1) is

at the border between the west strip and the obstacle strip and we also recall

that the pair of columns (cb, cb+1) is at the border between the obstacle strip

and the east strip. We assume without loss of generality that there exists a HE

between the west strip and a finite column or a lower infinite column (otherwise

we are done by Part I). Let R be a finite column or a lower infinite column

on the column ca+1 such that there exists a HE between the west strip and R

on some row rc. Let w be the uppermost vertex of R. Let j = h(a,a+1) + l and

v = (a, j) be the easternmost point on the row rj in the west strip. We recall

the generic algorithm

SME(j−c)(a, e, L) = ((((((L)eSj−cEN j−c)eE)eNES)eSEN)e . . . SaENa)e.

We define the algorithm

F = N jSME(j−c)(λ+ j + q, λ+ j + q, L).

Claim 7.10. For any maze in Fi, after the robot follows X F , it visits the

destination point.

Proof. We may assume without loss of generality that after the robot

follows X N j it is in the west strip on the row rj . By the choice of parameters

and by Corollary 4.2, while the robot follows SME(j−c)(λ+ j + q, λ+ j + q, L)

it advances eastwards in the west strip oscillating about row rj. After the

robot starts from some point on the row rj in the west strip and follows L its

longitude does not decrease and it remains in the west strip. It eventually gets

to the point v. After the robot starts from v and follows Sj−cEN j−c it gets to

the point w. Immediately afterwards, it follows L and gets to the destination

point. �

3(ii) Consider the pair of consecutive columns (ci, ci+1) which is not at

the border between the west strip and the obstacle strip. Assume there are
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not arbitrarily high HEs between the columns ci and ci+1, i.e. h(i,i+1) < ∞.

Assume further that there exists a pass on some row rc between the west

strip and an upper infinite column R (see the case 3(i)). We define K =

Sλ+2q+|h(i,i+1)|+1Nλ+2q+|h(i,i+1)|+1. We define the algorithm

F = N c SME(λ+ q, λ+ q,K) Sλ+2q+|h(i,i+1)|+1 L.

Claim 7.11. For any maze in Fi, after the robot follows X F , it visits the

destination point.

Proof. We may assume without loss of generality that after the robot

follows X N c it gets in the west strip on the row rc. While the robot follows

SME(λ+ q, λ+ q,K) it advances eastwards in the west strip oscillating about

the row rc. It eventually enters the upper infinite columns R. Immediately

afterwards it executes K and gets to latitude at least λ+ q + |h(i,i+1)|+ 1 in R.

While the robot is in the obstacle strip and follows SME it advances eastwards

through upper infinite columns at latitudes greater than h(i,i+1) + 1. Hence the

robot remains stuck in some column cj with j ≤ i at latitude λ+2q+|h(i,i+1)|+1

above the highest VNE in the columns cr with a ≤ r ≤ j. After that the robot

follows Sλ+2q+|h(i,i+1)|+1 and gets to a special point. Therefore, after the robot

follows X F it gets to the destination point. �

This finally solves Case (3) in which the destination point is in the obstacle

strip in a finite or infinite column and there exists some parameter h(i,i+1) <∞.

Moreover, the case in which there exists some parameter l(i,i+1) <∞ is tackled

similarly by symmetry. Finally, it is immediate to see that the presence of

infinite columns in the obstacle strip does not affect any of the arguments made

in this case.

Case (4). This is the final case, in which we may assume that Case (3) does

not hold and the destination point is in the obstacle strip in a finite column,

an upper infinite column or lower infinite column and it is connected to the

west strip by a (finite, possibly empty) sequence of finite columns followed by
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a (finite, non-empty) sequence of upper infinite columns, in this order starting

from the destination point and advancing towards the west strip. Indeed, we

may assume that the west strip is accessible by Part II. The case in which

is the destination point is not in the obstacle strip is tackled in Case (1).

Furthermore, if we assume that the destination point is in the obstacle strip,

it may either be reachable from the west strip through a finite sequence of

finite columns tackled in Case (2) or otherwise it must be reachable from the

west strip through a finite sequence of upper/lower infinite and finite columns

which contains at least one upper or lower infinite column. Choose any such

finite sequence of columns which leads to the destination point starting from

the west strip and call the last upper or lower infinite column in the sequence

c; this may either be the last element of the sequence or it might be followed

by a finite sequence of finite columns. By Case (3) we may assume that

there are horizontal edges between consecutive upper infinite columns and

between consecutive lower infinite columns at latitudes arbitrarily high and low,

respectively. Hence, assuming without loss of generality as we may that c is an

upper infinite column, c can be reached from the west strip through a finite

sequence of upper infinite columns. Therefore, the last case that we tackle

is the one in which we assume that the destination point is connected to the

west strip by a (finite, possibly empty) sequence of finite columns followed by

a (finite, non-empty) sequence of upper infinite columns, in this order starting

from the destination point and advancing towards the west strip.

The condition that Case (3) does not hold means that in this case we

assume that all the parameters h(i,i+1) and l(i,i+1) are all infinity for a ≤ i ≤ b;

in particular, this implies that there exists a west ascending chain. We recall

that the pair of columns (ca, ca+1) are at the border between the west strip

and the obstacle strip; we also recall that the pair of columns (cb, cb+1) are at

the border between the obstacle strip and the east strip. We further recall

that a west ascending chain is a finite sequence of HEs: HEa, HEa+1, . . . , HEb

such that HEa is the upper west pass (i.e. the lowermost HE between the west
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strip and the upper infinite column on ca+1 above all passes in the obstacle

strip) and HEm is the lowermost HE between the pair of columns (cm, cm+1)

at latitude at least that of HEm−1 for m = a+ 1, . . . , b. In this case, we take

Ra+1, Ra+2, . . . , Rn to be a finite non-empty sequence of upper infinite columns

and Rn+1, . . . , Rk to be a finite possibly empty sequence of finite columns and

finally we take R to be a finite, upper infinite or lower infinite column such

that R contains the destination point and there exists a HE between the west

strip and Ra+1, between Rm and Rm+1 for a + 1 ≤ m ≤ k − 1 and between

Rk and R. By the discussion at the beginning of the case, we may assume

that such a sequence has the extra property that Rm is on the column cm for

a + 1 ≤ m ≤ n. Moreover, if Rn+1 exists we may assume that Rn+1 ∈ cn+1;

indeed, Rn+1 ∈ cn+1 or Rn+1 ∈ cn−1 and if Rn+1 ∈ cn−1 then we can use the

symmetry of the argument in Part II to assume that the robot is in the east

strip on the x-axis. From that perspective, we can use the arguments from the

case that we are treating with Rn+1 ∈ cn+1. Obviously, if Rn+1 does not exist,

by the same argument we may assume that R is in cn+1. Finally, say that the

row ri contains the upper west pass and note that the upper west pass is above

all passes in the obstacle strip and therefore, as Case (3) does not hold, it is

above all special vertices.

4(i) We assume there exists a magical west row rj. We recall that a magical

west row is a row which is a path when restricted to the west strip, and it

contains a HNE; its west cutoff is its westernmost HNE. We see in the end that

our argument also solves the case when there exists a magical east row. Denote

by v the westernmost vertex of the west cutoff of rj. Then, by inspecting the

tertiary rectangle, we can construct an algorithm K such that if the robot

starts from v and follows K it gets to the destination point. We construct the

algorithm

F = N jEλ+qK.

Claim 7.12. For any maze in Fi, after the robot follows X F , it visits the

destination point.
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Proof. We may assume without loss of generality that after the robot

follows X N j, it gets on the row rj. Therefore, after it follows X N j Eλ+q the

robot gets to the point v. Hence, after the robot follows X F it gets to the

destination point. �

Clearly, in this case we may easily drop the general assumption that Rn+1 ∈

cn+1. Therefore, this argument also solves the case when there exists a magical

east row.

4(ii) We assume there exists a special almost empty west row rj and we call v

the easternmost vertex of the west cutoff of rj . We recall that an almost empty

west row is a row that in the west strip is the complement of an infinite path

followed by a non-empty finite path; its west cutoff is its easternmost HNE in

the west strip. Then, by inspecting the tertiary rectangle, we can construct an

algorithm K such that if the robot starts from v and follows K it gets to the

destination point (see Figure 10).

We then define the algorithm auxiliary move east,

AME(a, e) = ((NESW )(SENW )(N2ES2W )(S2EN2W ) . . . (SaENaW ))e.

We finally define the algorithm

F := N j W q AME(λ+ q, λ+ q) K.

Claim 7.13. For any maze in Fi, after the robot follows X F , it visits the

destination point.

Proof. We may assume without loss of generality that after the robot

follows X N j W q it gets on the row rj at a longitude at most that of v. By the

choice of parameters, while the robot follows AME(λ+ q, λ+ q) it advances

eastwards in the west strip oscillating about the row rj and it remains stuck

at the point v. Hence, after the robot follows X F , it reaches the destination

point (see Figure 10). �
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Figure 10. Part III, Case (4)(ii). There exists a special
almost empty west row rj and let v be the easternmost vertex of
the west cutoff of rj . We assume that there are no VEs removed
other than the ones shown in the figure.

Let us examine the example shown in Figure 10. In this example, let

rj = r−2 and so v = (−1,−2). Let us see how the robot gets to v after it

follows AME(5, 5) starting from (−3,−2). As long as the robot is at the west

of v, the W instructions do not decrease the longitude of the robot, as there are

no HEs on rj at the west of v. Therefore, the robot takes the green path to v.

Once the robot gets at v, every subsequent subalgorithm of the form N iESiW

takes it back to v: after N iESi, the robot is either at v = (−1,−2) or (0,−2);

immediately afterwards, the robot follows W and the presence of a HE between

(−1,−2) and (0,−2) guarantees that the robot returns back to v. Immediately

after the robot follows AME and it gets to v, it follows K and it visits the

destination point. For our example we can take K = N3E2N2E2S2ES.

4(iii) We assume there exist the special upper west paired HNEs. We recall

the following definitions: let HEa, . . . , HEb be the west ascending chain with

HEa being the upper west pass say on some row ri and also say that HEb is

on some row rt. Then cuw = t+ p is the upper west constant, where p is the

parameter of the primary rectangle. The upper west paired HNEs are any pair

of HNEs with the same longitude, in the west strip, such that the upper HNE
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is at latitude i, on the same row as the upper west pass, and the lower HNE

is at latitude at most i − cuw. For the special upper west paired HNEs, we

choose the upper west paired HNEs with the uppermost easternmost lower

HNE. In this subcase, we assume that there exist the special upper west paired

HNEs, with the upper HNE on the row ri and the lower HNE on the row rj,

j ≤ i− cuw.

Let the point v be the easternmost vertex of the upper HNE of the pair

and let the point t be the easternmost vertex of the upper west pass. We pick

any HE between the upper infinite column Rn and the finite column Rn+1 at

latitude say ν. In the case that Rn+1 does not exist, we pick the lowermost

HE between the upper infinite column Rn and R at latitude say ν. Let the

point w be the vertex in the infinite column Rn at latitude ν + i− j. Then the

eastern vertex of HEn−1 which has a latitude of at most t by definition is in

the column cn below w; indeed, ν + i− j ≥ ν + t+ p and ν + p ≥ 0. Finally, let

the point z be the uppermost vertex of the finite column Rn+1 if Rn+1 exists.

In the following argument, we assume that Rn+1 exists and it will be clear how

this also naturally treats the case when Rn is connected to R which contains

the destination point. For an illustration of all these definitions in a concrete

example, see Figure 11.

In what follows, we will construct 5 algorithms K1, . . . , K5, by inspecting

the tertiary rectangle.

We start by constructing a finite algorithm K1 of the form

K1 =
∏h1

m=1 S
εmEN εm , where εm ∈ {0, i − j} for all 1 ≤ m ≤ h1, such that

after the robot follows K1 starting from the point v it gets to the point t. We

make use of the fact that in the west strip at the east of the special upper west

paired HNEs at each given longitude at least one of the rows ri and rj contains

a HE. Clearly, εh1 = 0.

We construct a finite algorithm K2 of the form

K2 = (
∏n−1

m=a+1 S
kmNkmE)SknNkn , where km is a positive integer for all a+1 ≤

m ≤ n, such that if the robot starts from the point t and it follows K2, it
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gets to the point w. More specifically, if the robot is in the upper infinite

column Rm in the column cm at the easternmost end of HEm−1 and it follows

SkmNkmE it gets in the upper infinite column Rm+1 in the column cm+1 at the

easternmost end of HEm, for a+ 1 ≤ m ≤ n− 1; if the robot is in the upper

infinite column Rn in the column cn at the easternmost end of HEn−1 and it

follows SknNkn it gets to the point w.

We construct an algorithm K3 = Si−jEN i−j, such that if the robot starts

from w and it follows K3, it gets to the point z.

We construct an algorithm K4 of the form K4 = (
∏k

m=n+1N
kmSkmEεm)

Nkk+1 N−kk+1 , where εm ∈ {−1, 1} and km is an integer for all n+1 ≤ m ≤ k+1,

such that if the robot starts from the point z and it follows K4, it visits the

destination point. More specifically, if the robot is at some specified latitude

in the finite column Rm and it follows NkmN−kmEεm , it gets to some specified

latitude in the finite column Rm+1 for n+ 1 ≤ m ≤ k, where by convention we

write Rk+1 for R. If the robot is at some specified latitude inside R and follows

Nkk+1N−kk+1 it visits the destination point.

We define the algorithm K5 = E|K4|.

We define the algorithm K = K1K2K3K4K5. Note that if the robot is on

the row ri strictly at the west of the point v and it follows K it returns on the

row ri strictly at the west of v. Indeed, by examining K1, . . . , K5 one by one,

we conclude that if the robot starts strictly at the west of v, while executing

K it can only change its longitude at latitudes i or j. Thus, the existence of

the special west paired HNEs prevents the robot from reaching a longitude at

least that of v. In particular, if the robot is on the row ri strictly at the west

of the point v and it follows K it does not meet any VNE, so it is easy to see

that it returns back to the row ri. Finally, the only W instructions in K could

appear as part of K4, which is followed by K5 = E|K4| in K; therefore if the

robot is on the row ri strictly at the west of the point v and it follows K its

longitude does not decrease. If the robot starts at the point v and it follows
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K, then it visits the destination point; this follows directly from the definitions

of K1, . . . , K5 (see Figure 11).

Finally, we construct the algorithm

F = N i MW (i− j, q) SME(µ+ λ+ 2q, µ+ λ+ 2q,K),

where µ = |MW (i− j, q)|.

Proposition 7.14. For any maze in Fi, after the robot follows X F , it

visits the destination point.

Proof. We may assume without loss of generality that after the robot

follows the algorithm X N i MW (i− j, q) it gets on the row ri at a longitude

at most that of the point v. By the choice of parameters and by Lemma 4.1,

while the robot follows SME(µ+ λ+ 2q, µ+ λ+ 2q,K), it advances eastwards

in the west strip oscillating about the row ri. After defining K, we checked that

it satisfies the conditions required in order to apply Lemma 4.1. Therefore, by

Lemma 4.1, the robot gets for the first time to the point v not while executing

K, but while executing a locomotory move. Immediately afterwards, it follows

K and it gets to the destination point. The conclusion follows. �

Let us examine the example shown in Figure 11. In this example we

have a = 1 and b = 5. The upper west pass between c1 and c2 is HE1 =

(1, 1), (2, 1), above all the passes in the obstacle strip; the west ascending

chain is coloured green. The chosen path from the west strip to the desti-

nation point goes through R2 = {(2,−3), (2,−2), . . .}, then R3, Rn = R4,

R5 = {(5,−1), (5,−2), (5,−3), (5,−4)}, R6 = {(4,−4), (4,−5)}, R = R7 =

{(3,−4), (3,−5)}. The point z = (5,−1) is the uppermost vertex of R5. For

the purpose of this example, let us assume cuw = 6, although this should be

larger. To find the upper west paired HNEs, the set of HNEs on r1 is the set of

all possible candidates for the upper HNE in the pair. To find the second HNE

in the pair, we look on r1−6 = r−5 (i.e. at latitude i− cuw) to find a matching

HNE at the same longitude with one on r1 and we choose the easternmost
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Figure 11. Part III, Case (4)(iii). We assume there exist
the special upper west paired HNEs. We assume that there are
no VEs removed other than the ones shown in the figure.

one. If none such HNE exists, we repeat the same process on r−6, then on

r−7 and so on. In this example, we find the upper west paired HNEs to be

(−3, 1), (−2, 1) and (−3,−5), (−2,−5). Therefore v = (−2, 1) and t = (2, 1).

