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Characterising the gene regulatory landscape of CD4+ T cells

Dafni Anna Glinos

Despite the high prevalence of immune-mediated diseases, the molecular mechanisms

by which they arise and the influence of genetic variation in the predisposition to

disease are not well understood. Immune susceptibility loci identified by genome wide

association studies (GWAS) overlap with active regulatory elements in CD4+ T cells,

and particularly in regulatory T cells (Tregs). CD4+ T cells are the orchestrators of the

adaptive immune response and their dysfunction has been associated with immune-

mediated disorders through uncontrolled activation and resistance to downregulation,

which is usually mediated by Tregs. T cell activation requires the combination of T

cell receptor (TCR) recognition of an antigen and CD28 co-stimulation. The role of

CD28 co-stimulation requirement in the activation of different T cell subsets has been

understudied. Here, I assessed the role of immune disease variants in modulating

pathways underlying T cell activation and Treg function. For that, I activated CD4+ T

cells using different intensities of CD28 and TCR signals, followed by genome-wide

transcriptome and chromatin profiling of naive and memory cells. I observed that CD28

plays a critical role in the expression of genes involved in effector functions, cell cycle

regulation in memory T cells and in disease susceptibility. I profiled the gene expression

regulatory landscape in Tregs using a combination of genomic assays. Due to the scarce

Treg numbers in peripheral blood I first optimised the ChIPmentation (ChM) sequencing

protocol to profile H3K4me3 and H3K27ac histone modifications in Tregs. I combined it

with chromatin accessibility and gene expression profiling in resting and stimulated

Tregs from ten donors. I observed cases of alternative transcription, such as alternative

splicing and promoter, induced by stimulation, which could be predicted by changes

in the chromatin landscape. Finally, I assessed how genetic variability impacts the

function of Tregs and how this can lead to autoimmunity. I carried a quantitative trait

locus (QTL) mapping using RNA-seq, ATAC-seq, H3K4me3 and H3K27ac ChM-seq data

from Tregs isolated from 100 individuals. Additionally, I processed publicly available

data from naive T cells to distinguish the Treg specific effects from generic CD4+ T cell

signals. I recapitulated known colocalisations between QTLs and immune GWAS loci,

and identified previously unknown Treg specific colocalisations. My findings highlight

the value of carrying QTL studies in rare immune cell types relevant to the disease.
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1Introduction

Collaboration note
Parts of this chapter have been published as “Immunogenomic approaches to under-

stand the function of immune disease variants” (Glinos et al., 2017). Many sections of

the manuscript have directly been copied into this chapter.

It is estimated that around 20% of the population suffers from at least one autoimmune

disease. Autoimmunity arises when the immune system fails to distinguish self from

non-self, causing cells to respond against the antigens produced by the body. This can

happen in specific tissues, such as the pancreas, where the immune system attacks

the insulin-producing cells leading to the development of type-1 diabetes, or the lin-

ing of the joints, in the case of rheumatoid arthritis. Since the cells of the adaptive

immune system are responsible for the recognition of different antigens, their study is

of primordial importance for increasing our understanding of autoimmunity. Indeed,

despite the high prevalence of the different disorders, the molecular mechanisms which

predispose one to autoimmunity are not well understood. It is believed that, in the

majority of cases, it is a combination of genetic and non-genetic factors that contribute

to the risk of developing a disorder. Here, I will first describe the genetic architecture of

autoimmune diseases, the complexity of which has hindered a deeper understanding

of how diseases arise. I will then describe different immune cell types and pathways

that are critical for the physiological functioning of the adaptive immune response. I

will summarise the different genomic tools currently available for the study of gene

expression and its regulation thereof. Finally, I will provide an overview of different

studies that have attempted to link genetic variants associated to immune diseases

with molecular measurements.
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1.1 The problem: The complex genetic architecture of

autoimmune diseases

1.1.1 Heritability of immune-mediated diseases

It is estimated that 1 in 5 people suffer from at least 1 of the 81 documented autoimmune

diseases in the United States (Hayter and Cook, 2012). Despite the high prevalence, the

molecular mechanisms which predispose to autoimmunity are not well understood.

The clustering of autoimmune diseases in families has indicated a strong genetic com-

ponent that underlies pathological processes driving many complex immune-mediated

diseases. Indeed, siblings of an affected individual have significantly higher risk of

developing an autoimmune disease compared to the general population. Interestingly,

this is not disease specific since co-occurrence of autoimmune diseases in families is

higher than expected by the population prevalence of the individual diseases (Eaton

et al., 2007). Therefore, the clustering also indicates that the genetic component across

different diseases is to a certain degree shared.

Most autoimmune diseases share a strong association to the major histocompatibility

complex (MHC) region (Lenz et al., 2015). The MHC is one of the most polymorphic regions

in the human genome, containing over 250 genes including the human leukocyte antigen

(HLA) genes. The HLA genes encode for receptors expressed by antigen presenting cells

(APCs). Early studies identified several loci in the MHC region with large effect sizes,

including HLA-DQB1 associated with type-1 diabetes (T1D) (Todd et al., 1987), HLA-DQ2

and HLA-DQ8 associated with coeliac disease (CEL) (Sollid et al., 1989), and HLA-DR4

associated with rheumatoid arthritis (RA) (Nepom, 1998). It is now well appreciated

that most of the autoimmune associations of the MHC region originate from these HLA

genes (Matzaraki et al., 2017). Indeed, recent research highlights the complex genetic

architecture of this locus, the non-additive effects between different HLA alleles, as

well as the interactions between the different alleles modulating the risk to common

autoimmune disorders (Hu et al., 2015a; Lenz et al., 2015).

However, the susceptible genetic background of the HLA alone is not sufficient to lead

to the development of a complex immune-mediated disease. For example, T1D, RA, CEL

and multiple sclerosis (MS), result from the combination of both the risk genotypes
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of the HLA and non-HLA genes, as well as an environmental trigger. In order to study

these effects before high-throughput genomic tools, such as whole genome genotyping

and whole genome sequencing, became available, studies focussed on a few candidate

genes within families of affected individuals. In T1D, a series of candidate gene studies

identified CTLA4, which encodes for a protein receptor expressed on the surface of T

cells, as a susceptibility gene (Nisticò et al., 1996). CTLA4 was later also associated with

patients with CEL (Djilali-Saiah et al., 1998) and RA (Plenge et al., 2007), highlighting

the key roles of this T cell receptor in autoimmunity. That same study was the first

that associated non-synonymous variants in PTPN22 with RA, which was later shown

to also contribute to the risk of T1D and systemic lupus erythematosus (SLE) (Criswell

et al., 2005). While these represent examples of successful candidate gene studies, the

majority of them resulted in non-reproducible results. This highlights the complexity

underlying the genetics of autoimmune diseases and the human bias in choosing can-

didate genes for testing.

1.1.2 GWAS of immune-mediated diseases

The previously described limitations called for the development of an unbiased and

comprehensive study approach, which emerged through genome wide association stud-

ies (GWAS). GWAS revealed that complex immune traits develop in consequence to an

interplay between hundreds to thousands of common variants (Stahl et al., 2010), all

with individually small effect sizes on the overall disease phenotype. Currently, more

than 497 susceptibility loci for autoimmune disorders have been identified (Gutierrez-

Arcelus et al., 2016). Despite the large number of mapped variants, the heritability

explained by the non-HLA loci remains moderate. Even for the most successful exam-

ples such as MS, T1D or RA, where over a hundred risk variants have been mapped, the

explained heritability varies between 20% for MS (Consortium and Others, 2013), 10%

for T1D (Hu et al., 2015a) and about 5% for RA (Okada et al., 2014).

A picture emerging from GWAS is that immune-mediated diseases, to some extent,

result from the dysregulation of the same biological pathways. For example, the initial

T cell dysregulation observed in individuals with CTLA4-mutations was found to extend

to an entire locus harbouring genes for receptors that control T cell activation, CD28,
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ICOS and CTLA4, which is associated to CEL, RA and T1D. The sharing of genetic regions

associated with immune diseases is widespread; of the 90 risk loci associated to T1D, RA,

CEL and MS, 37% overlap between two or more diseases (Fortune et al., 2015). Despite

the success in finding disease susceptibility loci, the molecular mechanisms by which

these genetic variants hinder control of immune system and lead to autoimmunity have

only been determined for a small number of variants. For example, missense mutations

in the exon of CTLA4, induce severe immunodeficiency and a spectrum of autoimmune

and autoinflammatory diseases (Schubert et al., 2014). These rare monogenic disorders

have provided insights into the control of the immune system in the presence of the

dysfunctional genes. However, the same genotype-to-function logic cannot be easily

applied to all associations.

The challenges of understanding GWAS results for complex traits are both statistical and

biological (Spain and Barrett, 2015). Among the statistical problems is that associated

loci map to regions of the genome with extended linkage disequilibrium (LD). The LD

blocks often comprise tens to hundreds of highly correlated single nucleotide polymor-

phisms (SNPs) that are co-inherited. Therefore, in a statistical test, the high correlation

between SNPs results in equivalent strength of the association signal spread throughout

all of the variants in LD. Practically, this renders the variants indistinguishable from one

another and hinders the prioritisation of the causal variant based on the association

statistics alone. Another problem is linking the associated SNPs to effector genes, as

the causal variants may not necessarily affect the closest gene but instead act through

long range genomic interactions. Finally, the majority of the associated variants localise

to the non-coding regions of the genome, implicating that the disease variants are

likely to act through dysregulation of gene expression. This poses a challenge because

gene expression regulation can be highly cell type specific and therefore functional

follow up studies have to be carried out in the cell types most relevant to the disease.

However, for many immune diseases the exact pathological cell type is unknown.
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1.2 The system: Immune cell types and their role in

autoimmunity

1.2.1 CD4+ T cells within the adaptive immune system

Adaptive immunity is a branch of the immune system that is characterised by immuno-

logical memory and changes across an individual’s lifespan depending on the pathogens

to which they have been exposed. The adaptive immune system has two main players,

B cells, which mature in the bone marrow, and T cells, which mature in the thymus. B

cells and T cells sense their environment and communicate with each other via the

expression of cytokines and chemokines, along with their receptors. These are small

proteins whose concentrations within a cellular environment can determine the fate of

the immune response.

T cells constitute the backbone of adaptive immunity and can be broadly divided into

cytotoxic, which express CD8, and helper, which express CD4. Mature T cells that express

T cell receptors (TCR+) are generated in the thymus, from where they are released into

secondary lymphoid organs. Once in the secondary organs, the primary role of T cells

is to recognise antigens derived from micro-organisms and orchestrate an immune

response to fight them.

T cell maturation is a highly regulated process, in which the cells are screened for

TCR reactivity to self-peptides bound to the MHC, and removed in case of high affinity.

Cells with low affinity receive a weak TCR stimulation which contributes towards their

maturation. The cells then undergo rounds of double positive selection through contact

with MHC class I and II, and at the end of the process a cell only expresses either CD4+

(helper T cells (Th)) or CD8+ (cytotoxic T cells (Tc)) along with CD3 (Klein et al., 2014).

Both CD4+ and CD8+ cells are characterised by the expression of CD3, which forms a

complex with the TCR, and allows the cells to successfully establish contact with MHC

presenting cells. When CD8+ T cells recognise an antigen and become activated they

are able to induce apoptosis.
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1.2.2 Signal transduction in T cells in response to stimulation

CD4+ T cell stimulation occurs in secondary lymphoid tissues where T cells interact

with professional APCs, like dendritic cells, B cells and macrophages. Upon interaction,

two coordinated signals are delivered to the T cell; the first is delivered via the TCR,

which recognises antigen bound to MHC molecules, and the second is delivered via

a co-stimulatory receptor. CD28 is the main co-stimulatory receptor expressed by T

cells, and it interacts with CD80 and CD86 ligands on the APCs. The coordination of TCR

and CD28 signals is important for T cell activation, proliferation, differentiation and

survival (Figure 1.1 ). CD80 and CD86 can also be bound by CTLA-4 with higher affinity,

as a means to dampen the immune response. CTLA-4 is expressed on the surface of

all T cells upon stimulation and is the main pathway employed to downregulate the

immune response upon completion. There are other co-stimulatory pathways, such as

those mediated via ICOS, 4-1BB (encoded by TNFRSF9) and OX40 (encoded by TNFRSF4)

receptors, all of which tend to be upregulated on the T cell surface upon stimulation.

The combination of these signals critically affects the magnitude and fate of the T cell

response. Therefore, co-stimulatory pathways provide a key checkpoint for controlling

T cell responses, which is increasingly relevant therapeutically (Ford et al., 2014).

T cell activation promotes a number of signalling cascades that determine the fate of a

cell. Activation is initiated via the phosphorylation of immunoreceptor tyrosine-based

activation motifs (ITAMs) on the cytosolic side of CD3 by lymphocyte protein tyrosine

kinase (Lck). Lck also interacts with CD28 C-terminal chain, and represents an important

integration point for the two signals (Dobbins et al., 2016). Zeta-chain associated protein

kinase (Zap-70) is then recruited to the TCR-CD3 complex where it becomes activated,

promoting a series of phosphorylation events of adaptor and scaffold proteins. These

result in the production of the second messengers diacylglycerol (DAG) and inositol

trisphosphate (IP3). DAG activates protein kinase C (PKC) and the MAPK/Erk pathways,

both promoting transcription factor (TF) NF-κB activation. IP3 indirectly promotes the

entry of extracellular Ca2+ inside the cells, which in turn encourages IL2 transcription by

the NFAT and AP-1 TFs. IL-2 is a growth factor that initiates cell proliferation upon binding

to the IL-2 receptor, which itself is composed of three chains, including the α chain,

CD25, which is expressed on the surface of activated T cells. It is CD28 co-stimulation

that regulates the expression and activity of NFAT and AP-1 TFs which in turn regulate
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Figure 1.1: T cell activation requires two signals to engage in cell proliferation and differentia-
tion into effector functions. In order to become activated, a CD4+ T cell needs an
antigen presented by the major histocompatibility complex (MHC) to be recognised
by the T cell receptor (TCR) and a B7 molecule (CD80 or CD86) to be recognised by
the co-stimulatory receptor CD28. In the absence of a CD28 signal, T cells undergo
apoptosis or become anergic. In the absence of the antigen a cell will not undergo
any response.

the levels of IL-2 (Fraser et al., 1991; Shapiro et al., 1997). The Weiss laboratory identified

a region in the IL2 promoter that binds TFs in a CD28-dependent manner, therefore

called CD28-response element (CD28RE).

Early investigations into TCR signalling relied on cloning techniques to identify the

receptor responsible for the T cell identity (Hedrick et al., 1984; Yanagi et al., 1984).

Subsequent signalling studies used cell line knock-outs and discovered they could

stimulate T cells pharmacologically using phorbol esters, such as phorbol 12-myristate

13-acetate (PMA), and calcium ionophores, such as ionomycin (Weiss and Imboden,

1987). PMA is a small molecule that can diffuse through the cell membrane into the

cytoplasm, where it can directly activate PKC and initiate the MAPK pathways, omitting

the requirements for a surface receptor. Ionomycin complements PMA by triggering a

calcium release which is necessary for NFAT signalling. This paved the way for a number

of in vitro cell stimulation assays using PMA and ionomycin and antibodies against CD3.

Once the important role of the CD28 co-stimulatory receptor in preventing cell anergy

was identified (Figure 1.1 ; Jenkins et al., 1988), the most common stimulation method

became a combination of anti-CD3 and anti-CD28 antibodies. These are commonly

bound to magnetic beads in order to make their distribution and removal easier.
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1.2.3 Helper T cell classification

Upon stimulation Th cells usually differentiate from the naive, that is a mature CD4+

T cell that has not encountered an antigen, into an effector state. Effector helper T

cells are classified into Th1, Th2, Th17 and Tfh depending on the antigens present in the

environment. Each subpopulation produces a different set of cytokines and promotes a

different branch of the immune response (Zhu et al., 2010a). Th1 responses are criti-

cal for the defence against intracellular pathogens such as viruses and bacteria, and

are characterised by the secretion of interferon-γ (IFN-γ). Th2 cells are important for

controlling helminthic parasites and secrete interleukin-4 (IL-4), IL-5, and IL-13. Th17

cells regulate the host response against extracellular bacteria and fungi, and produce

IL-17 (Zhu et al., 2010a). Tfh cells (follicular helper T cells) assist the B cells in the

production of antibodies and express high levels of CD40 ligand (CD40L), IL-21 and IL-4.

Another pathway is for CD4+ T cells to become T-regulatory (Treg) cells, which function

in immune response homeostasis and downregulate the induction of effector T cells to

avoid and reduce ongoing inflammation. CD4+ T cells can acquire a regulatory function

either in the thymus, in which case they are referred to as natural Tregs (nTregs) or

after activation in the periphery, referred to as induced Tregs (iTregs). Tregs exert their

actions by producing the anti-inflammatory cytokines IL-10 and transforming growth

factor-β (TGF-β) and uptaking the T cell growth factor IL-2 via high expression of its

receptor, CD25, in order to limit its supply (Fontenot et al., 2005b). Tregs also express

high levels of CTLA-4, which outstrips activating ligands from the surface of APCs, and is

also necessary for the generation of Tregs (Read et al., 2000; Zheng et al., 2006).

Upon completion of the immune response, a small proportion of the responding effector

cells survives to form antigen-specific memory T cells. Memory T cells retain elements

of the previously induced state and are available to recreate a rapid defence in case of

further antigenic challenge. Memory cells are characterised by the high expression of

CD44 and CD45RO markers, while some of the cells are CD62Lhigh and CCR7high (central

memory T cells) and others are CD62Llow CCR7low (effector memory T cells). Central mem-

ory T cells are found in the lymph nodes and the peripheral circulation and are capable

of self-renewal, while effector memory T cells are found in the peripheral circulation

and in the tissues and have a more specialised function. The molecular processes that

define which cells will commit to become memory cells remain unknown. It has been
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reported that increasing the strength of the TCR signal promotes an activated naive cell

to become a memory cell (Williams et al., 2008). This is in contrast with other theories

that support an asymmetric cell division model of naive cells while differentiating into

memory and effector cells (Chang et al., 2007).

Given the importance of the CD28 pathway, a still largely unresolved question is the dif-

ferential impact of CD28 co-stimulation at the transcriptional level in naive and memory

T cells. Previous studies have suggested that memory T cells have lower co-stimulation

thresholds or conversely, that naive cells have a greater requirement for co-stimulatory

signals (Croft et al., 1994; Dubey et al., 1995; London et al., 2000). This has given rise

to a widely perceived notion that, in contrast to naive, memory T cells do not require

CD28 co-stimulation. However, there is evidence that this may not be the case in some

settings, and that CD28 co-stimulation is important to numerous aspects of functional

competence for previously primed T cells (Borowski et al., 2007; Linterman et al., 2014;

Ndlovu et al., 2014; Fröhlich et al., 2016). These contrasting conclusions are likely influ-

enced by the experimental systems used, as well as the nature and intensity of the TCR

signal. Finally, different T cell processes may vary in their degree of dependence on

CD28 co-stimulation, for example the requirement for CD28 to induce T cell proliferation

appears lower than that for T follicular helper cell differentiation (Wang et al., 2015)

which is strongly CD28-dependent.

1.2.4 T cell role in immune-mediated disease progression

The primary role of the immune system is to protect the host from infection by a variety

of pathogens constantly present in the environment. As such, genetic defects that

cause loss of the immune system’s activity result in recurrent infections and severe

immunodeficiency that is often life threatening. However, uncontrolled activation of

immune cells may result in the response being targeted towards healthy cells causing

chronic inflammation, tissue destruction, and eventually inflammatory diseases. Un-

controlled activation of the immune system can also occur when cells respond against

the self-antigens and ultimately against the auto-antibodies, which would lead to au-

toimmunity. T cell related autoimmune and inflammatory diseases are characterised by

an imbalance between effector T cells and functional Treg cells. Inadequate number of
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Treg cells, defective Treg function, suppression resistant effector T cells or deficient T

cell stimulation have all been associated with autoimmunity (Buckner, 2010).

The strongest evidence of the contribution of decreased Treg numbers to autoimmunity

comes from patients with IPEX, who completely lack Treg cells due to different mutations

in the FOXP3 gene (Bennett et al., 2001). Furthermore, mice with Foxp3 mutations (scrufy)

display systemic autoimmunity (Fontenot et al., 2005a). FoxP3 is the hallmark TF of Tregs

and acts mostly as a repressor to downregulate genes involved in Treg cell activation

(Fontenot et al., 2005b). However, in patients with common autoimmune diseases the

number of circulating Tregs are more variable compared to IPEX patients, which makes

them complex to study. This is exacerbated by the difficulty in isolating tissue specific

Tregs, since FoxP3 is an intracellular protein. High levels of CD25 and low levels of CD127,

the α receptor for IL-7, are typically used to isolate Tregs from a CD4+ cell population,

to achieve a pure Treg cell population, where more than 95% will express FOXP3 (Liu

et al., 2006). For the same reasons, as well as the absence of a reliable assay, Treg

cell function is also complicated to study. Even when enough cells are obtained, the

functional assays are set up in vitro, which might not accurately represent the pro-

cesses in vivo, since Treg cells show decreased proliferation in vitro compared to in vivo.

Treg function is usually assessed through suppression assays, first described 20 years

ago (Takahashi et al., 1998), where the authors observed that co-culturing Tregs with

CD4+CD25- conventional T cells (Tcons), led to the decreased proliferation of activated

Tcons, measured through flow cytometry. Since then, numerous slight variations of

the protocol have been proposed, such as measuring the cytokine milieu using ELISA

(Nakamura et al., 2001) and changing the stimulation from anti-CD3 and anti-CD28 to

different antibodies, such as glucocortoid induced TNF receptor (GITR) (Shimizu et al.,

2002; McHugh et al., 2002). Using such assays a recently published study by the Todd

group demonstrated that Tregs from SLE patients have lower levels of CD25, which

affects their suppressive phenotype and decreases their survival (Ferreira et al., 2017b).

The functional defect at the source of an immune attack could also lie within the re-

maining T cell populations; naive, memory and effector. Different mechanisms by which

T cells can become resistant to Treg suppression have been described. These vary

between diseases and include modifications of intracellular signalling pathways, which

can result in changes in the T cell activation threshold, and exposure to extracellular
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signals such as a specific cytokine milieu or an activation signal. Early studies that pro-

vided strong co-stimulatory signals via the anti-CD28 antibody led to Tcon cells resisting

Treg suppression (Takahashi et al., 1998) and highlighted co-stimulatory pathways as an

important component of acquired resistance. Another co-stimulatory receptor, OX40,

has also been associated with many immune-mediated diseases, including SLE, where

its levels in memory cells were elevated and the cells were resistant to Treg suppression

(Kshirsagar et al., 2013). Interestingly, polymorphisms in the gene encoding for its ligand

(TNFSF4 or OX40L) led to abnormal levels of its transcripts (Graham et al., 2007), which

have been suggested to promote a Tfh profile (Jacquemin et al., 2015). The role of

activated memory cells in immune diseases has also been observed in patients with

juvenile idiopathic arthritis (JIA), where their synovial fluid had significantly elevated

numbers of memory cells that were fully differentiated and active, which made them

resistant to downregulation by Tregs (Haufe et al., 2011). Finally, autoimmune diseases

are characterised by the overproduction of inflammatory cytokines, and a number of

interleukins have been found to lead to Tcon resistance. The most notable example is

IL6, which has elevated levels in JIA, RA, SLE, inflammatory bowel disease (IBD) and MS.

Tcons from the peripheral blood of MS patients were observed to be highly prolifera-

tive and characterised by increased IL6 signalling through pSTAT3. Blocking of STAT3

phosphorylation led to increased suppression of these cells by Tregs (Schneider et al.,

2013). Resistance acquirement can also be studied via suppression assays, and the

development of carboxyfluorescein succinimidyl ester (CFSE) and CellTrace proliferation

dyes marked an important step to be able to separately stain Tregs and Tcons within a

co-culture to distinguish between the two proliferative profiles. In these assays it is

difficult to distinguish between acquired resistance and loss of Treg function, which

makes the establishment of appropriate controls crucial.

T cells continue to play a role in autoimmunity as the initial immune response escalates.

After the self-antigen has initiated a reaction it is difficult to eradicate it since it leads

to increased tissue damage and the emergence of new antigens. As cells are recruited

to the affected site, they secrete cytokines inducing an inflammatory environment.

In fact, targeting specific cytokines consists of one of the main strategies to control

inflammation in immune-mediated diseases (Ishihara and Hirano, 2002; Taylor et al.,

2009; Papoutsaki and Costanzo, 2013). Inflamed tissue is characterised by abnormal

proportions of different immune cells when compared to ratios in their healthy coun-
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terparts. For example, the inflamed skin of patients with psoriasis (PSO) has increased

numbers of Tregs which however produce the pro-inflammatory cytokine IL-17 leading to

increased inflammation (Bovenschen et al., 2011). In contrast, in lesions of SLE patients,

Treg cells display increased sensitivity to cell death mediated by the death receptor

CD95. This sensitivity leads to a decrease in their numbers the extent of which correlates

with increased clinical severity of the flare (Miyara et al., 2005).

Tregs have the potential to resolve an autoimmune reaction. Effector cells produce IL-2

which leads to the activation and expansion of tissue resident Tregs and the formation

of new Tregs (Knoechel et al., 2005). Depending on the reason for the development of

the disease, the generation or maintenance of these Tregs might be defective, in which

case there will be no disease resolution.

1.3 The tools: Genome wide assays for functional profiling of

immune-disease loci

1.3.1 RNA sequencing

RNA sequencing (RNA-seq) is a widely used method to quantify the dynamic transcrip-

tome of a cell in a genome wide manner. There are three steps involved in preparing

a sample for RNA-seq. Firstly, RNA has to be isolated from the cells. In the case of T

cells, this can be difficult as they are characterised by a small diameter and therefore

reduced input material. Secondly, to obtain messenger RNA (mRNA) as the measure for

the transcriptomic state of the cells isolated, the RNA has to be filtered. This step is

necessary since the majority of all cellular RNA is ribosomal. In eukaryotes, filtering

for mRNA is usually achieved either using a depletion method or poly-A selection. If

this step is performed using poly-A selection, it can result in variation in read coverage

across the gene body and introduce 3’ bias (Lahens et al., 2014). Finally, the filtered

mRNA is reverse transcribed to yield cDNA libraries. cDNA is amplified using polymerase

chain reaction (PCR) to enrich for specific fragments and attain a desirable concentra-

tion necessary for loading onto the sequencing machine. PCR can also result in biases,

since it preferentially amplifies sequences with high content of G and C nucleotids

(Benjamini and Speed, 2012). In order to address different biases in RNA-seq, multiple
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experimental and computational approaches have been developed to ensure that the

generated libraries are of high complexity.

Conventionally, once the RNA-seq libraries have been sequenced, the individual reads

are aligned to a reference genome using a splice aware algorithm, such as STAR (Dobin

et al., 2013). The genomic coordinates of transcripts and different transcript isoforms

are maintained in public databases such as GENCODE (Harrow et al., 2012). Mapped

reads that overlap annotated genes are counted using tools such as featureCounts

(Liao et al., 2014). More recently, pseudoalignment methods for gene quantification,

such as Salmon (Patro et al., 2017), were developed. They bypass the requirement of a

reference genome alignment step by quantifying expression levels directly based on

the transcriptomic sequences, leading to a dramatic reduction in the computational

time required. Furthermore, since these methods directly quantify reads, they can be

used to assess the ratios of different transcripts present in a cell.

The majority of human genes express more than one transcript per gene, which in-

creases their potential pool of proteins by 10-fold on average (Nilsen and Graveley,

2010). Transcripts can differ in their functionality and subcellular localisation, with

the most notable example being the PTPRC gene encoding for the CD45 protein, a cell

surface tyrosine phosphatase (Michie et al., 1992). Naive T cells express CD45RA while

memory T cells express CD45RO, an isoform which lacks three exons.

Despite large efforts by databases such as Ensembl (Aken et al., 2017), a lot of tran-

scripts remain unannotated along with the mechanisms by which they arise. Alternative

transcripts can arise from alternative promoters, alternative splicing and alternative

polyadenylation. To address this, one can use methods such as LeafCutter, which fo-

cuses on alternative transcription events directly, looking at the reads that span two

exons, commonly referred to as exon-exon junctions (Li et al., 2018).

1.3.2 Chromatin state profiling

Gene expression regulation results from the interplay between gene enhancers and pro-

moters. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) assesses

DNA-protein interactions by pulling down DNA regions of the genome that are bound
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by a protein of interest. ChIP-seq has been used to annotate the activity of non-coding

regions of the genome through the presence of different post-translational histone

modifications. Four core histones are used to pack the DNA of a cell within a structure

called the nucleosome. Post-translational modifications of histones reflect changes in

chromatin structure that is often coupled with accessibility of different proteins, such

as TFs, and thus regulate gene expression. Histone H3 is the most modified histone.

The fourth lysine of H3 can be mono- or tri-methylated (H3K4me1 or H3K4me3) denot-

ing enhancers and promoters, accordingly. The 9th lysine, when trimethylated marks

constitutively repressed genes while when acetylated it denotes actively transcribed

promoters. The 27th lysine of H3 can be trimethylated (K27me3), which is a signal tagging

inactivate enhancers and promoters, or acetylated (K27ac), which is a signal for active

regulatory elements. Finally, H3K36me3 locates in the bodies of actively transcribed

genes (ENCODE Project Consortium, 2012).

There have been large efforts led by international consortia to comprehensively an-

notate the non-coding sequences of the genome across a wide range of cell lines and

primary cell types (ENCODE Project Consortium, 2012; Roadmap Epigenomics Consortium

et al., 2015; Stunnenberg et al., 2016). Currently, more than 150 different cell types have

been annotated using the above marks for the presence of promoters, enhancers and

repressive sequences, and often are also complemented by the annotation of binding

sites for specific TFs.

Similarly to RNA-seq data, ChIP-seq data is typically aligned to a reference genome

using a standard aligner, such as bwa (Li and Durbin, 2009). The next step consists

of identifying regions that show a higher pile-up of reads which would correspond

to more protein binding or chromatin accessibility than the background. These are

typically referred to as “peaks” and are identified using peak calling algorithms such

as MACS2 (Zhang et al., 2008). Depending on the protein being assayed, the resulting

peaks can be characterised as narrow, when spanning a few hundred base-pairs (e.g.

a TF ChIP-seq), or broad, when spanning up to tens of thousands of base-pairs (e.g.

H3K27me3 ChIP-seq), and a different algorithm has to be used when dealing with each.

However, ChIP-seq typically requires material in the order of millions of cells, an amount

prohibitive for rare cell type population studies. These requirements can be overcome by
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a recent modification of the standard ChIP-seq protocol, Chipmentation-seq (ChM-seq).

In ChM a series of adapter ligation and purification steps during the library preparation

stage is replaced by the more straight-forward transposase (Tn5) mediated sequencing

adapters addition during the immunoprecipitation step (Schmidl et al., 2015). This new

protocol results in reduced overall time, costs and input requirements and has been

shown to yield reliable results with low cell numbers, as few as 10,000 cells for some

histone modifications. Such low inputs have been shown to work in the cell line K562

(Schmidl et al., 2015) and innate lymphoid cells (Lim et al., 2017).

Tn5 has in fact already been used in the assay for transposable-accessible chromatin

followed by sequencing (ATAC-seq) protocol, which identifies open chromatin regions

(Buenrostro et al., 2013). Chromatin accessible regions determined by ATAC-seq repli-

cated regions identified by a more established method, the DNAse-seq-Hypersensitivity

(DHS) assay (Boyle et al., 2008). DHS is a challenging assay and for this reason it hasn’t

been applied at a large population scale. However, ATAC-seq has been successfully

used in human population studies due to its easy implementation and low cell num-

ber requirement (Alasoo et al., 2018; Gate et al., 2018). The only initial limitation of

ATAC-seq was the sheer number of resulting mitochondrial reads. A recent optimisation

of the protocol led to decreased percentage of the mitochondrial reads captured in

a sample, which has allowed to decrease the sequencing depth required (Sos et al., 2016).

1.4 The goal: Functional fine-mapping of disease variants

1.4.1 Importance of context specificity for the study of autoimmunity

The annotation of regulatory chromatin for enhancers and promoters has provided

an opportunity to interpret the role of non-coding disease variants. The development

of statistical approaches that integrate GWAS SNPs with histone marks allowed the

prioritisation of disease relevant cell types (Trynka et al., 2013; Farh et al., 2015; Pick-

rell, 2014) (Figure 1.2 ). Enrichment of GWAS variants in cell-type-specific promoters

marked by H3K4me3, confirmed the importance of CD4+ T cell subsets in a number of

autoimmune disorders. CD4+ memory T cells and regulatory T (Treg) cells showed high

enrichment for variants associated with a number of diseases, including RA, IBD and
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CEL (Trynka et al., 2013). This observation converges with the previous immune studies

pointing towards impaired function of Treg cells in autoimmune diseases (Buckner, 2010).
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Figure 1.2: Causal disease variants overlap cell type specific chromatin marks. Chromatin
marks from tissues of interest (left) can be obtained by chromatin immunopre-
cipitation followed by sequencing (ChIP-seq) and chromatin accessibility assays.
These assays yield reads which are mapped against the reference genome to find the
genomic location of the chromatin marks. Regions enriched in reads for the assayed
chromatin marks can be recognised as ‘peaks’ in the genomic position plot of reads
(right). Such genomic annotations generated from different tissues [lymph nodes
(green), lungs (blue), femur (pink)] provide a valuable roadmap of cell type specific
genome activity. The genome annotations can be overlapped with genetic variants
associated with a phenotype of interest, such as an autoimmune disease, represented
as grey circles. If a statistically significant proportion of associated variants overlaps
with peaks specific to a cell type it can point towards disease-relevant tissue and
prioritize causal variants. Here, we illustrate a single-associated locus where only
one single nucleotide polymorphism (SNP; red circle) overlaps with a peak specific to
the lymph nodes and absent from the other two tissues.

Since active histone marks tend to localise near the genes whose expression they

control, gene expression measurements themselves can also be used to prioritise a

specific cell type or condition (Slowikowski et al., 2014; Calderon et al., 2017). Using gene

expression measurements across different conditions also allows the identification of

potential key genes driving the enrichment in that cell type and could play a role in

disease pathogenesis. Using this statistical approach, Hu and colleagues identified the

critical cell types for different autoimmune diseases: transitional B cells for SLE, ep-

ithelial associated stimulated dendritic cells for Crohn’s disease (CD) and CD4+ effector

memory T cells for RA (Hu et al., 2011). Following this observation, they isolated high

purity CD4+ T effector cells and measured relative cell abundance, as well as the gene

expression of 215 genes located in RA loci, and cell proliferation capacity upon in vitro
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stimulation with anti-CD28/anti-CD3 beads (Hu et al., 2014). They identified a group

of genes whose basal level could predict the proliferative potential of CD4+ effector

memory cells, along with a non-coding genetic variant that increased cell division

capacity. Although, this study did not link RA risk loci with the modulation of CD4+

memory cell proliferation, it exemplifies how to link genotype to immune cell function.

1.4.2 Correlating disease variants with gene expression

Having identified the most relevant cell types, the effects of genetic variants on gene

expression are often assessed through genotype correlation with gene expression levels

measured across tens to thousands of individuals (expression quantitative trait loci,

eQTL; Figure 1.3 ). Disease associated variants are enriched for eQTLs (Dimas et al., 2009;

Nicolae et al., 2010). A relevant and easily accessible tissue for immune diseases is blood.

As such, early studies that integrated GWAS SNPs with gene expression identified an

enrichment of immune disease SNPs in whole blood or peripheral blood mononuclear

cells (PBMCs) expression variants. For example, over 50% of CEL variants also had an

eQTL effect (Dubois et al., 2010). Disease associated variants affecting gene expression

can point towards a dysregulated specific pathway. For instance, five of the IBD risk

variants were also eQTLs which had an increasing effect on the expression levels of

the ITGA, ITGAL, ICAM and ITGB8 genes, encoding for integrins, the proinflammatory cell

surface proteins (Lange et al., 2017).

As the gene expression studies increased in sample size (Westra et al., 2013), and ex-

panded across tissue types (GTEx Consortium, 2015) and cell states (Fairfax et al., 2014),

it became evident that the eQTL effects are widespread. For instance, a study of whole

blood gene expression from over 8,000 individuals identified that nearly 6,500 genes

(44% of all tested genes) were under a genetic control (Westra et al., 2013).

Recent studies that have incorporated of disease associated loci defined by GWAS with

eQTLs have highlighted that the initially observed enrichment of GWAS SNPs among

eQTLs may have been overestimated. This is because of the confounding effects of the

LD and cell type specific gene expression. The LD results in long distance correlations

between tens to hundreds of variants. The GWAS and eQTL signals can overlap in a

genetic location, however it is critical to determine whether the overlap is coincidental
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or driven by the same functional variants. For that, simple overlap between the eQTL

and the GWAS SNPs is not sufficient and more stringent methods that colocalise the LD

variants between the two signals need to be applied instead (Guo et al., 2015; Chun et al.,

2017). Guo et al. (Guo et al., 2015) assessed the colocalisation of 595 variants from 154

non-overlapping regions associated to ten different immune-mediated diseases with

gene expression variants from primary resting and stimulated monocytes and resting B

cells. Of the 1,414 genes mapping to these regions, 125 showed an eQTL effect that also

overlapped with a disease SNP. However, there was only strong support of colocalising

signals for six genes.

The early eQTL mapping studies had already recognised the importance of cell type

specific gene regulation. Dimas et al. used lymphoblastoid cell lines (LCLs), primary

fibroblasts and T cells from umbilical cords and reported that 69-80% of regulatory

variants affected gene expression in a cell type specific context (Dimas et al., 2009).

Another recent study found that only a small proportion of IBD variants overlapped with

whole blood eQTL SNPs (8 of 76 IBD loci) (Huang et al., 2017). The lack of enrichment

could be due to the presence of heterogeneous populations of immune cells in the

whole blood. In fact, higher enrichment was observed with eQTLs from CD4+, ilium

and CD14+ monocytes (an essential cell of the innate immune response), underscoring

the importance of the cell type specific context when analysing the function of GWAS

variants (Figure 1.3 ).

Regulatory variants can exhibit opposite effects across different cell types (Solovieff

et al., 2013). For example, of over 7,000 eQTLs that were shared between monocytes and

T cells, Raj et al. identified 42 to have inverse effects between the two cell types (Raj

et al., 2014). One of these eQTLs affected the expression of CD52, a target for antibody

therapy used in MS treatment (CAMMS223 Trial Investigators et al., 2008). Furthermore,

even closely related cell types, such as CD4+ and CD8+ T cells showed a limited overlap

between eQTLs and GWAS SNPs (21 SNPs affecting the expression of 133 genes) based

on a cohort of 313 healthy individuals (Kasela et al., 2017). Improving our understanding

of disease associated variants in a cell type specific context can therefore inform future

drug development strategies by ensuring that a drug is targeting a protein in a specific

disease pathological cell type.
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Figure 1.3: Cell type specific and cell-state-specific expression quantitative trait loci. Cellular
phenotypes, such as gene expression, cytokine secretion or chromatin accessibility,
might be affected by a genetic variant only in a specific cell type and under specific
conditions, e.g. at a specific time-point following a stimulation. Here, a bulk of cell
types (upper panel), as well as each cell type individually, were stimulated for 2 and
24 hr. In all scenarios, the measured phenotype, e.g. gene expression, increased upon
stimulation, but the effect was only correlated with the genotypes in the green cell
type (middle panel). The effect was missed when measured in the sample containing
the mixed cell population (upper panel). The blue cell type (bottom panel) shows
the strongest up-regulation in expression upon stimulation and largely drives the
observed increase in expression in the bulk sample.

However, even if the relevant cell type is identified, the functional effect of a variant may

not be detected unless the cell is challenged in an appropriate environment. Fairfax et

al., (Fairfax et al., 2014) stimulated monocytes with lipopolysaccharide (LPS) and IFN-γ

and demonstrated that 467 eQTLs overlapped with disease associated GWAS SNPs, 53%

of which were stimulation specific. One of the eQTL-GWAS SNPs was an MS variant that

1.4 The goal: Functional fine-mapping of disease variants 19



affected IRF8 expression following two hours stimulation with LPS. Earlier studies that

investigated the expression levels of IRF8 in PBMCs using microarrays failed to identify

a variant controlling the expression of this gene (De Jager et al., 2009), likely due to

the cell type specific effect. The same locus is also associated with SLE but with an

opposite effect. IRF8 is a regulatory factor of type-1 interferons, which are elevated

in SLE patients while MS patients present low interferon levels (Chrabot et al., 2013).

Importantly, the authors observed eQTL effects that differed between early and late

stimulatory responses. The dynamic nature of gene expression regulation was also

observed in dendritic cells stimulated with IFN–γ (Lee et al., 2014) and in CD4+ T cells

stimulated with anti-CD3/anti-CD28 beads (Ye et al., 2014). Ye et al. identified 157 GWAS

SNPs that overlapped with genetic variants that affected gene expression in CD4+ T

cells in a cohort of 348 healthy individuals (Ye et al., 2014). Notably, an ulcerative colitis

(UC) variant nearby IL23R and a variant nearby IL2RA associated to T1D, MS and vitiligo,

only presented an effect on gene expression 48 hours following stimulation. Given

that most effector functions of immune cells are performed following stimulation, it is

not surprising that the majority of immune disease variants would only be functional

in activated cells. Further studies are necessary to investigate different stimulation

contexts in more detail.

1.4.3 Correlating disease variants with epigenetic marks

The correlation between histone marks and genotypes can also be directly analysed

(Kumasaka et al., 2016). ChIP-seq assays result in pile-ups of sequence reads at ge-

nomic regions that map the interaction with proteins. In that respect, they produce

a quantitative measurement and, just like gene expression, can be analysed in light

of correlations with different alleles, as QTLs. Regulatory annotations are not only a

good predictor of gene activity but can also suggest a mechanism of action, e.g. by

implicating a specific TF binding site (McVicker et al., 2013), or when overlapping with

eQTLs (Rosario et al., 2015). For example, H3K27ac QTLs in human lymphoblastoid cell

lines are highly enriched for immune disease GWAS variants, particularly from MS. In a

study of three major immune cell types; neutrophils, monocytes and CD4+ T cells, from

200 individuals, Chen et al. mapped coordinated genetic effects on the epigenome and

transcriptome (Chen et al., 2016).
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In addition to ChIP-seq, genome activity can also be measured through chromatin acces-

sibility. Analysis of 349 tissues and cell types generated using DHS-seq found that over

75% of non-coding GWAS associated variants lie within a DHS. The localisation of SNPs

in DHS was quantitative and cell specific, e.g. Th1 and Th17 CD4+ T cells were enriched

for CD variants, indicating its potential future use for QTL mapping for mechanistic

understanding of the disease. For example, around 25% of GWAS SNPs associated with

autoimmune diseases within DHSs in immune cells (n=262) altered a TF binding motif

for the IRF9 pathway (Maurano et al., 2012). The IRF9 network along with the Jak/Stat

cascade are initiated in the presence of IFN-γ, indicating that this pathway might play

an important role in autoimmunity.

Despite the observed enrichment of disease variants in regulatory non-coding se-

quences it is estimated that only 10-20% of 823 disease variants lay within TF binding

motifs. This suggests that there are other mechanisms of gene expression regulation

(Farh et al., 2015) such as mechanisms that affect spatial genomic interactions. To test

this hypothesis, a promising approach is the integration of GWAS variants with Hi-C

assays (Belton et al., 2012) that infer chromosome conformation by mapping interactions

between genomic regions located nearby in the 3D space. The technique allows for

both the high level mapping of chromatin loops as well as identification of precise

interactions between enhancers and gene promoters. The latter can be directly used

in mapping non-coding disease variants to target genes. For example, a recent study

using Hi-C demonstrated that the non-coding region on chromosome 6 containing a

variant that has been associated with RA and PSO, interacts not only with the promoter

of TNFAIP3, the closest gene, but also with IL20RA, which is 680kbp upstream from the

variant (McGovern et al., 2016). A comprehensive examination of the promoter Hi-C

interactions in 17 human primary blood cell types found an enrichment of autoimmune

disease SNPs in lymphoid cells compared to myeloid cells (Javierre et al., 2016). The

authors found that 76% of the identified genes had not been previously linked with

immune-mediated diseases, since they were outside of the immune associated loci.

Five of the newly identified genes, associated with RA and SLE, were under the control of

an eQTL, e.g. RASGRP1, a gene that activates the Erk/MAP kinase cascade and regulates

T and B cell development and differentiation.

Gene expression regulation is also reflected through DNA methylation. By combining
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DNA methylation with RNA sequencing from 3,841 Dutch individuals Bonder and co-

workers observed that trans methylation QTLs (meQTLs), where genetic variants affect

distant rather than local methylation status, were enriched for immune associated

GWAS traits (Bonder et al., 2017). While methylation has typically been linked to re-

pressed regions, the authors found two distinct functions for methylation depending

on its location. To investigate these findings further, they carried out TF ChIP-seq and

identified 13 trans-meQTLs that influenced the TF binding site, including two SNPs on

chromosome 4 associated with UC. They prioritised one of them as the causal SNP based

on its association with lower methylation and the higher gene expression of NFKB1, the

TF which controlled this binding motif. In addition, by incorporating the Hi-C assay with

DNA methylation and RNA sequencing, Bonder et al., identified that interchromosomal

contacts provide a mechanism by which some trans-meQTLs act. The 402 identified CpG

islands overlapped with CTCF, RAD21 and SMC3 TF binding sites.

1.4.4 Correlating genetic variation with immunological readouts

To gain comprehensive insights into the effects of genetic variants on the immune sys-

tem, genomic assays have to be complemented with traditional immunological methods.

The network of cellular interactions can be assessed at both a global scale, for instance

by looking at mechanisms that control cell frequency and cell proliferation, and at the

cellular level, by measuring protein expression and identifying genes that drive the

phenotype of interest. To accurately infer the causal relationships between genetic

variants and cellular traits it is important to carry out the experiments in cells isolated

from healthy individuals, limiting the effects of active disease or ongoing treatment.

The ratio between different immune cell subsets is heritable and could partly be a

pathobiological disease mechanism (Hall et al., 2000; Brodin et al., 2015). Through an

association study of genome wide SNPs with cell counts, two independent genetic

signals were identified to control the CD4+ to CD8+ T cell ratio. Both signals mapped

to MHC region, explaining 8% of the observed variance. Interestingly, one of these

associations overlapped with a T1D protective variant where the T1D risk allele increases

the number of CD4+ cells by decreasing their apoptosis rate (Ferreira et al., 2010). Past

years have seen many systematic, large scale efforts aiming to associate genetic variants
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with cell counts. Astle et al. identified over 2,500 variants associated with 36 different

hematopoietic traits (Astle et al., 2016). They observed an overlap between asthma

associated variants and the eosinophil counts, highlighting that the established positive

association between eosinophil counts and asthma is genetically controlled. Addition-

ally, variants associated within the MHC locus and nearby COG6, SPRED2, RUNX1 and

ATXN2/SH2B3/BRAP genes pointed towards a novel link between eosinophil function

and RA. A study of immune cell frequencies and surface protein expression levels of

170 dizygotic and 75 monozygotic pairs of twins using seven distinct 14-plex antibody

panels identified 151 independent heritable immune traits (Roederer et al., 2015). This

study reported that one of the most heritable traits is the frequency of CD39+ Tregs.

They identified a SNP that increases the level of CD39, and thus alters the proportion

of CD39+ Tregs. CD39 along with CD73 are enzymes that degrade the proinflammatory

ATP molecule to an anti-inflammatory adenosine (Antonioli et al., 2013). Dysregulation

of this machinery has been observed in MS, RA and IBD patients, with multiple drugs

targeting these two proteins. Additionally, the same variant had previously been identi-

fied in a study that measured counts of 95 different cell types from a cohort of 1,629

individuals from Sardinia (Orrù et al., 2013).

Immune cells exert their effector function by communicating with each other through

the expression of receptors and receptor ligands, combined with the secretion of spe-

cific molecules, such as cytokines. Alteration of these cellular functions results in

impaired immune response. The cytokine levels in the blood have been shown to be

highly heritable (Brodin et al., 2015). Systematic characterisation of the cell response

to different bacterial and fungal infections identified six cytokine QTLs (cQTLs) that

explained the IL-6, IL-8, IL-10 and TNF-α levels (Li et al., 2016b). The genetic control

of cytokine secretion in response to pathogens is relevant, as some of the identified

cytokines have also been associated with autoimmune diseases and are being targeted

by drugs, e.g. IL-6 with RA and PSO (Ishihara and Hirano, 2002). IL-6 pathways, along

with IL-1β were identified as being mostly driven by genetics, compared to environ-

mental factors and the microbiome. A larger study by the same group assessed five

cytokine production responses of PBMCs, whole blood and macrophages from 500

individuals to a pathogenic stimulus compared to no stimulus. They identified cell

type specific cQTLs, with monocyte specific cQTLs being associated with susceptibility

to infectious diseases and T cell specific cQTLs being associated with autoimmune
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diseases (Li et al., 2016a). In addition, colocalisation of genetic variants that control

cytokine levels with those that contribute to susceptibility to autoimmune diseases

linked the VEGF cascade with IBD and expression of the α subunit of the IL-2 receptor

with CD and MS (Ahola-Olli et al., 2017). Together these data demonstrated that the

levels of a number of pro- and anti- inflammatory cytokines are under genetic con-

trol. In the future, a large scale characterisation of molecular mechanisms that control

cytokine levels in health and disease will provide further insights into disease pathology.

1.5 The product: Outline of the thesis

Over the last decade, hundreds of immune disease loci have been successfully mapped.

Recent advances in genomics have enabled functional follow up studies that are starting

to provide insights into the molecular mechanisms by which disease variants drive

disease pathology. The aim of my thesis is to better understand the influence of genetic

variation associated with common immune diseases on the function of human immune

cells and identify pathways that are potentially perturbed. I focus on CD4+ T cells

because GWAS variants are enriched in the active regulatory elements of these cells

and they have an established role in autoimmune disorders.

Given the importance of studying the role of immune variants in the most relevant

cellular context, I first investigate in Chapter 2 if the two major subsets of CD4+ T cells,

naive and memory, operate the same gene expression programmes upon stimulation.

I disentangle the differential requirement of CD28 in naive and memory CD4+ T cells

using functional genomic assays. I show evidence that T helper differentiation cytokines

and chemokines expression increases in response to CD28 signal intensity in both naive

and memory cells. I observe that cell cycle and division are sensitive to CD28 in memory

cells in contrast to the paradigm that memory cells are CD28-independent. Lastly, I

show that CD28-sensitive genes, that is genes whose expression increases alongside

the increase in the intensity of the CD28 stimulus, are enriched in autoimmune disease

loci, pointing towards the role of memory cells and the regulation of T cell activation

through CD28 in autoimmune disease development.
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In Chapter 3 I optimise a newly published genomic protocol to investigate the regulatory

landscape of resting and stimulated regulatory T cells, a critical cell type which has

not been thoroughly studied due to its low abundance. I use ChM-seq assays to assess

the promoter and enhancer landscape of resting and activated Tregs and link identi-

fied elements to putative changes in gene expression. I find that the majority of gene

expression regulation changes are controlled by changing the levels of H3K27ac and

not by altering the levels of H3K4me3. Furthermore, I identify differences in transcript

ratio, which are indicative of differential transcript usage upon stimulation, including

for key CD4+ T cell TFs, such as NFATC1 and YY1. Since I observe that many peaks remain

unannotated from the target genes, I delve deeper into understanding other gene

expression regulatory mechanisms and perform correlation between changes in the

histone landscape and splicing patterns in this cell type.

Finally, in Chapter 4 I investigate the role of immune-mediated disease variants in Treg

function. Using freshly isolated Tregs from 100 donors, I identify over 5,000 eQTLs and

2,000 transcript ratio (tr) QTLs, of which around 40% were not observed in naïve CD4+ T

cells. I observe 117 genes colocalising with immune-mediated disease signals, many of

which were not observed in naive T cells. Finally, I integrate this data with chromatin

accessibility QTLs (caQTLs), promoter regions QTLs (promQTLs) and active regions QTLs

(actQTL). This allows me to fine-map the association signal at 33 loci. For two of the

immune associated genes I identify as being Treg specific, in relation to naive CD4+ T

cells, but also the GTEx consortium, MAP3K8 and TNFRSF9, I suggest one causal variant.

In summary, my thesis aims at addressing the role of immune disease variants in the

context of three important components of the immune response: 1) differential require-

ment of stimulus for the activation of naive and memory T cells, 2) effect of activation

on gene expression regulation in regulatory T cells, and 3) genetic variation on gene

expression regulation in regulatory T cells.
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2The role of co-stimulation in naive

and memory T cells

Collaboration note
The work described in this chapter is awaiting publication and is currently on biorxiv as

“CD28 control of memory T cell proliferation, effector function and autoimmune suscep-

tibility” (Glinos and Soskic et al. pending). Many sections of the manuscript have been

directly copied into this chapter. I processed the samples to cell isolation, generated

the RNA-seq, H3K27ac ChM-seq and ATAC-seq data, performed the flow cytometry and

analysed all the data. Blagoje Soskic performed the cell stimulation, the proliferation

assays and analysed the flow cytometry data, contributed to the ATAC-seq and H3K27ac

ChM-seq data generation and the flow cytometry acquisition. Blagoje Soskic and Dave

Sansom were involved in the experimental design and interpretation of the results.

RNA-seq library construction and sequencing of all materials was done by DNA Pipelines

core facility at Sanger.