The only HE between R4 and R5 is (4,−2), (5,−2) at latitude ν = −2, so

w = (4, 4). Then, if the robot follows K1 = ES6EN6EE starting from v it

gets to t; if the robot follows K2 = S5N5ES5N5ES7N7 starting from t it gets

to w, passing through the green edges from R2 to R3 and from R3 to R4; if

the robot follows K3 = S6EN6 starting from w it gets to z; if the robot fol-

lows K4 = N3S3WNSWNSE starting from z it gets to the destination point;

K5 = E13. Finally, we remark that if the robot follows K = K1K2K3K4K5

starting on any point of r1 strictly at the west of v, then it returns on r1 strictly

at the west of v.
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4(iv) We assume that there do not exist some special upper west paired HNEs

and there exists an upper west pipe on the row ri which contains the upper

west pass. The upper west pipe is the west pipe (the easternmost configuration

of a HE followed by a HNE) on the row ri. Let the point v in the west strip be

the easternmost vertex of the HNE of the upper west pipe. Let the point t be

the easternmost vertex of the upper west pass. Consider the finite sequence of

HEs in the west ascending chain HEa, HEa+1, . . . , HEb. Let the point w in the

upper infinite column Rn in cn be the westernmost vertex of HEn. Let HEspecial

be a HE between the upper infinite column Rn and the finite column Rn+1. As

in case 4(iii), if Rn+1 does not exist, let HEspecial be the lowermost HE between

Rn and R. Let the constant d be the difference in latitude between HEn and

HEspecial, with d ≥ 0 from the definition of the upper west pass which is above

all passes and special vertices in the obstacle strip. Let z be the uppermost

point in the finite column Rn+1 if Rn+1 exists. In the following argument, we

assume that Rn+1 exists and it will be clear how this also naturally treats the

case when Rn is connected to R which contains the destination point.

In what follows, we will construct 5 algorithms K1, . . . , K5, by inspecting

the tertiary rectangle.

We start by constructing the algorithm K1 = (WScuwEN cuw)h1Eh2 , where

h1 and h2 are positive integers, such that if the robot starts from the point v

and follows K1 it gets to the point t. We make use of the fact that in the west

strip at each given longitude at least one of the rows ri and rj, j = i − cuw
contains a HE. We also make use of the fact that in the west strip the section

of the row ri at the east of the upper west pipe is the complement of a path,

followed by a path (which is nonempty from the existence of the upper west

pass). However, we remark that if the robot starts on ri strictly at the west

of v and it follows K1, it always remains strictly at the west of v, due to the

HNE of the west pipe and the fact that there are no VNEs at the west of v.

We construct the algorithm K2 = (
∏n

m=a+1 S
kmNkmE)W , where km is a

positive integer for all a+ 1 ≤ m ≤ n, such that if the robot starts from the
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point t and follows K2 it gets to the point w. More specifically, if the robot is

in the upper infinite column Rm in the column cm at the easternmost point

of HEm−1 and follows SkmNkmE, it gets in the upper infinite column Rm+1 in

the column cm+1 at the easternmost end of the HEm, for a+ 1 ≤ m ≤ n. After

the robot follows the last instruction in the product, SkmNkmE, it gets to cn+1

at the easternmost point of HEn and so after it follows the last instruction in

K2, that is W , the robot gets to the point w.

We define the algorithm K3 = SdENd, such that if the robot starts from w

and it follows K3, it gets to the point z. However, we remark that if the robot

starts on ri strictly at the west of v and it follows K2 K3, it always remains

strictly at the west of v. Indeed, while the robot follows K2 starting strictly at

the west of v, the HNE of the west pipe prevents it from visiting longitudes

greater than that of v. Hence, the robot could only potentially get to a large

longitude by reaching v after it follows K3; however, this is impossible as the

last instruction in K2 is W .

We construct the algorithm K4 = (
∏k

m=n+1N
kmN−kmEεm)Nkk+1N−kk+1 ,

where εm ∈ {−1, 1} and km is an integer for all n + 1 ≤ m ≤ k + 1, such

that if the robot starts from the point z and follows K4 it passes through the

destination point. More specifically if the robot is at some specified latitude

in the finite column Ri and it follows NkiN−kiEεi , it gets to some specified

latitude in the finite column Ri+1 for n+ 1 ≤ i ≤ k, where by convention we

write Rk+1 for R. If the robot is at some specified latitude in R and it follows

Nkk+1N−kk+1 it passes through the destination point. However, we remark that

if the robot starts on ri strictly at the west of v and it follows K4 it always

remains strictly at the west of v, as the robot follows the E instructions at

latitude i and the HNE of the west pipe prevents it from visiting longitudes

greater than that of v.

We finally construct the algorithm K5 = E|K4|+1 and note that if the robot

starts on ri strictly at the west of v and it follows K5 it always remains strictly

at the west of v.
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We define the algorithm K = K1K2K3K4K5. Note that if the robot starts

on the row ri strictly at the west of the point v and it follows K then it returns

on the row ri strictly at the west of v. Indeed, the last part follows by the

remarks we made on K1, . . . , K5 individually and the first part follows from the

fact that the robot does not meet any VNEs if it starts on the row ri strictly at

the west of v and it follows K. If the robot starts at the point v and it follows

K, then it visits the destination point; this follows directly from the definitions

of K1, . . . , K5. Finally, we claim that if the robot starts on the row ri strictly

at the west of the point v and it follows K, its longitude does not decrease.

Indeed, the only W instructions in K occur either in K4, which is followed by

K5 specifically designed to negate them or as the last instruction in K2, which

is preceded by an E instruction. Therefore, the claim holds (see Figure 12).

Finally, we define the algorithm

F = N i MW (cuw, q) SME(µ+ λ+ 2q, µ+ λ+ 2q,K),

where µ = |MW (cuw, q)|.

Proposition 7.15. For any maze in Fi, after the robot follows X F , it

visits the destination point.

Proof. We may assume without loss of generality that after the robot

follows XN i it gets in the west strip on the row ri. While the robot follows the

algorithm MW (cuw, q) it gets on the row ri at v or to the west of v. By the

choice of parameters and by Lemma 4.1, if the robot is in the west strip on the

row ri at the west of the point v and it follows SME(µ+λ+ 2q, µ+λ+ 2q,K),

it advances eastwards oscillating about the row ri. While the robot is on the

row ri strictly at the west of v and it follows K, it remains on the row ri strictly

at the west of v. After defining K, we checked that it satisfies the conditions

required in order to apply Lemma 4.1. Finally, the robot reaches the point

v not while executing K, but while executing a locomotory move in SME.
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Immediately afterwards, the robot follows K and it gets to the destination

point. The conclusion follows. �
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Figure 12. Part III, Case (4)(iv). We assume that there do
not exist some special upper west paired HNEs and there exists
an upper west pipe on the row ri. We assume that there are no
VEs removed other than the ones shown in the figure.

Let us examine the example shown in Figure 12. For this example we have

a = 1 and b = 5. We have ri = r1 with the upper west pipe

{(−5, 1), (−4, 1), (−3, 1)}. The points v, t, w and z are marked on the figure

and the west ascending chain is coloured green. We also have HEspecial =

{(4,−2), (5,−2)}, d = 6 and let us assume for this example that cuw = 6,

though this value should be larger. Then, if the robot follows K1 = E5 starting

from v it gets to t; if the robot follows K2 = (S5N5E)2 (S7N7E) W starting

from t it gets to w; if the robot follows K3 = S6EN6 starting from w it gets

to z; if the robot follows K4 = (N4S4W )(NSW )NS starting from z it gets to

the destination point; K5 = E15. We define K = K1K2K3K4K5 and note that
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if the robot follows K starting from v it visits the destination point, but if the

robot follows K starting on ri = r1 strictly at the west of v, it returns on ri

strictly at the west of v.

4(v) We assume that there does not exist a magical west row, there does

not exist a special almost empty west row, there does not exist an upper west

pipe, there do not exist the special upper west paired HNEs, but there exists

an upper west cutoff. We recall that the upper west cutoff is the easternmost

HNE in the west strip on the row ri which contains the upper west pass. Then

the row ri is the complement of a path in the west strip and all the rows rk

with k ≤ j = i− cuw ≤ −p are paths in the west strip and indeed paths in the

entire maze (from the non existence of the special upper west paired HNEs).

Let v = (a, i) be the easternmost vertex of the row ri in the west strip. Let

z = (a+ 1, z) be the uppermost vertex of the westernmost lower infinite column

in the column ca+1. Let w = (a, z − cuw). By inspecting the tertiary rectangle,

we can construct an algorithm K that takes the robot from v to the destination

point.

We define the algorithm

F := N i (Si−jEN2i−2jSi−jW )λ+q N i+cuw−z K.

Claim 7.16. For any maze in Fi, after the robot follows X F , it visits the

destination point.

Proof. We may assume without loss of generality that after the robot

follows X N i it gets in the west strip on the row ri. By the choice of expo-

nents, while the robot follows (Si−jEN2i−2jSi−jW )λ+q it gets to the point w

and remains stuck there. Indeed, while the robot follows each instance of

Si−jEN2i−2jSi−jW , it advances one unit to the east, oscillating about the row

ri until it gets to v. Immediately afterwards, it follows Si−jEN2i−2jSi−jW

and gets to w. After the robot gets to w, after each other instance of

Si−jEN2i−2jSi−jW , the robot gets back to w. If the robot starts at w and it
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Figure 13. Part III, Case (4)(v). There does not exist a
magical west row, there does not exist a special almost empty
west row, there does not exist an upper west pipe, there do not
exist the special upper west paired HNEs, but there exists an
upper west cutoff. We assume that there are no VEs removed
other than the ones shown in the figure.

follows N i+cuw−z, it gets to v. Therefore, after the robot follows X F , it gets

to the destination point. The conclusion follows. �

Let us examine the example shown in Figure 13. In this example, the

row ri = r2 is the complement of a path in the west strip and all the rows

rk with k ≤ j = i − cuw ≤ −p are paths in the west strip and indeed paths

in the entire maze. For the purpose of this example, we can take cuw to be

any large constant, say cuw = 100. The points v and z are marked on the

figure, z = −3, j = i − cuw = −98 and w = (−2,−103). Let us see what is

the path of the robot as it follows F = N2(S100EN200S100W )4N105K starting

from (−4, 0), where K is any algorithm that takes the robot from v to the

destination point. When the robot follows S100EN200S100W starting from

(−4, 2), it first reaches a row which is a path after it executes S100, so its

longitude increases by 1 after it executes S100E; so after the robot executes

S100EN200S100 it is back on r2 = ri with its latitude increased by one, at

(−3, 2); the W instruction at the end does not change the longitude of the
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robot, as r2 is the complement of a path in the west strip. Similarly, after

the robot follows S100EN200S100W starting from (−3, 2) it gets to v = (−2, 2).

After the robot follows S100EN200S100W starting from v, it enters the lower

infinite column on ca+1: after S100E it is at (a + 1, j) = (−1,−98); after the

robot follows S100EN200S100, it is at (−1,−103); finally, after the robot follows

S100EN200S100W , it is at w = (−2,−103). Similarly, we can see that after the

robot follows each subsequent instance of S100EN200S100W starting at w, it

returns to w. After the robot follows enough instances of S100EN200S100W to

reach w, it follows N i+cuw−z = N105 and it reaches v; immediately afterwards,

the robot follows K and it reaches the destination point.

4(vi) We assume there exists an upper west HNE on some row rj. We recall

that the upper west HNE is the lowermost westernmost HNE at the north-east

of the uppermost westernmost VNE. We further assume there does not exist a

magical west row, there does not exist a magical east row and there does not

exist an upper west cutoff. Then all the rows rm with i ≤ m < j are paths in

the maze (from the minimality of j and the non-existence of a magical east

row). Let v be the western vertex of the upper west HNE. Let w = (xw, yw)

be the upper vertex of the uppermost westernmost VNE. Then v is at the east

of w. By inspecting the tertiary rectangle, we construct an algorithm K which

takes the robot from v to the destination point (see Figure 14).

We define the algorithm

F = N i(ESj−ywN j−yw)λ+qK.

Claim 7.17. For any maze in Fi, after the robot follows X F , it visits the

destination point.

Proof. We may assume without loss of generality that after the robot

follows XN i it gets in the west strip on the row ri. In the west strip, while

the robot follows ESj−ywN j−yw it advances eastwards oscillating about the

row ri. In the obstacle strip, while the robot follows ESj−ywN j−yw it advances

eastwards, potentially increasing its latitude as it meets VNEs. It eventually
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Figure 14. Part III, Case (4)(vi). We assume there exists
an upper west HNE on some row rj. We further assume there
does not exist a magical west row, there does not exist a magical
east row and there does not exist an upper west cutoff and that
there are no VEs removed other than the ones shown in the
figure.

gets on the row rj and remains stuck at the point v. Therefore, after the

robot follows X F it gets to the destination point. The conclusion follows (see

Figure 14). �

Let us examine the example shown in Figure 14. In this example, all the

rows rm with i ≤ m < j are paths in the maze. In this example, the upper west

pass is coloured green, the uppermost westernmost VNE is {(1,−2), (1,−1)},

the upper west HNE is {(3, 2), (4, 2)} and so j = 2. The vertices v and w are

marked on the figure. We can take K = S3(WS)2, so if the robot follows K

starting from v it visits the destination point. Let us observe how the robot

follows F = (ES3N3)10K starting from (−3, 0). As long as the robot is in the

west strip, each instance of ES3N3 increases its longitude by one. Eventually,

the robot gets to (0, 0). After that, the robot follows S3N3 and it gets to (0, 1).

Considering that every row at latitude between i = 0 and j = 2 is a path in the

maze, every further instance of ES3N3 increases the longitude of the robot by

one, until it arrives at v = (3, 2), as its latitude is determined by the uppermost
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VNEs at the west of v. Once the robot reaches v, we can see that after each

instance of ES3N3, the robot returns to v. Finally, the robot follows K and it

visits the destination point.

4(vii) We assume there does not exist a magical west row, there does not

exist a magical east row, there does not exist an upper west cutoff, there does

not exist an upper west HNE, but there does exist a special west pipe on some

row rj. We recall that the special west pipe is the west pipe (the easternmost

configuration in the west strip of a HE followed by a HNE) on the smallest row

that has a west pipe with respect to the standard well order on Z. Then all

the rows rm with m ≥ i are paths in the maze (from the non existence of an

upper west HNE and the non existence of a magical east row).

Let v = (xv, j) be the eastern vertex of the HE of the special west pipe.

Let w = (a+ 1, yw) be the lowermost vertex of the westernmost upper infinite

column Ra+1. Let t = (xv, i) be the vertex at the intersection between the

column cxv and the row ri. Let z = (n + 1, yz) be the uppermost vertex of

the finite column Rn+1 or the uppermost vertex of the lower infinite column

Rn+1 = R that contains the destination point. The special case that the

destination point is in the upper infinite column Rn+1 = R is much more easy

and we will make a note on how to solve it before defining the finish algorithm

F . Let HEspecial be a HE on some row rγ between the upper infinite column

Rn and the finite column Rn+1. Let v’ be the eastern vertex of the HE of any

“fake west pipe”, i.e. a configuration in the west strip on rj that is formed by

a HE followed by a HNE, strictly at the west of the special west pipe (see

Figure 15).