2.1 Introduction

The ability of T cells to respond to pathogens whilst remaining tolerant to host antigens

is critical for human health. T cell stimulation generally occurs in secondary lymphoid

tissues where T cells interact with professional antigen presenting cells (APCs). Here, two

coordinated signals are delivered: the first via T cell receptor (TCR) recognising antigen

bound to MHC molecules and the second provided by APCs via upregulation of co-

stimulatory ligands. In this regard, CD28 is the main co-stimulatory receptor expressed

by T cells which interacts with CD80 and CD86 ligands on APCs. The coordination of

TCR and CD28 signals is essential for T cell activation, proliferation, differentiation and

survival. Therefore, the CD28 pathway provides a key checkpoint for controlling T cell

responses (Rowshanravan et al., 2017), which is increasingly relevant therapeutically.
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Early studies demonstrated that memory T cells have higher affinity for their antigen

and consequently need lower concentrations of it in order to respond (Savage et al.,

1999; Richer et al., 2013). Given that memory T cells have a lower activation threshold

than naive cells it has been suggested that they can respond in the absence of CD28

triggering (Luqman and Bottomly, 1992; London et al., 2000). The concept that memory

cells are CD28 independent has been challenged recently using in vivo mouse models

and different methods to knock-out or block CD28 (Ndejembi et al., 2006, Borowski

et al., 2007; Garidou et al., 2009; Teijaro et al., 2009; Ndlovu et al., 2014; Fröhlich et al.,

2016). Experiments using CD28 deficient mice and mice with a Cre/lox induced deletion

of CD28 prior to a secondary challenge demonstrated that CD28 is crucial for efficient

defense against worms in both primary and memory responses (Ndlovu et al., 2014).

Furthermore, Teijaro et al. demonstrated that treatment of mice with a co-stimulation

blocker reduced both the expansion and accumulation of memory T cells in spleen

and lungs following influenza infection (Teijaro et al., 2009). Finally, while it may be

possible to trigger memory T cell activation without CD28 engagement, the long term

survival of the cells and their abilities to assume effector functions are likely to be more

demanding on CD28 involvement (Jenkins et al., 1991).

The level of CD28 co-stimulation is likely to vary considerably in different immunological

settings. For example, the presence of regulatory T cells (Tregs) expressing CTLA-4, which

degrades CD80 and CD86 ligands (Qureshi et al., 2011) will influence CD28 co-stimulation.

Indeed, deficiency in CTLA-4 expression is associated with the development of profound

autoimmune diseases (Tivol et al., 1995; Kuehn et al., 2014; Schubert et al., 2014; Lo

et al., 2015) due to increased CD28 signalling (Tivol et al., 1997; Tai et al., 2007). In a

pharmacological setting, severe adverse reactions were observed in reaction to a CD28

agonistic antibody, TGN1412, due to stimulation of a cytokine storm from effectormemory

T cells (Eastwood et al., 2010; Hünig, 2012). Furthermore, excessive activation of memory

T cells is a hallmark of many common complex immune diseases, such as autoimmune

arthritis and systemic lupus erythematosus (SLE) (Haufe et al., 2011; Kshirsagar et al.,

2013). Genome-wide association studies (GWAS) have mapped numerous risk variants

to loci encoding genes in T cell stimulatory pathways, including CD28, CTLA4 and ICOS

located at 2q33.2 (Fortune et al., 2015; Dubois et al., 2010; Okada et al., 2014; Onengut-

Gumuscu et al., 2015). While the exact effects of the associated variants are unknown,

their mapping to the non-coding regions of the genome suggests effects on regulation
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of gene expression (Fairfax et al., 2014; Westra et al., 2013). Therefore, understanding

how varying levels of TCR and CD28 co-stimulation impacts gene expression and the

ensuing T cell response, has significant implications in understanding susceptibility to

diseases, in particular autoimmunity and cancer.

The fact that T cell activation can be measured in different systems and using different

assays, highlights the need for a new unbiased approach that would encompass more

than one aspect of activation. Here, I designed an approach to address the requirement

of TCR and CD28 in the activation of naive and memory human CD4+ T cells by profiling

the transcriptome and epigenome of these cells in response to varying intensities of

TCR and CD28 stimulation. I show that the major effector functions, such as T helper

(Th) differentiation, expression of chemokine receptors and cytokines, are all strongly

influenced by CD28 in both naive and memory T cells. Strikingly, cell division is markedly

differently controlled between the two cells, which we find to be controlled by CD28 in

memory cells whilst predominantly driven by TCR in naive cells. I identify genes that

were sensitive to TCR or CD28 levels and map the promoter and enhancer landscape

associated with gene expression regulation. Finally, I show that a proportion of loci

associated to common immune diseases is enriched in CD28-sensitive genes, pointing

towards the important role of this co-stimulatory pathway in disease pathogenesis.

2.2 Materials and Methods

2.2.1 Sample collection and DNA isolation

Blood samples were obtained from eight healthy adults, aged from 22 to 46 years.

Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll-Paque PLUS (GE

healthcare, Buckingham, UK) density gradient centrifugation. CD4+ T cells were isolated

from PBMCs using EasySep® CD4+ enrichment kit (StemCell Technologies, Meylan, France)

according to the manufacturer’s instructions. DNA was isolated from live PBMCs using

Qiagen DNeasy blood and tissue kit. All samples were obtained in accordance with

commercial vendor’s approved institutional review board protocols and their research

use was approved by the Research Ethics Committee (reference number: 15/NW/0282).
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2.2.2 Flow cytometry and cell sorting

CD4+ enriched cells were stained with the following antibodies for sorting: CD4+ (OKT4)-

APC (Biolegend); CD25 (M-A251)-PE (Biolegend); CD127 (eBioRDR5)-FITC (eBioscience) and

Live/Dead fixable blue dead cell stain. Live conventional T cells (Tcons, CD4+ CD25low

CD127high) were isolated and cultured for 16 hours. Stimulated naive and memory cells

were sorted based on the expression of CD25-PE, CD45RA- Alexa700 (Biolegend) and

DAPI. Resting naive and memory cells I sorted for low expression of CD25 (proportion of

CD25+ cells < 1%).

2.2.3 Cell culture and stimulation

Chinese hamster ovary (CHO) cells expressing CD86 or FcR (FcRγII, CD32) were cultured in

DMEM (Life Technologies, Paisley, UK) supplemented with 10% v/v FBS (Sigma, Gillingham,

UK), 50 U/ml penicillin and streptomycin (Life Technologies), and 200 µM l-glutamine

(Life Technologies) and incubated at 37°C in a humidified atmosphere of 5% CO2. CHO

cells expressing CD86 and FcR were generated as previously described (Qureshi et al.,

2011). T cells were co-cultured with glutaraldehyde fixed CHO-CD86 to provide CD28

signal or CHO-FcR for 16 hours in RPMI 1640 supplemented with 10% v/v FBS, 50 U/ml

penicillin and streptomycin, and 200 µM l-glutamine. Cultures stimulatedwith CHO-CD86

were treated with various concentrations of anti-CD3 (OKT3) while cultures stimulated

with CHO-FcR were treated with 1 µg/ml of anti-CD3 (OKT3) or 1 µg/ml of anti-CD28 (9.3).

For the full information of the samples and simulations used refer to Table 2.1 .
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Table 2.1: Metadataof blooddonorsprocessedand sample specifications. Ind. ID: Identification
number of blood donor; Coll. time: Time of the day the blood was collected; Process
Date: Month and year the blood was processed; Age: Age of individuals at the time
of the blood draw; Sex: Sex of the blood donors, F(emale) or M(ale); Stimulation:
Stimulation used on this sample, l refers to low and h refers to high. When the
two stimuli were combined lCD28 corresponds to 1 CHO cell for 25 T cells, hCD28
corresponds to 1 CHO cell to 2.5 T cells, lTCR corresponds to 0.01ng/µl and hTCR
corresponds to 1ng/µl. When the stimuli are used alone hCD28 corresponds to 1ng/µl
and hTCR corresponds to 1ng/µl; Cell type: Memory cells (M) are defined as CD4+CD25-
CD127+CD45RA- and Naive (N) cells are defined as CD4+CD25-CD127+CD45RA+. Upon
stimulation assayed cell are CD25+; Cell num. (x1000): Number of cells used for RNA
extraction; Activated cells (%): Percentage of naive or memory T cells subpopulation
that successfully underwent activation.

Ind.
ID

Coll.
time

Process
date

Age Sex Stimulation Cell
type

Cell num.
(x1000)

Activated
cells (%)

25 1045 Feb-16 26 F hCD28 M 301 65.98

25 1045 Feb-16 26 F hTCR M 309 55.98

25 1045 Feb-16 26 F hTCR hCD28 M 300 55.41

25 1045 Feb-16 26 F hTCR lCD28 M 250 25.12

25 1045 Feb-16 26 F lTCR hCD28 M 250 25.78

25 1045 Feb-16 26 F lTCR lCD28 M 150 12.46

25 1045 Feb-16 26 F resting M 248 0

25 1045 Feb-16 26 F hCD28 N 750 60.05

25 1045 Feb-16 26 F hTCR N 1150 96.05

25 1045 Feb-16 26 F hTCR hCD28 N 1550 88.65

25 1045 Feb-16 26 F hTCR lCD28 N 886 35.78

25 1045 Feb-16 26 F lTCR hCD28 N 1456 65.66

25 1045 Feb-16 26 F lTCR lCD28 N 653 25.61

25 1045 Feb-16 26 F resting N 718 0

26 1205 Feb-16 22 M hCD28 M 138 53.9

26 1205 Feb-16 22 M hTCR M 119 58.48

26 1205 Feb-16 22 M resting M 152 0

26 1205 Feb-16 22 M hCD28 N 351 36.25

26 1205 Feb-16 22 M hTCR N 545 77.43

26 1205 Feb-16 22 M resting N 577 0

27 1300 Feb-16 31 M hCD28 M 491 73.54

Continued on next page
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Table 2.1 – Continued from previous page

Ind.
ID

Coll.
time

Process
date

Age Sex Stimulation Cell
type

Cell num.
(x1000)

Activated
cells (%)

27 1300 Feb-16 31 M hTCR M 382 64.78

27 1300 Feb-16 31 M hTCR hCD28 M 756 58.51

27 1300 Feb-16 31 M hTCR lCD28 M 456 30.81

27 1300 Feb-16 31 M lTCR hCD28 M 483 33.82

27 1300 Feb-16 31 M lTCR lCD28 M 287 19.02

27 1300 Feb-16 31 M resting M 336 0

27 1300 Feb-16 31 M hCD28 N 374 59.81

27 1300 Feb-16 31 M hTCR N 386 77.7

27 1300 Feb-16 31 M hTCR hCD28 N 1200 90.73

27 1300 Feb-16 31 M hTCR lCD28 N 679 49.75

27 1300 Feb-16 31 M lTCR hCD28 N 969 66.24

27 1300 Feb-16 31 M lTCR lCD28 N 434 29.9

27 1300 Feb-16 31 M resting N 354 0

29 1210 Feb-16 36 F hCD28 M 248 59.67

29 1210 Feb-16 36 F hTCR M 104 31.6

29 1210 Feb-16 36 F hCD28 N 75 47.03

29 1210 Feb-16 36 F hTCR N 63 53.36

30 1130 Feb-16 39 M hCD28 M 212 NA

30 1130 Feb-16 39 M hTCR M 182 NA

31 1045 Feb-16 25 F hCD28 M 355 NA

31 1045 Feb-16 25 F hTCR M 463 NA

31 1045 Feb-16 25 F resting M 500 NA

31 1045 Feb-16 25 F hCD28 N 151 NA

31 1045 Feb-16 25 F hTCR N 366 NA

31 1045 Feb-16 25 F resting N 460 NA

42 1400 Apr-16 26 F hCD28 M 210 37.59

42 1400 Apr-16 26 F hTCR M 300 47.09

42 1400 Apr-16 26 F hTCR hCD28 M 315 19.57

42 1400 Apr-16 26 F hTCR lCD28 M 220 11.97

Continued on next page
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Table 2.1 – Continued from previous page

Ind.
ID

Coll.
time

Process
date

Age Sex Stimulation Cell
type

Cell num.
(x1000)

Activated
cells (%)

42 1400 Apr-16 26 F lTCR hCD28 M 187 13.03

42 1400 Apr-16 26 F lTCR lCD28 M 146 7.2

42 1400 Apr-16 26 F resting M 250 0

42 1400 Apr-16 26 F hCD28 N 124 15.76

42 1400 Apr-16 26 F hTCR N 757 100

42 1400 Apr-16 26 F hTCR hCD28 N 2000 87.41

42 1400 Apr-16 26 F hTCR lCD28 N 1300 52.24

42 1400 Apr-16 26 F lTCR hCD28 N 1360 58.8

42 1400 Apr-16 26 F lTCR lCD28 N 790 31.06

42 1400 Apr-16 26 F resting N 340 0

43 1235 Apr-16 46 M hCD28 M 547 51.71

43 1235 Apr-16 46 M hTCR M 845 82.64

43 1235 Apr-16 46 M hTCR hCD28 M 530 28.84

43 1235 Apr-16 46 M hTCR lCD28 M 254 13.05

43 1235 Apr-16 46 M lTCR hCD28 M 236 13.97

43 1235 Apr-16 46 M lTCR lCD28 M 237 9.38

43 1235 Apr-16 46 M resting M 658 0

43 1235 Apr-16 46 M hCD28 N 225 38.65

43 1235 Apr-16 46 M hTCR N 487 87.71

43 1235 Apr-16 46 M hTCR hCD28 N 650 64.21

43 1235 Apr-16 46 M hTCR lCD28 N 285 26.09

43 1235 Apr-16 46 M lTCR hCD28 N 351 31.44

43 1235 Apr-16 46 M lTCR lCD28 N 180 17.49

43 1235 Apr-16 46 M resting N 401 0

2.2.4 T cell proliferation assay

Prior to stimulation with CHO-FcR cells and anti-CD3 or anti-CD28, naive and memory

T cells were labeled with CellTrace Violet dye (Life Technologies) according to the

manufacturer’s instructions. Five days following stimulation, T cell proliferation was
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analyzed by flow cytometry and proliferation was modeled using the Flowjo proliferation

platform. Total T cell numbers per sample were established relative to AccuCheck

counting beads (Invitrogen).

2.2.5 FACS markers validation

PBMCs were isolated from whole blood, as described above. Naive and memory CD4+

T cells were isolated by negative selection using human CD4+ T Cell Enrichment Kits

(EasySep™, STEMCELL Technologies). After six days of stimulation, as described above,

cells were observed by flow cytometry using two directly conjugated antibody panels

listed in Table 2.2 . Intracellular staining was done using the eBioscience FOXP3 staining

buffers.

Table 2.2: Panel of antibodies used in the validation of genes that were TCR or CD28 sensitive.

Panel 1 Panel 2
Epitope Fluorophore Epitope Fluorophore
CD25 (2A3) BV605 (BD) CD25 (2A3) BV605 (BD)
CD45RA (HI100) PerCP-Cy5.5 (eBioscienc) CD45RA (HI100) PerCP-Cy5.5 (eBioscienc)
CD69 (FN50) PE-Cy7 (BD) ICOS (DX29) BV711 (BD)
CD71 (M-A712) AF700 (BD) CD71 (M-A712) AF700 (BD)
CD40L (24-31) e450 (eBioscienc) OX40 (ACT35) PeCy7 (BD)
CTLA4 (BNI3) PE (BD) CD80 (L307.4) PE (BD)
CD28 (CD28.2) APC (eBioscienc) PDL1 (MIH1) FITC (BD)

CD27 (L128) BUV395 (BD)

2.2.6 RNA-seq

Naive and memory T cells were placed in 0.5 ml of Trizol (Invitrogen) and stored at

-80°C. Samples were thawed at 37°C before adding 100 µl chloroform. After reaching

equilibrium, samples were centrifuged for 15 minutes at 4°C at 10,000g. The collected

aqueous phase wasmixed 1:1 with 70% ethanol before proceeding withminElute columns

(Qiagen) for purification, according to the manufacturer’s protocol. RNA was quantified

using Bioanalyzer (Agilent Technologies, USA). The RNA was sequenced in two separate

batches. Libraries were prepared using Illumina TruSeq index tags and sequenced on

the Illumina HiSeq 2500 platform using V4 chemistry and standard 75 bp paired-end. The

first batch consisted of 56 samples that were multiplexed at equimolar concentrations

and sequenced across 14 lanes, to yield on average 71.3 million reads per sample. The
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second batch consisted of 18 samples that weremultiplexed at equimolar concentrations

and sequenced across 3 lanes to yield on average 61 million reads per sample.

2.2.7 RNA-seq data processing

Sequence reads were aligned to the GRCh38 human reference genome using STAR

(v2.5.0c) (Dobin et al., 2013) and the Ensembl reference transcriptome (v83). Gene counts

were estimated using featureCounts (v1.5.1) tools (Liao et al., 2014) from the subread

package and only reads assigned to the transcripts were used for further processing

(84-90% of reads were assigned).

To find genes that were upregulated upon stimulation, I first defined differentially

expressed genes using DESeq2 (v1.14.1) (Love et al., 2014) by performing pairwise compar-

ison of all conditions to the resting state, in a cell type specific manner, using Benjamini-

Hochberg controlled false detection range (FDR) ≤ 5% (Benjamini and Hochberg, 1995)

and an absolute fold-change ≥ 2. I then build a linear and a switch model of gene

expression using a likelihood ratio test (LRT) separately for naive and memory cells. In

the linear model, I assumed a linear increase of gene expression along with stimulus

intensity (incremental fold-change ≥ 1.5). Genes that did not follow the linear model

were tested for the switch model. Here, I assumed an “on-and-off” mode of expression,

where a gene is significantly upregulated (fold-change ≥ 2) in response to the presence

of either CD28 or TCR. In both of these models, I used all seven conditions, e.g. when

testing for CD28-sensitive genes I grouped the TCR alone stimulation with the resting,

since neither received CD28 signal. A gene was classified in one of the two categories

without overlap and prioritised for the linear model.

To control for the different batches in which I processed the blood, which accounted

for 12% of the observed variability, I performed batch correction prior to PCA using the

Combat algorithm from the sva package (Leek et al., 2012). To estimate the percentage

of the variance explained separately by each of the recorded variables, such as the

stimulus, the cell type, the gender of the donors, I fitted a linear model with only the

stimulus or the cell type as variables (method adapted from McCarthy et al., 2017).

I performed pathway enrichment analysis by testing whether different gene-sets were

over-represented in particular hallmark pathways (Liberzon et al., 2015). I used the
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Jaccard index to quantify the proportion of stimuli-specific genes present in a tested

pathway and assessed the statistical significance of the over-representation using a

permutation strategy. For that, within each cell type and condition, I randomly sampled

10,000 gene-sets of the same size as in the observed dataset, matching for the gene

length and expression levels.

2.2.8 ChIPmentation-seq (ChM-seq)

The ChM protocol was performed according to the protocol presented in Schmidl et al.,

2015 and adapted to work with the iDeal ChIP-seq Kit for Histones. After sorting the

cells were resuspended in pre-warmed full medium (IMDM, 10% FCS) at 1-2 million cells

per ml and allowed to recover in the incubator (37ºC, 5% CO2) for at least 30 minutes

The cells were then fixed by addition of formaldehyde to the medium to reach a final

concentration of 1% and were incubated for 5 minutes at 37ºC, followed by quenching

at room temperature with glycine for 5 minutes at a final concentration of 125 mM. The

cross-linked cells were subsequently washed twice with ice-cold PBS and snap-frozen

by immersion in liquid nitrogen.

Five hundred thousand crosslinked cells were washed using 250 µl IL1 buffer and resus-

pended in 250 µl IL2 lysis buffer, both of which contained 1X protease inhibitor cocktail

(PIC). Cells were left to lyse for 5 minutes at 4°C on a rotator and then centrifuged at 4°C

(3000g) for 5 minutes. The pellets were resuspended in 250 µl IS1 buffer and sonicated

using the Bioruptor®Pico (Diagenode) for 5 minutes for resting cells or 4 minutes for

stimulated cells (Diagenode). We kept a portion of the chromatin from two samples

aside, one naive and one memory stimulated with hTCR and hCD28, and used them as a

ChM-seq input.

The chromatin was immunoprecipitated using protein-A coated IP beads. Twenty mi-

croliters of beads were washed four times using 40 µl IC1 buffer on the magnetic rack

before being resuspended in 20 µl of IC1. The beads were mixed with 56 µl 5X IC1 buffer,

6 µl 50X BSA, 1.5 µl 200X PIC and 1 µg of H3K27ac (Cat. no. C15410196, Diagenode). We

added to the mix 100 µl of chromatin (equivalent to 200,000 cells) and incubated the

samples overnight at 4ºC at 10 rpm.

The beads were then washed on the magnet with 350 µl of iW1, iW2 and iW3 buffers and
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a final wash with 2X 1000 µl 10 mM Tris pH 8. The beads with the chromatin, as well as

the two input samples, were then resuspended in 29 µl ChM buffer (Tris pH 8 1M, MgCl2

1M, ChIP grade water) with 1 µl Tn5 and incubated for 10 minutes at 37ºC at 1500 rpm.

The tagmentation was stopped with the addition of 2X 350 µl iW3. Finally, the beads

were washed with 350 µl iW4. The chromatin from the beads was eluted using 96µl iE1

and incubated for 30 minutes at room temperature at 1500 rpm. The chromatin was

reverse cross-linked overnight using 4 µl of iE2 buffer. The DNA was then eluted in 30 µl

of water using the MinElute PCR CLeanup kit (QIAGEN). The DNA was the purified twice

using SPRI beads at 1.6x ratio using a Zephyr G3 SPE Workstation. The libraries were

amplified following the ATAC-seq library amplification protocol (Buenrostro et al., 2013),

but using NEBNext® High-Fidelity 2X PCR Master Mix (New England Biolabs). Eighteen

libraries were indexed and pooled in equimolar concentration and sequenced on three

lanes using the Illumina HiSeq 2500 platform and V4 chemistry using standard 75 bp

paired-end reads to yield on average 80 million reads per sample.

2.2.9 ATAC-seq

ATAC-seq was performed according to published protocol (Buenrostro et al., 2013), with

the following modifications. Fifty thousand cells were washed with 1 ml of ice-cold PBS.

The cells were then resuspended in the tagmentation buffer containing Tn5 transposase

(Illumina Nextera) and 0.01% digitonin and incubated for 30 minutes at 37ºC before

purifying the DNA using the MinElute PCR purification kit (QIAGEN). Sequencing libraries

were prepared using Nextera primers as described in the ATAC-seq protocol (Buenrostro

et al., 2013). Sixteen libraries were indexed and pooled in equimolar concentration and

sequenced on three lanes using the Illumina HiSeq 2500 platform and V4 chemistry using

standard 75 bp paired-end reads to yield on average 65 million reads per sample.

2.2.10 ChM and ATAC data processing

The quality of the sequence reads was assessed using the fastx toolkit and the adaptors

were trimmed using skewer (v0.2.2) (Jiang et al., 2014). Reads were mapped to the human

genome reference GRCh38 using the bwa mem algorithm (v0.7.9a) (Li and Durbin, 2009).

I only kept uniquely mapped reads, removed PCR duplicated reads and for the ATAC I

excluded mitochondrial reads using samtools (v0.1.9) (Li et al., 2009). I retained 83.3%

of ATAC and 73.8% of ChM reads. Genome browser tracks were created using BEDTools

2.2 Materials and Methods 37



(v2.22.0) (Quinlan and Hall, 2010) and the UCSC binary utilities. Furthermore, I generated

insert size distributions using PICARD tools (v2.6.0) CollectInsertSizeMetrics function

which can be indicative of over-sonicated chromatin and excess of adapters in the data.

The mapped reads were converted into bed files and chimeras were removed. Peaks

were called using MACS2 (v2.1.1) (Zhang et al., 2008) setting the parameters to -q 0.05

–nomodel –extsize 200 –shift -100 for ATAC, and –broad –broad-cutoff 0.1 –nomodel

–extsize 146 for H3K27ac ChM. For ChM, all samples were downsampled to to the same

read number (21.6 million reads) prior to peak calling against the input.

I used the fraction of reads in peaks (FRiP), the proportion of peaks with signal value

(fold-change compared to the background or the input) greater than 10, the insert size

distribution and the genome tracks to investigate the quality of the data. The median

FRiP score was 59.2% for ATAC and 73.5% for H3K27ac ChM. The proportion of peaks with

fold-change > 10 was 22.9% for ATAC and 4.8% for H3K27ac ChM. I concluded that the

quality of the data was high. I merged all the ATAC samples and called peaks again

using the parameters described above. For the H3K27ac ChM samples, I first merged

the donors within each cell type and condition and then randomly sampled 17 million

reads from each into one sample to reach the same read number as in the input. Since

I merged already QCed samples I used the –keep-dup flag when calling peaks with

MACS2, as the PCR duplicated reads for individual samples were already removed and

I expected to observe a small proportion of the same reads present in independent

samples by chance. I also increased the -q value threshold to 0.1 for both assays. The

resulting peak files were used as a reference to count the number of reads falling into

peak regions using featureCounts (Liao et al., 2014), therefore generating a quantitative

table of read counts specifically present across the different conditions and cell types.

To ensure the analysis focused on high confidence peaks I removed the bottom 10th

percentile of peaks with the lowest read counts in each dataset and obtained a final

count of 142,306 and 49,638 peaks for ATAC and ChM, accordingly. To define differentially

accessible regions (DARs) and differentially modified histone regions (DMHRs) the

dataset was processed using DESeq2. To find regions that were upregulated upon

stimulation, I compared all conditions to the resting state and used Benjamini-Hochberg

controlled FDR of 5% and an absolute fold-change ≥ 2.
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2.2.11 Binding expression target analysis

To identify regions of the genome that changed upon stimulation, which could subse-

quently regulate gene expression, I used Binding Expression Target Analysis (BETA) in

the plus mode (Wang et al., 2013b). I performed the analysis using both DMHRs and DARs,

as well as the list of regions that required one or the other stimulus. For example, TCR

specific DMHRs or DARs were defined as the regions that are present in TCR stimulation

but not in CD28 stimulation. I used the differential gene expression output from the

pairwise comparison between stimulated and resting states. The median distance of

interaction between an enhancer and gene promoter is estimated at 150 kbp (Mumbach

et al., 2017). I therefore used the same window size around the transcription start site

(TSS) of the differentially expressed genes to define boundaries for the analysis, along

with the transcription activation domains (TADs) identified in CD4+ T cells (Javierre et al.,

2016). That is, if the extended 150 kbp region fell beyond the TAD boundary I consid-

ered the TAD coordinates as the boundary for testing predictive effects of DMHRs and

DARs on gene expression. I relied on the ATAC-seq output for the transcription factor

enrichment analysis (p-value ≤ 0.01) as it generates narrow peaks allowing for a more

accurate estimation of the transcription factor binding sites (TFBS). I used the JASPAR

database of transcription factors and the Cistrome method to calculate transcription

factor enrichment (p-value ≤ 0.05).