We define the algorithm K1 = N i−jEa+1−xvS2i−j−ywN2i−j−ywW a+1−xvSi−j

with the property that if the robot starts from v and follows K1 it passes

through the point w and gets to the point t. However, if the robot starts at

v’ and it follows K1 then it returns at v’. The second statement follows from

the fact that the robot moves at every instruction in K1: indeed, while the

robot executes N i−j starting from v’, it is in the west strip which contains
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no VNEs, so it changes its latitude to i; considering that ri is a path in the

maze, when the robot continues to follow Ea+1−xv , its longitude increases by

exactly a+ 1− xv which is the exact difference in longitude between v and the

westernmost column in the obstacle strip, ca+1; as v’ is strictly at the west of

v, we conclude that after the robot follows N i−jEa+1−xv starting from v’, it is

still in the west strip on the row ri which is a path in the maze; hence, if the

robot follows K1 starting from v’, it gets back to v’. Similarly, we can show the

first statement about K1, that if the robot starts from v and follows K1 it gets

to the point t; in this case, we note that the only instructions in K1 that do

not change the position of the robot are instructions of type S from the group

S2i−j−yw that occur immediately after the robot reaches w (see Figure 15).

We define the algorithm K2 = En+1−xvWSi−γEN i−γ such that if the robot

starts from t and follows K2 it gets to the point z. This is clear as the robot

starts on ri which is a path, so after it follows En+1−xvW it gets at the point

(n, i) and so after it follows K2 it is in Rn+1; moreover, as the upper west pass

at latitude i is above all the passes in the obstacle strip and so, in this case,

also above all the VNEs, the robot actually gets to z in Rn+1 after it follows K2

starting from t. However, if the robot follows K2 starting from v’, it does not

move after it follows En+1−xv and its longitude decreases by 1 after it follows

En+1−xvW . Hence, if the robot follows K2 starting from v’, it either gets back

to v’ or it gets to the western neighbour of v’ (see Figure 15).

By inspecting the tertiary rectangle, we construct the algorithm K3 of the

form K3 = (
∏k

m=n+1N
kmN−kmEεm)Nkk+1N−kk+1 , where εm ∈ {−1, 1} and km

is an integer for all n + 1 ≤ m ≤ k + 1, such that if the robot starts from

the point z and follows K3 it passes through the destination point. More

specifically, if the robot is at some specified latitude in the finite column Rm

and follows NkmN−kmEεm it gets to some specified latitude in the finite column

Rm+1 for n + 1 ≤ m ≤ k, where by convention we write Rk+1 for R. If the

robot is at some specified latitude inside R and it follows Nkk+1N−kk+1 , it visits

the destination point.
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We construct the algorithm K4 = E|K3|+1. We note that from the structure

of a fake west pipe and its position in the west strip, if the robot starts either

at v’ or at the western neighbour of v’ and it follows K3K4, it gets to v’.

We define the algorithm K = K1K2K3K4 with the property that if the

robot starts at v and it follows K, it passes through the destination point.

However, if the robot starts at v’ and it follows K, it gets back to v’. In the

special case when z does not exist and so the destination point (n + 1, δ) is

in the upper infinite column Rn+1 = R we define K ′2 = En+1−xvN δ−iSδ−i. In

this case we define K = K1K
′
2 instead and we note that, as before, if the robot

starts at v and it follows K, it passes through the destination point; moreover,

if the robot starts at v’ and it follows K, it gets back to v’.

We recall the algorithm WPF (a, e) := (EeWSaENa)e, defined in the case

2(ii). Finally, we define the algorithm

F = N i W λ−xv Si−j (WPF (j − i, 2λ+ q)KN i−jESi−j)2λ+q.

Claim 7.18. For any maze in Fi, after the robot follows X F , it visits the

destination point.

Proof. We may assume without loss of generality that after the robot

follows X N i W λ−xv Si−j it gets in the west strip on the row rj at the west of

the point v. While the robot follows each instance of WPF (j − i, 2λ + q) it

advances eastwards to the easternmost vertex v’ of a HE of a fake west pipe on

the row rj . If v’ is strictly at the west of v, after the robot follows the algorithm

K it returns to the point v’; after the robot follows the algorithm N i−jESi−j

starting from v’, it advances to the east of v’ on the row rj. By the choice

of parameters, the robot eventually gets to the point v’ = v. Immediately

afterwards, it follows K and it gets to the destination point. The conclusion

follows. �

Let us examine the example shown in Figure 15. The upper west pass

is coloured green and it is on the row ri = r0. From the assumptions, it
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Figure 15. Part III, Case (4)(vii). We assume there does
not exist a magical west row, there does not exist a magical east
row, there does not exist an upper west cutoff, there does not
exist an upper west HNE, but there does exist a special west
pipe on some row rj . We assume that there are no VEs removed
other than the ones shown in the figure.

follows that for every m ≥ i, the row rm is a path in the maze. The special

west pipe is {(−3,−1), (−2,−1), (−1,−1)} on rj = r−1. We take Rn+1 to be

{(1,−2), (1,−3)}, accessible from Rn = {(0,−2), (0,−1), . . .} via HEspecial =

{(0,−2), (1,−2)} on rγ = r−2. Then, if the robot follows K1 = NE2S3N3W 2S

starting from v, it gets to t passing from w; however, note that if the robot

follows K1 starting from v’ (which is the eastern vertex of the HE of the “fake

west pipe” {(−5,−1), (−4,−1), (−3,−1)} on rj strictly at the west of v), it

returns to v’. If the robot follows K2 = E3WS2EN2 starting from t, it gets to

z; however, if the robot follows K2 starting from v’ it gets back to v’; in general,

we are certain that if the robot follows K2 starting from v’ it either gets back to

v’ or to the western neighbour of v’. If the robot follows K3 = NSW starting

from z it visits the destination point. In this case, K4 = E4. Therefore, if the

robot follows K3K4 starting either from v’ or from the western neighbour of

v’, it gets to v’.

4(viii) We assume that there does not exist a magical west row, there does

not exist a magical east row, there does not exist an upper west cutoff, there
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does not exist an upper west HNE, but there exists a natural special empty

west row on rj. Then, as in 4(vii), all the rows rm for m ≥ i are paths in the

maze. Let v = (a, j) be the easternmost vertex of the row rj in the west strip.

Let z = (a+ 1, γ) be the lowermost vertex of the westernmost upper infinite

column Ra+1. Let w = (a, 2i − γ). By inspecting the tertiary rectangle, we

construct an algorithm K that takes the robot from v to the destination point.

We define the algorithm

F = N j (N i−jES3i−2γ−jN2i−2γW )λ+q S2i−γ−j K.

Claim 7.19. For any maze in Fi, after the robot follows X F , it visits the

destination point.

Proof. We may assume without loss of generality that after the robot

follows X N j, it gets in the west strip on the row rj. While the robot follows

each instance of N i−jES3i−2γ−jN2i−2γW , it advances eastwards one unit making

an oscillation about the row rj . By the choice of exponent, the robot eventually

gets to the point v. Immediately afterwards, it follows N i−jES3i−2γ−jN2i−2γW

and gets to the point w. The robot remains stuck at w, i.e. while it follows each

instance of N i−jES3i−2γ−jN2i−2γW , it gets back to w (see Figure 16). Hence

after the robot follows X N i W λ−a Si−j (N i−jES3i−2γ−jN2i−2γW )λ+q S2i−γ−j ,

it gets to v. Hence, after the robot follows X F , it gets to the destination

point. The conclusion follows. �

Let us examine the example shown in Figure 16. Let us suppose that the

robot starts at (−3, 0) and it follows F = N−2(N2ES6N4W )10S4K, where

K = N(ES)2 is an algorithm with the property that if the robot follows it

starting from v it reaches the destination point. While the robot is on rj = r−2

strictly at the west of v, its longitude increases by one after each instance of

N2ES6N4W . After the robot reaches v and it follows N2ES6N4W , it gets to

w. If the robot follows N2ES6N4W starting from w it gets back to w.
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Figure 16. Part III, Case (4)(viii). We assume that there
does not exist a magical west row, there does not exist a magical
east row, there does not exist an upper west cutoff, there does
not exist an upper west HNE, but there exists a natural special
empty west row on r−2 = rj. We assume that there are no VEs
removed other than the ones shown in the figure.

4(ix) As a final case, we may assume that there does not exist a magical

west/east row, there does not exist a special west pipe, there does not exist a

natural special empty west row, there does not exist a special almost empty

west row. Then all the rows are paths in the maze and hence the maze does

not contain any HNE. Therefore, both the latitude and the longitude of the

robot are known and, by inspecting the primary rectangle, we can write an

algorithm F that takes the robot from its known position to the destination

point. The conclusion follows.

This finally solves Case (4) in which the destination point is connected to

the west strip by a (finite, possibly empty) sequence of finite columns followed

by a (finite, non-empty) sequence of upper infinite columns.

We have therefore treated all possible cases, as detailed in the arguments

above. This completes the proof of Theorem 3.2. �
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8. Proof of Proposition 3.3 and Theorem 1.4

In this short section we present a proof of the slightly technical but easy

Proposition 3.3 and then we finally establish Theorem 1.4.

The following observation represents the main idea of the proof.

Observation 8.1. Let o, d be fixed vertices in Z2 and let B be a set of

subgraphs of Z2 which is compact in the product topology. Let A be a possibly

infinite algorithm that solves the set of mazes A = {(B, o, d) | B ∈ B}. Then

there exists a finite initial segment A0 of A that solves A.

Proof. Assume for a contradiction that there does not exists such an initial

segment A0. For each i ≥ 1, let Ai be the initial segment of A with the first i

instructions. By assumption, for each i ≥ 1 there exists a board Bi ∈ B such

that Ai does not solve Bi. By compactness there exists a subsequence (Bij )j≥1

such that lim
j→∞

Bij = B0 ∈ B in the product topology. As A solves B0, there

exists an initial segment A0 of A which solves (B0, o, d). As lim
j→∞

Bij = B0 ∈ B,

A0 solves (Bij)j≥1 for all j ≥ |A0| sufficiently large. This gives the desired

contradiction. �

We are now ready to prove Proposition 3.3 and Theorem 1.4.

Proof of Proposition 3.3. By hypotheses (1) and (3) and by Obser-

vation 8.1, for all i, all origins o ∈ Z2, all destination d ∈ Z2 and all paths P

between o and d, there exists a finite initial segment Ai,P of Ai that solves the

set of mazes {(M, o, d) | (M, o, d) ∈ Ai, P ≤M} that contain the path P (this

set of mazes might be empty). By hypothesis (2), for all i, all origins o ∈ Z2

and all j ∈ N, there exists a finite initial segment Ai,o,j of Ai that guides the

robot to visit all accessible points at distance at most j from the origin o in the

set of mazes {(M, o, d) | (M, o, d) ∈ Ai} that have origin o (notice that here

the destination d plays no role so we might as well drop it). But then for all

i, j, k ∈ N, there exists a finite initial segment Ai,j,k of Ai such that for any

origin o at distance at most k from 0 in the graph Z2, the algorithm guides
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the robot to visit all accessible points at distance at most j from the origin o

in the set of mazes {(M, o) | (M, o) ∈ Ai} that have origin o.

In order to construct the algorithm A, we define the algorithms Bi recursively

to be Bi = Af(i),2|B1...Bi−1|+1,2|B1...Bi−1|+1, f = (1, 1, 2, 1, 2, 3, . . .) and take A :=

B1B2 . . .. Clearly, the algorithm A has the desired properties. �

Proof of Theorem 1.4. In Proposition 3.3, let A1 = C be the set of all

mazes with no VNEs and for all i ≥ 2 let Ai ⊆ F be the set of all mazes with

finitely many VNEs in consecutive columns, all of which are in the finite box

[−i, i]2. Then hypothesis (1) of Proposition 3.3 easily holds, hypothesis (2) is

trivial, and hypothesis (3) follows from Theorem 3.1 for A1 and Theorem 3.2

for Ai, i ≥ 2. �

9. Open Problems

As we emphasised in the proof of Theorem 1.4, we strongly believe that

there exists an algorithm which solves the set of all mazes with arbitrarily

many HNEs and finitely many VNEs. The only case in our proof where an

argument for this result breaks down is Case 4 of Part III. We believe that

this problem, together with Conjecture 9.1 below could be solved using similar

techniques with those developed in this chapter.

Conjecture 9.1. There exists an algorithm that solves the set of all mazes

with arbitrarily many HNEs and arbitrarily many VNEs in one column.

Furthermore, we believe the following positive result to hold.

Conjecture 9.2. Consider the subset N ⊆M(Z2) of mazes in which the

connected component of the origin is a simple (possibly infinite) path. Then

there exists an algorithm that solves N .

In the opposite direction, we believe the following to be true.

Conjecture 9.3. There is no algorithm that solves the class M(Z2) of all

mazes.
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From another perspective, let us call Mk ⊆ M(Z2) the set of mazes for

which the destination is at distance k from the origin. From Corollary 3.4, the

following conjecture is equivalent to Conjecture 9.3.

Conjecture 9.4. There exists a k for which Mk is not solvable.

Perhaps the following stronger results also hold.

Conjecture 9.5. Let N3 ⊂M(Z2) be the set of all mazes for which there

are only HNEs between the pairs of columns (c−4, c−3) and (c3, c4). Then there

is no algorithm that solves N3.

Conjecture 9.6. Conjecture 9.4 holds for k = 10.

The intuition behind Conjecture 9.5 is that for us it does not look plausible

to navigate the robot in a coordinated way between infinitely many finite

columns, even if we make additional assisting assumptions. Conjecture 9.5 is

one of the main reasons why we think Conjecture 9.3 holds.

Finally, we strongly believe that the classes of mazes in higher dimensions

arising from the lattice Zk with suitable mild restrictions should represent a

captivating further study.
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CHAPTER 3

Products of posets with long chains

1. Introduction

This chapter is joint work with Hunter Spink and Marius Tiba.

A finite graded poset (P,≤) is a finite poset equipped with a rank function

rk : P → N ∪ {0} such that the rank of every minimal element is 0, and if y

covers x, i.e. x < y and if x ≤ z ≤ y then z = x or z = y, denoted by x ≺ y,

then rk(y) = rk(x) + 1. The rank of P , denoted by rk(P ), is the maximal value

of rk on P . A graded poset P is said to be rank-symmetric if the number of

elements of rank r is the same as the number of elements of rank rk(P )− r. If

P has a unique maximal/minimal element, then we will denote them by minP

and maxP .

A symmetric chain in P is a chain which for some r consists of exactly one

element of ranks r, r + 1, . . . , rk(P )− r. A symmetric chain decomposition of

P is a partition of P into symmetric chains. Let m be the m-element chain

poset 0→ 1→ . . .→ m− 1.

The first attempt to study multiple symmetric chain decompositions simulta-

neously on a given poset occurred perhaps in 1979 when Shearer and Kleitman

[35] found the minimum probability that two randomly chosen elements contain

each other in Qn for an arbitrary probability distribution. To make their proof

work, they needed two of what they called “orthogonal chain decompositions”

of Qn, which are simply two decompositions of the n-dimensional hypercube Qn

into
(

n
bn/2c

)
chains so that any chain in one decomposition intersects any other

chain in the other decomposition in at most one element. Their construction

proceeds by slightly modifying on Qn two “almost orthogonal symmetric chain
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decompositions” — two symmetric chain decompositions which satisfy the

orthogonal intersection condition except for the maximal chain in both decom-

positions, which must intersect in precisely their top and bottom elements.

Since Shearer and Kleitman’s paper in 1979 where they further conjectured

that there are bn/2c + 1 orthogonal decompositions of Qn, no progress has

been made on the conjecture until Spink [37]. In [37], it was shown that three

orthogonal decompositions can be constructed for all sufficiently high dimen-

sional hypercubes, and additionally they arise from three almost orthogonal

symmetric chain decompositions.