2.2.12 Disease SNP enrichment for stimulus-sensitive genes

I collected the GWAS data for Crohn’s disease (CD), ulcerative colitis (UC; Jostins et al.,

2012), coeliac disease (CEL; Trynka et al., 2011), multiple sclerosis (MS; International Mul-

tiple Sclerosis Genetics Consortium (IMSGC) et al., 2013), rheumatoid arthritis (RA; Okada

et al., 2014), psoriasis (PSO; Tsoi et al., 2012), systemic sclerosis (SSc; Bossini-Castillo

et al., 2015) and type-1 diabetes (T1D; Onengut-Gumuscu et al., 2015). Additionally, I

used Bone mineral density (BMD) as a control trait by searching in the GWAS catalog for

"Bone Mineral Density". I excluded all variants that fell within the MHC locus and using

a genome wide p-value threshold of < 5x10-8. I defined the disease loci by mapping

all the single nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD) with the

reported index SNP, using R2 > 0.8 calculated across the European populations present

in the 1000 Genomes Project data, and extending the LD boundaries by 150 kbp on
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each side, to account for the possibility of distant gene expression regulation between

enhancers and gene promoters. This resulted in 234 unique regions associated to one

of the 8 tested traits.

I tested whether the stimulus sensitive genes fell within the SNP loci boundaries more

often than expected by chance using a permutation strategy. To build the null distribu-

tion I selected the same number of genes, matching for gene size and mean expression

level. I repeated the process 10,000 times.

Finally, I examined whether any of the SNPs used to define the LD boundaries over-

lapped with an H3K27ac or an ATAC peak identified in the specific stimulatory condition;

CD28 alone stimulation for CD28 sensitive genes and TCR alone stimulation for TCR

sensitive genes. The disruption of TFBS by SNPs was assessed using the SNP2TFBS

database (Kumar et al., 2017).

2.3 Results

2.3.1 Experimental approach

To study the influence of varying TCR and CD28 signals I sorted human blood CD4+

CD25- T cells and stimulated them with high (referred to as h) or low (referred to as l)

concentrations of soluble anti-CD3 (referred to as TCR) and cells expressing the CD28

ligand, CD86 (referred to as CD28) (Figure 2.1 A). As previously described (Manzotti

et al., 2006), Chinese hamster ovary (CHO)-CD86 cells provide a source of natural CD28

ligand in an otherwise irrelevant cell background. In this way CD28 engagement was

mediated via the the CD86 ligand, which has been documented to be the main ligand

driving T cell responses (Borriello et al., 1997). In order to deconvolute gene expression

programmes controlled individually by TCR and CD28, I also stimulated T cells with

either anti-CD3 (an antibody against the signalling component of the TCR complex) or

anti-CD28 antibodies alone, in the presence of CHO cells expressing Fc-gamma Receptor

II (CHO-FcR) to provide crosslinking. Since I used CHO cells expressing CD86 to provide

CD28 signal, individual antibodies were also crosslinked on CHO cells to account for

any CHO cell effects. Following a 16 hours stimulation, I sorted activated CD25+ cells

into naive (CD45RA+) and memory (CD45RA-) subsets. I used CD25 as an early marker of
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T cell activation, since cells had been depleted of regulatory T cells. To understand the

differences in naive and memory sensitivity to TCR and CD28, I profiled gene expression

with RNA-seq, chromatin accessibility with ATAC-seq and active enhancers and promoters

with H3K27ac ChIPmentation-seq. As expected, across different stimulatory conditions

I observed a variable proportion of activated T cells (11-78% of all cells) (Table 2.1 ).

However, by sorting only activated T cells I ensured that the measured gene expression

reflected cell activation state induced by different signal intensities, while not being

confounded by the variable percentage of cells that had undergone activation. As a

control, cells were cultured in the presence of fixed CHO cells expressing FcR in the

absence of stimulating antibodies. In this condition cells were not activated and were

sorted for low CD25 expression, henceforth they are referred to as resting T cells.

2.3.2 Naive and memory cells have cell type specific signatures

I first applied principal component analysis (PCA) to the RNA-seq data and observed

that PC1 reflected cell stimulation while PC2 corresponded to cell type (Figure 2.1 B).

Indeed, the majority of the gene expression variance was explained by the stimulation

(47%) and by the cell type (10%) (Figure 2.1 C). The separation of naive and memory

T cells by PC2 indicated clear differences in transcriptional responses between them.

Furthermore, the different conditions clustered together, capturing the gradient of

stimulation intensity in both cell types, with high levels of the combination of TCR with

CD28 (hTCR hCD28) stimuli being the furthest separated from unstimulated cells on

PC1 and intermediate intensity of stimuli mapping in between. Surprisingly, strong

CD28 alone (hCD28) was amongst the lower responding conditions in naive cells yet it

clustered with the more highly stimulated conditions in memory cells. Furthermore,

naive cells stimulated with strong CD28 alone clustered towards the memory cells along

PC2. Thus, the transcriptional program of cell activation is modulated by the intensity of

TCR and CD28 signals, and CD28 stimulation enriches for the characteristics of memory

T cells.

To confirm that I had successfully sorted naive andmemory cells I performed differential

gene expression analysis in the resting cells (fold-change ≥ 2 and false discovery rate

(FDR) ≤ 0.05) (Figure 2.2 A). The 289 genes upregulated in memory cells included genes

involved in the migration of T cells (chemokine receptors including CXCR3, CCR6 and
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Figure 2.1: Overview of study design and RNA-seq data. A. Overview of the study design. CD4+
T cells were isolated from eight healthy individuals and cultured in six different
stimulatory conditions, which included variable concentrations of anti-CD3 and anti-
CD28 stimuli. In parallel, resting cells were cultured as a control. To ensure I mea-
sured cellular response to successful stimulation, I generated sequencing data from
sorted activated naive and memory cells identified as CD4+CD25+CD45RAhigh and
CD4+CD25+CD45RAlow, respectively. B. Principal component analysis using the ex-
pression of all genes. The first two components explain collectively 53.7% of the
observed variability and correlate with stimulation strength and cell type. Each dot
corresponds to an individual sample, colored by stimulation and shaped according
to the cell type. C. The percentage of the total variance that can be explained by
stimulation and cell type.

GPR1, cell adhesion molecules such as CD58 (LFA-3) and B1 integrins), intracellular

signalling (phosphatases, calcium signalling molecules, e.g. SYT11, ITPRIPL1, and kinases,

e.g. CDKN1A), memory T cell survival and homeostasis (cytokine receptors (e.g. IL1R1,

IL2RB, IL12RB2 and IL18RAP), lectins and FAS) and transcription factors affecting T cell

differentiation (e.g. MAF, TBX21, RORC, BHLHE40 and PRDM1). PECAM1 (CD31), a well known

marker of a subset of naive T cells (Kimmig et al., 2002), was among the 33 observed

genes upregulated in naive cells. Thus, the differential gene expression profile validated

42 2 The role of co-stimulation in naive and memory T cells



my initial cell selection approach revealing clear and expected differences between

naive and memory populations. The majority of the identified genes have already been

documented to be differentially expressed between naive and memory cells, however, I

also observed several genes that have not been reported before, including STOM, AIM2

and THBS1 in memory cells, and FLT1 (VEGFR1) and GNAI1 expressed at a higher level in

naive cells. Recently, it has been suggested that THBS1 interaction with CD47 receptors

determines regulatory T cells and long-lived memory T cells (Grimbert et al., 2006; Van

et al., 2012). Importantly, I did not observe significant differences in gene expression

variance between naive and memory cells across the eight donors (Wilcoxon rank

sum test p-value = 0.48), indicating that the identified differentially expressed genes

were not driven by individual samples and reflected consistent biological differences

(Figure 2.2 B).

2.3.3 Naive and memory T cells operate different gene expression
programmes upon activation

To understand cell type specific responses induced by the different stimuli, I compared

gene expression profiles between resting and stimulated naive and memory T cells

(false discovery rate (FDR) ≤ 0.05 and fold-change ≥ 2; Figure 2.3 A). As expected, the

majority of upregulated genes was shared between the two cell types, however, naive

cells displayed a larger number of differentially upregulated genes (DEGs) (mean: 1,240

genes) than memory cells (mean: 840 genes), with the exception of CD28 stimulation

alone, where more genes were upregulated in memory cells. This likely reflects the

greater changes in gene expression levels resulting from transitioning to activation

from a deeper quiescent state in naive cells. Indeed, differential expression analysis

between naive and memory cells in the resting state revealed a larger number of genes

expressed highly in memory cells compared to naive.

When looking globally at the whole genome maps of H3K27ac and chromatin accessible

regions (ATAC-seq), memory cells were characterised by more peaks in the resting state

in both ATAC-seq (17.5% more peaks) and H3K27ac ChM-seq (10.6% more peaks). In

order to gain a better understanding of the dynamic responses upon stimulation, I

performed the same comparisons as with the RNA-seq data. At the mRNA level I ob-

served 35% of the genes to be differentially expressed upon stimulation, however the
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Figure 2.2: Differential gene expression analysis between resting naive and memory CD4+ T
cells. A. Volcano plot of differential gene expression test between resting naive
cells and resting memory cells. Genes colored in blue correspond to differentially
expressed genes with log2 fold-change ≥ 1 and FDR ≤ 5%. Labelled are DEG with
the lowest p-values. B. Wilcoxon rank sum test between the variance observed in
memory and naive cells in the resting state.

chromatin regulatory landscape showed far fewer changes; only 8% of the chromatin

changed in accessibility and 9% of the regions changed in histone acetylation. This

is probably due to the fact that the majority of these genes are already expressed at

low levels, which would be reflected by chromatin being already open and enhancers

being marked by H3K27ac acetylation. Furthermore, similarly to the differential gene

expression, the majority of differential histone modified regions (DMHRs; 54%) and
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differentially accessible regions (DARs; 58%) were shared across responses to TCR, CD28,

or both. However, as with the gene expression analysis, I observed a larger proportion of

acetylation changes driven by CD28 alone in memory compared to naive cells (Fisher’s

exact test p-value RNA = 4.9x10-11; H3K27ac < 2.2x10-16), indicating that CD28, in line with

my observations for the RNA, is also more potent in inducing chromatin changes in

memory T cells. Conversely, in response to strong TCR stimulation alone, I detected a

larger proportion of differentially acetylated H3K27 regions and chromatin accessible

sites in naive cells compared to memory cells (Fisher’s exact test p-value RNA < 2.2x10-16;

H3K27ac < 2.2x10-16; ATAC < 2.2x10-16; Figure 2.3 B). As such, the observed high number of

stimulus-specific differentially regulated regions suggests that there are unique chro-

matin remodelling changes acquired in both a cell type and stimulus-specific context.

Given the observation that TCR and CD28 induced a different number of changes in chro-

matin accessibility and histone modifications, I next assessed if there was a difference

in the proportion of these chromatin activity changes that were also predictive of the

observed differential gene expression (Wang et al., 2013b). I found that DARs and DMHRs

were predictive of a large proportion of upregulated genes (mean 46.5%; Figure 2.4 A).

Although, globally, TCR induced more changes in chromatin activity, the percentage of

gene upregulation predicted by DMHRs and DARs was similar between TCR and CD28

(Figure 2.4 B). I observed that the majority of genes for which I had assigned predictive

differentially regulated regions included peaks differentially regulated upon a specific

stimulus (naive TCR 82.3%; memory TCR 70.6%; naive CD28 62.23%; memory CD28 50.2%).

This indicates that each stimulus uniquely contributes to the gene regulatory landscape

of a cell.

Whilst the majority of the genes were assigned a single differentially regulated re-

gion, a set of 69 genes displayed dramatic alterations in multiple regions of chromatin

accessibility and histone modifications in response to one stimulus, indicating that

they are highly sensitive to a particular signal (Figure 2.4 C). Among the genes with the

highest number of differentially regulated regions (>10 regions) were IRF4, DUSP5, IRF8,

TNIP3 and CD28, all strongly modified by TCR alone. IRF4 protein abundance increases

alongside TCR signal intensity increase, as it does at the RNA level, and programs the

expansion of high-affinity T cell clones (Man et al., 2013). Other genes are known to be

upregulated in naive cells upon TCR stimulation, but the mechanisms by which this
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Figure 2.3: Pairwise comparison between resting and stimulated states. A. Number of upreg-
ulated genes upon stimulation defined from differential expression test between
stimulated and resting cells (pairwise), with fold-change≥ 2 and FDR≤ 5%. B. Percent-
age barplot of differentially expressed genes (DEG), differentially accessible regions
(DARs) and differentially histone modified regions (DHMRs) upon stimulation with
both stimuli, strong TCR alone or strong CD28 alone. The percentage was calculated
based on the total number of DEGs, DARs and DHMRs. Written inside the barplot is
the corresponding number. The coloring corresponds to the overlap between the
three stimulatory conditions.

occurs are unknown. For example it has been demonstrated that DUSP5-transgenic mice

have impaired thymocyte positive selection by inhibiting ERK activation (Kovanen et al.,

2008). Finally, for some of these genes it is the first time that a relationship between

their levels and TCR has been suggested, such as IRF8. In comparison, the genes induced

by strong CD28 alone revealed a smaller number of differentially regulated regions (>5

regions) but included interferon inducible chemokines CXCL9/CXCL10/CXCL11 as well as

the IL13/IL5 locus, which encodes for classical Th2 cytokines. While hyperacetylation of

the IL5 locus in response to co-stimulation, and the overall effect of CD28 in Th2 cell fate
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had been documented (Avni et al., 2002), it is the first time that a similar effect has been

observed in the CXCL locus. Therefore, despite the small percentage of regions changing

upon activation, there is a subset of loci that undergo large chromatin configuration

changes in order to regulate expression of nearby genes.
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Figure 2.4: Integration across assays of pairwise comparison between resting and stimulated
states. A. Proportion of differentially expressed genes that have at least one differ-
entially regulated region nearby (< 150 kbp) as detected by ATAC-seq and ChM-seq
on H3K27ac. The analysis was repeated using only the stimulus specific peaks. B.
Proportion of differential accessible regions (DARs) and differentially modified his-
tone regions (DMHRs) that regulate at least one differentially expressed gene (< 150
kbp away from TSS). C. Number or predictive DARs and DHMRs discovered per genes.
Marked are the genes with the highest number of predictive regulatory elements.

Among the genes with predictive chromatin changes I identified a 26.4 kbp region that

overlapped with the transcription start site (TSS) of TBX21, the gene that encodes for

T-bet transcription factor. The acetylation changes were specific to naive cells and

shared across all three stimuli (Figure 2.5 A). This revealed an increase in H3K27ac that

was driven by both TCR and CD28 while memory cells already displayed some acetylated

regions even in the resting state. In contrast, an example of a DAR detected in naive cells
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Figure 2.5: Examples of a gene expression predictive DHMRs and DARs. For the purposes of
plotting the two donors for each assay were combined and averaged A. A predictive
DHMR in naive cells that is a stimulation shared response (shared between hTCR
hCD28, hTCR alone and hCD28 alone) in the transcription start site (TSS) of TBX21,
the gene that encodes for T-bet. B. A DAR in naive cells that requires both hTCR and
hCD28 in proximity to the promoter of CD86. C. Four DARs in naive cells that require
TCR around the CD28 gene. D. A DAR in naive cells that requires CD28 in the promoters
of CXCL10 gene. E. Gene expression profiles for the four genes examined above in
four of the seven conditions.

that required both TCR and CD28 signals spanned 1 kbp and was located in proximity to

the promoter of the CD86 co-stimulatory molecule (Figure 2.5 B). Notably, this region

was strongly co-stimulation dependent in naïve cells, but had a more relaxed response

to stimulation in memory cells, where TCR, CD28 or both could trigger an opening in

chromatin. The CD28 gene had four DARs around its TSS and within its introns, and the

chromatin accessibility change appeared contingent on the presence of TCR specifically

in naïve cells (Figure 2.5 C). Lastly, an example of a DAR that required CD28 spanned

560 bp and localised on the TSS of CXCL10 gene (Figure 2.5 D). Here, CD28 alone in

memory cells and CD28 alone or as a co-stimulus in naive cells induced chromatin
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changes, whereas TCR alone did not have an effect. All of these genes (Figure 2.5 E) are

examples that showcase the stimulus-specific predictability of histone modifications

and chromatin accessibility.

Finally, I investigated the expression and regulation of IL2, a gene that has been widely

demonstrated to be co-stimulation dependent in memory cells (Ndejembi et al., 2006).

IL2 gene expression was upregulated in all but memory cells stimulated with low doses

of CD28 and TCR (Figure 2.6 A). The biggest upregulation was observed in response to

a combination of the two stimuli in high dose in both cell types, and in response to

hCD28 only in memory cells. There were four chromatin accessible regions detected

by ATAC-seq near the IL2 gene, all of which were more open in memory compared to

naive cells (Figure 2.6 B). Similarly, the H3K27ac profile around the gene highlighted

greater activity levels in memory compared to naive cells. Interestingly, in memory cells

both the chromatin activity and the accessibility decrease upon stimulation, despite

the increase observed in gene expression.
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Figure 2.6: Gene expression and chromatin regulation of IL2. A. IL2 gene expression per condi-
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combined and averaged for plotting purposes.
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2.3.4 T cell effector functions are predominantly controlled by CD28

Based on the above observations I sought to better understand the role of each stim-

ulatory signal in gene upregulation in the two cell types. To classify genes as either

CD28 or TCR-sensitive, I used two models (linear and switch modes) of gene expression

where the linear model reflects changes in stimulation intensity whereas the switch

model reflects a digital on/off state (Figure 2.7 A). In both cell types together, I was able

to assign a unique stimulus sensitivity to 1,567 genes, meaning that the expression of

these genes was either sensitive to TCR or CD28 intensity. I observed that the majority

of stimulus-sensitive genes (88%) followed the linear model (Figure 2.7 B).

I next assessed if naive and memory cells differed in sensitivity to the two stimuli. I

observed that most of the stimulus-sensitive genes in naive T cells were TCR-sensitive

(1,057; Figure 2.7 C), whereas a smaller number of genes was CD28-sensitive (n=363).

However, a larger number of genes was CD28-sensitive (n=351) than TCR-sensitive (n=299)

in memory cells. As such, a both TCR and CD28 sensitive genes were unevenly distributed

between the two cell types, with a shift towards naive cells for TCR genes (Fisher’s exact

test p-value < 2.2x10-16) and a shift towards memory cells for CD28 genes (Fisher’s exact

test p-value < 2.14x10-5). Based on the pairwise comparisons across the six conditions

against the resting state, I defined a group of genes that was upregulated upon stimula-

tion. Of these, I observed that the expression of 1,228 genes in naive cells (55%) and only

490 genes in memory cells (29%) was sensitive to a single stimulus (Figure 2.7 D). This

indicated that the majority of the upregulated genes in memory cells either responded

to both stimuli (i.e. TCR or CD28 were both capable of driving the response) or they

were truly CD28 co-stimulation dependent, requiring TCR and CD28 together.
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Figure 2.7: Models of gene expression upregulation alongside stimulus intensity increase. A.
Classification of genes as CD28- or TCR-sensitive using different models of gene
expression. In the linear model, I required a linear increase of gene expression along
with stimulus intensity (incremental gene expression fold-change ≥ 1.5), separately
evaluating naive and memory cells. Genes that did not follow the linear model were
tested for the switch model. Here, I assumed an “on-and-off” mode of expression
where a gene is significantly upregulated (fold-change ≥ 2) in response to the pres-
ence of either CD28 or TCR. In both of these models, I used all seven conditions, e.g.
when testing for CD28-sensitive genes I grouped the TCR alone stimulation with the
resting, since neither received a CD28 signal. A gene was classified in one of the two
categories without overlap and prioritised for the linear model. B. Number of TCR
and CD28 sensitive genes identified by the linear and the switch model in the two
cell types. C. Comparison of the number of genes in naive and in memory cells under
TCR or CD28 control. D. Number of upregulated genes upon stimulation. The colour
represents different stimulatory dependencies. Grey indicates a small number of
peaks that were only shared between hTCR alone and hCD28 alone stimulations.

Since the majority of human T cell stimulation experiments use both TCR and CD28 to

activate cells, it is unclear which cell functions are controlled by TCR and which by CD28,

and how they differ between naive and memory cells. Using this approach, I found

that many classical T cell activation markers such as EGR2, EGR3 and CTLA4 were TCR-

sensitive in both cell types, while TNFRSF8 and CD69 were TCR-sensitive in naive cells

only (Figure 2.8 A), possibly explained by the fact that they were already expressed at

high levels in resting memory cells (resting memory and naive cells TNFRSF8 log2FC = 1.19

and CD69 log2FC = 1) and thus not detected as differentially expressed upon stimulation

of memory cells. In contrast, I found that the majority of cytokines and chemokines

were CD28-sensitive (Figure 2.8 B and C). Among the chemokines, I observed that CXCL9,

CXCL10, CXCL11 and the CCL25 CC chemokine were CD28-sensitive in both cell types. The
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expression of cytokines essential for the differentiation of the major Th subsets were

also under CD28 control, including IFNG (Th1), IL4 and IL13 (Th2) and IL17A, IL17F and IL22

(Th17). In addition, I observed that the expression of the Treg transcription factor, FOXP3,

was also CD28-sensitive. Taken together, these results demonstrate that a number

of pathways associated with the effector functions of CD4+ T cells are predominantly

controlled by the CD28 pathway in both naive and memory cells.

Different co-stimulatory and co-inhibitory receptors along with their ligands function

at different stages of the T cell activation timeline, which might explain a different

requirement on TCR or CD28 for their expression (Chen and Flies, 2013). I therefore

investigated the control of expression of co-stimulatory ligands and receptors, since

they play a key role in T cell activation (Figure 2.8 D). The expression of CD28 itself was

only upregulated upon strong TCR stimulation alone, suggesting that TCR signalling

makes cells more receptive to CD28 engagement. However, the presence of CD28

stimulus impeded an increase in its expression, highlighting that this is not a self-

reinforcing process. Other co-stimulatory receptors involved in the co-regulation of T

cells were CD28-sensitive, in both naive and memory T cells. These included, CD27-CD70

co-stimulatory pair and CD274 (PD-L1). On the other hand, CD80 and ICOS were CD28-

sensitive specifically in memory cells. Thus, I was able to detect different modes of

regulation for CD28, CTLA4 and ICOS, despite the fact that they are all encoded within the

same 260 kbp locus. This implies complex mechanisms of gene expression regulation

in the two cell types and a fine-tuned control highlighting that co-located genes can be

regulated by different modes of stimulation.

In order to confirm whether the observed linear changes at the RNA level were also

observed at the protein level, I stimulated naive and memory cells using the same

stimulation conditions and carried out flow cytometry analysis six days post-stimulation.

I used two antibody panels; one containing selected antibodies for genes that had been

determined to be TCR sensitive (CD25, CD28, CD40L, CD69 and CTLA4), and one with

antibodies for genes that were found to be CD28 sensitive (CD25, CD27, CD80, ICOS, OX40

and PD-L1). I was able to replicate the linear relationship for all of the TCR sensitive

genes in both cell types (Figure 2.8 E). On the other hand, I was not able to demonstrate

a linear relationship at the protein level between any of the selected CD28 sensitive
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genes. This suggested that CD28 sensitive genes might be subject to more complex

post-transcriptional regulatory events than TCR sensitive genes.
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Figure 2.8: Examples of TCR and CD28 sensitive genes in naive andmemory cells. A+B. Selected
examples of TCR- or CD28-sensitive genes. The x-axis corresponds (A) to the level of
TCR (anti-CD3 antibody in µg/ml) or (B) to the level of CD28 (proportion of T cells to
CHO-CD86 cells) and the y-axis corresponds to the log2 counts of gene expression.
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that are expressed in the dataset. Colouring represents the log2 fold change of gene
expression E. Selected examples of protein levels for genes that were found to be
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2.3.5 DNA replication and proliferation are driven by different stimuli in naive
and memory T cells

To characterise whether genes sensitive to CD28 or TCR regulate the same cellular

processes in naive and memory T cells I tested if these genes were over-represented

in hallmark functional pathways (Liberzon et al., 2015) (Figure 2.9 A). I observed seven

shared pathways enriched in both cell types. For example, IL2 signalling through STAT5

and TNF-α signalling via NF-κB was significantly enriched in both naive and memory

cells and sensitive to both TCR and CD28. However, the expression of the majority of

genes broadly classified as immune cell pathways, such as IL6 signalling through the

Jak/Stat3 and interferon α and γ response, were CD28-sensitive in both cell types. In

contrast, genes that are targets of Myc and E2F transcription factors were controlled by

TCR in naive cells, which is concordant with MYC and E2F6 genes being TCR-sensitive as

well as with previous studies in mice (Allison et al., 2016).

Interestingly, I observed that some pathways were differentially sensitive to TCR and

CD28 in the two cell types. Most notably, the G2M checkpoint, which marks DNA replica-

tion and cell division, was CD28-sensitive in memory cells but TCR-sensitive in naive

cells, suggesting that commitment to cell division is more dependent on TCR in naive

cells but driven by CD28 in memory cells. To functionally test this observation I stimu-

lated CellTrace Violet (CTV) labelled naive and memory T cells with either anti-CD3 or

anti-CD28 crosslinked by CHO cells expressing FcR (Figure 2.9 B). Five days following stim-

ulation, T cell division was measured by flow cytometry. In accordance with the results

from gene expression, naive T cells proliferated extensively following TCR crosslinking

but mounted poor responses to CD28. In contrast, cross-linking CD28 was sufficient to

induce division in memory cells whereas TCR stimulation was clearly much less effective.

Thus, although combined TCR and CD28 co-stimulation is generally utilised to trigger T

cell proliferation, this data indicates a division of labour between these stimuli where

control of cell cycle in naive cells is generally TCR-sensitive, whilst in memory cells it is

more dependent on CD28.

I noticed three genes (CDC6, CDC20 and CHEK1) driving the enrichment of the G2M path-

way, which were TCR sensitive in naive cells but switched to CD28 sensitivity in memory

cells. I therefore sought to identify if there were more “switching” genes present in
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the dataset, i.e. genes sensitive to the different stimuli between the two cell types.

I identified a group of 18 genes that were TCR-sensitive in naive cells and changed

to CD28 sensitivity in memory cells. Among others, I identified transferrin receptor

TFRC (CD71) and DNA replication initiation factor MCM10 (Figure 2.9 C and Table 2.3 ).

Together these data highlight the enrichment of cell cycle/DNA replication pathway as

targets for CD28 in memory T cells which, in contrast, are controlled by TCR in naive cells.