The strategy pursued in [37] was as follows. Suppose that for 1 ≤ j ≤ l,

we have almost orthogonal symmetric chain decompositions F ji of Qni
for i =

1, 2, . . . , r. Then to create l almost orthogonal symmetric chain decompositions

in Qn1+...+nr , we aim to give symmetric chain decompositions of the cuboids in∏
iF

j
i in such a way that the chains from cuboids in

∏
iF

j
i and chains from

cuboids in
∏

iF
j′

i intersect in at most one element when j 6= j′ (except of

course for the two maximal chains, which we require to intersect in just their

top and bottom elements).

To put the questions addressed in this chapter in the proper context, we

consider the most difficult case from [37]. Suppose l = k+1 and take the product

of a 2-element chain from each Fi for 1 ≤ i ≤ k with the maximal chain in Fk+1.

Let n be the size of a maximal chain in the last hypercube. We then have two

cuboids of the form P (k, n) = 2× 2× . . .× 2︸ ︷︷ ︸
k

×n, with the property that their

intersection is either empty, or is {x} × {min(Qnk+1
),max(Qnk+1

)}, where x is

some element of Qn1 × . . .×Qnk
. To avoid the situation of having two chains

intersect in at least two elements, it suffices to decompose P (k, n) such that

no subchain of a chain has the form (a1, . . . , ak, 0) ≺ . . . ≺ (a1, . . . , ak, n− 1).

In P (k, n), we call a symmetric chain containing such a subchain taut. More

generally, given a finite graded poset P , we say a symmetric chain in P × n is

taut if it contains for some p ∈ P a subchain of the form p× 0 ≺ p× 1 ≺ . . . ≺

p× (n− 1).
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From this, the most natural question that arises is whether there is a

symmetric chain decomposition of P (k, n) without a taut chain. One of the

main results of this chapter, Theorem 2.1, completely answers this question.

The answer is very surprising. For the family of posets P (k, n) with k ≤ 4,

i.e. for the posets 2×n, 2×2×n, 2×2×2×n, and 2×2×2×2×n, every

symmetric chain decomposition has a taut chain. For k ≥ 5 and n ≥ 3 however,

we will explicitly construct in Section 4 decompositions with no taut chains

by boot-strapping decompositions of P (5, 3), P (5, 4) and P (5, 5) using more

general results about finite graded posets we prove in the remaining sections.

These decompositions turn out to be very hard to find, as they are completely

ad hoc, and finding them was the biggest challenge in proving the above main

result.

One of the general bootstrapping results we prove in Theorem 2.2 is that if

P is a finite graded poset with rank function rk, then for m,n ≥ rk(P ) + 1, the

symmetric chain decompositions of the posets P ×m and P × n are in natural

bijection, and furthermore, this bijection preserves tautness of chains.

Also, if we additionally stipulate that P has a unique maximal/minimal

element, then there is a canonical rk(P ) + 1 to 1 surjection from symmetric

chain decompositions of P × rk(P)+1 to symmetric chain decompositions of

P × rk(P) which send taut chains to taut chains. Under a mild additional

hypothesis, if a symmetric chain decomposition of P × (rk(P)+1) with no taut

chains exists, then there exists a symmetric chain decomposition of P × rk(P)

with no taut chains.

All posets in this chapter are finite graded posets; P will always refer to a

finite graded poset.

This chapter is divided into four sections. In Section 2, we state our

main results. In Section 3, we prove the main results pertaining to general

finite graded posets. In Section 4, we explicitly construct symmetric chain

decompositions with no taut chains for P (3, 5), P (4, 5), and P (5, 5). By
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previous results, we complete the proof of Theorem 2.1 on which P (k, n) have

symmetric chain decompositions without taut chains.

2. Main Results

The central result of this chapter is Theorem 2.1, proved in Section 4.

Theorem 2.1. There exists a symmetric chain decomposition of P (k, n)

with no taut chain if and only if k ≥ 5 and n ≥ 3.

Importantly, for a fixed number of 2’s, making n very large does not aid us

in constructing decompositions with no taut chains.

Most of our considerations generalize under mild conditions to arbitrary

posets P in place of Qk, which we consider in Section 3. In particular, we

prove the following two theorems which we later apply to Qk in the proof of

Theorem 2.1. These theorems would allow one to answer the analogous question

for P × n in a similar way, reducing the problem to a finite computation.

Theorem 2.2. Let P be a rank-symmetric poset P , and let m,n ≥ rk(P ) +

1. Then there is a canonical bijection between the set of symmetric chain

decompositions of P ×m and of P × n which bijects decompositions with taut

chains.

Theorem 2.3. Let P be a rank-symmetric poset with a unique maximum

and minimum element. Then there is a (rk(P ) + 1) to 1 surjection from

the set of symmetric chain decompositions of P × (rk(P)+1) to the set of

symmetric chain decompositions of P × rk(P) such that the pre-image of a

decomposition without a taut chain contains only decompositions without taut

chains. Furthermore, if P additionally has at least two elements of rank rk(P )−1

connected to the maximal element of P , then P × rk(P) has a decomposition

without taut chains if and only if this is true for P × (rk(P)+1).

Remark. The hypothesis on the elements of rank rk(P )−1 in Theorem 2.3

is needed for example when P = 3.
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Figure 1. Pictorial Representation of P × n in the case of Q4 × 6

3. Proofs of general results

In this section we prove the main results, postponing the completion of the

proof of Theorem 2.1 until Section 4.

Definition 3.1. In the poset P × n, we define a packet to be the collection

of elements of a given rank and n-coordinate. The rank of a packet Λ, denoted

rk(Λ), is the common rank of elements of Λ. We also define [p, r] := (p, r −

rk(p)) ∈ P × n whenever rk(p) ≤ r ≤ rk(p) + n (so [p, r] is the unique element

of P × n with P -coordinate p and rank r).

Consider the map from P × n → Z2 given by (p, r) 7→ (rk(p), rk(p) + r).

Note that rk(p) + r is just the rank of (p, r) in P × n, so [p, r] gets sent to

(rk(p), r). Under this map, the elements of P × n are identified into their

packets. If we label each point in the image of this map with the number of

points in the corresponding packet, we call this the pictorial representation of

P × n. Figure 1 depicts the pictorial representation of Q4 × 6 — we use the

pictorial representation extensively for many of our proofs.

In the pictorial representation, the row y = k contains all elements of rank

k in P × n, the column x = l contains all elements with P -coordinate of rank

l, and the diagonal y = x+ r contains all elements of n-coordinate r. A chain

which skips no ranks connects a sequence of packets, with each packet following

the previous one either vertically up one packet (which is uniquely determined
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in P ×n as increasing the n-coordinate by 1), or diagonally up-right one packet

(which corresponds to moving up in the P -coordinate).

Lemma 3.2. If P × n has a decomposition with no taut chain, and Q

is a poset with a symmetric chain decomposition, then (P × Q) × n has a

decomposition with no taut chains.

Proof. We take the product of each non-taut chain in P × n with each

chain in the symmetric chain decomposition of Q and decompose each resulting

rectangle into symmetric chains arbitrarily. Then the resulting chains are

symmetric, non-taut, and give a symmetric chain decomposition of (P ×Q)×n

as desired. �

Corollary 3.3. If P (k, n) has a symmetric chain decomposition with no

taut chain, then so does P (k′, n) for any k′ ≥ k.

Lemma 3.4. If P × n has a symmetric chain decomposition, then P must

be rank-symmetric.

If furthermore P × n has a symmetric chain decomposition into non-taut

chains, then

• if rk(P ) is even, the size of the middle rank of P does not exceed the

sum of all the sizes of lower ranks, and

• if rk(P ) is odd, the common size of the middle ranks of P does not

exceed twice the sum of the sizes of all ranks strictly before the middle

ranks.

Proof. If P × n has a symmetric chain decomposition, then by the rank-

symmetry of P × n, we find that P is rank-symmetric (by arguing inductively

from the smallest rank up).

Suppose rk(P ) is even and we have a decomposition of P × n into non-

taut chains. Note that rk(P × n) = rk(P ) + rk(n) = rk(P ) + n − 1. Let

Λ be the packet of elements (p, n − 1) ∈ P × n with rk(p) = rk(P )/2. As

rk(Λ) = rk(P )/2 + n − 1, a symmetric chain which contains an element
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(p, n − 1) of Λ must also contain an element of the form [qp, rk(P )/2]. We

have rk(qp) < rk(P )/2, as if rk(qp) = rk(P )/2, then the n-coordinate of this

element is 0 and p = qp, so the symmetric chain is taut. Hence, as the qp’s are

distinct, if the number of elements p of middle rank in P exceeds the number of

elements of lower rank, then there are not enough elements qp to accommodate

the chains passing through elements of Λ.

Finally, if rk(P ) is odd, we apply the above argument to the even-ranked

poset P × 2 (using Lemma 3.2 with Q = 2). �

Corollary 3.5. If k ≤ 4 or n ≤ 2, then every symmetric chain decompo-

sition of P (k, n) contains a taut chain.

Proof. For n = 1 the result is trivial, and for n = 2 the maximal chain

is always taut. For k = 1, 2, the result is trivial by inspection. For k = 3, 4,

Lemma 3.4 applies. �

Note that for P = Qk with k ≥ 5, Lemma 3.4 does not apply. Now we are

ready to prove Theorem 2.2 and Theorem 2.3.

Proof of Theorem 2.2. In the pictorial representation, when n ≥ rk(P )+

1, we have n − rk(P ) consecutive rows in the middle at y = rk(P ), rk(P ) +

1, . . . , n − 1, each consisting of rk(P ) + 1 packets at points (x, y) with x =

0, 1, . . . , rk(P ). Furthermore, in these consecutive rows, for a fixed x, the

number of elements in the packets at (x, rk(P )), . . . , (x, n − 1) are the same.

Each of these rows corresponds to a rank in P × n, and hence these ranks

have the same number of elements, so a symmetric chain decomposition when

restricted to any pair of adjacent rows must biject the elements between them.

As the chains can only move vertically up and diagonally up-right, and

any two of these rows have identical packet sizes, this bijection is clearly only

possible by having all of the chains move vertically up across this block of rows.

Now if m ≥ rk(P ) + 1 we can modify a symmetric chain decomposition

for P × n to create one for P × m as follows. Write each chain C in the
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decomposition of P × n as the disjoint union of chains C1 ∪ C2 ∪ C3, where

C2 is the subchain of elements in this middle block of rows, of the form

[p, rk(P )] ≺ [p, rk(P ) + 1] ≺ . . . ≺ [p, n− 1], C1 is the subchain of elements of

lower rank than those of C2, and C3 is the subchain of elements of higher rank

than those of C2. We modify C to become a chain in P ×m by replacing C2

with [p, rk(P )] ≺ [p, rk(P ) + 1] ≺ . . . ≺ [p,m− 1], and shifting C3 by adding

m− n to the last coordinate of each element in C3.

Finally, it is easy to see that this process preserves tautness of chains

between P × n and P ×m. �

Proof of Theorem 2.3. In the pictorial representation of P×(rk(P)+1),

call M the middle row with packets at (0, rk(P )), . . . (rk(P ), rk(P )), M− the row

right below the middle row with packets at (0, rk(P )−1), . . . (rk(P )−1, rk(P )−

1), andM+ the row right above with packets at (1, rk(P )+1), . . . , (rk(P ), rk(P )+

1). From the locations of the packets, the number of elements in the packets in

M is 1 more than that in M− and that in M+, as P has a unique maximum

and minimum element. Hence, there is a unique chain of length 1 in M in some

packet Λ, and the remaining elements in M biject with those in M− and in M+.

By working from left to right in M , we get the numbers of chains connecting

pairs of packets from M− to M are all completely determined by Λ: all packets

in M which are to the right of Λ receive precisely one chain diagonally from

M−, and all other chains between M− and M are vertical. Similarly, we get

all packets in M which are to the left of Λ send one chain diagonally to M+,

and all other chains between M and M+ are vertical.

Hence regardless of where Λ is, every element in M− is connected to an

element in M+ whose P -coordinate has rank at most 1 higher. We can thus

modify a symmetric chain decomposition of P×(rk(P)+1) to one for P×rk(P)

as follows. Ignore the chain of length 1, and for every other chain, decompose

it as D− ∪ D ∪ D+ with D containing the element in M , D− containing all

elements of lower rank in the chain than those of D, and D+ containing all

elements of higher rank in the chain than those of D. To construct the chain in
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P × rk(P), we remove D, and decrease the second coordinate of all elements

of D+ by 1.

It is easy to check if a chain was taut, then it remains taut, and all newly

constructed chains are still symmetric chains in P × rk(P).

We now verify that the map above from the set of symmetric chain decom-

positions of P × (rk(P)+1) to the set of symmetric chain decompositions of

P × (rk(P)) is a rk(P ) + 1 to 1 surjection. Suppose we have a symmetric chain

decomposition S of P × rk(P), viewed as a directed graph via ≺. Denote by

N− and N+ the two middle rows in the pictorial representation of P × rk(P).

Consider the directed graph G (with loops) on P defined by taking the restric-

tion of S to N− ∪N+, and projecting this induced directed subgraph onto the

P -coordinate. As S induces a bijection between N− and N+, all vertices in G

except min and max have in-degree and out-degree 1. Also, min has out-degree

1 and in-degree 0, while max has in-degree 1 and out-degree 0. Every directed

edge in G is either a loop, or increases rank by 1 in P . From this observation,

we can trivially deduce that G consists of one directed maximal chain (from

minP to maxP ) and loops on the remaining vertices.

We show now that there exists a canonical equivalence between symmet-

ric chain decompositions S ′ of P × (rk(P)+1) that are mapped to S, and

matchings f between the edges of G and their endpoints.

Set m−,m,m+, n−, and n+ to be the ranks of M−,M,M+, N−, and N+

respectively (n+ − 1 = n− = m− = m− 1 = m+ − 2).

Suppose first that we have such a matching f and construct S ′ as follows.

Identify the restriction of S ′ up to rank m− with the restriction of S up to

rank n−. Similarly, identify the restriction of S ′ from rank m+ onwards with

the restriction of S from rank n+ onwards. All that remains now is to identify

the 1-element chain, and correctly join up the ends of the chains in M− with

the starts of the chains in M+. Consider a directed edge e from p to q in G,

corresponding to [p, n−] ≺ [q, n+] from N− to N+ in P×rk(P). Then we create

the chain [p,m−] ≺ [f(e),m] ≺ [q,m+] from M− to M+ in P × (rk(P)+1).
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Finally, there is a unique vertex v in G which no edge matches to. We create

the 1-element chain [v,m] in S ′. All of these chains do not intersect, as f is an

injection, and f misses v. Also, all chains in S ′ are symmetric.

Conversely, suppose we have a symmetric chain decomposition S ′ of P ×

(rk(P)+1) which maps to S, and create the matching between the edges of

G and their endpoints as follows. Given a directed edge e from p to q in G

corresponding to [p, n−] ≺ [q, n+] in P × rk(P), consider the chain in S ′ which

connects [p,m−] to [q,m+] in P × (rk(P)+1). We define f(e) so that [f(e),m]

is the intermediate point on this chain. Clearly this is a matching, as the chains

between M− and M+ are disjoint, and rk(q) is at most 1 higher than rk(p) so

f(e) = p or q.

These two maps are inverses of each other, proving the equivalence. As there

are rk(P ) + 1 matchings on G (coming from the rk(P ) + 1 possible matchings

on the edges of the long chain in G), the conclusion follows.

Finally, suppose we have a decomposition of P × (rk(P)+1) with no

taut chain, and P has at least 2 elements of rank rk(P ) − 1 connected to

maxP . A taut chain in P × rk(P) is created in exactly the following cases.

Either the maximal chain in P × (rk(P)+1) has a subchain of the form

(minP , 0) ≺ (minP , 1) ≺ . . . ≺ (minP , rk(P ) − 1), or a subchain of the form

(maxP , 1) ≺ (maxP , 2) ≺ . . . ≺ (maxP , rk(P )). Disconnect (minP , 0) and

(maxP , rk(P )) from the maximal chain. Connect (maxP , rk(P )) to an adjacent

element with second coordinate also rk(P ) which does not belong to the chain

containing (minP , rk(P )− 1) (this is possible as there are at least 2 choices by

the hypothesis on P ), and add a connection from (minP , 0) to the chain which

(maxP , rk(P )) now belongs to. This new configuration of symmetric chains now

avoids the two cases which would cause taut chains to appear in P × rk(P),

without creating any taut chains in P × rk(P)+1. This finishes the proof.