Table 2.3: List of switcher genes. N: Naive cell; M: Memory cell

Gene LOG2FC M CD28 FDR M CD28 LOG2FC N TCR FDR N TCR
TRNP1 0.635 9.08x10-5 0.627 2.06x10-3

CDC20 0.636 1.56x10-4 0.88 2.03x10-9

AK4 0.756 0.0351 1.407 7.36x10-6

DTL 1.153 8.09x10-8 0.807 1.32x10-3

MTHFD2 1.149 0.0134 0.923 1.04x10-4

CCL20 1.075 3.34x10-4 0.971 1.87x10-3

TFRC 0.691 2.47x10-4 0.91 5.16x10-8

STC2 3.051 2.85x10-3 1.534 4.81x10-4

EPB41L4B 0.771 7.18x10-4 0.968 3.82x10-4

TXN 0.68 2.69x10-4 0.683 1.86x10-4

MCM10 1.173 1.62x10-8 1.107 2.83x10-5

DNAJC12 1.011 2.18x10-3 1.015 3.72x10-5

DGAT2 1.07 5.53x10-3 0.75 2.99x10-6

CHEK1 0.727 2.31x10-9 0.603 1.57x10-8

NETO2 0.807 1.45x10-4 1.355 1.59x10-5

NLN 0.635 6.08x10-3 0.919 5.06x10-6

CDC6 0.658 1.74x10-4 0.734 4.65x10-7

NME1-NME2 1.072 0.033 1.054 5.67x10-7
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2.3.6 AP1 initiated transcriptional cascade is co-stimulation dependent in
memory cells

To understand how TCR and CD28 stimuli exert effects on gene expression I tested for

enrichment of transcription factor binding sites (TFBSs) in DARs identified by ATAC-seq

that were concordant with gene expression (Figure 2.10 A). I tested 242 transcription

factors with detectable levels of gene expression in the dataset.

I identified 5 different motifs enriched in naive cells and 20 motifs in memory cells

(p-value ≤ 0.01). In naive T cells I observed an enrichment for Blimp-1, a transcrip-

tional repressor that maintains T cell homeostasis (Martins et al., 2006), combined with

interferon response elements, IRF2, IRF3 and IRF8. Increases in TCR signalling have

been shown to induce the IRF4 transcription factor, which mediates Blimp-1 abundance

in mice (Man et al., 2013). As expected, the enrichment was driven by TCR, with little

enhancement in response to CD28 co-stimulation. Blimp-1 and the identified IRFs recog-

nize a similar motif (Figure 2.10 B), and antagonize each others binding in vitro (Doody

et al., 2010).

In memory T cells I observed that the profile driven by TCR was similar to naive cells,

consisting of a combination of Blimp-1 with interferon response elements. However,

in marked contrast, a more robust response was observed in the presence of CD28

co-stimulation. Notably, this was characterised by the enrichment of AP1 transcrip-

tion factors (Figure 2.10 A). Specifically, only IRF4, JunD and BATF transcription factor

binding sites co-occurred in regions that changed in response to strong TCR alone,

whereas c-Fos, FOSL1, c-jun, jun-B and JDP2 all required the presence of CD28. C-jun

and c-Fos constitute the backbone of AP1, a transcription factor that plays an important

role in the induction of the immune response. Thus my observations are consistent

with previous work which suggested that CD28 regulates the expression and activity

of AP1 transcription factors (Shapiro et al., 1997; Fraser et al., 1991; Edmead et al., 1996).

Interestingly, BATF and c-jun transcription factors can also form a heterodimer and

cooperate with IRF4 and recognise AP1–IRF composite elements (AICEs) in pre-activated

CD4+ T cells (Figure 2.10 B) (Li et al., 2012). These transcription factors play a crucial role

in the initiation of transcriptional programs specific to T cell activation and cell division.
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Figure 2.10: Transcription factor enrichment in TCR, CD28 and TCR+CD28 induced peaks. A. Tran-
scription factor binding sites (TFBS) enriched in the differentially regulated ATAC-seq
peaks that were assigned to predict gene expression changes. B. Position weight
matrices (PWMs) for the enriched TFBS motifs.

2.3.7 Immune GWAS loci are enriched for CD28 sensitive genes

The role of T cell activation in the development of immune-mediated diseases is well

established and single nucleotide polymorphisms (SNPs) nearby genes relevant to T cell

activation, differentiation and trafficking have been implicated in autoimmune diseases

through GWAS (Trynka et al., 2013; Farh et al., 2015; Hu et al., 2014; Okada et al., 2014).

Therefore, I sought to investigate if immune disease associated loci were enriched for

the genes identified as TCR or CD28-sensitive, thereby implicating the involvement of

these stimulatory pathways in disease pathogenesis.

In the enrichment analysis I tested eight immune-mediated conditions, Crohn’s disease

(CD), ulcerative colitis (UC), celiac disease (CEL), rheumatoid arthritis (RA), type-1 dia-

betes (T1D), systemic sclerosis (SSc), multiple sclerosis (MS) and psoriasis (PSO). I used

bone mineral density (BMD) as a negative control as I would not expect to observe sig-

nificant enrichment among BMD loci. The majority of the tested immune diseases were
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more strongly enriched (permuted p-value < 0.01) for CD28-sensitive than TCR-sensitive

genes. An exception was T1D where genes sensitive to TCR showed a higher enrichment

(Figure 2.11 A). In addition, I observed that TCR-sensitive genes were enriched in CEL loci

in both cell types (permuted p-value < 0.0097) and in RA (permuted p-value = 0.0096)

and MS (permuted p-value = 0.0054) specifically in memory cells. Taken together, this

suggests that the variants associated with common immune-mediated diseases could

regulate the expression of genes sensitive to CD28 and through this pathway modulate

the outcome of T cell activation.

The majority of immune disease associated genetic variants fall in the non-coding

regions of the genome and previous studies showed that disease associated variants

are enriched in regions highlighting active enhancers (Trynka et al., 2013; Trynka et al.,

2015). I therefore investigated if disease SNPs map within active or open chromatin

regions as defined by H3K27ac or ATAC peaks near the genes driving the enrichment.

Given that the majority of peaks were shared between the cell types and stimuli, these

chromatin marks were uninformative in discriminating if disease SNPs were more sig-

nificantly enriched in specific conditions. However, I observed that, on average across

traits, 73% of the genes driving the enrichment also had at least one disease associated

variant overlapping an active promoter or enhancer, identified based on the presence

of H3K27ac. Among the GWAS loci with the highest number of SNPs falling in regulatory

regions I identified a single locus that contributed to the enrichment observed for CD28

sensitive genes in both cell types for CEL, CD, UC and RA. The locus overlaps with STAT1

and MYO1B. STAT1 encodes for a transcription factor that responds to IFN-γ signalling

and plays an important role in cell survival upon a pathogenic attack (Krause et al.,

2006). In contrast, the TCR-sensitive CTLA4 gene fell within a GWAS locus with the highest

number of SNPs falling in regulatory regions in both cell types, and contributing to the

enrichment observed in CEl, T1D and RA.

I then tested whether any of these SNPs disrupted a TFBS, limiting the analysis to the TFs

that had previously been identified as enriched. I found 13 unique SNPs that disrupted a

binding motif (Table 2.4 ). Two SNPs, associated with MS and in high LD with the reported

index variant rs1021156 (R2>0.8), disrupted the IRF TFBS within the ZC2HC1A/IL7 locus

(Figure 2.11 B). The first one, rs3808619 localised in the promoter of ZC2HC1A and the

risk allele led to decreased binding by IRF family of transcription factors (Figure 2.11 B).
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The second variant, rs60486739, located in intron 3 of IL7, and the minor allele also

led to increased binding by IRF transcription factors (Figure 2.11 B). Both genes were

sensitive to CD28 stimulation in memory cells and the H3K27ac peak that contained the

rs60486739 variant was only present in stimulated memory cells, suggesting a potential

functional role of the variant in modulating TF binding in this enhancer and affecting

the expression levels of the gene.

Table 2.4: Transcription factor binding sites in open chromatin or H3K27ac peaks that are dis-
rupted by immune-disease associated variants. SNP: Disease SNP residing within an
ATAC peak and disrupting TFBS; All: SNP alleles; Gene: Gene that is stimulus-sensitive
and maps to the disease locus; Stim.: Stimulus to which the gene is sensitive; Cell: Cell
type in which disease gene shows stimulus sensitivity, M corresponds to memory and
N to naive; TF: Transcription factor recognising the binding site; ∆PWM: Difference in
PWM score between the reference and the alternative allele; Trait: Disease for which
the association was reported (T1D - type-1 diabetes, CEL - celiac disease, CD - Crohn’s
disease, UC - ulcerative colitis, RA - rheumatoid arthritis, MS - multiple sclerosis, PSO -
psoriasis, SSc - systemic sclerosis).

SNP All Gene Stim. Cell TF ∆PWM Trait
rs2852151 G/A SEH1L TCR N RELA -132 T1D, CEL

rs3181365 A/T TNFSF15 CD28 M BLIMP1 -249 CD, UC

rs6715826 T/G MYO1B, STAT1 CD28 M BLIMP1 -55 CEL, RA,

CD, UC,

MS

rs2548530 T/C ERAP2 CD28 N IRFs -159 CD, UC

rs10061936 T/C ERAP2 CD28 N IRFs -50 CD, UC

rs9392504 G/A IRF4 TCR N, M IRFs 93 CEL, RA

rs4679081 T/C TRIM71 TCR M MEF2C, IRFs -32, -14 CEL, MS

rs2115592 T/C REL TCR M IRFs, BLIMP1 382, 14 CEL, RA,

MS

186498:20:00 C/CT SOCS1 CD28 N, M IRFs -24 MS

rs60486739 G/A IL7, ZC2HC1A CD28 M IRFs 311 MS

rs3808619 A/C IL7, ZC2HC1A CD28 M IRFs -71 MS

rs11249219 C/T CLIC4 CD28 M IRFs -24 CEL, PSO

rs3784789 C/G CYP1A1,

CYP1A2

CD28 N SPI1 -172 CEL, SSc
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Figure 2.11: TCR and CD28 sensitive genes enrichment in immune GWAS loci. A. Enrichment of
TCR- and CD28-sensitive genes in immune-mediated disease loci. Bone mineral
density (BMD) is used as a negative control. (Crohn’s disease - CD, ulcerative colitis -
UC, celiac disease - CeD, type-1 diabetes - T1D, rheumatoid arthritis - RA, systemic
sclerosis - SSc, multiple sclerosis - MS, psoriasis - PSO). B. MS associated locus
containing two genes, ZC2HC1A and IL7, that are CD28-sensitive. In the upper panel
in red are indicated all the SNPs in LD with previously reported GWAS index variant,
rs1021156. Of these, the two highlighted variants, rs3808619 and rs60486739, overlap
CD28-upregulated H3K27ac peaks and are predicted to disrupt and IRF binding site.
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2.4 Discussion

Productive T cell activation is thought to involve recognition of antigen by the TCR in

association with co-stimulatory signals via receptors such as CD28 (Chen and Flies,

2013). However, the relative quantities of both signals are likely to be highly variable

depending on the setting of T cell activation. There is evidence to suggest that naive and

memory cells have different requirements for CD28 co-stimulation, and a widely held

view is that CD28 co-stimulation is less required for activation of memory than naive

T cells (Dubey et al., 1995; London et al., 2000; Croft et al., 1994; Luqman and Bottomly,

1992). Understanding the requirements for CD28 co-stimulation during immune re-

sponses is important for many therapeutic approaches including immune suppression

in autoimmunity and transplantation, as well as cancer immunotherapy.

Previous genomic studies have solely focussed on the additional effects of CD28 as a

co-stimulus, and not on varying the levels of CD28 itself, and were carried out in popu-

lations of mixed cells which includes cells that have successfully undergone activation

as well as the resting cells (Diehn et al., 2002; Wakamatsu et al., 2013; Allison et al., 2016).

The data presented here reveal that CD28 has an important impact on memory T cells,

particularly their proliferation. I was able to reach this conclusion thanks to three key

components in the experimental design: (i) I specifically isolated and profiled only

stimulated cells, therefore reducing the confounding effect of variable cell activation

across different cell cultures, (ii) I separately assessed naive and memory cells, and (iii)

I provided the first genome-wide perspective of gene expression regulation through

mapping RNA and chromatin changes induced by strong CD28 stimulation in the absence

of TCR. Thus, although providing CD28 on its own might not be physiological, this system

allowed me for the first time to disentangle genes that are TCR or CD28 sensitive. I did

not assay the CD25- cells within each experimental condition as I expected those to

mostly represent resting cells. However, future time-course RNA-seq experiments could

provide further insights into the dynamic nature of CD28 stimulus on memory cells and

determine whether the totality of cells eventually gets activated. Recent research in

CD8 naive T cells suggests that a weaker stimulus would indeed not affect the type of

the response, but the time it takes to be initiated (Mehlhop-Williams and Bevan, 2014;

Richard et al., 2018).
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I observed a significant upregulation of genes in memory T cells in response to stim-

ulation with CD28 alone that were related to cell cycle, suggesting a role for CD28 in

memory cell proliferation. Indeed, I validated this directly by stimulating T cells in

vitro and demonstrating proliferation in memory T cells following activation with CD28

alone. Furthermore, I observed a significant upregulation of effector cytokines and

chemokines in response to CD28, indicating that CD28 is also key to cell effector func-

tions. However, the experiment was performed on a mixed memory cell population of

effector and central Th cells, which differ in their levels of expression of CD28 (Koch

et al., 2008). The differences in the expression levels of CD28 might have an impact in

the immune response initiated, given that influenza infected mice treated with CTLA4Ig

shift their memory T cell pool to one predominantly composed of central memory cells,

while influenza specific memory cells in untreated mice were predominantly effector

cells (Ndejembi et al., 2006). This could explain why activated effector memory T cells

produce cytokines more efficiently than central memory T cells (Barski et al., 2017).

Finally, the variability in expression of the CD28 receptor between young and old is only

significant in effector memory T cells (Koch et al., 2008), suggesting that the ability of

memory T cells to get activated is directly concordant with their ability to sense CD28,

and as I have here demonstrated, initiate proliferation. Therefore, the lack of CD28

signal might contribute towards immunosenescence.

The data presented here provide a new context for the interpretation of several previ-

ous observations on CD28 function. Firstly, the ill-fated CD28 superagonist antibody

(TGN1412) trial for B-cell chronic lymphocytic leukemia and RA, which tested the ability

of CD28 co-stimulation to specifically expand and activate Tregs, revealed a powerful

effector response to CD28 stimulation driven by effector memory T cells (Hünig, 2012).

Secondly, recent data indicated that human Treg cells can be expanded by utilising

CD28 antibodies alone (He et al., 2017). This is in line with my observations, given that

Tregs predominantly consist of memory cells and that CD28 stimulation upregulates

FOXP3. Thirdly, there is now increasing evidence using conditional deletion of CD28

in mice that memory T cell responses are dependent on CD28 stimulation (Linterman

et al., 2014; Ndlovu et al., 2014; Fröhlich et al., 2016). Finally, I showed that a strong TCR

signal alone is sufficient to induce the expression of key drivers of cell division and

consequently trigger proliferation of naive T cells, but surprisingly had smaller effect

on the proliferation of memory T cells. As such, I conclude that memory cells are not
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simply more sensitive to activation signals, but that there is a true difference in the TCR

and CD28 requirement between the two cell types. This is further supported by a recent

study which demonstrated that naive CD8 T cells proliferate in response to low antigen

concentrations, in contrast to memory T cells, which while detect the antigen, fail to

engage the TCR signalling cascade (Mehlhop-Williams and Bevan, 2014). Taken together,

this data provides a genomic explanation for the requirement of CD28 in the activation

and effector functions of memory T cell.

My findings have further implications for understanding susceptibility to complex

immune-mediated diseases, where T cell activation is one of the hallmark pathobiolog-

ical processes. GWAS of immune diseases have mapped hundreds of associated risk

loci, many of which harbour genes of immune function. However, the specific role of

the identified genes in T cell activation processes is unclear. By examining T cell gene

expression sensitivity in response to specific stimuli I demonstrated that GWAS loci are

enriched for CD28-sensitive genes, rather than TCR-sensitive genes, thereby increas-

ing support for the role of T cell activation via CD28 co-stimulation in susceptibility

of immune-mediated diseases. For example, a recent study identified that cytokine

oncostatin M (OSM) is expressed at higher levels in inflamed intestinal tissues from IBD

patients compared to healthy controls (West et al., 2017). In the dataset presented here

OSM is CD28-sensitive and is among the genes driving the enrichment of CD28-sensitive

genes in IBD. The importance of CD28 co-stimulation in immune-mediated diseases is

further supported by data from the CTLA-4 field (Kuehn et al., 2014; Lo et al., 2015). Loss

of CTLA-4 in mice and heterozygous mutations in humans reveal profound autoimmunity

where enteropathy is a consistent feature (Tivol et al., 1995; Schubert et al., 2014; Kuehn

et al., 2014). The fact that the CTLA-4 pathway directly regulates CD28 stimulation by

competing for the same ligands strongly suggests that CD28 plays a key role in suscep-

tibility to immune-mediated diseases and that increased CD28 co-stimulation may be

sufficient for effector T cells to support their survival, proliferation and secretion of

proinflammatory cytokines (Khattri et al., 1999; Qureshi et al., 2011). The data shows that

memory T cells are highly sensitive to CD28 stimulation, which is consistent with these

cells being under the control of CTLA-4.

Lastly, the concept that CD28 is involved in the proliferation of memory T cells is in-

triguing in the light of recent data related to checkpoint blockade for cancer treatment.
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It has been suggested that PD-1 blockade, which is important to the reinvigoration of

exhausted effector T cells, requires CD28 signalling (Hui et al., 2017; Kamphorst et al.,

2017). Again, this aligns well with the data presented here and supports the concept

that differentiated memory T cells in tumours utilise CD28 and that CTLA-4 and the PD1

blockade are known to trigger autoimmunity (Nasr et al., 2017; Bertrand et al., 2015).

Taken together, this chapter provides new insights into the role of TCR and CD28 co-

stimulation in the activation and proliferation of human naive and memory CD4+ T cells,

and the influence of these stimuli on immune disease susceptibility.
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3Regulation of gene expression in

regulatory T cells in response to cell

stimulation

Collaboration note
The data acquisition described in this chapter was performed in collaboration with

Natalia Kunowska, who was a Senior Research Assistant in Gosia Trynka’s lab at the

time. Natalia also optimised the ChM-seq protocol. I performed the flow cytometry

validation and Blagoje Soskic analysed the flow cytometry data. I did all the genomic

data analysis. RNA-seq library construction and sequencing of all materials was done

by DNA Pipelines core facility at Sanger.

3.1 Introduction

Regulatory T cells (Tregs) play an essential role in the homeostasis of the immune

system and the downregulation of inflammation by suppressing the proliferation and

effector function of other T cells. Therefore, Treg cells constitute an essential component

in the prevention of autoimmunity and the maintenance of self-tolerance. Tregs are

characterised by high expression of the forkhead box transcription factor (TF) FoxP3,

which is essential for their development and function (Fontenot et al., 2005b). Mutations

of the FOXP3 gene in humans leads to immune dysregulation polyendocrinopathy,

enteropathy, X-linked syndrome (IPEX), an autoimmune disease characterised by very

low Treg cell numbers (Bennett et al., 2001).

This has established FoxP3 as the master regulator of Treg cell fate. However, genetic

and epigenetic studies have highlighted that the complex regulation of Treg cell identity

does not depend on FoxP3 alone. Differential gene expression analysis between Tregs

and CD4+ T helper cells in resting and activated states have shown that the Treg gene

signature is one distinct from other T cells. A number of molecules form the Treg
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gene signature, including the phosphatase DUSP4, the membrane protein LRRC32, the

receptor CTLA4 and the TFs IKZF2 and IKZF4 (Pfoertner et al., 2006; Birzele et al., 2011). It

has been shown that the development of Treg cells is contingent on the establishment

of a Treg specific DNA hypomethylation pattern which gets established in the thymus

(Ohkura et al., 2012). Hypomethylation of CTLA4, IL2RA and IKZF4 therefore precedes

FoxP3 expression, but requires TCR stimulation and is necessary for lineage stability

and suppressive capacity. Furthermore, the enhancers of CTLA4, IL2RA and IKZF2 are

active, as assessed by H3K27 acetylation from a pre-Treg stage (Kitagawa et al., 2017).

This places a number of different genes at the epicentre of Treg identity, not all of which

have been thoroughly studied in different cellular settings.

Given the importance of regulatory T cells (Tregs) in the downregulation of the immune

system and the implications of their role in the pathogenesis of autoimmune diseases

(Buckner, 2010), a more comprehensive understanding of Treg cell regulatory processes

is necessary. Specifically, it is unclear how Tregs gene expression regulation profile

changes upon activation. T cells are typically activated using a combination of anti-CD3

and anti-CD28 antibodies or PMA combined with ionomycin, which mimics a strong

TCR signal. PMA diffuses into the cell and directly stimulates protein kinase C which

initiates the MAPK cascade, while ionomycin triggers a Ca2+ influx into the cell (Weiss

and Imboden, 1987). Combined, they can activate the three TF pathways, NFAT, NF-κB and

AP1. Since Treg cells constitute a small percentage of CD4+ T cells, the implementation

of high-throughput assays has been difficult due to limitations in obtaining sufficient

amount of cellular material. For this reason, there are scarce resources of data available

and the majority of the work has been carried out in mice.

In this study, I adapted the Chipmentation (ChM)-seq protocol, a recently published

modification to the widely used ChIP-seq assay, to generate high quality data. For

the optimisations I used the Jurkat cell line followed by primary human Treg cells.

Comparison with the traditional ChIP-seq assay showed high correlation between the

two methods, both in the cell line and in primary cells. ChM-seq was then used to study

the gene regulatory landscape of Treg cells upon stimulation. I performed ChM-seq

of H3K4me3 to assess promoters and of H3K27ac to assess active elements on ten

human donors in resting and stimulated state. I also acquired open chromatin profiles

using ATAC-seq and gene expression profiles using RNA-seq. Using this multi-layer
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dataset, I identified gene regulatory programs initiated upon Treg cell stimulation at

the chromatin level. Furthermore, I investigated the dynamics of gene transcription in

Treg activation by assessing gene expression levels globally, as well as the alternative

splicing and the impact on the usage of different gene isoforms by comparing transcript

ratios.

3.2 Materials and Methods

3.2.1 Sample collection

Whole blood samples were obtained from healthy adults and CD4+ cells were isolated

as described in Chapter 2. CD4+ enriched cells were stained with the following anti-

bodies for sorting: CD4+ (OKT4)-APC (Biolegend); CD25 (M-A251)-PE (Biolegend); CD127

(eBioRDR5)-FITC (eBioscience) and Live/Dead fixable blue dead cell stain. Live regula-

tory T cells (CD4+ CD25high CD127low) were sorted. Treg cells used for the optimisation

of ChIP and ChM assays were obtained from the NHS Blood and Transfusion in Cam-

bridgeshire. The ten samples used for the comparison between resting and stimulated

Tregs were obtained from a commercial vendor with commercial vendor’s approved

institutional review board protocols. Research use was approved by the Research Ethics

Committee (reference number: 15/NW/0282).

3.2.2 Cell culture

Human Tregs and Jurkat human T-lymphoblast cells were grown in Iscove’s Modified

Dulbecco’s Media (IMDM) (Life Technologies, Paisley, UK), supplemented with 10% human

serum (HS), 50 U/ml penicillin and streptomycin (Life Technologies) and 100 U/ml

recombinant human IL-2 and incubated at 37°C in a humidified atmosphere of 5% CO2.

Cells were activated using PMA (5-10 ng/µl) with ionomycin (200 ng/µl) (Sigma-Aldrich)

overnight (18 hours). See Table 3.1 for full specifications.

3.2.3 ChIP-seq and ChIPmentation-seq

In order to reliably compare the ChIP with the ChM protocol, I sonicated 500,000 Jurkat

cells, and equally divided the samples to continue with the ChIP and ChM protocols.

Cells were sonicated for 40 minutes (T regulatory cells) or 30 minutes (Jurkat cells) in
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250 µl using the Bioruptor®Pico (Diagenode, Belgium) sonicator and DNA LoBind tubes

(Eppendorf, Germany) to obtain 200 to 3000 bp fragments. Resting and stimulated

Tregs were sonicated for 6 minutes and 5 minutes, accordingly, using Diagenode tubes.

I tested sonicated chromatin fragment sizes using gel electrophoresis. I used 100,000

cells of each for qPCR confirmation and proceeded with sequencing the remaining

100,000 cells. Once the protocol was deemed reliable I repeated the same steps using

isolated T regulatory cells.

Both ChIP-seq and Chipmentation were performed using the Low SDS iDeal histone

ChIP kit (Diagenode), as described in Chapter 2. The immunoprecipitation was done

using 1µg of each antibody; H3K27ac (Cat. no. C15410196, Diagenode), H3K27me3(Abcam),

H3K4me1(Active Motif) and H3K4me3 (Catalog No: 39915, Active Motif). The only differ-

ence to the protocol described in Chapter 2 was that all the washes with iW1, iW2, iW3

(iDeal ChIP-seq Kit for Histones, Diagenode) were performed using an Agilent Bravo

Automated Liquid Handling Platform (Agilent, Santa Clara, U.S.). ChIP-seq libraries were

performed using Illumina TruSeq index tags, while ChM-seq libraries were performed

using the Nextera dual index tags.

The samples used for protocol optimisation were indexed and polled in equimolar

concentration and sequenced on the MiSeq 2500 platform as such: 7 ChIP samples

and 7 ChM samples produced from Jurkat cells (5 antibodies, ATAC-seq and input) were

sequenced across 3 lanes to generate 62 million reads per sample; 5 ChIP samples

and 5 ChM samples from 2 donors (4 antibodies and input) were sequenced across

two lanes each to generate 27 million reads per sample; 13 samples, including five

ChM samples from one donor were sequenced across two lanes to generate 32 million

reads per sample. Thirty-one (because it was combined with different experiments)

ChM libraries were indexed and pooled in equimolar concentration and sequenced on

eight lanes using the Illumina HiSeq 2500 platform and V4 chemistry using standard 75

bp paired-end reads. Sequencing yielded on average for the samples in this study 62

million reads per sample.

3.2.4 ATAC-seq

ATAC-seq was performed according to protocol (Buenrostro et al., 2013), with the follow-

ing modifications. After sorting, T cells were washed with ice-cold PBS and resuspended
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in sucrose buffer (10 mM Tris pH 8, 3 mM CaCl2, 2 mM MgOAc, 1 mM DTT, 0.32 M sucrose,

0.5 mM EDTA, 0.25% TritonX-100), followed by 5 minutes incubation on ice to isolate

the nuclei. Isolated nuclei were washed once with 1x TD buffer (Tagment DNA Buffer,

Nextera DNA Library Prep Kit, Illumina, U.S) and resuspended in 50 µl 1x TD buffer

containing 2.5 µl of Tn5 enzyme (TDE1, Nextera). The reaction was carried out at 37ºC,

mixing and then stopped by addition of 250 µl of buffer PB (MinElute PCR Purification Kit,

QIAgen, Hilden, Germany). The DNA was then purified on MinElute columns according to

the manufacturer’s instructions and eluted in 10 µl sterile double distilled water. The

libraries were amplified using the Nextera PCR Master Mix from Nextera DNA Library

Prep Kit and Index adapters i7 and i5 (Nextera Index Kit, Illumina, U.S), according to the

manufacturer’s instructions. The number of amplification PCR cycles for each sample

was determined individually by performing a qPRC reaction of 7.5 µl aliquot of the mix

with an addition of the EvaGreen dye (Biotium, Fremont, U.S.). The amplified libraries

were SPRI purified (upper cut 0.5x, lower cut 1.8 x) on a Zephyr G3 SPE Workstation

(PerkinElmer, Waltham, U.S.), multiplexed the libraries and did 75 bp sequencing using

an Illumina HiSeq V4 to yield on average 147 million reads per sample.

Table 3.1: Donors specifications and culture conditions.

Ind.
ID

Batch Age Sex PMA
(ng/µl)

Cells/mlFoxP3+
(%)

RNA ATAC H3K27ac H3K4me3

20 1 NA M 10 1 83.5 Yes Yes No No
21 1 NA F 10 1 78 Yes Yes No No
22 1 NA F 10 1 68.6 Yes Yes No No
25 2 26 F 5 1 NA Yes Yes Yes Yes
26 2 22 M 5 1 NA Yes Yes Yes Yes
27 2 31 M 5 1 NA Yes Yes Rest. Yes
28 3 22 M 5 2 NA Yes Yes Yes Yes
29 3 36 F 5 2 NA Yes Yes Yes Yes
30 4 39 M 5 2 80.7 Yes Yes Yes Yes
31 4 25 F 5 2 78.5 Yes Yes Yes Yes

3.2.5 ChM and ATAC data processing

The quality of the sequence reads was assessed using the fastx toolkit and the adap-

tors were trimmed using skewer (Jiang et al., 2014). Reads were mapped to the human

genome reference GRCh38 using the bwa mem algorithm (Li and Durbin, 2009). I only

kept uniquely mapped reads, removed PCR duplicated reads and for the ATAC I excluded

mitochondrial reads using samtools (Li et al., 2009). Genome browser tracks were cre-
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ated using BEDTools (Quinlan and Hall, 2010) and the UCSC binary utilities. Furthermore,

I generated insert size distributions using PICARD tools CollectInsertSizeMetrics func-

tion, since these can be indicative of over-sonicated chromatin and excess of adapters

in the data.

The ATAC mapped reads were converted into bed files and chimeras were removed.

Peaks were called using MACS2 (Zhang et al., 2008) setting the parameters to -f BED -q

0.05 –nomodel –extsize 50 –shift -25 for ATAC. Peaks were called directly from the bam

files for the ChM samples, using the parameters -q 0.01 for H3K4me3 and H3K4me1 and

–broad –broad-cutoff 0.1 –nomodel –extsize 146 for H3K27ac and –extsize 73 H3K27me3.

For ChM, all samples were downsampled to to the same read number prior to peak

calling against the input. I used the fraction of reads in peaks (FRiP), the insert size

distribution and the genome tracks to investigate the quality of our data. I excluded

one H3K27me3 ChIP-seq sample from Tregs and one Treg ATAC sample in the stimulated

state for having FRiP < 5%.

For the comparison between ChIP and ChM, I merged all samples from the same cell

type, antibody and method, and downsampled to the smallest read number, which was

19 million reads for ChIP and 41 million reads for ChM. I called peaks in H3K4me1 and

H3K4me3 using a -q value threshold of 0.001, of 0.1 for H3K27ac and a p-value of 0.001

for H3K27me3.

For the comparison between resting and stimulated Tregs, I merged all ATAC samples

and called peaks again using the parameters described above. For the H3K27ac and

H3K4me3 ChM samples, I first merged the donors within each condition (resting and

stimulated) and then randomly sampled 17 million reads from each into one sample

to reach the same read number as in the input. Since I merged QCed samples I used

the –keep-dup flag when calling peaks with MACS2, as the PCR duplicated reads for

individual samples were already removed and I expected to observe a small proportion

of the same reads present in independent samples by chance. I also increased the -q

value threshold to 0.1 for both assays. The resulting peak files were used as a reference

to count the number of reads falling into peak regions using featureCounts (Liao et al.,

2014). I only kept regions that had at least 20 reads in at least 3 samples to get a final

count of 54,811 in ATAC, 20,363 in H3K4me3 ChM and 44,820 in H3K27ac ChM.
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3.2.6 Global ChIP, ChM and ATAC data overview

To correlate the samples I divided the genome into 10 kbp windows and counted the

number of reads that fell within each, normalised by the total number of reads. I then

calculated the Pearson correlation coefficient. The overlap among different samples,

the distance from the transcription start site (TSS) of a gene and the permutations

for the enrichment of the different chromatin marks in promoter capture Hi-C regions

mapped in CD4+ T cells (Javierre et al., 2016) was calculated using BEDtools (Quinlan

and Hall, 2010).

3.2.7 Differential regulatory regions analysis

To carry out differential regulation analysis between the resting and stimulated sam-

ples I used DESeq2 (v1.14.1) (Love et al., 2014). To find regions that were changed upon

stimulation, I compared the stimulated samples to the resting state, using the blood

processing batch as a covariate, and used Benjamini-Hochberg controlled false detec-

tion range (FDR) of 10% (Benjamini and Hochberg, 1995) and an absolute fold-change ≥

2. I overlapped the differentially defined regions of one assay with the total regions of

another assay using ChIPpeakAnno’s findOverlapsOfPeaks and plotted their distribution

around the TSS using the function binOverFeature from the same package (Zhu et al.,

2010b).

3.2.8 RNA-seq and initial processing

Sorted regulatory T cells were placed in 0.7ml of QIAzol Lysis Reagent (Qiagen) and stored

at -80°C. RNA was isolated following the Qiagen miRNeasy Micro kit manufacturer’s

protocol. RNA was quantitated using Bioanalyzer (Agilent Technologies, USA). Libraries

were prepared using Illumina TruSeq index tags and sequenced on the Illumina HiSeq

2500 platform using V4 chemistry and standard 75 bp paired-end. Twenty samples were

multiplexed at equimolar concentrations and sequenced across five lanes, to yield on

average 72.5 million reads per sample.

Reads were aligned to the GRCh38 human reference genome using STAR (Dobin et al.,

2013) and the Ensembl reference transcriptome (version 87). Gene counts was performed

using featureCounts tools from the subread package v1.5.1 (Liao et al., 2014) and only
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assigned reads were used for further processing (58.5-70.3% of reads were assigned).

Sequence reads were also aligned using Salmon (Patro et al., 2017). I used the options

–seqBias –gcBias to adjust for sample specific fragment bias and GC bias accordingly.

3.2.9 Differential gene expression analysis

To identify differentially expressed genes (DEGs), I used DESeq2 (R version 3.3.3, DESeq2

version 1.14.1) (Love et al., 2014). For downstream analysis I only considered 17,225 genes

that had at least 20 copies in at least 3 samples. I compared resting to stimulated cells

using Benjamini-Hochberg controlled FDR (Benjamini and Hochberg, 1995) of 5% and

an absolute fold-change ≥ 2 to find activation induced genes.

For the clustering of DEGs, raw counts were normalised using DESeq2 rlog function. To

control for the different batches in which we processed the blood, which accounted

for 14.6% of the observed variability, I performed batch correction using the combat

algorithm as implemented by the sva package (Leek et al., 2012). Finally, the values

were quantile normalised. I did hierarchical clustering on all DEGs using the euclidean

distance between samples and the optimal number of clusters was defined using

dynamicTreeCut (Langfelder et al., 2008) (minimum cluster size was set to 50). I used

g:Profiler (Reimand et al., 2016) R package to identify the top three Reactome pathways

(Croft et al., 2014) enriched in each cluster.

3.2.10 Primary transcript usage

I used tximport to obtain the transcript level abundances, and only used the transcripts

that had at least one transcript per million (TPM) in at least four samples and whose

gene expression passed the filtering threshold used with the STAR output. I calcu-

lated transcript ratios (tr) based on the total expression per gene. The final table was

composed of 67,239 transcripts, which corresponded to 12,100 genes. I calculated the

difference in ratios for each transcript between the resting and stimulated state and

derived the mean across the ten donors. Finally, I extracted the extreme 1% tail of each

side of the distribution and required a gene to have a transcript in both tails in order

to be included.
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3.2.11 Binding expression target analysis

I identified regions of the genome that changed upon stimulation as described in

Chapter 2. Based on the distribution of the peaks around the TSS, I used a window of 3

kbp around the TSS for active promoters and 100 kbp for active enhancers. If active

enhancers were less than 3 kbp apart they were considered to be a single enhancer.

3.2.12 LRRC32 flow cytometry validation

The level of expression of LRRC32 was quantified in ten donors in resting cells and cells

stimulated with anti-CD3/anti-CD28 beads (1 bead:4 cells). CD4+ cells were isolated

and cultured for 18 hours with or without stimulant. After 18 hours of stimulation cells

were observed by flow cytometry using a directly conjugated antibodies CD4+ (RP4-T4)-

Alexa700 (eBioscience), GARP (G14D4)-PE (eBioscience), CD25 (B96C)-PeCy7 (eBioscience),

CD69 (FN50)-FITC (Biolegend), CD28 (CD28.2)-APC (eBiosience), CD45RA (HI100)-BV785

(Biolegend). Intracellular staining for FOXP3 (206D)-BV421 (Biolegend) was done using

the eBioscience FOXP3 staining buffers.

3.2.13 Differential intron excision analysis

I used LeafCutter’s annotation free approach (Li et al., 2018) to identify 26,342 clusters

of intron excision events corresponding to 96,809 alternatively excised introns. I limited

the analysis to the genes that had been detected by gene counts. In each sample, I

counted the number of reads supporting each intron excision event in a cluster as well

as the total number of reads in a cluster. I removed clusters with less than 2 samples with

coverage > 20, clusters that had more than 10 introns, clusters with less than 2 introns

used in more than 4 samples. I identified a total of 6,861 clusters corresponding to 4,307

genes that were differentially spliced upon stimulation (using Benjamini-Hochberg

controlled FDR (Benjamini and Hochberg, 1995) of 1% and an absolute fold-change ≥ 2).

To calculate the conservation score across the junctions I used the conservation scoring

PhyloP phylogenetic values obtained for multiple alignments of 99 vertebrate genomes

to the human genome (Pollard et al., 2010). I used both junction ends for the novel

annotated pairs and the unanchored junction, but only the 3’ end for the cryptic 3’ sites

and the 5’ end for the cryptic 5’ sites. I compared the result to a randomly sampled
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distribution of base pairs of the same size.

To provide functional support for some of the novel annotated pairs and cryptic 5’

junctions, I overlapped the 5’ of these clusters with differentially active promoters using

bedtools. I only kept promoters that had a peaks value ≥ 100 and did not overlap an

annotated TSS.

3.3 Results

3.3.1 Optimising ChIPmentation-seq in Tregs

To compare the performance of ChIP and ChM I assayed in parallel four different marks

(H3K4me3, H3K4me1, H3K27ac and H3K27me3) using material from the same cell cul-

ture for Jurkat cells and the same donors for Tregs. I observed a higher percentage of

mapped reads and non-PCR duplicates across all ChM experiments. After calling ChIP

and ChM-seq peaks, i.e. genomic regions enriched for read pile-ups compared to the

background read distribution, I observed that ChM displayed more peaks regardless of

the antibody used and showed a higher fraction of reads in peaks (FRiP), which resulted

in a higher fold-change enrichment across the called peaks (Figure 3.1 A and B). This

suggested that ChM-seq is more sensitive than ChIP-seq.

In order to assess how the different histone marks and cell types related to each other,

I calculated the Pearson correlation coefficient (PCC) between all the assays performed.

In this analysis I included ATAC assays to identify potential Tn5 biases in the ChM-seq

assay. I observed a high PCC between assays performed with the same antibody and

between ATAC-seq from different donors (Figure 3.1 C). Hierarchical clustering of the

samples showed two distinct clusters, the first one was composed of H3K27me3, a

repressive mark, while the second one encompassed the rest of the assays, which are

all active marks. Within the active marks I identified some substructure depending on

the assay performed. Therefore, samples separate according to chromatin activity.
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Figure 3.1: Qualitative control shows that ChM-seq is a more sensitive method than ChIP-seq.
A. Percentage of uniquely mapped reads (left panel) and non-PCR duplicate fragments
(right panel) for ChIP and ChM quantified for the input and the four antibodies against
histone modifications assayed in the Jurkat cell line and in T regulatory cells. B.
Fraction of reads in peaks (FRiP) and number of peaks called from ChIP and ChM
data for all sequenced libraries. C. Genome-wide Pearson correlation heatmap for all
histone marks and cell types. Correlation was derived based on reads in 10,000 bp
bins across the whole genome.
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In order to increase the sensitivity of peak calling, I recalled peaks for each histone

mark by merging the files from the different T regulatory cells donors. This was possible

because of the high correlation observed between the same histone marks within an

individual method (ChM or ChIP-seq) across all replicates. For H3K27ac, H3K4me1 and

H3K4me3 antibodies, ChM-seq captured over 95% of the peaks called using ChIP-seq

(Figure 3.2 A). The overlap was smaller for H3K27me3 (70%), which marks broader regions

of the genome. The mean peak length for this mark was 3.85 kbp, compared to 2.57 kbp

for H3K27ac, 1.39 kbp for H3K4me1 and 1.55 kbp for H3K4me3. Since ChM-seq resulted

in a higher number of method specific peaks, I examined the characteristics of these

regions in relation to all peaks. Method specific peaks, that is peaks called using only

one method, had similar p-value and peak length distribution as the total peak-set.

However, the largest peaks with the smallest q-values were shared between the two

methods (Figure 3.2 B). Therefore the peaks identified by ChM-seq are very similar to

the ones found by ChIP-seq.

I annotated the peaks based on the nearest transcription start site (TSS) of a gene across

the genome. As expected, H3K4me3 and H3K27ac were enriched in gene promoters,

H3K4me1 and H3K27ac in enhancers and unannotated regions of the genome were

marked by H3K27me3 (Figure 3.2 C). Because ChM-seq resulted on average in an increased

number of peaks compared to ChIP-seq, I further assessed if the distribution of method

specific peaks was skewed towards specific genomic regions. For H3K4me3, ChIP-seq

specific peaks (37 in total) were mostly located away from the gene body, while ChM-seq

specific peaks (15,798 in total) localised to promoter regions (up to 10 kbp upstream from

the TSS) and introns. To further validate that ChM specific peaks mapped to biologically

relevant gene regulatory regions, I tested if the peaks colocalised with chromatin

contacts mapped with promoter capture Hi-C (PCHi-C) in CD4+ cells (Javierre et al., 2016).

Both ChIP-seq and ChM-seq active marks were enriched in PCHi-C chromatin contacts,

while the H3K27me3 silencing mark was depleted from those regions (Figure 3.2 D).

However, when repeating this on method specific peaks, only ChM-seq peaks remained

significantly colocalised with PCHi-C mapped regions. This suggested that ChM-seq is a

more sensitive and specific method than ChIP-seq since it identified a higher number

of peaks in relevant regulatory regions.
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Figure 3.2: Global comparison of ChIP-seq and ChM-seq in Tregs highlights increased sensitiv-
ity of ChM-seq. A. Overlap between ChIP-seq and ChM-seq peak-sets. B. Peak length
and significance (darker colors correspond to the results of the analysis using method
specific peaks). C. Peak annotation for ChIP and ChM-seq peaks based on the dis-
tance to the transcription start site of the closest gene. D. Significance of enrichment
of ChIP and ChM-seq peaks in PCHi-C regions mapped in CD4+ T cells (black dots
correspond to the results of the analysis using method specific peaks).

3.3.2 Identification of the optimal conditions for Treg stimulation

Having validated the applicability of ChM in producing robust and reproducible results

in primary Tregs, I applied the protocol to profile the chromatin landscape of this rare

cell population upon stimulation. I used ChM-seq for the H3K27ac and the H3K4me3

antibodies, as well as ATAC-seq and RNA-seq to generate the first comprehensive map

of stimulation induced changes in Tregs isolated from ten individuals.

I isolated Tregs by fluorescently activated cell sorting (FACS), selecting for CD4+CD25high

CD127low. Cells were cultured for 18 hours with or without PMA and ionomycin to

provide the stimulation. I initially stimulated Tregs with beads coated with antibodies

against CD3 and CD28. However, I found that the interaction between cells and beads

was extremely strong and washing cells off the beads resulted in a significant loss of
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cellular material. I reasoned this loss could be reduced by substituting beads with

PMA/ionomycin. Therefore, I tested how different the gene expression changes induced

by PMA/ionomycin and anti-CD3/anti-CD28 beads were. To assess this, I used CD4+

conventional T cells (CD4+CD25lowCD127high) isolated from two donors. I observed

93% correlation of log2 fold change in gene expression between resting and stimulated

cells in each of the two conditions (Figure 3.3 A). This indicated that the differences

between the two stimuli were negligible and that PMA/ionomycin could be reliably

used as a relevant stimulus for T cell activation. To ensure that a large proportion

of Tregs was successfully stimulated in culture, I quantified cell activation through

CD69 staining, a cell surface marker of early activation (Figure 3.3 B). On average,

100% of cells responded to activation. Additionally, to measure the purity of the Treg

isolation protocol I performed intracellular staining for FoxP3 (mean FoxP3+ cells =

83.5%) (Figure 3.3 C). In conclusion, using flow cytometry I confirmed both the successful

isolation of Tregs and that cells were stimulated, therefore allowing me to proceed with

genomic protocols.
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Figure 3.3: Optimisation of Treg isolation and stimulation by PMA/ionomycin. A. Correlation of
log2 fold changes in gene expression between resting and anti-CD3/CD28 beads
stimulated (x-axis) and resting and PMA stimulated conventional T cells (y-axis).
The Spearman correlation was calculated using all genes. B. Percentage of Treg
cells expressing CD69 activation marker after 18 hours of cell culture either with
PMA/ionomycin or without, as measured by flow cytometry. C. Percentage of cells
expressing FoxP3 as measured by flow cytometry.

3.3.3 Stimulation induces specific changes in promoter and enhancer activity

I firstly looked at the epigenetic data from ten donors to quantify stimulation induced

changes. I used MACS2 to call peaks per donor for each of the three assays individu-

ally. Globally, upon stimulation Tregs displayed a higher number of ATAC and H3K27ac

peaks (paired t-test p-value < 0.05), while no difference was observed for H3K4me3
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(Figure 3.4 A). This suggested that stimulation increased chromatin accessibility and

upregulated active regulatory elements, but did not result in the formation of new

promoters. Next, I defined a union set of peaks in each assay from stimulated and

resting cells by merging the peaks across different samples. I counted the number

of reads that fell within these genomic coordinates per sample. Using these tables, I

calculated the Euclidean distance between different samples per assay and created

a heatmap (Figure 3.4 B). I observed that resting and stimulated samples clustered

separately. To further understand if the observed chromatin remodelling was driven

by increased promoter or enhancer activity, I overlapped the peaks marked by the

three assays and defined four groups of regulatory elements: active promoters (AP;

H3K4me3+H3K27ac), non-active promoters (NAP; H3K4me3-H3K27ac), active enhancers

(AE; H3K27ac-H3K4me3) and open chromatin (OC; ATAC-H3K27ac-H3K4me3) (Figure 3.4 C).

In order to uncover the genetic mechanisms of Treg activation, I used the three assays

to compare the gene regulatory landscape of resting and stimulated cells to define the

differential peaks (FDR ≤ 0.1 and fold-change ≥ 2). For each assay, I then overlapped

the set of differential regulatory regions with the full peak-sets from the remaining two

assays to define stimulation induced changes in active promoters, non-active promoters,

active enhancers and open chromatin. I considered a regulatory element to undergo a

stimulation induced change if at least one chromatin mark peak showed a significant

differential change (Figure 3.5 A). The greatest number of changes occurred in active

regions of the genome, where more than 10,000 regions were altered upon stimulation

(Figure 3.5 B). The open chromatin and the non-active promoters changed very little

with stimulation (less than 2,000 regions). A comparable number of active enhancers

and promoters were upregulated (approx. 3,200). I examined the distribution of the

differentially up and down regulated regions with respect to the TSS and compared it

with the global distribution of H3K27ac ChM-seq for active enhancers, H3K4me3 ChM-

seq for active and non-active promoters, and ATAC-seq of open chromatin. I observed

a depletion of differentially active enhancers near the TSS, while the distribution of

differentially active promoters remained largely unchanged and concentrated around

the TSS. Therefore stimulation induced changes in gene expression via the regulation

of distal enhancers. Interestingly, there was a slight shift towards the gene body in

upregulated, but not downregulated, active promoters compared to the background

distribution of all H3K4me3 ChM-seq peaks (Figure 3.5 C). The shift towards the gene
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Figure 3.4: Stimulation induces changes in H3K4 tri-methylation, H3K27 acetylation and chro-
matin accessibility in Tregs. A. Distribution of the peak number detected across
samples in resting and stimulated regulatory T cells for the three assayed chromatin
marks. Asterisk indicates significantly different numbers of peaks detected between
the two cell states, ATAC (p-value = 2.95x10-3), H3K27ac ChM (p-value = 4.82x10-2)
and H3K4me3 ChM (p-value = 0.83). B. Heatmap of Euclidean distance between the
samples acquired from each assay. C. Overlap of peaks between the ATAC, H3K27ac
and H3K4me3 assays. A peak from an individual assay can overlap more than one
peak from another assay, I have written in the Venn diagram the smallest number
to not inflate the values. For example, if one H3K27ac ChM-seq peak overlaps two
H3K4me3 ChM-seq peaks and three ATAC-seq peak, I would only count this as a single
overlap.

body in active promoters could suggest an additional gene regulation by promoter

switching, and the induction of expression of other isoforms.

3.3.4 Gene expression signatures of activated regulatory T cells

In order to better understand the association between changes in chromatin marks and

gene expression regulation I integrated RNA-seq data from the same ten individuals

with the chromatin modification and accessibility results. I first assessed global gene

expression changes triggered by stimulation, before combining the RNA-seq differential

expression results with the changes in chromatin marks and accessibility. I performed

differential gene expression analysis (fold-change ≥ 2 and a false discovery rate (FDR)

≤ 0.05) between resting and activated Treg cells and detected over 2,300 upregulated

and 3,000 downregulated genes upon stimulation. Among the upregulated genes I

82 3 Regulation of gene expression in regulatory T cells in response to cell stimulation



Figure 3.5: Differential epigenetic regulation upon stimulation in Tregs occurs primarily in ac-
tive regions of the genome. A. Number of peaks with significant stimulation induced
changes in individual assays profiling chromatin activity (H3K27ac, H3K4me and ATAC).
The Venn diagrams illustrate the overlap between the differential peaks of each assay
and the total number of peaks of the other two assays. B. Number of differentially
regulated peaks per defined region (active promoters (AP), non-active promoters
(NAP), active enhancers (AE) and open chromatin (OC)) across the three assays. C.
Distribution of the peaks relative to the TSS. Differentially upregulated (blue) and
downregulated (grey) regions are plotted against the distribution of all peaks (black)
using H3K27ac ChM-seq (for active enhancers), H3K4me3 ChM-seq (for active and
non-active promoters) and ATAC-seq (for open chromatin).

found multiple classical T cell activation markers (e.g. CD69, CD200, CTLA4, IL2RA and

TNFRSF9), transcription factors (TFs) related to the immune response (e.g. EGR1, EGR2,

EGR3, NR4A2, FOSL1, IRF4, IRF8 and TBX21) and cytokines (IL1A, IL2, IL3, IL6, IL10, IL17A,

IL21, IL23A, EBI3 and IFNG) (Figure 3.6 A). Among the down regulated genes I found genes

important for Treg cell identity, such as IKZF4 (Figure 3.6 A).

To identify clusters of co-regulated genes, I grouped genes that followed similar expres-

sion trajectories in response to stimulation. I identified four clusters of co-upregulated

genes and nine clusters of co-downregulated genes (Figure 3.6 B). Interestingly, clus-

ter 1, which contained the majority of upregulated genes (72%) and cluster 2, which

contained the majority of downregulated genes (40%), were characterised by limited

variability compared to the remaining clusters. This meant that the majority of up and

downregulated genes were not variable across donors, and there is a uniform response
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to stimulus. On the other hand, the median gene dispersion in clusters 4, 9, 10, 12 and

13 was more than five times greater than the gene dispersion of non-differentially ex-

pressed genes (Figure 3.6 C). These clusters contain genes whose expression in response

to stimulation varies across donors and might be influenced by the genetic background

or are artifacts, in the case of the smallest clusters 12 and 13.

To assess if the co-regulated genes were enriched for specific pathways I used the

Reactome database (Croft et al., 2014). While all upregulated clusters were significantly

enriched for relevant pathways, only three of the nine downregulated clusters showed

significant enrichments. This suggests that downregulated genes are more randomly

distributed across different pathways. Cluster 1 was highly enriched for processes

related to G2M progression (p-value = 9.8x10-20), RNA metabolism (p-value = 7.7x10-30)

and NF-κB signaling (p-value=5x10-20), indicating that cells were successfully stimu-

lated, initiated gene expression programmes to trigger cell proliferation and invoke an

immune response. This analysis provided insights into the dynamic cellular processes

in Tregs upon stimulation. For example, I observed that immune pathways, including

cytokine production were generally upregulated (cluster 4 and 8), while at the same time

they were downregulated (clusters 2 and 6), mostly driven by the interferon signalling

response (Figure 3.7 ).
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Figure 3.6: Differential gene expression analysis between resting and stimulated Tregs. A.
Gene expression levels for selected differentially expressed genes of resting and
stimulated Tregs. B. Heatmap of differentially expressed genes that follow a similar
co-expression dynamics and form 13 co-regulated gene clusters. On the x-axis are
the donors, on the y-axis is a random selection of a 10% of the genes present in each
cluster and the color corresponds to the quantile normalised gene expression value.
C. Distribution of gene expression dispersion estimates calculated per batch and
condition, and stratified per cluster. In red is shown the median distribution of each
cluster.
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Figure 3.7: Pathways enriched in differentially regulated clusters. Top three results of the path-
way enrichment analysis per each cluster of co-regulated genes using the Reactome
database. Numbers in brackets correspond to the genes contributing to the observed
enrichment.

The above analyses collapses sequence read counts to gene counts. I additionally

wanted to investigate to what extend Treg stimulation would have an impact on alterna-

tive transcripts. For that, I quantified the relative transcript ratios and found that the

majority of genes expressed more than one transcript (82.7%) (Figure 3.8 A). However,

most of the genes did not alter their relative transcript ratios, therefore I further fo-

cussed on a subset of genes that switched their primary transcript upon stimulation,

(Figure 3.8 B). Of the 9,727 genes with more than one transcript, 274 showed different

dominant splice isoforms in resting cells and in stimulated cells (Figure 3.8 C).