�
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1 110000 111000 111100 111110
2 011000 011100 011110 011111
3 001100 001110 101110 101111
4 000110 100110 110110 110111
5 100010 110010 111010 111011
6 000000 100000 101000 101001 111001 111101 111111 111112
7 010000 010100 010101 011101 011102 011112
8 001000 001010 001011 001111 001112 101112
9 000100 100100 100101 100111 100112 110111
10 000010 010010 010011 110011 110012 111012
11 000001 100001 110001 110002 110102 111102
12 010001 011001 011002 011012
13 001001 001101 001102 101102
14 000101 000111 000112 010112
15 000011 100011 100012 101012
16 000002 100002 101002 111002
17 010002 010102
18 001002 001012
19 000102 100102
20 000012 010012
21 110100 110101
22 011010 011011
23 101100 101101
24 010110 010111
25 101010 101011

Table 1. Symmetric chain decomposition of P (5, 3) with no
taut chains

4. Proof of Theorem 2.1

By Corollary 3.5, we only have left to construct symmetric chain decompo-

sitions of P (k, n) for k ≥ 5, and n ≥ 3 with no taut chains. In the tables below,

we give decompositions with no taut chains for k = 5, n = 3, 4, 5. Theorem 2.3

then yields such a decomposition for k = 5, n = 6, and Theorem 2.2 then yields

such a decomposition for k = 5 and all n ≥ 3. Finally from this, Corollary 3.3

can then be used to get such decompositions for all k ≥ 5 and n ≥ 3.

In the tables below, the rows give the symmetric chains in Q5 × n, written

in coordinates. Aiding in the finding of the decompositions below were the

packet descriptions, and the natural Z/5Z action on the points of Q5 × n.
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1 000000 100000 101000 101100 101101 101102 111102 111103 111113
2 010000 010100 010110 010111 010112 011112 011113
3 001000 001010 101010 101011 101012 101112 101113
4 000100 100100 110100 110101 110102 110112 110113
5 000010 010010 011010 011011 011012 111012 111013
6 011000 011001 011002 011102 011103
7 001100 001101 001102 001112 001113
8 000110 000111 000112 100112 100113
9 100010 100011 100012 110012 110013
10 111000 111100 111110
11 011100 011110 011111
12 001110 101110 101111
13 100110 110110 110111
14 110010 111010 111011
15 000001 100001 101001 111001 111101 111111 111112
16 010001 010101 010102 010103 110103
17 001001 001011 001012 001013 011013
18 000101 100101 100102 100103 101103
19 000011 010011 010012 010013 010113
20 000002 100002 101002 101003 101013
21 010002 010003 011003
22 001002 001003 001103
23 000102 000103 000113
24 000012 000013 100013
25 000003 100003 110003
26 011101
27 001111
28 100111
29 110011

Table 2. Symmetric chain decomposition of P (5, 4) with no
taut chains

From Table 1, Table 2, and Table 3, the proof of Theorem 2.1 is complete.

As Theorem 2.1 completely solves the question for Qk × n, one direction

of further study would be to investigate other natural families of posets in a

similar way using Theorem 2.2 and Theorem 2.3.
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1 000001 000002 000003 000004 000014 100014 110014 110114
2 010001 010002 010003 010004 010014 010114
3 100001 100002 100003 100004 110004 111004
4 010000 110000 110001 110002 110003 110103 110104 111104
5 001001 001002 001003 001004 001104 101104
6 011001 011002 011003 011004
7 101001 101002 101003 101004
8 101000 111000 111001 111002 111003 111013
9 000101 000102 000103 000104 100104 100114
10 010101 010102 010103 010104
11 100100 100101 100102 100103 100113
12 000100 001100 001101 011101 011102 011103 011104 011114
13 101100 101101 101102 101103
14 110100 111100 111101 111102
15 000011 000012 000013 001013 001014 101014
16 100011 100012 100013 101013
17 110010 110011 110012 110013
18 000000 001000 001010 001011 001012 001013 001113 001114 101114 111114
19 000010 010010 010011 011011 011012 011013 011014 111014
20 011000 011010 111010 111011 111012 111013
21 000111 000112 000113 000114
22 010100 010110 010111 010112 010113 011113
23 000110 100110 110110 110111 110112 110113
24 011100 011110 011111 011112
25 001110 001111 101111 101112
26 100000 100010 101010 101110 111110 111111 111112 111113
27 110101 110102
28 100111 100112
29 101011 101012
30 010012 010013
31 001102 001103

Table 3. Symmetric chain decomposition of P (5, 5) with no
taut chains
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CHAPTER 4

Metastable States in the Ising Model

1. Introduction

This chapter is joint work with Hunter Spink and Marius Tiba.

The Ising model has received serious attention in the literature of statistical

mechanics, for example see Lee and Young [26], Glauber [16] and Kazakov [23].

Also see the recent work of Addario-Berry [1]. For a comprehensive description

of the model and closely related subjects, see the book of McCoy and Wu [29].

In this chapter, following the Ising model, we consider a collection V of

interacting particles which are arranged in an underlying dependency graph G

with vertex set V . Each particle v ∈ V has a magnetic spin σv ∈ {±1} and it

can interact only with its neighbours in G according to certain rules.

In [36], Spink established a conjecture attributed to Holzman (see [32]),

that any quadratic function on the cube Qn has at most
(

n
bn/2c

)
local maxima.

This problem classically corresponds to the Sherrington-Kirkpartick model

from mathematical physics, the particular case of the Ising model for which

the dependency graph G is complete, often used as a toy example in the theory

of spin glasses due to its simpler properties. The aim of this chapter is to

generalise the work done in [36], thus capturing what we believe to be the

combinatorial essence of the Ising model.

We start by describing our general model, while pointing out how it relates

to the Ising model. In the general model, we also consider a collection V of

interacting particles which are arranged in an underlying dependency graph G

with vertex set V and we assume that each particle v has a spin σv ∈ {±1}. A

particle can be either stable or unstable and the system is said to be stable if

each of the individual particles is stable. To accurately capture the behaviour
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of the Ising model, we further assume that for each neighbour w of v in G

we have set either a ferromagnetic (positive) or antiferromagnetic (negative)

correlation between their spins, given by cvw ∈ {±1}. Physical considerations

force cvw = cwv, so we also impose this restriction in our model. The stability

of v is governed by the following axioms.

(1) Given all cvw’s, the stability of v only depends on σv and σw for

w ∈ Γ(v).

(2) For any given state of Γ(v), there is at most one choice of σv which

makes v stable.

(3) If v is stable and w ∈ Γ(v), then v remains stable if flipping σw

increases cvwσvσw.

(4) If v is unstable and w ∈ Γ(v), then v remains unstable if flipping σw

decreases cvwσvσw.

We now point out how our general model is designed to address an extremal

problem concerning the maximal number of metastable states in the Ising

model, under various restrictions. To do so, we recall from Chapter 1 that the

energy of a given a spin configuration (or state) (σv)v∈V ∈ {±1}V in the Ising

model is given by the Hamiltonian H = −
∑
Jijσiσj −

∑
hiσi, where the Jij

are typically Gaussian random variables with Jij = 0 if ij is not an edge of

G, and hi are constants corresponding to an external magnetic field. When

the Hamiltonian is locally maximized, in the sense that for any v, negating

σv strictly decreases the Hamiltonian, the system is called metastable or that

the state is metastable. We note that if we take the correlations cvw in our

general model to be the opposite sign of Jvw in the Ising model with magnetic

field, then the metastable states in the Ising model satisfy the above stability

axioms for each v ∈ V . When we refer to the Ising model, we do so from

the perspective of our extremal problem: given a dependency graph G, the

interactions Jij and the external magnetic field hi, we seek the maximal number

of metastable states. Being consistent with the standard nomenclature from
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physics, we also call the instance of the Ising model for which G is a complete

graph the Sherrington-Kirkpatrick model.

We also note a slight asymmetry between stability and non-stability, arising

from degenerate situations where for example the Hamiltonian of the Ising

model at a given state is not influenced by flipping σv — this subtlety never

arises in our maximisation problems, and whenever convenient, we can safely

assume there is always exactly one choice of σv in the second axiom, in which

case the third and fourth axioms are identical. In other words, we say that if

the Hamiltonian is not changed by flipping σv then v is unstable.

To translate our model to the language of extremal set theory, we identify

our vertex set V with [n] = {1, 2, . . . , n}, and our states with subsets of [n] via

(σv)
n
v=1 7→ {v ∈ [n] | σv = 1}. The dependency graph G is then a graph on [n],

and the correlations cvw can be thought of as a two-colouring of the edges of

G by {±1}. For any v we let Γ′(v) ⊆ Γ(v) be the set of neighbours of v with

cvw = 1. We further let Fv ⊆ P(n) be all the states which stabilize v, for every

v so then the set of all stable states is given by F = ∩v∈[n]Fv.

Our stability axiomatization for v implies that for A,B ∈ Fv we cannot

have v ∈ A \B and that

(A ∩ Γ(v))∆Γ′(v) ⊇ (B ∩ Γ(v))∆Γ′(v).

As we note below, we will refer to this as the stability condition at v. Indeed, if

v ∈ A, then if the spins in Γ(v) makes v stable, then v cannot destabilize if we

flip some of σw with w ∈ Γ(v) in places where A ∩ Γ(v) disagrees with Γ′(v)

(which we could do to destabilize A to B ∪{v} restricted at v ∪Γ(v), obtaining

a contradiction). Conversely, if we only impose this condition then all but the

first stability axiom for v necessarily hold. We can make the first condition

hold by adding into Fv all states with the same spins in v ∪ Γ(v) as a state in

Fv, and since we are only concerned with the maximal size of F , we can (and

do) ignore this issue, and just consider the combinatorial condition above on

each Fv.
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To that end, we call the above condition on Fv the stability condition at

v. We say that a collection E ⊆ P(n) is admissible for a given G and cvw

coloring if E ⊆
⋂n
v=1Fv. We are investigating the maximal cardinality of E

over all admissible collections. It is in this form that we study the extremal

properties of the general model and we bound from above the number of stable

states. As the general model is potentially less restrictive than the models

that it generalizes, including the Ising model, any upper bound on the size of

an admissible collection in the general model implies upper bounds for these

other models. We emphasise that in the general model we only consider the

combinatorial stability condition, as it turns out that we do not lose much with

this generalisation, when considering the extremal problem for the Ising model.

Finally, of particular combinatorial interest, we will also prove a broad gen-

eralization of the LYMB inequality of Yamanoto [43], Meshalkin [30], Bollobás

[7] and Lubell [28] for set systems, which arises naturally when studying the

general model. The LYMB inequality states that if A ⊆ P(n) is an antichain,

then
∑

r
|A∩[n](r)|

(n
r)

≤ 1 and it is the particular case of our Theorem 3.2 for G

being the graph with one vertex.

This chapter is divided into six sections. In Section 2 we make some

preliminary observations and give a few definitions; in Section 3 we state

our main results; in Section 4 we prove our results concerning either purely

ferromagnetic or purely antiferromagnetic interactions; in Section 5 we prove

our remaining results on the Sherrington-Kirkpatrick model (i.e. complete

dependency graphs) and on bipartite dependency graphs; in Section 6 we

discuss directions of further research.

2. Preliminary Observations and Definitions

In this section we continue the discussion started in the introduction by

presenting a list of preliminary observations that will be used throughout the

chapter, which also build on our intuition about the general model. Finally, we

recall a few classical definitions needed to state our main results.

106



1. If for each v ∈ [n], Fv satisfies the stability condition, then the stability

conditions for each vertex are still satisfied if we replace Fv with F = ∩v∈[n]Fv
for each v.

This allows us to consider, instead of n families of sets Fv each with a

stability condition, the family F with a stability condition for each v ∈ [n].

2. If G is the complete graph on [n], and all cvw = −1, then a collection of

states E is admissible if and only if it is an antichain in P(n).

Indeed, let us carefully consider the stability condition associated to v ∈ [n].

As all cvw = −1, the stability condition is that it is not possible that for

A,B ∈ Fv, we have v ∈ A \ B, and A ⊇ B. For distinct A,B ∈ E , the

conditions together imply that we cannot have A ⊇ B. Indeed, the stability

condition fails for any v ∈ A \B. Conversely, for a stability condition to fail

for distinct A,B ∈ E , we must have A and B comparable.

3. For a given graph G on [n] and a subset A ⊆ [n], there is a canonical

size preserving bijection between collections of stable states for a given {±1}-

colouring cvw and stable states for the {±1}-colouring c̃vw, where c̃vw = cvw if

either both or none of v, w lie in A, and c̃vw = −cvw otherwise.

This bijection is given by taking each state X, and mapping it to the

symmetric set difference X∆A, corresponding to the hypercube automorphism

of flipping each of the states in A.

4. Replacing G with a (coloured) subgraph cannot increase the maximum

number of stable states.

This is clear, as the stability conditions become stronger as some forbidden

inclusions of sets in P(n) become forbidden inclusions of sets restricted to a

proper subset of [n]. Hence, for example, a bound for G = Kn is an upper

bound for any G.

At the end of this section, we set the following notation for the rest of the

chapter. We let A(r) denote the set of all r-element subsets of A. Given a graph

G, α(G) is the independence number of G. Given a digraph G, α̃(G) is the
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largest cardinality of a set of vertices V ⊆ G such that for all v, w ∈ V we do

not have both v → w and w → v.

Given a graph G and an integer n, a Sperner (G, n)-family {Fx} is a

collection of antichains in P(n) indexed by vertices x ∈ G such that if xy is an

edge of G, then the elements of Fx and Fy are incomparable.

3. Our Results

We start with the following extremal result.

Theorem 3.1. Given a Sperner (G, n)-family {Fx},
∑

x |Fx| ≤ α(G)
(
n
n/2

)
,

and the upper bound is tight.

Theorem 3.1 comes as a consequence of the following stronger result, as(
n
n/2

)
is the largest binomial coefficient amongst

(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
.

Theorem 3.2. Given a Sperner (G, n)-family {Fx},
∑

x

∑
r
|Fx∩[n](r)|

(n
r)

≤

α(G).

This is a generalisation of the well-known LYMB inequality. We use these

theorems to obtain the following result on solely antiferromagnetic interactions.

Corollary 3.3. Given a graph G on [n] and a collection of vertices A ⊂ [n],

suppose that cvw = −1 whenever vw is an edge of G. Consider the digraph ΛG,A

with vertex set P(V (G)− A) given by joining B to C if there exists i ∈ B \ C

such that Γ(i)∩ (C \B) = ∅. Then the size of an admissible collection of states

for G is bounded above by α̃(ΛG,A)
( |A|
b|A|/2c

)
.

When G is the complement of a k-clique, we show that the lower bound

given by the above theorem when A is the set of vertices not in the k-clique is

in fact extremal. Our proof is reminiscent of Sak’s proof [34] of the maximal

number of elements in a set system with no k-chain.

Theorem 3.4. Let G be the complement of a k-clique inside Kn and let us

assume that all cvw = −1. Then the number of stable states is at most the sum
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of the middle k + 1 binomial coefficients
(
n−k
r

)
, if all exist, or 2n−k otherwise.

Furthermore, when n is even, there exists an instance of the Ising model with

external magnetic field which attains this bound with all cvw = −1, and an

instance without an external magnetic field if we do not require all cvw = −1.

When all of the interactions are ferromagnetic, we derive the following as a

consequence of of results of Leader and Long [25] on set systems with forbidden

differences of size 1.

Theorem 3.5. Let G be a complete graph, and let us assume that all cvw = 1.

Then the maximal size of an admissible collection is at most (2 + o(1)) 1
n

(
n
bn/2c

)
,

and there is an admissible collection of size within a factor of 2 of this upper

bound.