In order to uncover regulatory processes unrelated to the total changes in transcript

levels, I focussed on the genes that were not differentially expressed but switched splic-

ing isoforms between the two cell states. I identified five genes which encoded for TFs;

NFATC1, ELF4, RUNX1, HLF and YY1 (Figure 3.9 ), all of which showed alternative promoter

usage upon stimulation. I focussed on TFs because changes in parts of the gene body
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C. Pie chart illustration of the number of genes that encode for a single transcript,
that either have the same transcript being dominant in resting and stimulated cells,
or that have an alternative transcript being dominant and whether it is differentially
expressed or not.

which encode for functional domains can have direct implications in the downstream

processes they regulate. With the exception of RUNX1 and HLF, the other TFs in this

list have been associated with Treg function, even if the exact role of each alternative

transcript remains unknown. In resting Treg cells, the main NFATC1 transcripts expressed

were ENST00000318065 (10 coding exons) and ENST00000329101 (10 coding exons).

Conversely, upon stimulation the main transcript was ENST00000253506 (10 coding

exons), which uses an alternative upstream promoter (Figure 3.9 ). ELF4 main transcript

in resting cells was ENST00000335997 (8 coding exons), while in stimulated cells the

main transcript was ENST00000308167 (8 coding exons) (Figure 3.9 ). RUNX1 has many

isoforms, but the most highly expressed one in resting cells was ENST00000437180 (8

coding exons) and in stimulated cells it was the shorter transcript ENST00000344691

(6 coding exons), which lacks the first two exons of ENST00000437180. HLF had three

transcripts with detectable levels in Tregs, ENST00000226067 (4 coding exons) was

the main transcript in resting cells, while upon stimulation this switched to the other

two transcripts, ENST00000573945 (3 coding exons) and ENST00000575345 (3 coding

exons), which lacked the first exon. Finally, the main transcript for YY1 in resting cells

was ENST00000262238 (5 coding exons), which was also highly expressed in stimulated

cells, and additionally the expression of ENST00000554804 (4 coding exons) isoform

increased. ENST00000554804 uses an alternative promoter and lacks the 3’ UTR region

of the gene (Figure 3.9 ). Alternative transcripts with different exon composition could

explain differences in the genes function upon stimulation in Tregs. Indeed, the main
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YY1 transcript expressed by resting Tregs results in the coding protein P25490, while

ENST00000554804 results in the coding protein H0YJV7.

3.3.5 Integration of epigenetic and gene expression data points towards the
regulation of immune genes

I next sought to determine the chromatin changes that contribute towards the reg-

ulation of transcriptional programs in response to cell stimulation. First, to identify

chromatin regions that could control gene expression, I assessed if differential active

promoters and enhancers correlated with differential gene expression (Wang et al.,

2013b). Using a window of 3 kbp around the TSS I found that active promoters induced

upon stimulation were predictive of 16% of upregulated genes (p-value = 1.2x10-9) while

the downregulation of promoters predicted 9% of downregulated genes (p-value =

2.7x10-6). On the other hand, using a window of 100 kbp around the TSS I observed that

upregulated active enhancers were predictive of 27% of upregulated genes (p-value =

3.9x10-11), while downregulated active enhancers were predictive of 25% of downregu-

lated genes (p-value = 1.4x10-11) (Figure 3.10 A). Open chromatin regions and non-active

promoters were not predictive of changes in gene expression (p-value > 0.05). The

majority of genes (96%) were assigned a single differentially active promoter, with the

exception of a small set of 27 genes that had two or three promoters. However many

genes (37%) had more than one enhancer, highlighting the interplay between multiple

enhancers in complex gene regulatory processes (Figure 3.10 B). Amongst the genes

with four or more enhancers I identified interleukin receptors (IL1RN, IL23R, IL12RB2

and IL36RN) and TFs (REL, EGR2 and IRF8). These genes play an important role in cell

signalling and transcriptional responses, which could explain why multiple enhancer

interactions would regulate their expression. The median distance between any two

enhancers regulating the same gene was 20.4 kbp, indicating potential enhancer clus-

ters (Figure 3.10 C). Finally, I was interested to see whether any of the chromatin marks

were more informative than others in predicting gene expression changes. I found

that the different assays equally contributed to the predictability of gene expression

(Figure 3.10 D), highlighting the importance of performing them in tandem.

Next, I assessed if genes with predictive regulatory elements were enriched for any

pathways. I found that both genes with upregulated enhancers (763 genes) and pro-
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Figure 3.9: Transcription factor genes employing alternative promoters upon stimulation. A.
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moters (383 genes) were related to the immune response (Figure 3.11 ). Conversely, no

enrichment was found for the downregulated genes with associated active elements.

The genes driving the enrichment in immune related pathways included key Treg genes

induced upon activation. For example, TNFSF9, a gene that encodes for the 4-1BB ligand

that binds the TNFRSF9 co-stimulatory molecule that is upregulated upon stimulation

in a FoxP3 dependent manner (Marson et al., 2007) (Figure 3.12 A) and LRRC32, a gene

that encodes for GARP, and is upregulated on the surface of activated Tregs (Wang

et al., 2009) (Figure 3.12 B). To validate if the observed gene expression changes were

recapitulated at the protein level, I performed flow cytometry analysis to measure

the protein expression of GARP. Tregs from ten donors were stimulated overnight with

anti-CD3/anti-CD28 beads and stained with a fluorophore labeled antibody against

GARP 16 hours after activation. Indeed, the upregulation of GARP upon stimulation was

also significant at the protein level (p-value < 10-5) (Figure 3.12 B).
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Figure 3.11: Pathway enrichment analysis for the upregulated genes that have assigned predic-
tive regulatory elements in the chromatin. The numbers correspond to the number
of genes contributing towards the observed enrichment.

Interestingly, both genes, TNFSF9 and LRRC32, were characterised by changes in the

levels of deposition of H3K4 trimethylation only, while the levels of H3K27 acetylation

and chromatin accessibility remained unchanged. This indicates a mechanism in which

the promoter is primed for activity by high levels of H3K27ac and the gene expression

is regulated by the modulation of H3K4me3 levels. An additional 37 genes followed

a similar expression regulation pattern (Table 3.2 ), including 8 TFs (e.g. IRF1, NFKBIA,

EGR1, TBX21, FOSL2 and TRAF4). Therefore some active promoters of genes that play an

important role in Treg functions, were upregulated upon activation of Tregs.

Finally, I looked at the enrichment of TF binding sites (TFBSs) in the differential active

promoters and enhancers with concordant effects with gene expression (Figure 3.13 A).

I identified six enriched motifs in upregulated active enhancers, including the SMAD

family of TFs, which are required for TGF-β signalling, an essential Treg cytokine (Fig-

ure 3.13 B). Downregulated active enhancers were enriched for four motives, including

FoxP3 (Figure 3.13 B), the hallmark TF for Tregs. A different set of TFs was enriched

in active promoters. Here, I identified five enriched motifs in upregulated promoters,

including IRF4 and RARA (Figure 3.13 B). The only enriched motif in downregulated

promoters was TP53 (Figure 3.13 B). Interestingly, upon stimulation I observed the enrich-

ment of TFs that are able to polarise cells towards different fates. The SMAD family of

TFs positively regulates the generation of Th17 cells from Tregs, RARA is known to inhibit

Th17 fate while promoting Th1 responses (Brown et al., 2015) and IRF4 regulates Th2
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Figure 3.12: Expression of genes related to the immune response is modulated through active
promoters and enhancers differentially regulated upon stimulation. A. Gene ex-
pression and genome track sequence pile-ups for H3K27ac, H3K4me3 and ATAC
for TNFSF9. B. Gene expression and genome track sequence pile-ups for H3K27ac,
H3K4me3 and ATAC for LRRC32. Also shown is the FACS plot of expression of GARP in
resting and stimulated conventional and regulatory T cells.

responses (Zheng et al., 2009). This finding could implicate that upon stimulation Tregs

recruit different TFs to promote T cell activation and ultimately arrive to an immune

response resolution.
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Table 3.2: Upregulated genes that are only regulated at the level of H3K4me3.

Symbol Reg. Score Symbol Reg. Score Symbol Reg. Score
SESN2 0.067 TNFSF9 0.309 MAP2K3 0.081

AIM2 0.067 PPAN 0.413 C8orf33 0.12

LINC01353 0.094 PPP1R15A 0.024 CHRNA6 0.153

SH2D2A 0.092 DUSP2 0.138 PYCR1 0.368

NTRK1 0.156 FOSL2 0.08 SNHG15 0.078

NPM3 0.319 SNHG17 0.041 TRAF4 0.14

PPIF 0.117 CENPM 0.226 TRIP6 0.585

CCDC86 0.042 HMOX1 0.108 AKAP7 0.086

LRRC32 0.105 RRP9 0.287 C16orf91 0.221

IL23A 0.272 EGR1 0.132 CHSY1 0.035

LINC00944 0.062 IRF1 0.028 CDKN1A 0.08

NFKBIA 0.083 LUCAT1 0.033 IPO4 0.166

TBX21 0.037
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Figure 3.13: Transcription factor enrichment in differential active promoters and enhancers. A.
Transcription factor binding sites (TFBS) enriched in the differentially regulated active
enhancers (AE) and active promoters (AP) that were predictive of gene expression
changes. B. Position weight matrices (PWMs) for the enriched TFBS motifs.
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3.3.6 Differential splicing upon stimulation

Of 5,018 differential peaks there were 4,367 that were not assigned to regulate the

expression of a gene nearby. This could implicate a long range enhancer-promoter

interactions, not captured by the 3 kbp window applied in my analysis. Another explana-

tion could be that a proportion of these peaks are associated with alternative splicing

or promoter switching. Previous studies did not report concordant changes between

H3K4me3 and gene expression upon T cell stimulation (Barski et al., 2009; Ni et al., 2016).

However, using the combination of different chromatin marks I was able to establish

an association between histone modifications and gene expression levels. Therefore, I

hypothesise that similar effects could also be extended to differential splicing events.

I used LeafCutter (Li et al., 2018) to identify and quantify the relative excision ratios of

26,342 alternative introns. LeafCutter only maps reads across junctions, so an excision

ratio is estimated based on the relative number of reads spanning a specific junction in

relation to the total number of reads that fall within that cluster. I performed differential

intron excision analysis between resting and activated Treg cells and detected 6,861

differentially spliced clusters corresponding to 4,279 genes (FDR < 0.01). Only a quarter

of these genes had been detected as differentially expressed when considering total

gene counts, the majority (72%) of which were upregulated (Figure 3.14 A). For example,

276 TFs (35% of all the TFs present in the dataset) had at least one differentially spliced

cluster, of which only 67 were differentially expressed as a total gene count. This set

included TFs essential to Treg cell identity, such as FOXP3 (Figure 3.14 B) and IKZF2, which

encodes for Helios, as well as BACH2, which is important in the NF-κB signalling pathway

and PRDM1, which controls the expression of IL-10 (Martins et al., 2006). Therefore

splicing analysis can give new insights into Treg stimulation induced gene regulatory

processes that might be missed at the gene counts level.

Since the LeafCutter algorithm has been reported to annotate up to 37% of novel junc-

tions (Li et al., 2018), I expected to find previously unreported splicing events in Tregs. I

investigated whether any of the differentially spliced junctions identified were novel

based on the GENCODE intron database (Harrow et al., 2012). I annotated 34.5% of

junctions as cryptic (Figure 3.14 C), due to either a new 5’ splice site, a 3’ splice site,

two new splice sites or a new connecting junction. In order to assess the likelihood
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of the newly identified introns being functional I measured the conservation of their

splicing patterns across different species using the PhyloP score (Pollard et al., 2010). I

found that the annotated splice junctions along with the novel junctions had a PhyloP

score shifted towards higher conservation compared to a random selection of base

pairs (t-test p-value < 10-16, mean PhyloP 3 and 3.4 accordingly). Cryptic 5’ and 3’ splice

sites also had a shifted score towards high conservation (t-test p-value < 10-16), but

less than the annotated junctions (mean PhyloP 0.4 and 0.9 accordingly). The score of

unanchored sites differed only slightly from the background (Figure 3.14 D).
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Figure 3.14: Treg stimulation induces alternative splicing events that are not captured by gene
counts analysis. A. Differential expression status of all genes compared to differ-
entially spliced genes. B. The hallmark Treg TF, FoxP3, displayed two differentially
spliced clusters in response to stimulation. C. The number of differently annotated
discovered junctions. D. PhyloP conservation score of the differentially spliced
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After having built confidence in the reliability of the novel splice junctions, I investigated

whether any of the identified events could result from a novel TSS. In order to answer

this, I overlapped the introns with differentially up and down regulated active promoters.

An additional 18% of upregulated active promoters (corresponding to 592 regions) to

the 12% annotated previously overlapped with differentially spliced sites. The overlap
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was smaller in downregulated regions, with only 9% of peaks overlapping. The overlap

was equally distributed across the five different junction annotations (Figure 3.15 A),

where of the 6,861 differential clusters 536 overlapped with an active promoter. The

majority of the genes overlapped with more than one differentially active promoter,

suggesting indeedmore than one TSS formany differentially spliced genes (Figure 3.15 B).
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Figure 3.15: Differential splicing analysis combined with differential active promoters identi-
fies unannotated promoters. A. Proportion of splice junctions that overlap with
a differentially active promoter, stratified by the same direction of regulation. B.
Number of differentially active promoters per differentially spliced gene.

To examine this hypothesis, I focussed on the genes that had more than one peak

overlapping a differentially spliced site. I found 137 genes which had an intron cluster

that overlapped with more than one upregulated active promoter, of which 21 had at

least one non-annotated site identified through alternative splicing. For example, BACH2

was characterised by a hidden promoter near exon 5 which has not been previously

reported as a TSS (Figure 3.16 ). I manually curated all of the results into a confident list

of putative novel TSS discovered in activated Tregs (Table 3.3 ).
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3.3 Results 97



Table 3.3: Curated table of gene clusters with cryptic 5’ as identified with LeafCutter which
overlap with a differential active promoter.

Gene Chr Cluster start Cluster end Psi Peak start Peak end Reg.
THEM4 chr1 151895194 151907321 -0.035 151904370 151906291 down

RABGAP1L chr1 174982905 174989849 -0.061 174989781 174991559 up

DNMT3A chr2 25314161 25314239 -0.013 25312413 25314978 up

ACOX3 chr4 8416535 8435923 -0.003 8434792 8436758 up

RFC1 chr4 39351476 39353287 -0.032 39352048 39354813 up

GPRIN3 chr4 89250233 89292972 0.013 89287934 89291450 up

CAMK2D chr4 113661772 113677508 0.02 113677125 113677605 up

RP11-223C24.1 chr4 142556334 142583452 0.074 142556250 142558001 up

EXOC2 chr6 497489 498736 -0.025 496434 501111 up

BACH2 chr6 90008856 90079634 -0.017 90074556 90082215 up

PRKAR1B chr7 584568 585196 -0.053 582705 585353 up

PRKAR1B chr7 596304 601453 -0.068 600745 605710 up

MAD1L1 chr7 2014642 2066490 0.112 2065942 2066709 down

NCOA2 chr8 70141399 70141479 -0.703 70137278 70145939 up

NCOA2 chr8 70216764 70216997 -0.169 70216687 70217838 up

TTC39B chr9 15267948 15299350 0.037 15294520 15297400 up

TTC39B chr9 15267948 15299350 0.037 15298564 15300490 up

ETS1 chr11 128462576 128480191 0 128478615 128481236 up

ATP10A chr15 25781223 25861782 0.071 25849286 25851564 up

CFDP1 chr16 75305182 75391380 0.011 75380122 75381111 down

RAI1 chr17 17681793 17792933 -0.002 17781594 17784555 down

RAI1 chr17 17681793 17792933 -0.002 17792699 17793267 down

SIRPG chr20 1649408 1686332 -0.048 1681827 1687206 up

TIAM1 chr21 31195305 31195406 -0.351 31185659 31196858 up

RAC2 chr22 37226803 37241587 0 37237226 37239494 up
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3.4 Discussion

Regulatory T cells are necessary to maintain the immune system in balance, and both

changes in Treg cell numbers and Treg functional defects can result in autoimmunity

(Buckner, 2010). The importance of Tregs is greatly appreciated by the immunology

community and there is an abundance of studies characterising Tregs through FACS

(Roncador et al., 2005; Duhen et al., 2012). However, these studies rely on a limited

number of protein markers, and a more global approach to identify Treg specific genes

and transcriptional programs is needed. Previous studies suggest that there are large

changes in gene expression in response to stimulation, which together compose a

Treg specific signature. However these studies have either been carried out in mice

(Stubbington et al., 2015), using microarray technology (Pfoertner et al., 2006) or in a

limited sample size (Birzele et al., 2011; Bhairavabhotla et al., 2016). Understanding

the changes induced by stimulation at the transcriptional level and integrating this

with chromatin data is important to advance our understanding of how the immune

response is orchestrated, and how that might increase the risk of autoimmunity.

The lack of genomic resources for Tregs can be partly attributed to the fact that they

are scarce. Therefore, to study rare cell populations it is important to develop robust

genomic protocols that are sensitive enough to be applied to small amounts of cellular

material. In this chapter I presented a methodical comparison between an established

protocol for chromatin profiling, ChIP-seq, and its recentmodification, ChM-seq (Schmidl

et al., 2015). ChM has been successfully used on cell lines (Schmidl et al., 2015), which

are easier to handle than primary cells, and on innate lymphoid cells (Lim et al., 2017),

but the robustness of the protocol across other cell types remains to be shown. Here,

I demonstrated that ChM-seq can be robustly used for profiling primary Tregs, a cell

type that is rare and has low viability ex vivo. ChM-seq was faster to perform than

established ChIP-seq protocols, captured 100% of the peaks mapped with ChIP-seq

and achieved an overall higher significance for the same peaks. I therefore applied

ChM-seq in a larger scale genomic analysis to profile stimulation induced changes in

Treg regulatory landscape.

Through the integration of profiles from three different chromatin marks, H3K27ac

ChM-seq, H3K4me3 ChM-seq and ATAC-seq, I was able to gain valuable insights into the
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dynamic process underlying complex gene regulatory processes in Tregs and define

gene promoters and enhancers. The majority of histone changes upon stimulation were

induced at the level of acetylation of H3K27 and chromatin accessibility, while the gene

promoters, as marked by the tri-methylation of H3K4 remained unchanged. H3K4me3

is deposited at the 5’-end of a genes and is known to mark actively transcribed genes.

The strength of H3K4me3 signal at promoters is strongly correlated with the expression

of genes (Okitsu et al., 2010). By combining chromatin data with gene expression I was

able to demonstrate that changes in the chromatin landscape were predictive of the

expression of 1,706 genes. Of these, 35 genes were regulated at the level of H3K4me3

exclusively, without changing the status of H3K27ac. This implies the precise action of

methyltransferases independently of acetyltransferases, which to my knowledge has

yet to be reported in Tregs. Among the 35 genes was LRRC32, which encodes for GARP,

whose expression on the cell surface correlated with the increase in gene expression.

GARP has been suggested to be a specific marker for activated Tregs, with levels of GARP

expression correlating with the cells’ suppressive capacity (Wang et al., 2009). It would

therefore be interesting to study the remaining genes on this list in the context of Treg

biology to better understand their regulatory mechanism and function. In fact, many

of these are already known to be highly expressed in Tregs upon stimulation, such as

DUSP2 and FOSL2 (Birzele et al., 2011), while others have never been reported before,

such as MAP2K3 and TNFSF9. TNFSF9 encodes for the ligand of 4-1BB, which has been

extensively studied in Tregs (Marson et al., 2007). Recent data suggests that 4-1BB ligand

is expressed on T cells in order to prevent effector T cell development and maintain

a favourable Treg to Tcon ratio (Eun et al., 2015). Along with our data demonstrating

the upregulation of TNFSF9 and the formation of a new promoter upon stimulation,

this suggest that expression of 4-1BB ligand might be another mechanism employed by

Tregs to maintain the immune balance.

The confident definition of active promoters through the intersection of the chromatin

annotation layers also gave me the opportunity to examine unannotated genes TSS. I

used RNA-seq annotation-free approaches to quantify splicing events induced upon

stimulation. I overlapped the newly defined exon junctions with the differentially active

promoters to determine whether some of these could mark unknown transcripts. I

found 21 genes that had unannotated promoters spanning their gene body. These

included the transcription repressor BACH2 which promotes the differentiation of Tregs
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(Roychoudhuri et al., 2013) and has been implicated in immune-mediated diseases

such as coeliac disease and inflammatory bowel disease. Another gene with a putative

cryptic TSS is the DNA methyltransferase DNMT3A. DNMT3A is expressed at lower levels

in Tregs of patients with rheumatoid arthritis (RA) than healthy controls as measured

by qPCR (Kennedy et al., 2014), even if deletion of the gene in mice does not seem to

impair the expression of FOXP3 (Wang et al., 2013a). This discrepancy could be due to

the fact that RA patients express a different isoform of DNMT3A which might be missed

by conventional primers designed for the primary isoform. Experimental validation of

the expression of different transcripts and determining whether they are coding would

increase our understanding of Treg cell biology.

The clustering of genes by expression pattern across the two conditions provided in-

sights on the processes of gene regulation upon stimulation. The majority of genes

related to the immune response were upregulated upon stimulation. These included

previously identified Treg specific genes such as IL2RA, CTLA4, LRRC32, IL13, IL10 and

TNIP3 (Birzele et al., 2011) and non-Treg specific genes such as SCD and IL22. In addition,

I found that some genes previously believed to be specific to naive T cells, were also

upregulated in Tregs, such as FOS, CXCL11 and NR4A2. These discrepancies could come

from different Treg isolation protocols (use of commercially available kit instead of flow

cytometry sorting), different stimulation approaches (anti-CD3/anti-CD28 antibodies

instead of PMA/ionomycin) and differences in sample size. Integration of different

datasets and combined analysis could help determine the source of these differences

and instruct the design of future RNA-seq experiments.

By examining different isoforms in Tregs I was able to find a set of genes that employ

alternative promoters upon stimulation. Interestingly, amongst these genes I identified

five transcription factors (TFs), three of which have documented functions in T cells. For

example, ELF4 has been shown to facilitate FOXP3 expression in thymic Tregs (Rudra

et al., 2012) and to be downregulated upon activation in naive CD4+ cells (Yamada et al.,

2010). Alternative transcription regulation represents a potential regulatory method

for the expression levels of this gene. Previous studies on alternative transcription of

NFATC1 have mostly focused on the lack of the C-terminal domain, which is specific to

effector T cells and not Tregs (Vaeth and Feske, 2018). The long transcript of NFATC1 plays

an important role in Treg differentiation and function, where it can directly bind the
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CNS2 of the FOXP3 gene to maintain its stable expression (Li et al., 2014). However there

are no studies that show a specific function for the alternative promoter I identified here.

Finally, YY1 TF levels are lower in resting Tregs compared to other T helper cells whereby

it is essential for the regulation of Th2 cell fate (Hwang et al., 2013). YY1 overexpression

anti-correlates with the level of FoxP3, since YY1 inhibits SMAD3/4 binding at the FOXP3

locus, resulting in the loss of the cells’ suppressive capacity (Hwang et al., 2016). In

fact, in natural settings YY1 expression is increased in Treg cells under inflammatory

conditions. Here I observed a different isoform being upregulated upon stimulation,

which results in a different protein coding product, shedding light into the potential

regulation of this gene. If the alternative transcript of a TF lacks the DNA binding do-

main, this could have substantial effects on the downstream processes the TF regulates.

Further validation studies on the potentially different functions of the two YY1 isoforms

are needed to better understand Treg regulation.

This chapter provides a resource of gene regulatory events detected in Tregs upon

stimulation. It will take follow up studies to assess the extent to which these events are

specific to Tregs or whether they reflect more global changes in gene expression in T

cells upon stimulation.
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4Linking genetic effects of molecular

phenotypes of regulatory T cells to

immune disease associated variants

Collaboration note
The data acquisition was performed in collaboration with Natalia Kunowska, Gosia

Golda and Claire Cattermole, all of whom were Research Assistants in Gosia Trynka’s

lab. I did the RNA-seq data analysis and the integration with GWAS variants. Lara

Bossini-Castillo performed the ATAC-seq, H3K4me3 and H3K27ac ChM-seq data analysis,

and was involved in all discussions around this project. RNA-seq library construction

and sequencing was undertaken by the DNA Pipelines core facility at Sanger. I thank

Kaur Alasoo for the helpful discussions on the best QTL analysis approaches, Alice Mann

for sharing the GWAS summary statistics and David Roberts’ lab for providing us with

half of the processed lymphocyte cones.

4.1 Introduction

Genome-wide association studies (GWAS) have revealed hundreds of genetic variants

associated to common immune diseases, such as inflammatory bowel disease (IBD) and

rheumatoid arthritis (RA). The vast majority of disease associated variants reside out-

side gene coding regions, which means that their downstream effects remain unknown.

Furthermore, the majority of disease variants map to regions of strong linkage disequi-

librium (LD), which can include up to hundreds of highly correlated single nucleotide

polymorphisms (SNPs), making the causal variant statistically indistinguishable from

others (Spain and Barrett, 2015). Finally, the associated loci harbour multiple genes, and

without further experiments it is impossible to determine which gene is affected by the

associated variant. It is important to address these limitations, since linking associated

disease variants to target genes, pathways and cellular functions, is instrumental for

understanding disease processes and the development of new therapies.
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In order to link disease variants to target genes, an easily implemented approach is to

measure the genome-wide gene expression levels to identify genes whose expression is

correlated in a linear fashion with the allele frequency of the nearby variants, referred

to as expression quantitative trait loci (eQTLs). Statistical approaches have shown that

a small proportion of the total number of eQTLs ( 2%) is expected to colocalise with the

associated variants (Guo et al., 2015). Indeed, coeliac disease variants were found to

be enriched in peripheral blood mononuclear cells (PBMCs) eQTLs (Dubois et al., 2010;

Trynka et al., 2011), and eQTLs detected in CD4+ memory T cells were enriched for RA

and type-1 diabetes (T1D) variants (Hu et al., 2014).

However, in order to achieve reliable eQTL and subsequent colocalisation results, it

is important to carry out gene expression assays in an isolated cell type, since gene

expression is cell type specific. Different statistical approaches have been developed

to determine the most relevant cell types for the study of different complex diseases.

These studies leverage the fact that disease variants localise in the non-coding regions

of the genome, and assess their enrichment in epigenetic marks. Such approaches

identified that across different immune diseases the associated variants were enriched

in active chromatin marks and accessible chromatin sites of CD4+ T cells ( Maurano

et al., 2012; Trynka et al., 2015, 2013; Finucane et al., 2015). CD4+ T cells are a heteroge-

nous population of cells, with each subset characterised by a specialised function,

and genetic effects specific to a rare subset of cells would be missed when assaying

total CD4+ cells. For example, while an eQTL study in total CD4+ T cells from over 300

individuals found 166 genes colocalising with five immune traits, it was difficult to

deconvolute the role of the different genes in each T cell subset (Kasela et al., 2017). In

fact, previous studies showed that enrichment of disease variants was observed in rare

cell subpopulations, such as regulatory T cells (Trynka et al., 2013), which only constitute

5% of CD4+ cells. Tregs were more highly enriched than other CD4+ T cell types for

T1D and RA risk variants, which would imply that a proportion of the disease variants

modulate gene expression by affecting the function of enhancers and promoters that

are specific to Tregs. The observations made were based on genetic evidence, but the

role of Tregs in immune diseases is well documented in the immunology field (Buckner,

2010) and many differences from naive cells have been reported using comparative

RNA-seq approaches (Birzele et al., 2011; Bhairavabhotla et al., 2016).