Next, we study the Sherrington-Kirkpatrick model, which is the particular

case of the Ising model for which G is a complete graph, with or without

external magnetic fields. The first part of Theorem 3.6 was shown by Spink in

[36], and our contribution is to solve the analogous problem in the absence of a

magnetic field, which imposes an extra combinatorial condition (symmetry) on

our general model.

Theorem 3.6. In the Sherrington-Kirkpatrick model, the maximal number

of metastable states is
(

n
bn/2c

)
in the presence of an external magnetic field. In

the absence of such a field, the maximum is still
(
n
n/2

)
for n even, but decreases

to 2
(

n−1
(n−3)/2

)
when n is odd.

Next, we derive the following via an application of König’s Theorem.

Theorem 3.7. Let G be a bipartite graph. Then we have an upper bound

of 2n−α(G) on the number of metastable states, and we can attain equality in

the Ising model with no external magnetic field with any choice of signs for the

Jij’s.
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The following immediate corollary of Theorem 3.7 pertains to the case of

most interest to lattice models. It has been noted previously for subsets of

lattices where there is a clear perfect matching on the edges, though the general

result seems to have escaped notice.

Corollary 3.8. Given a graph G formed by an induced subgraph of Zd of

size n, we have a sharp upper bound of 2n−α(G) on the number of metastable

states in the general model and the Ising model with no external magnetic field

with any choice of signs for the Jij’s.

4. Ferromagnetic and Antiferromagnetic Spin Models

We begin with our proof of Theorem 3.2.

Proof of Theorem 3.2. We apply a compression argument, reducing

the problem to the case when all Fx contain only subsets of size bn/2c. The

result is then clear, as each element of size bn/2c can lie in at most α(G) of

the Fx.

Preserving the (G, n)-Sperner condition forces us to modify a naive com-

pression however. To that end, we show how to do upper compression first

for the layers below bn/2c, and lower compression for the layers above works

identically. Let us suppose that no Fx contains a subset of size strictly less

than r for some r < bn/2c.

Given an element S in the upper shadow of (
⋃
Fx) ∩ [n](r), let RS be the

set of vertices x ∈ G such that the upper shadow of Fx contains S, and let IS

be an independent set of G lying inside RS of largest size. Our compression

procedure will be to add S to all Fx with x ∈ IS for each such S, and then

remove all subsets of size r from all Fx.

Firstly, it is clear that this preserves the antichain condition within each

Fx. It is also clear that this preserves the incomparability condition in edges

corresponding to G, as in the union of the two Fx corresponding to an edge we

have performed a partial upper shadow.
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It remains to be seen that we have not decreased
∑

x

∑
r
|Fx∩[n](r)|

(n
r)

. Indeed,

we first note that (n − r)
∑

x |Fx ∩ [n](r)| counts the number of elements in

the upper shadows of all the Fx ∩ [n](r) with multiplicities. For each S in the

upper shadow, we claim (r + 1)|IS| is larger than the multiplicity of S in this

sum. Indeed, there are r + 1 elements in the lower shadow of S, and a given

T ∈ [n](r) in the lower shadow of S appears in at most |IS| of the Fx since the

x with T ∈ Fx forms an independent set in RS.

Thus,
∑

S
|IS |

( n
r+1)
≥
∑

x
|Fx∩[n](r)|

(n
r)

as desired. �

We now address Corollary 3.3.

Proof of Corollary 3.3. We identify P(n) with P(A)× P([n]− A).

Consider the digraph ΛG,A as defined in Corollary 3.3 and associate with

each vertex v ∈ P([n] − A) a family Fv ⊆ P(A) with the convention that

the admissible collections are given by
⋃
v{B ∪ v | B ∈ Fv}. Firstly, we

must have that each Fv is an antichain by Observation 2. Moreover, by the

definition of ΛG,A, whenever there is an oriented arrow from v ∈ P([n] − A)

to w ∈ P([n] − A), the stability condition forbids to have an element of Fw
as a subset of an element of Fv. Now the upper bound follows from a direct

application of Theorem 3.1. �

The proof of the upper bound in Theorem 3.4 which we give below is a nice

application of classical finite set system results. It would be interesting for us

to know how close to the upper bound we can actually get in the absence of an

external magnetic field (as the underlying dependency graph of our construction

does not have all of its interactions antiferromagnetic).

Proof of Theorem 3.4. Recall that we seek an upper bound when all

cvw = −1, and the dependency graph G is the complement of a k-clique.

Let B denote the set of vertices in the k-clique. Consider the poset map

P(n) ∼= 2[n]−B × 2B → 2[n]−B × [k + 1], where the final map is simply the

rank mapping. We will show that the images of two distinct stable states
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X, Y ∈ P(n) are mapped to incomparable elements of 2[n]−B × [k + 1]. This

yields the desired upper bound, as it is equal to the size of the largest antichain

in this poset.

Indeed, suppose that for two stable states X, Y , the image of X contains

the image of Y . Then |X ∩B| ≥ |Y ∩B| and X ∩ ([n]−B) ⊇ Y ∩ ([n]−B).

Suppose first that X ∩B 6= Y ∩B. Then there exists v ∈ B with v ∈ X \Y

by the inequality. But then X ∩ ([n]−B) ⊇ Y ∩ ([n]−B), directly contradicts

the stability condition at v.

Suppose instead that X ∩B = Y ∩B. Then X strictly contains Y . Taking

v ∈ X \ Y ⊆ [n] − B, we get that X ⊇ Y directly contradicts the stability

condition at v.

Hence, we get the desired upper bound.

For n even, our antiferromagnetic Ising model construction proceeds as

follows. We take Jij = −1 for all i, j with ij an edge of G, and on B (which we

can assume to be [k]), we let hi = 0 for i 6∈ B, and hi = k + 1− 2i for i ∈ B.

When there is no magnetic field and n is even, the following construction

yields the correct number of states, but fails to have all interactions antifer-

romagnetic. We let B = [k], and take Jij = −1 for all ij an edge of G except

those of the form ik, to which we assign Jik = k + 2− 2i. �

We now derive Theorem 3.5 using the results of Leader and Long [25].

Proof of Theorem 3.5. The conditions on admissibility are precisely

the same as saying that we do not have |A \ B| = 1 for any A,B ∈ F , and

maximizing a family F with this condition is precisely the problem addressed

in [25] with the conclusions as stated in Theorem 3.5.

Indeed, the admissibility condition says that we never have v ∈ A \B with

A \ {v} ⊆ B. �
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5. Sherrington-Kirkpatrick and Bipartite Dependencies

We start by proving Theorem 3.6.

Proof of Theorem 3.6. The upper bounds have been shown in [36] in

the cases that there is an external magnetic field (giving
(

n
bn/2c

)
), and if there

is at least one ferromagnetic (or independent by a continuity argument) edge

(giving 2
(

n−1
(n−3)/2

)
). The only remaining case is when all cvw = −1, and there

are no external magnetic fields. Since all cvw = −1, the stability conditions are

equivalent to saying that F is an antichain in P(n). The additional information

we get when there is no external magnetic field is that if a state A is stable

or unstable, then the same is true of the complement Ac. Indeed, this follows

from the fact that the Hamiltonian is invariant under negating all σv. Hence,

we have an antichain F with all elements distinct from F c. This is classically

known to bound from above the size of F in the case n is odd by 2
(

n−1
(n−3)/2

)
by

a local LYMB compression argument extremely similar to the proof of Theorem

4.2 (the additional input needed is that once one has compressed to the two

middle layers, the Erdős-Ko-Rado Theorem [14] that the maximal size of an

intersecting family in [n](r) is
(
n−1
r−1

)
for r ≤ n/2 implies the result).

To attain all of these bounds in the Sherrington-Kirkpatrick model, when

n is even we take Jij = −1 and hi = 0. When n is odd and we are allowed

an external magnetic field, we take Jij = −1 and hi = ε. When n is odd

and we have no external magnetic field, we take Jij = −1 if 2 ≤ i < j, and

J1j = 1 + ε. �

We now show the sharp upper bound Theorem 3.7 for bipartite dependency

graphs. The key observation is that there are trivial upper and lower bounds,

which by König’s Theorem are in fact equal.

Proof of Theorem 3.7. If we specify the spins on the complement of

an independent set, then by the first stability axiom, there is at most one choice
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of spins on the independent set to make the resulting system stable. Hence, we

have an upper bound on the number of stable states as 2n−α(G).

For the lower bound, we note that if we have a matching of size m in G,

then in the Ising model we can make all Jij non-zero on this matching and 0

outside the matching, then each edge of the matching will contribute a factor

of 2 to the number of stable states, giving 2m stable states. Letting m(G)

be the maximal size of a matching in G, we get a lower bound of 2m(G). As

α(G) +m(G) = n by König’s Theorem, the result follows. �

6. Further Directions of Research

It would be extremely interesting to extend the antiferromagnetic results to

the general model. We make the following bold conjecture.

Conjecture 6.1. The upper bound in Corollary 3.3 continues to hold even

without the assumption that all interactions are antiferromagnetic.

Of course, the most general open question about our model would be as

follows, though perhaps it is too ambitious as phrased.

Question 6.2. For each of the {±1}-coloured graphs on n vertices, what

is the maximal number of stable states?

It appears to us that triples of vertices which up to the automorphism

mentioned in Section 2 are pairwise ferromagnetic can only hinder the number

of strict local maxima. This was concretely noted in [36], that to get the

number of stable states to be within a (1− 1
n
) fraction of

(
n
n/2

)
, we require all

interactions to be strictly anti-ferromagnetic up to the automorphism mentioned

in Section 2. An interesting refinement of the previous question is as follows.

Question 6.3. What can we say about the maximal number of stable states

in the Sherrington-Kirkpatrick model as the number of triples with Ferromagnetic

interactions (up to automorphisms) increases?
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In the extreme case, we saw that when all interactions were ferromagnetic,

we had an upper bound on the size of an admissible family that was 2
n

of what

it was when we had all interactions anti-ferromagnetic.

Question 6.4. How many stable states can there be in the ferromagnetic

Ising model? Clearly there is a lower bound of 2bn/2c given by the construction

in Theorem 3.5. How close is this to optimal?

Finally, we can consider lattices other than Zd, in particular, ones whose

dependency graphs are not bipartite.

Question 6.5. What is the largest admissible collection when G corresponds

to the triangular lattice? What about other lattices?

We have the following conjecture regarding the triangular lattice.

Conjecture 6.6. For the triangular lattice, the maximal number of stable

states is 3n/3, given by partitioning the lattice into triangles.
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CHAPTER 5

Fast Bootstrap Percolation on the Grid

1. Introduction

This chapter is joint work with Scott Binski.

Although its origins are in physics, in the context of particle systems,

bootstrap percolation is one of the most studied instances of cellular automata

in combinatorics. Let G be a graph, whose vertices are referred to as sites.

Translated to the language of combinatorics, r-neighbour bootstrap percolation

on G can be regarded as the following infection process: we start with a set

S1 ⊆ V (G) whose elements we call initially infected sites (i.i.s.), leaving the

remaining sites initially healthy. Then, the healthy sites of G get infected

in rounds, provided they have at least r infected neighbours. Formally, for

t = 2, 3, . . ., as long as S ′t−1 =
⋃t−1
i=1 Si 6= V (G), define

St := {v ∈ V (G) | |Γ(v) ∩ S ′t−1| ≥ r} \ S ′t−1

to be the set of sites that get infected at time t. Further define the percolation

time k to be infinity if
⋃∞
i=1 Si 6= V (G) and otherwise define k to be the largest

positive integer such that Sk 6= ∅. In the later case, we say that S1 percolates.

Almost all results in the literature concern probabilistic bootstrap percola-

tion, for example see Aizenman and Lebowitz [4], Balogh, Bollobás, Duminil-

Copin and Morris [5], Cerf and Manzo [11], Gravner, Holroyd and Morris

[17], and Holroyd [20]. In the deterministic world, Benevides and Przykucki

addressed a question of Bollobás and studied the maximum percolation time

of the 2 neighbour bootstrap process on the n× n square grid, showing in [6]

that it is 13
18
n2 + O(n). In this chapter we address another related question
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Figure 1. The initial configuration that percolates in time
k = n− 1 for n ≡ 3 (mod 4), s1 = n+ 1

of Bollobás about the minimal percolation time of the 2 neighbour bootstrap

process on the n× n square grid, as a function of the number of i.i.s., |S1|.

For the rest of the chapter, unless stated otherwise, we only consider the 2

neighbour bootstrap process on the n× n grid model and sets of i.i.s. S1 that

percolate. For t ≥ 1, we define st := |St| to be the number of sites infected

precisely in round t and we emphasise that, according to our definition, St’s

are disjoint sets.

Our first result addresses the case when |S1| is small. It is well known that

the minimal size of a percolating set S1 is n, and in Theorem 1.1 we give the

exact minimum percolation time when s1 = n and s1 = n+ 1.

Theorem 1.1. In the 2-neighbour bootstrap percolation model on the square

grid n× n, the minimal percolation times k for s1 = n, n+ 1 are as follows:

(1) for s1 = n, we have k = n;

(2) for s1 = n + 1, we have k = n, except for the case n ≡ 3 (mod 4),

when k = n− 1 and there exists only one possible S1 that percolates in

time n− 1 (see Figure 1):

S1 = {(n+ 1

2
, 2i− 1) | 1 ≤ i ≤ n+ 1

2
} ∪ {(2i− 1,

n+ 1

2
) | 1 ≤ i ≤ n+ 1

2
}.
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We then move to the general case and provide a construction which es-

tablishes a general upper bound for the minimum number of i.i.s. needed to

percolate in time k. Thus, we improve the naive bound n + n(n−k)
k

obtained

by the natural construction of taking S1 to be the union of evenly spaced

diagonals.

Theorem 1.2. Let n, k be given, k < n. Then there exists a set S1 ⊆ n×n

of i.i.s. which percolates in time k of size:

• s1 = 3n− 2k, for n ≤ 2k;

• s1 ≤ n+ (n+k−2)(n+k+1)
2k−1 , for n > 2k.

Finally, we present a short argument which establishes a general lower

bound.

Theorem 1.3. The size of every set S1 of i.i.s. that percolates on the n×n

grid in time k satisfies:

• s1 ≥ n2

3
+ 2n

9
− 2

9
, for k = 2;

• s1 ≥ n2+(
√
4k−1−2)(n−1)
2k−1 , for k ≥ 3.

Although our bounds are close for k fixed and n large, we believe (especially

for k = n− o(1)) that the lower bound can be improved and that the actual

value is very close to our upper bound in Theorem 1.2.

This chapter is divided into five sections. In Section 2, Section 3, and

Section 4 we prove Theorem 1.1, Theorem 1.2, and Theorem 1.3, respectively.

In Section 5 we give our conclusions and discuss further directions of research.

2. Small initial configurations

In this section we give a combinatorial argument, establishing Theorem 1.1.

To this end, we introduce the “semiperimeter” function, which arises naturally

when establishing the fact that there are no percolating sets of sizes smaller

than n. For each t = 1, . . . , k we define ft to be twice the total number of
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Figure 2. Regions of the grid. The corners are marked with ‘C’,
the interior sites are marked ‘I’, the sites on the north boundary
are marked ‘N’, etc. The centre is coloured blue.

infected sites at time t minus the number of sets of adjacent infected sites:

ft := 2|
t⋃
i=1

Si| − |{{v1, v2} | v1, v2 ∈
t⋃
i=1

Si and v1 ∈ Γ[n]2(v2)}|.

Considering that for t < k, every site in St+1 has 2 or more neighbours

in
⋃t
i=1 Si, we immediately conclude that (ft)

k
t=1 is non-increasing. A trivial

calculation gives fk = 2n, hence f1 ≥ 2n which shows that s1 ≥ n. Hence, a

percolating set S1 has size at least n.

Before proving Theorem 1.1 we need to border some regions of the n×n grid,

n ≥ 7 (see Figure 2): a corner is any of the four points (1, 1), (1, n), (n, 1), (n, n);

the north boundary is the set of n − 2 points {(i, n) | 2 ≤ i ≤ n − 1} and

similarly we define the east, south and west boundary ; the boundary is the union

of the north, east, south and west boundary; the interior contains (n − 2)2

sites and is defined to be the entire grid, except the boundary and the corners;

for odd n the centre is the single site (n+1
2
, n+1

2
) and for even n the central sites

are the four sites (n
2
, n
2
), (n

2
+ 1, n

2
), (n

2
, n
2

+ 1), (n
2

+ 1, n
2

+ 1). Note that the

centre or central sites also belong to the interior. Moreover, for a point (i, j)

let its northern neighbour be the point (i, j + 1) if it belongs to the square grid

and similarly define its eastern, southern and western neighbour.

Let S1 be a percolating set and recall that the sets Si’s are disjoint, so

label each site v with the index l(v) = i of the set Si in which v belongs. A

(maximal) increasing path of length L is a path v1, . . . , vL in the grid such that
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l(v1) < l(v2) < . . . < l(vL) and vL has no neighbours of larger label. A truncated

increasing path allows vL to have neighbours of larger label. The reason for

introducing increasing paths is that the existence of an increasing path of

length L shows that k ≥ L. We construct long increasing paths dynamically,

by specifying certain rules that they have to follow in order to guarantee the

desired length. It is therefore natural in this context to define for a site v a

valid neighbour to be a neighbour w of v such that l(v) < l(w).

Proof of Theorem 1.1. We assume n ≥ 7, as for smaller values of n we

can check the result by hand.

(1). The set of sites on the main diagonal {(i, i) | 1 ≤ i ≤ n} which has

cardinality n and percolating time k = n gives an upper bound for the minimal

percolation time. Now take any set S1 with s1 = n and percolating time k; we

need to show that k ≥ n.

Consider the non-increasing sequence (ft)
k
t=1 defined above which has the

property, as always, that fk = 2n. As s1 = n, the maximum value of f1 is 2n

by definition. Therefore, we must have that f1 = 2n, which is attained iff no

two sites in S1 are neighbours; moreover 2n = f1 = f2 = . . . = fk = 2n, hence

every site in Si has exactly two neighbours in S1 ∪ S2 ∪ . . . ∪ Si−1 and no two

sites in Si are neighbours for i = 2, 3, . . . , k. Indeed, otherwise fi < fi−1.

This implies that every site v has at most two neighbours with labels

strictly smaller than l(v) and that there are no two neighbours v, w such that

l(v) = l(w). In particular, this means that every site in the interior has at

least 2 neighbours of larger label and every site on the boundary has at least

one neighbour of larger label; the corners may have both neighbours of smaller

label.

If n is odd we can guarantee the existence of an increasing path of length

at least n - and therefore prove k ≥ n - by taking v1 to be the centre and then

keep adding valid vertices to the increasing path while this is possible. By the
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above remarks, such a path can only end in a corner; the shortest path from

the centre to a corner has length n, so we are done.

There is a small technicality for n even that the distance from any of the

4 central sites to the closest corner is n− 1 instead of n. For brevity, in part

(2) of the theorem, we assume in general that n is odd and after proving the

result in this case we mention that for n even, when there are 4 central sites,

the result follows from a “max 4 argument”. A max 4 argument can be applied

in the following set-up:

• we can find a suitable increasing path of desired length starting in the

central site for n odd; and

• for n even we can provide the same argument starting in some central

site whose label is at least 2,

which yields the desired increasing path for n even. To illustrate how this

simple argument works, we will write it in below for the case which arises in

part (1).

If n is even, the 4 central squares cannot be all in S1 as S1 does not contain

adjacent sites. So let v1 be a central site with l(v1) ≥ 2. We construct an

increasing path as before starting at v1 which must have length at least n− 1

by the same argument. Considering that l(v1) ≥ 2, this again shows k ≥ n and

we are done.

(2). We have the upper bound k ≤ n from part (1). Except for the special case

S1 = {(n+ 1

2
, 2i− 1) | 1 ≤ i ≤ n+ 1

2
} ∪ {(2i− 1,

n+ 1

2
) | 1 ≤ i ≤ n+ 1

2
},

which is treated at the end, we need to show that if we take S1 not as above

with s1 = n+ 1 we have that k ≥ n.

We have f1 ≤ 2n + 2 and fk = 2n, but considering that f1 − fk ≤ 2 , we

can generalise the argument above to conclude that every site has at most two

neighbours of smaller label and that there are no two neighbours v, w such that

l(v) = l(w) with at most one of the following exceptions occurring:
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(1) there exist one or two pairs of sites (ν1, ν2) and (ν3, ν4) such that

l(ν1) = l(ν2), l(ν3) = l(ν4) with ν1, . . . , ν4 distinct;

(2) there exists a site ν with 3 neighbours of smaller label and there’s a

pair (ν1, ν2) of neighbours of equal label with ν, ν1, ν2 distinct;

(3) there exists one or two different sites ν1, ν2 which have 3 neighbours of

smaller label;

(4) there exists one site ν with two neighbours of equal label, or one

neighbour of equal label and three of smaller label or four neighbours

of smaller label, except for the case when n odd, ν is the centre and

has all 4 neighbours of smaller label;

(5) the special case when n is odd and the central site ν has all 4 neighbours

of smaller label.

This follows from the definition of fi by analysing all the possible ways in which

we can have fk ≥ f1 − 2. As in part (1), we are looking for long increasing

paths in each case.

Case (1). Assume that n is odd and that there are two pairs of sites (ν1, ν2)

and (ν3, ν4) such that l(ν1) = l(ν2), l(ν3) = l(ν4) and ν1, . . . , ν4 are all distinct.

It is clear how the argument presented below also deals with the much easier

case when only one such pair exists.

If all of νi’s are in the interior, it is true that every vertex in the interior

and on the boundary has at least one neighbour of larger label, so we are done

by the same argument as in (1).

Say that a pair of sites (ν, ν ′) with at least one site on the boundary belongs

to the north, east, south or west boundary if at least one of ν, ν ′ is on the north,

east, south or west boundary respectively. Clearly, any such pair belongs to

only one of the four boundary regions.

If at least one of the sites in the pair (ν1, ν2) is on the boundary and both

ν3 and ν4 are in the interior, the increasing path as defined in (1) may end

either in the corners or in any of ν1, ν2 which lie on the boundary. Hence, an
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increasing path constructed as before may have length L < n. However we can

construct an increasing path of length n starting in the central site as follows:

firstly, assume without loss of generality that (ν1, ν2) belongs to the north

boundary. Take v1 to be the centre and note that all vertices in the interior

except maybe ν3 and ν4 have at least 2 neighbours of larger label. Keep adding

valid vertices to the increasing path always ignoring northern valid neighbours,

except when the path passes through ν3 or ν4 and we may be forced to pick a

northern valid neighbour. As n ≥ 7, this increasing path hits the boundary for

the first time in the east, south or west boundary region, so when it ends in

the corners or in ν1, ν2 it has length L ≥ n and we are done.

If both pairs (ν1, ν2) and (ν3, ν4) have at least one vertex on a boundary,

we consider the following subcases:

i). The pairs (ν1, ν2) and (ν3, ν4) belong to the same boundary, say the

north boundary. In this case construct as before the increasing path by always

ignoring north neighbours while in the interior, which will force the path to hit

the boundary for the first time in the east, south or west boundary region and

we are done as before.

ii). The pair (ν1, ν2) belongs to the north boundary and the pair (ν3, ν4)

belongs to the south boundary. We claim that we can construct an increasing

path which hits the boundary for the first time either in the east or the west

boundary. Take the starting vertex of the path to be the centre and until the

increasing path hits the boundary for the first time, always pick an eastern

or western valid neighbour whenever available. If neither is valid, we must

still have 2 choices of continuing the path which have to be the northern and

southern neighbour. If this situation occurs at least once pick the northern

neighbour first and then in all subsequent occurrences alternate between the

southern and the northern neighbour to keep the path in the strip

{(i, n+ 1

2
) | 1 ≤ i ≤ n} ∪ {(i, n+ 3

2
) | 1 ≤ i ≤ n}.
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This guarantees that the path hits the boundary for the first time either in the

east or the west boundary and we are done as before.

Obviously, the same argument works when the pair (ν1, ν2) belongs to the

east boundary and the pair (ν3, ν4) belongs to the west boundary.

iii). The cases i) and ii) don’t occur, so without loss of generality the pair

(ν1, ν2) belongs to the north boundary and the pair (ν3, ν4) belongs to the

east boundary. In this case the idea is to avoid both northern and eastern

neighbours and if this is not possible it will give us enough information about

the board to construct an increasing path of the desired length.

Claim. Assume that a truncated increasing path P starts in the centre, never

hits the boundary and ends at any interior site with a valid southern or western

neighbour. Then there exists an increasing path containing P that reaches the

boundary for the first time in the southern boundary or the western boundary

and we are done as before.

Proof of Claim. Call south, west good directions and north, east bad

directions and recall that for every interior site v different from ν1, . . . ν4 we

have two choices of valid neighbours.

If a truncated increasing path that never hits the boundary reaches any

interior vertex v (including ν1, . . . ν4) which has a valid neighbour v′ in a good

direction, we can continue the path with v′ and we claim that starting with v′

we can always choose a valid neighbour in a good direction until the increasing

path hits the boundary. Indeed, by induction, assume that the path reaches an

interior site vi from vi−1 via a good direction, i.e. say without loss of generality

that vi is the southern neighbour of vi−1. If vi is not one of ν1, . . . ν4, there

are two choices of valid neighbours of vi, none of which is north, as vi−1 is the

northern neighbour of vi and l(vi−1) < l(vi); therefore, one of the choices is a

good direction.

If on the other hand vi is one of ν1, . . . ν4, it cannot be ν1 or ν2 because the

pair (ν1, ν2) belongs to the north boundary and vi−1, the northern neighbour
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of vi is an interior point. So assume vi = ν3, then our only choice of a valid

neighbour must be in a good direction, as the eastern neighbour of vi = ν3 is

ν4 and we reached vi from its northern neighbour vi−1, so we cannot have valid

neighbours in any of the bad directions.

Hence such an increasing path hits the boundary for the first time in the

southern or eastern boundary. This finishes the proof the claim. �

By the claim, it follows that we may assume that the valid neighbours of the

centre are its northern and eastern neighbours then their valid neighbours are

their northern and eastern neighbours and then inductively for every site in the

whole north-eastern interior of the board {(i, j) | n+1
2
≤ i, j ≤ n− 1} its valid

neighbours are its northern and eastern neighbours. In particular we remark

that the label of the centre is at least 2 and so we aim for an increasing path

of length n− 1. Moreover, this strong property also implies that the following

path of length n− 2, (n+1
2
, n+1

2
), (n+1

2
+ 1, n+1

2
), . . . , (n− 1, n+1

2
), (n− 1, n+1

2
+

1), . . . , (n− 1, n− 1), is a truncated increasing path. However, (n− 1, n− 1) is

in the interior so even if it is one of the ν ′is it cannot be a terminal vertex for

an increasing path, so we are done.

A max 4 argument is now used to establish the result when n is even. This

finishes Case (1).

Cases (2), (3). These two are both easier versions of Case (1); when one

or two pairs (ν, ν ′) of neighbours of equal label are replaced by one or two

sites ν1, ν2 with three neighbours of smaller label we can extend the previous

definition of “a pair belonging to (the north) boundary” also to “a vertex ν1

with three smaller neighbours belonging to (the north) boundary” and use the

exact path-avoiding techniques in Case (1). The simplification comes from

the fact that we replace one/two pairs which had two“special” vertices each by

only one/two special vertex which we aim to avoid.

Case (4). We assume that n is odd and there exists one site ν with two

neighbours of equal label, or one neighbour of equal label and three of smaller
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label or four neighbours of smaller label, except for the case when ν is the

centre and has all 4 neighbours of smaller label.

If ν is in the centre and has at least one neighbour of equal label, say ν ′ then

a (classical) increasing path starting at ν ′ has length at least n− 1. Moreover,

ν has at least two neighbours of smaller label, so 2 ≤ l(ν) = l(ν ′) and we are

done.

Assume now that ν has two neighbours of equal label, say ν1, ν2 - which by

our approach it turns out to be the most interesting case.

If ν has all neighbours in the interior, then we are done by constructing an

increasing path which never goes to ν whenever reaches one of its neighbours.

Indeed, as all neighbours are interior, this restriction still leaves one valid

neighbour except ν for all neighbours of ν.

If ν has one or two neighbours on the boundary, then without loss of

generality it belongs to the region {(i, n − 1) | 2 ≤ i ≤ n − 1} which we call

the north second boundary. An increasing path can only end in a corner, in

ν or in any of ν1, ν2 that lie on the boundary. Then we aim to construct the

same increasing path as in Case(1)(i) by always avoiding the direction north

while in the interior.

If the southern neighbour of the centre is valid, then we make it the second

vertex of our increasing path and while in the interior we never pick a valid

northern neighbour. We hit the boundary for the first time in the east, south or

west boundary region and this guarantees that our increasing path has length

at least n.

If the southern neighbour of the centre is not valid, then the label of the

centre is at least 2 and as before while in the interior we never pick a valid

northern neighbour. We hit the boundary for the first time in the east, south or

west boundary region and this guarantees that our increasing path has length

at least n− 1, so the final label is at least n.
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Figure 3. Determined labels 1

Moreover, we can now see that the argument above works just as well if we

replace neighbours of ν of equal label by neighbours of ν of smaller label. By

the max 4 argument, we can also deal with the case when n is even. The case

when n is even and one of the four central sites has all neighbours of smaller

label is also straightforward. This finishes the case.

Case (5). The only case left to consider is when n is odd and there exists

a site ν in the centre with all four neighbours smaller than it. By starting an

increasing path in any neighbour of the centre we can prove that the minimal

infection time is at least n− 1 in this case. To finish part (2) of the proof, we

show that if n ≡ 1 (mod 4) then the minimal infection time is n and if n ≡ 3

(mod 4) then the minimal infection time is n− 1 and the only set S1 of i.i.s.

which percolates in time n− 1 is the set

S1 = {(n+ 1

2
, 2i− 1) | 1 ≤ i ≤ n+ 1

2
} ∪ {(2i− 1,

n+ 1

2
) | 1 ≤ i ≤ n+ 1

2
}.

Remark. Assume that we have percolation in time n− 1 for some set of i.i.s.

S1, s1 = n+1, n odd. Then every site ν except the centre must satisfy property

P : n is at least the sum between the distance from ν to the closest corner added

to the label of ν. Indeed, if any ν doesn’t satisfy P we can start an increasing

path at ν which contradicts that k = n− 1; we only need to specify that for

the four neighbours of the centre, from the two choices of valid neighbours

we never choose the centre. Also recall that except the centre which has four

neighbours of smaller label we have that every site ν must satisfy property Q,
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Figure 4. Determined labels 2

i.e. ν has at most two neighbours of smaller label and no neighbours of equal

label. It turns out that this together with property P completely determines

the label of each site. For example consider the 5× 5 central region

{(i, j) | n− 3

2
≤ i, j,≤ n+ 5

2
}.

We start arguing from the centre. By P, all of the four neighbours of the

centre must have label 1 hence the centre must have label 2 - see Figure 3, left.

Next look at the site (n−1
2
, n−3

2
): by Q it cannot have label 1 or 2 and by P

it cannot have label greater than 4, so the site (n−1
2
, n−3

2
) must have label 3,

exactly as all the other 7 symmetric sites labeled 3 - see Figure 3, right. The

sites (n+1
2
, n−3

2
), (n+1

2
, n+5

2
), (n−3

2
, n+1

2
), (n+5

2
, n+1

2
) have label 1 or 2 by P , which

must be 2 by Q - see Figure 4, left. Finally, the sites (n−3
2
, n−3

2
), (n+5

2
, n−3

2
),

(n−3
2
, n+5

2
), (n+5

2
, n+5

2
) must have label at least 4 by Q and at most 4 by P - see

Figure 4, right. This shows that n 6= 5 as the site (n+1
2
, n+5

2
) has label 2 and

only one neighbour of label 1. The general induction step is presented below:

Assume that for odd i, 2i+ 1 < n we have determined that the labels the

sites

{(i, j) | n+ 1

2
− i ≤ i, j ≤ n+ 1

2
+ i}

are as follows (see Figure 5):

• the sites (n+1
2
, n+1

2
− i), (n+1

2
, n+1

2
− i+2), . . . , (n+1

2
, n+1

2
+ i) and (n+1

2
−

i, n+1
2

), (n+1
2
− i+ 2, n+1

2
), . . . , (n+1

2
+ i, n+1

2
) all have label 1;
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n+1
2

n−1
2

n−3
2

...

n−2i+1
2

...

Figure 5. Case 5, the first phase of the induction.

• the sites (n+1
2
, n+1

2
− i + 1), (n+1

2
, n+1

2
− i + 3), . . . , (n+1

2
, n+1

2
+ i − 1)

and (n+1
2
− i+ 1, n+1

2
), (n+1

2
− i+ 3, n+1

2
), . . . , (n+1

2
+ i− 1, n+1

2
) all have

label 2;

• all other sites ν ∈ {(i, j) | n+1
2
− i ≤ i, j ≤ n+1

2
+ i} have label the

distance from ν to the centre.

Then, given that 2i + 1 < n, we can deduce more labels as follows: all

the sites {(j, n+1
2

+ i) | n+1
2

+ 1 ≤ j ≤ n+1
2

+ i} have two neighbours of

smaller label: their southern neighbour and their western neighbour; therefore,

by Q each site in {(j, n+1
2

+ i + 1) | n+1
2

+ 1 ≤ j ≤ n+1
2

+ i} has label
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...
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i+ 2 i+ 1 5 4 3 2 3 4 5 i+ 1 i+ 2

...
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Figure 6. Case 5, the second phase of the induction.

greater than the label of its southern neighbour. Moreover, by P each site in

{(j, n+1
2

+i+1) | n+1
2

+1 ≤ j ≤ n+1
2

+i} must have label exactly one greater than

the label of its southern neighbour. By symmetry, and then applying a similar

reasoning to the four ’corner’ sites (n+1
2
− i− 1, n+1

2
− i− 1), (n+1

2
− i− 1, n+1

2
+

i+ 1), (n+1
2

+ i+ 1, n+1
2
− i−1), (n+1

2
+ i+ 1, n+1

2
+ i+ 1) we have determined the

labels of all sites {(i, j) | n+1
2
− i− 1 ≤ i, j ≤ n+1

2
+ i+ 1} except for the four

sites (n+1
2
, n+1

2
− i− 1), (n+1

2
, n+1

2
+ i+ 1), (n+1

2
− i− 1, n+1

2
), (n+1

2
+ i+ 1, n+1

2
)

which are only known to have label at most i+ 1 (see Figure 6).

Note that n cannot be equal to 2i+ 3. Indeed, the site (n+1
2
, n+1

2
− i− 1)

has label at most i+ 1 by P and the fact that it has a neighbour of label i+ 2,
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but then the site (n+1
2
, n+1

2
− i − 1) itself has only one neighbour of smaller

or equal label which has label 1 and that gives the desired contradiction. We

emphasise that this is the part of the argument which shows that if n ≡ 1 (mod

4) then the minimal infection time cannot be n− 1 and so it must be n.

Therefore we have that n > 2i+ 3 and by the exact same reasoning, this

time using that the four sites (n+1
2
, n+1

2
− i− 1), (n+1

2
, n+1

2
+ i+ 1), (n+1

2
− i−

1, n+1
2

), (n+1
2

+ i+1, n+1
2

) have label at most i+1 (instead of knowing their exact

label as before) we determine the labels of all the sites {(i, j) | n+1
2
− i− 2 ≤

i, j ≤ n+1
2

+ i+ 2} except for the eight sites:

• the four sites (n+1
2
, n+1

2
−i−1), (n+1

2
, n+1

2
+i+1), (n+1

2
−i−1, n+1

2
), (n+1

2
+

i+ 1, n+1
2

) of label at most i+ 1;

• the four sites (n+1
2
, n+1

2
−i−2), (n+1

2
, n+1

2
+i+2), (n+1

2
−i−2, n+1

2
), (n+1

2
+

i+ 2, n+1
2

) of label at most i+ 2.

We focus on (n+1
2
, n+1

2
− i− 2) and note that actually its label is smaller

than the label of its northern neighbour, in order for its northern neighbour

(which cannot be initially infected) to be infected. But then (n+1
2
, n+1

2
− i− 2)

has at most one potential neighbour of smaller label, i.e. its southern neighbour,

which shows that (n+1
2
, n+1

2
− i − 2) is initially infected, i.e. it has label 1.

This also implies that (n+1
2
, n+1

2
− i − 1) has label 2. By symmetry we have

determined the labels of all the sites

{(i, j) | n+ 1

2
− i− 2 ≤ i, j ≤ n+ 1

2
+ i+ 2},

which agree with our induction statement. The base case i = 1 is in Figure 3,

left. So either n = 2(i + 2) + 1 and we are done, as this model is obviously

valid, or n > 2(i+ 2) + 1 and we can continue, increasing the value of i by 2 at

each step. This finishes the proof. �
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Figure 7. Our construction of S1 for the upper bound, n =
12, k = 5.

3. The Upper Bound

In this section we aim to find sets S1 of i.i.s. of small size that percolate in

time k and prove Theorem 1.2. In Figure 7 we show graphically our construction

for n = 12, k = 5.

Proof of Theorem 1.2. For the proof of the first part of the theorem,

we assume n ≥ 2k and then we define S1 as a union of three diagonals:

S1 = {(i, i) | 1 ≤ i ≤ n}∪{(k+i, i) | 1 ≤ i ≤ n−k}∪{(i, k+i) | 1 ≤ i ≤ n−k}.

For the proof of the second part of the theorem, we assume n > 2k and we

formally define S1 as a union of 1 + 2d n−k
2k−1e diagonals :

D1 = {(i, i) | 1 ≤ i ≤ n}

D2 = {(2k−1+i, i) | 1 ≤ i ≤ n−(2k−1)} , D′2 = {(i, 2k−1+i) | 1 ≤ i ≤ n−(2k−1)}

D3 = {(2(2k−1)+i, i) | 1 ≤ i ≤ n−2(2k−1)} , D′3 = {(i, 2(2k−1)+i) | 1 ≤ i ≤ n−2(2k−1)}
...

Dj = {((j − 1)(2k − 1) + i, i) | 1 ≤ i ≤ n− (j − 1)(2k − 1)} ,

D′j = {(i, (j − 1)(2k − 1) + i) | 1 ≤ i ≤ n− (j − 1)(2k − 1)}
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Figure 8. Formal construction of S1.

...

together with 2 groups of dk−1
2
e boundary sites for each of the diagonals

D2, D
′
2, D3, D

′
3, . . . - labeled for clarity Bi,1 and Bi,2 for the diagonal Di (see

Figure 8). For k odd they are defined as follows:

B2,1 = {(1+(2k−1)−2i, 1) | 1 ≤ i ≤ k − 1

2
} , B2,2 = {(n−(2k−1)+2i, n) | 1 ≤ i ≤ k − 1

2
}

B′2,1 = {(1, 1+(2k−1)−2i) | 1 ≤ i ≤ k − 1

2
} , B′2,2 = {(n, n−(2k−1)+2i) | 1 ≤ i ≤ k − 1

2
}

B3,1 = {(1+2(2k−1)−2i, 1) | 1 ≤ i ≤ k − 1

2
} , B3,2 = {(n−2(2k−1)+2i, n) | 1 ≤ i ≤ k − 1

2
}

B′3,1 = {(1, 1+2(2k−1)−2i) | 1 ≤ i ≤ k − 1

2
} , B′3,2 = {(n, n−2(2k−1)+2i) | 1 ≤ i ≤ k − 1

2
}
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...

Bj,1 = {(1+j(2k−1)−2i, 1) | 1 ≤ i ≤ k − 1

2
} , Bj,2 = {(n−j(2k−1)+2i, n) | 1 ≤ i ≤ k − 1

2
}

B′j,1 = {(1, 1+j(2k−1)−2i) | 1 ≤ i ≤ k − 1

2
} , B′j,2 = {(n, n−j(2k−1)+2i) | 1 ≤ i ≤ k − 1

2
}

...

For k even, the boundary sites B’s are defined similarly with the range of i

changing from i ∈ {1, 2, . . . , k−1
2
} to i ∈ {1, 2, . . . , k−2

2
} ∪ {k−1

2
}. It is not hard

to see that such an S1 percolates in time k and has size

s1 ≤ n+
(n− 2k + 1 + k)(n+ k − 2)

2k − 1
+ 2 · 2 · k

2
· n+ k − 2

2k − 1
,

i.e. s1 ≤ n+ (n+k−2)(n+k+1)
2k−1 , as claimed. This finishes the proof. �

4. The Lower Bound

In this section, we give a short argument which establishes the rough lower

bound on s1 given in Theorem 1.3.

Proof of Theorem 1.3. For 1 ≤ i < j ≤ n, denote by si,j the total

number of pairs (v, w) where v ∈ Si and w ∈ Sj are neighbours. Moreover, let

s′i denote the number of sites infected at time i that lie on the boundary of

the grid, including the four corners. Then, considering that every site on the

boundary has at most three neighbours in the square grid, the following set of

inequalities is straightforward from the definition of the model:

4s1 − s′1 ≥ s1,2 + s1,3 + . . .+ s1,k

s1,2 − s′2
2

≥ s2 −
s′2
2
≥ s2,3 + s2,4 + . . .+ s2,k

2

s1,3 + s2,3 − s′3
2

≥ s3 −
s′3
2
≥ s3,4 + . . .+ s3,k

2
...

s1,k−2 + . . .+ sk−3,k−2 − s′k−2
2

≥ sk−2 −
s′k−2

2
≥ sk−2,k−1 + sk−2,k

2
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s1,k−1 + . . .+ sk−2,k−1 − s′k−1
2

≥ sk−1 −
s′k−1

2
≥ sk−1,k

2
s1,k + . . .+ sk−1,k

2
≥ sk

Using these inequalities, we establish the following.

Claim. For 2 ≤ j ≤ k we have

s2 + s3 + . . .+ sj ≤ 2s1 + s2 + . . .+ sj−1 −
1

2
(s′1 + . . .+ s′j−1).

Proof. Let 2 ≤ j ≤ k, then

s2 + s3 + . . .+ sj ≤
s1,2
2

+
s1,3 + s2,3

2
+ . . .+

s1,j + s2,j + . . .+ sj−1,j
2

=

=
s1,2 + s1,3 + . . .+ s1,j

2
+
s2,3 + s2,4 + . . .+ s2,j

2
+ . . .+

sj−1,j
2
≤

≤ s1,2 + . . .+ s1,k
2

+
s2,3 + . . .+ s2,k

2
+ . . .+

sj−1,j + . . .+ sj−1,k
2

≤

≤ 2s1 + s2 + . . .+ sj−1 −
1

2
(s′1 + . . .+ s′j−1).

This completes the proof of the claim. �

Therefore, by applying the claim k− 1 times for j = k, k− 1, . . . , 2 we have

n2 = s1 + s2 + . . .+ sk ≤ (2k − 1)s1 −
1

2
((k − 1)s′1 + (k − 2)s′2 + . . .+ s′k−1).

Hence, in order to conclude the proof we need to show that for any k ≥ 3 and

any configuration of i.i.s. that percolate on the grid we have that

Q = (k − 1)s′1 + (k − 2)s′2 + . . .+ s′k−1 ≥ (
√

4k − 1− 2)(2n− 2),

and that Q = s′1 ≥ 1
3
(4n− 4) for k = 2.

Being consistent with the notation in Section 2, we label each vertex with

index of the set Si in which it lies. We note that, as any vertex on the boundary

has at most three neighbours, we have that for any i ≥ 2, a necessary condition

for a vertex of label i to lie on the boundary is that it has a neighbour on the

boundary of strictly lower label. Using just this necessary condition, we get that

in between two consecutive vertices of label 1 on the boundary, the sequence
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of labels of vertices must be unimodal. Therefore, by a further optimisation

which takes into account the fact that vertices of larger label have a smaller

weight in Q, we get that a configuration of labels of vertices on the boundary

that minimises Q is obtained when we pave the boundary with blocks of labels

k, k − 1, . . . ,m, 1,m,m+ 1, . . . k, for some 2 ≤ m ≤ k which minimises

f(m) =
(k − 1) + 2[(k −m) + (k −m− 1) + . . .+ 1]

1 + 2(k −m+ 1)
.

For example, when k = 2, it is clear that m = k = 2 minimises f(m), so a

lower bound for Q is given by 1
3
(4n− 4), obtained when we pave the boundary

with blocks of labels 2, 1, 2. Hence, in this case we get s1 ≥ n2

3
+ 2n−2

9
as

promised.

For k ≥ 3, we have by the same reasoning that Q ≥ (4n − 4)f(m) for

any 2 ≤ m ≤ k, m ∈ R that minimises f(m). By considering the first

and second derivative of f , we get that for k ≥ 3, f(m) is minimised for

m = k − 1
2

√
4k − 1 + 3

2
which gives f(m) = 1

2

√
4k − 1 − 1. This gives the

desired lower bound

Q ≥ (
√

4k − 1− 2)(2n− 2),

whenever k ≥ 3, finishing the proof. �

5. Concluding Remarks

Clearly, the proof of Theorem 1.3 can be generalised to higher dimensions

and/or different values of r for the r-neighbour percolation. However, the

lower bound obtained in this way is pretty rough. Therefore, it would be very

interesting to see an improvement of our bounds, especially the lower bound,

even in some special cases. In particular, we think that one could obtain a

better lower bound on the minimum infection time even when s1 = n+O(1)

and s1 = O(n).

Moreover, one could investigate (maybe using the techniques developed in

Section 2) the precise minimum infection time when s1 = n+ 2.

137





Bibliography

1. L. Addario-Berry, L. Devroye, G. Lugosi, and R. I. Oliveira, Local optima

of the Sherrington-Kirkpatrick Hamiltonian, arXiv, 2017.

2. R. L. Adler, L.W. Goodwyn, and B. Weiss, Equivalence of topological

Markov shifts, Israel Journal of Mathematics 27 (1977), 49–63.

3. R.L. Adler and B. Weiss, Similarity of automorphisms of the torus, Memoirs

of the American Mathematical Society 98 (1970).

4. M. Aizenman and J.L. Lebowitz, Metastability effects in bootstrap percola-

tion, Journal of Physics A 21 (1988), 3801–3813.

5. J. Balogh, B. Bollobás, H. Duminil-Copin, and R. Morris, The sharp

threshold for bootstrap percolation in all dimensions, SIAM Journal on

Discrete Mathematics 29 (2012), 224–251.

6. F. Benevides and M. Przykucki, Maximum percolation time in two-

dimensional bootstrap percolation, Transactions of the American Math-

ematical Society 364 (2014), 2667–2701.

7. B. Bollobás, On generalized graphs, Acta Mathematica Academiae Scien-

tiarum Hungaricae 16 (3–4) (1965), 447–452.

8. B. Bollobás, H. Duminil-Copin, R. Morris, and P.J. Smith, Universality of

two-dimensional critical cellular automata, preprint (2017).

9. B. Bollobás, P.J. Smith, and A.J. Uzzell, Monotone cellular automata in

a random environment, Combinatorics, Probability and Computing 24(4)

(2015), 687–722.

10. A. Carbone, Cycles of relatively prime length and the road coloring problem,

Israel Journal of Mathematics 123 (2001), 303–316.

11. R. Cerf and F. Manzo, The threshold regime of finite volume bootstrap

percolation, Stochastic Processes and their Applications 101 (2002), 69–82.

139
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