104 4 Linking genetic effects of molecular phenotypes of regulatory T cells to immune disease

associated variants



Although correlation of disease associated variants with gene expression through eQTL

studies is informative, most of the time it is insufficient to determine the exact causal

variant within a locus of statistically correlated polymorphisms. This challenge can be

addressed by carrying out RNA-seq in conjunction with assays that annotate the non-

coding portion of the genome, such as profiling histone modifications through ChIP-seq

or open chromatin regions with ATAC-seq. By performing QTL mapping across different

molecular layers one is able to refine the allelic effects propagation from chromatin to

gene expression. Additionally, assaying chromatin profiles gives the advantage that the

variants can be functionally prioritised by assessing their location in the regulome. A

variant within a peak will have a higher probability of being functional compared to

a variant outside of a peak. Colocalisation across multiple layers of gene expression

regulation would therefore provide a mechanism of action for a specific variant within

the locus, such as the disruption of a transcription factor binding site. Of course, such

approaches are expensive and if carried out would require a commensally large effort.

It has been estimated that approximately 30% of variants affecting gene expression

in CD4+ T cells act by affecting the chromatin conformation nearby a gene (Chen et al.,

2016; Gate et al., 2018).

In this chapter I assess the role of genetic variants associated with immune-mediated

diseases on gene expression (eQTLs) and transcript ratios (trQTLs) in naive and regula-

tory CD4+ T cells from 169 and 100 individuals, accordingly. I identify thousands of eQTLs

and trQTLs and find that they are largely independent from each other. By comparing

eQTLs and trQTLs between Tregs and naive CD4+ T cells, I pinpoint to Treg specific effects,

and find that 58% of the effects are shared between these two closely related cell types.

I colocalise eQTLs and trQTLs with GWAS in Tregs and naive T cells, and find that the

majority of colocalisation associations occur with immune-mediated diseases. While

the majority of colocalising signals were shared across the two cell types, there were

many that were Treg specific, implicating important differences in the biology of the

two cells. Finally, the same individuals from which I had Treg gene expression profile

were assayed for ATAC-seq, H3K4me3 ChM-seq and H3K27ac ChM-seq, allowing me to

map QTLs. By using the five different QTL maps I was able to refine 33 GWAS association

signals to prioritise functional variants for MAP3K8 and TNFRSF9/PARK7.
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4.2 Materials and Methods

4.2.1 Cell culture and sample collection

Lymphocyte cones were obtained with informed consent from donors at the NHS Blood

and Transplant, Cambridge (REC 15/NW/0282) and from the NHS Blood and Transplant,

Oxford (REC 15/NS/0060).

All donors were healthy adults of Caucasian origin. PBMCswere isolated using Lympholyte-

H (Cedarlane Labs, Burlington, Canada) density gradient centrifugation. CD4+ T cells

fraction of the PBMCs was obtained by negative selection using EasySep® Human CD4+ T

Cell Enrichment Kit (Cat. no. 19052, StemCell Technologies, Vancouver, Canada), following

the manufacturer’s instructions but using half the recommended volumes of the CD4+ T

Cell Enrichment Cocktail and the D Magnetic Particles. CD4+ cells were resuspended

in the FACS staining buffer (2 mM EDTA and 0.5% FCS in PBS) at 108 cells per ml. The

cells were stained with the following antibody cocktail: anti-CD4+-APC (30 µl/ml final

volume, clone OKT4, Cat. no. 317416, BioLegend, San Diego, U.S.), anti-CD127-FITC and

(30 µl/ml, clone eBioRDR5, Cat. no.11-1278-42, Thermo Fisher Scientific, Waltham, U. S.)

and anti-CD25-PE (80 µl/ml, clone M-A251, Cat. no. 356104, BioLegend) for at least 30

minutes at room temperature in the darkness. The cells were washed copiously with

FACS buffer and resuspended at 108 cells per ml in full medium (IMDM, 10% FCS) and

kept overnight at 4ºC. Before sorting, the cells were stained with DAPI, to discriminate

live and dead cells. The CD4+, CD25high, CD127neg population corresponding to Treg

lymphocytes was used for the downstream assays.

4.2.2 FACS staining

To define the proportions of memory and naive cells in the CD4+ population, an aliquot

of 106 cells CD4+ enriched cells were resuspended in 100 µl FACS buffer and stained with

a cocktail of anti-CD4+-APC and anti-CD127-FITC antibodies (3 µl each), anti-CD25-PE (8

µl) and anti-CD4+5RA-BV785 (4 µl, clone HI100, Cat. no. 304140, BioLegend), incubated

at room temperature in the dark for at least 30 minutes, washed copiously with FACS

buffer and analysed on BD Fortessa.

106 4 Linking genetic effects of molecular phenotypes of regulatory T cells to immune disease

associated variants



To verify the FoxP3 expression in the sorted Treg populations, after the sorting the cells

were stained for expression of CD4+, CD25 and CD127 surface markers, and then stained

with anti-FOXP3-BV421 antibody (5 µl per 106 cells, clone 206D, BioLegend) using the

eBioscience™ Foxp3 / Transcription Factor Staining Buffer Set (Thermo Fisher Scientific),

according to the manufacturer’s instructions.

4.2.3 RNA-seq

For RNA-seq experiments, 0.5 x 106 sorted Treg cells were washed with ice-cold PBS and

resuspended in TRIzol (Thermo Fisher Scientific). After standard phenol/chloroform

isolation step, the total RNA contained in the upper, aqueous phase was further purified

with RNeasy Mini Kit (QIAgen, Hilden, Germany), according to the manufacturer’s instruc-

tions. The RNA libraries were constructed using KAPA RNA HyperPrep Kit (Roche, Basel,

Switzerland), following a standard automated protocol. The libraries were multiplexed

and sequenced at 75 bp paired-end on an Illumina HiSeq V4 to yield on average 57

million reads per sample.

4.2.4 ATAC-seq and ChM-seq

ATAC-seq was performed as described in Chapter 3 to yield on average 112 million reads

per sample. ChM-seq was performed as described in Chapter 2 and Chapter 3 to yield 70

million reads per samples for H3K27ac and 79 million reads per samples for H3K4em3.

4.2.5 Polymorphism genotyping and imputation

A total of 551,839 genetic markers were genotyped using the Infinium® CoreExome-24

v1.1 BeadChip by Illumina. After quality control per individual, the total genotyping rate

reached 0.99869. 243,820 variants passed several per polymorphism filtering steps (mi-

nor allele frequency (MAF) > 10%; SNP call rate > 95%, Hardy-Weinberg equilibrium (HWE)

p-value < 0.001). We then performed imputation using BEAGLE 4.1 software (Browning

et al., 2018) with a reference panel comprising the individuals included 1000 Genomes

Phase 3 and the UK10K projects (model scale parameter = 2). We applied stringent
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post-imputation quality filtering (Allelic R-Squared ≥ 0.8, HWE p-value < 0.001, MAF >

10% in the analysed cohort and in the reference panel) and 4,647,308 variants remained.

Of those, 512,320 were insertion-deletions and 608 were multiallelic polymorphisms.

European origin was confirmed by principal component analysis (PCA) including the

1000 Genomes project and UK10K project individuals. Identity by state was calculated

for all individuals and relatives and replicates were removed (pi hat > 0.2). Duplicate

donors were identified.

4.2.6 RNA-seq data processing

Reads were aligned to the GRCh38 human reference using STAR and quantified using

featureCounts and using Salmon, as described in Chapter 3. I used VerifyBamID v1.0.0

(Jun et al., 2012) to detect and correct sample swaps and cross-contamination across

the donors. I excluded short RNAs and pseudogenes from the analysis. I quantile

normalised the gene expression values using the CQN method (Hansen et al., 2012)

for downstream analysis. I collapsed the transcript expression levels to genes using

tximport and excluded short RNAs and pseudogenes from the analysis. I only kept

genes with mean expression greater than 1 transcript per million (TPM). This resulted

in 12,227 genes using the STAR alignment approach and 13,773 genes using the Salmon

approach.

In addition to collapsing the transcripts to genes, I used the Salmon transcript output

to calculate transcript ratios based on the total expression per gene. I determined

the transcript ratios of 125,879 transcripts corresponding to 14,885 genes. I used the

STAR+featureCounts output to determine the euclidean distance between all samples

in the dataset. Finally, I used Leafcutter (Li et al., 2018) to identify intron clusters and

determine alternatively spliced junctions within these. I used these measurements to

calculate the abundance ratios for the different junctions within a cluster. I determined

the junction ratios of 162,251 junctions corresponding to 39,265 clusters.
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4.2.7 Gene expression QTL mapping and analysis

Before carrying out a QTL study I removed the major histocompatibility complex locus

and the X and Y chromosomes of each sample. I used linear regression implemented

in the QTLtools (Delaneau et al., 2017) software to map cis eQTLs within a +/-500 kbp

window around the gene. I used the “–permute 10000” within a 100 kb window option

to obtain permutation p-values for each gene. For each mapping approach I used as

covariates the number of PCs that would lead me to explain down to 1% of the observed

variance, which was 16 PCs for STAR and Salmon, 19 PCs for transcript ratios and 37 PCs

for splice ratios. I picked the top most significantly associated variant for each gene and

used false discovery rate (FDR) correction to identify genes with at least one significant

eQTL at 5% FDR level. I processed in exactly the same way the naive CD4+ T cell dataset

after downloading it from the EGA archive using the study code EGAD00001002671. I

included 14 PCs for STAR alignment and 8 PCs for transcript ratios using Ensembl.

I identified genes that were eQTLs using one method or one cell type at 5% FDR and

used their lead variants in the other method or cell type to calculate the linkage dise-

quilibrium (LD) between the two variants.

I defined an eQTL as cell type specific when comparing naive and regulatory T cells

using three criteria: (i) the gene was expressed in one cell type only, (ii) the gene had

a significant eQTL effect in one cell type (FDR ≤ 0.05) and not in the other (FDR > 0.2)

and (iii) one cell-type’s eQTL SNP was unlinked from any of the eQTL SNPs reported in

the other cell type. I correlated the regression slopes of the top significant variant of

each cell type with the same gene-variant combination of the other cell type, even if

the gene-variant were not eQTLs. I defined genes with opposite effect if the absolute

regression coefficient was greater than 0.5 in both cell types. In trQTL, I defined cell type

specific effects using the same first two criteria, but the third one was: (iii) a different

transcript’s ratio was disturbed between the two cell types. I used g:Profiler (Reimand

et al., 2016) R package to identify the KEGG pathways enriched for cell type specific eQTL

and trQTL genes.

I used the fdensity function from the QTLtools package (Delaneau et al., 2017) to calcu-

late the enrichment of regulatory marks near lead eQTL and trQTL variants.
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4.2.8 Colocalisation with immune disease traits

I used coloc v2.3–1 (Giambartolomei et al., 2014) to test for colocalisation between QTLs

and GWAS hits listed in Table 4.1 . I ran coloc on a 400 kbp region centered on each

lead expression (e)QTL, transcript ratio (tr)QTL, chromatin accessibility (ca)QTL, activity

(act)QTL and promoter (prom)QTL variant that was less than 100 kbp away from a GWAS

variant with a nominal p-value< 10-5. I only kept the colocalisations between molecular

QTLs and GWAS that had more than 50 SNPs tested, and were therefore well powered,

and where the sum of the probabilities of having a significant signal in both studies

was over 0.8 (H3+H4 ≥ 0.8). I finally required the probability of the signal being due to

a single shared variant (H4) to represent 0.8 of the probability of having a significant

signal in both studies (H4/(H3+H4) ≥ 0.8). I calculated the R2 between all colocalising

lead immune GWAS variants to determine immune disease loci.

Table 4.1: GWAS summary statistics used in the colocalisation analysis.

Abb. Trait Reference Category
ALL Allergies Ferreira et al., 2017a Autoimmune

AST Asthma Demenais et al., 2018 Autoimmune

CD Crohn’s disease Lange et al., 2017 Autoimmune

CEL Celiac disease Trynka et al., 2011 Autoimmune

IBD Inflammatory bowel disease Lange et al., 2017 Autoimmune

MS Multiple sclerosis International Multiple

Sclerosis Genetics Con-

sortium (IMSGC) et al.,

2013

Autoimmune

PBC Primary biliary cirrhosis Cordell et al., 2015 Autoimmune

PS Psoriasis Tsoi et al., 2012 Autoimmune

RA Rheumatoid arthritis Okada et al., 2014 Autoimmune

SLE Systemic lupus erythromatosus Bentham et al., 2015 Autoimmune

T1D Type-1 diabetes Onengut-Gumuscu et al.,

2015

Autoimmune

UC Ulcerative colitis Lange et al., 2017 Autoimmune

MCH Mean corpuscular hemoglobin Astle et al., 2016 Metabolic
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CAD Coronary artery disease Nelson et al., 2017 Metabolic

LDL Low density lipoprotein Astle et al., 2016 Metabolic

T2D Type-2 diabetes Morris et al., 2012 Metabolic

AD Alzheimer’s disease (late onset) Lambert et al., 2013 Other

DEP Depression (broad) Howard et al., 2018 Psychiatric

INT Intelligence Sniekers et al., 2017 Psychiatric

SCZ Schizophrenia Schizophrenia Working

Group of the Psychiatric

Genomics Consortium,

2014

Psychiatric

4.3 Results

4.3.1 eQTL mapping and comparison of alignment methods

I collected 117 RNA samples from 100 genotyped donors of European ancestry over

the course of 10 months. I used two alignment methods to quantify gene expression

levels; the first one, STAR (Dobin et al., 2013), relied on a reference genome, while the

second approach, Salmon (Patro et al., 2017), used a pseudo-alignment algorithm which

is reference free. Additionally, the Salmon algorithm allowed me to quantify the tran-

script ratios (referred to as Ensembl) and the LeafCutter algorithm allowed to assess for

differential splicing events across all samples (referred to as leafcutter) (Li et al., 2018).

I first verified whether there were any sample swaps, and found a single swap between

two donors that was rectified. I examined how much of the gene expression variability

was explained by any of the recorded experimental procedures using the STAR align-

ments and featureCounts quantification, and found that there was a large batch effect,

based on when the blood samples were processed, explaining 37.7% of the variability.

Using PCA I determined that the first 16 PCs collectively explained down to 1% of the

variability. Since the Treg cohort was collected over the course of 10 months I wanted

to test if that would have an effect on the gene expression profiles. For that I used the

17 donors who were sampled at two independent time points. I observed that the Eu-

clidean distance between the gene profiles of two replicates was smaller than between

4.3 Results 111



Euclidean distance between two donors
40 60 80 100 120

Fr
eq

ue
nc

y

0

100

200

Figure 4.1: Euclidean distance between all pairs of donors. Histogram of the Euclidean distance
between any two donors in the dataset. The red lines mark the location of the 17
donors who had blood drawn on two occasions.

two random samples (Kolmogorov-Smirnov test p-value = 1.33x10-6) (Figure 4.1 ).

I used a standard linear regression model to map QTLs (Delaneau et al., 2017) using

the gene expression and transcript ratios measurements, within a 500 kbp cis-window

around the gene, transcript or intron cluster. I included the first 16 PCs as covariates

for both quantification methods. I detected genetic effects on over 4,000 genes and

2,000 transcript ratios at 5% FDR (10,000 permutations; Figure 4.2 ). At the gene level I

observed 23% more eQTLs using STAR combined with featureCounts than using Salmon

quantification while at the transcript ratio level (trQTLs) there was no difference in the

number of trQTLs detected. After conditioning on the lead variant I found at least one

additional effect for 32%-48% of the genes, depending on the alignment method used.

In order to compare the different QTL mapping approaches I tested if the lead variants

for the same gene-sets (or transcript-sets) were concordant. Specifically, I took all lead

variants at 5% FDR from one method and compared them to the lead variants of the

same genes (or transcripts) from the second method. I then calculated the fraction of

lead variant pairs that were in high (R2 ≥ 0.8), medium (0.2 ≤ R2 < 0.8) or low LD (R2 <

0.2). At the gene level, a small proportion of genes that were eQTLs did not pass the

filtering thresholds using STAR, and were therefore annotated as specific (Figure 4.3 ).

Nevertheless, 46% of the eQTLs detected using either of the two mapping approaches

were in high LD with each other. For the remaining eQTL analysis I used the STAR

quantification since it led to a higher discovery of eQTLs, yet discarding the eQTLs for

the genes with low counts. At the transcript ratio level, 45% of Ensembl trQTLs were
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Figure 4.2: Number of Treg genes whose expression is under control of a common genetic vari-
ant. Number of gene eQTLs (A) and trQTLs (B) detected by four different mapping
and expression quantification approaches. The colour corresponds to the number of
independent variants influencing the expression of each gene.

concordant with the leafcutter trQTLs, while 37% of leafcutter QTLs were concordant

with Ensembl trQTLs. Since I discovered more trQTLs using the Ensembl annotation

and they resulted in higher concordance with leafcutter, I only used Ensembl for any

further trQTL analysis. Finally, I compared the concordance between eQTLs and trQTLs.

Interestingly, I observed that the two were largely independent of each other, with only

25% of eQTLs also affecting transcript ratios and 29% of trQTLs also being eQTLs. This

suggests that the majority of eQTL variants are independent of splicing, and that genetic

variants that affect transcript ratios might be undetected when collapsing read counts

to gene levels.

4.3.2 Cell type specificity of gene expression

Next, to estimate the proportion of eQTLs specific to Tregs, I compared eQTLs discovered

in Tregs with eQTLs called in CD4+ naive T cells. I chose this dataset because these

two cell types are closely related, the naive CD4+ T cell dataset is of similar size (169

individuals) to the Treg dataset and all the individuals are of British origin (Chen et al.,

2016). I assessed if the same set of genes was under genetic control in the two cell

types. To call an eQTL gene cell type specific I required FDR ≤ 0.05 in one cell type

and FDR > 0.2 in the second cell type. Using this criterion, I observed that the majority
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of Treg eQTL genes were shared with naive T cells (77.4%) (Figure 4.4 A). To further

understand if the genes that were called eQTLs in both cell types were regulated by the

same genetic variants, I calculated the strength of LD between all of the independent

associated genetic variants reported per gene between the two cell types. I only kept

the strongest LD score per gene for all downstream analysis. I found that amongst

the shared genes, the majority of the variants were in high LD with each other, but a

substantial proportion (33%) were caused by independent signals. Therefore, to define

a gene as a cell type specific eQTL I used the following three categories: (i) the gene

was expressed in one cell type only (2.9% of eQTLs), (ii) the gene had a significant eQTL

effect in one cell type (FDR ≤ 0.05) and not in the other (FDR > 0.2; 15.7% of eQTLs)

and (iii) the Treg eQTL SNP was unlinked from any of the eQTL SNPs in naive T cells

(23.9% of eQTLs). Amongst the second category I found many genes related to Treg

function, including CD28 co-stimulation receptor (FDR=2.38x10-8; regression slope=0.155)

and MAP3K8 which induces the NF-κB immune response (FDR=5.11x10-6; regression

slope=-0.272) (Figure 4.4 C). In total, I found 2,284 Treg specific genes and 4,419 naive

T cell specific genes. The higher number of naive eQTL genes can be partly explained

by the larger sample size resulting in a larger starting number of eQTLs. Interestingly,
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both naive and regulatory T cell specific eQTL genes were enriched in T cell receptor

signalling pathways (Figure 4.4 E; p-value naive = 4.1x10-3; p-value Treg = 4.9x10-3). These

genes can help us better understand the differences in biology between these two cell

types, since they are involved in essential T cell processes.
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Figure 4.4: Comparison of eQTLs and trQTLs called in CD4+ naive and regulatory T cells. Classi-
fication of cell type specific QTLs discovered in naive and regulatory T cells for eQTL
(A) and trQTL (B). Examples of Treg specific C. eQTLs and D. trQTLs. E. Results of the
pathway enrichment analysis for the cell type specific eQTLs and trQTLs using the
KEGG database.
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I repeated the same analysis using the trQTLs (Figure 4.4 B). While the overall pattern

looked similar to the eQTL analysis, I observed a lesser degree of overlap between

the two cells. Additionally, I found that when examining transcript ratios, even when

the same gene in naive and regulatory T cells was affected by a trQTL effect, in 42.7%

of cases it was a different transcript’s ratio that was disturbed by a genetic variant. I

defined Treg/naive T cell specific trQTLs using the same first two categories as with

the cell type specific eQTL genes, that is (i) the gene was expressed in one cell type

only and (ii) the gene was a significant trQTL in one cell type (FDR ≤ 0.05) and not

in the other (FDR > 0.2), which collectively represented 13.2% of trQTLs. In addition, I

included a third category (iii) that a different transcript’s ratio was disturbed between

naive and regulatory T cells. Amongst the Treg specific trQTLs there were many genes

related to the immune response, such as FOSL2, a component of the AP1 transcription

factor machinery (FDR=1.3x10-5; regression slope=-0.442) and TNFRSF9, which encodes

for the 4-1BB co-stimulatory ligand (FDR=2.8x10-3; regression slope=0.55) (Figure 4.4 D).

No pathways were enriched in naive T cell specific trQTLs.
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Figure 4.5: Correlation between the regression slopes for the top eQTL variants discovered in
CD4+ naive and regulatory T cells. The regression slope of the top eQTL variant in
naive T cells plotted against the slope for the same variant-gene pair in Tregs (left
panel) and vice versa (right panel).

I observed that the sizes and the direction of the effects of the mapped eQTLs were

highly correlated between the two cell types (Figure 4.5 ; Spearman correlation 0.793

in naive and 0.811 in regulatory T cells). There were only twelve genes with opposite

directions and only five of these were eQTLs in both cell types; DST and PLEKHA7, which
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are adhesion junction plaque proteins, were also eQTLs in Tregs and GNLY, MME and

HIST1H4B were also eQTLs in naive T cells. None of these genes have a different function

in the two cell types. The number of eQTLs with opposite effects was therefore very

small, which is consistent with the close relation of these cell types.

4.3.3 Colocalisation of eQTLs and trQTLs with disease associated variants

I used a statistical colocalisation approach to determine whether any of the observed

eQTLs and trQTLs colocalised with immune disease associations (Giambartolomei et al.,

2014). Such colocalisation of disease and molecular signals would implicate the same

underlying causal variant and could provide insights in the molecular mechanisms for

some of the immune associated GWAS loci. I tested five hypothesis for colocalisation.

Hypothesis zero (H0) tests whether there is any association at all, H1 and H2 test whether

there is an association with just one or the other study, H3 tests whether the signal from

GWAS and QTL is due to two independent SNPs, and H4, that the association between

GWAS and QTL is due to one shared SNP. I used 0.5 as a probability threshold for H4 and

calculated the colocalisation power (sum of H3 and H4), on which I used a 0.8 threshold.

To report a significant colocalisation I used a 0.8 threshold of H4/power (Figure 4.6 ).

By doing so I ensured that I focused my downstream analysis on signals at loci with

colocalising associations predominantly driven by H4 (Guo et al., 2015).

Figure 4.6: Thresholds used for colocalisation between eQTLs and GWAS traits. A. Probability
of the signal being significant in both assays due to two independent causal SNPs
(H3) or the same SNP (H4). B. Power (H3+H4) versus the coloc score (H4/power). I
used a selection of six immune traits with a high number of associated SNPs for
illustration purposes.
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I observed tens of colocalisations between GWAS traits and eQTLs in both naive and

regulatory T cells (Figure 4.7 ). The highest number of colocalisations was achieved for

inflammatory bowel diseases (IBD), ulcerative colitis (UC) and Crohn’s disease (CD), but

also allergies (ALL), schizophrenia (SCZ) and rheumatoid arthritis (RA). I used metabolic

disorders as a control, because I would expect to observe less colocalising signals

between Tregs and metabolic traits compared to immune disorders. Indeed, the median

number of colocalising signals across the ten most enriched immune diseases was

ten, while it was only two for the ten most enriched metabolic traits. The number of

colocalisations correlated with the number of regions tested, and in consequence I

observed more colocalisations in naive T cells. Interestingly I observed a large number

of colocalisations with SCZ, which has a known immune component. I additionally

observed a substantial number of colocalisations with other psychiatric traits, such as

depression (DEP) and intelligence (INT), since psychiatric disorders are characterised

by a large degree of sharing across their loci (Cross-Disorder Group of the Psychiatric

Genomics Consortium, 2013). I observed a similar number of hits in trQTLs and in eQTLs,

despite testing approximately 25% fewer regions for trQTLs. This implicates that in

addition to regulating gene expression, a proportion of immune disease variants will

function through altering transcript ratios.

To examine whether among the colocalising signals there were some that were cell type

specific, I focussed on ten immune diseases. There was a clear separation between

the Treg colocalising signals, the naive colocalising signals and the colocalisations

shared between the two cell types. A proportion of signals that colocalised in Tregs was

accounted for by the Treg specific eQTL or trQTL (Figure 4.8 A). Those genes are thereby

referred to as Treg exclusive colocalisations. The colocalising signals shared across the

two cell types had similar regression slopes (R2 = 0.88 for eQTLs and R2 = 0.78 for trQTLs

(Figure 4.8 B). The only exception was ACO2, which showed opposite effects in naive and

regulatory T cells.
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Figure 4.7: Number of colocalising QTL genes and GWAS loci in relation to the number of tested
QTL genes and the disease loci. A. Number of tested eQTL and trQTL genes (FDR ≤
0.05) per trait and number of genes colocalising in naive and regulatory T cells. B.
Number of all GWAS loci with p-value < 10-5 versus the number of colocalising GWAS
loci. AD: Alzheimer’s disease; ALL: allergic disease (asthma, hay fever and eczema);
AST: asthma; CAD: coronary artery disease; CD: Crohn’s disease; CEL: celiac disease;
DEP: Broad depression; IBD: inflammatory bowel disease; INT: intelligence; LDL: low
density lipoprotein; MCH: mean corpuscular hemoglobin; MS: multiple sclerosis; PBC:
primary biliary cirrhosis; PS: psoriasis; RA: rheumatoid arthritis; SCZ: schizophrenia;
SLE: systemic lupus erythematosus; T1D: type-1 diabetes; T2D: type-2 diabetes; UC:
ulcerative colitis.
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Figure 4.8: Shared and specific colocalising signals in naive and regulatory T cells. A. Coloc
values in naive cells and Tregs for eQTLs and trQTLs. Genes have been assigned a
color based on whether they colocalise in one or both cell types. Additionally, genes
that are eQTLs or trQTLs specifically in Tregs are labelled. B. Correlation between the
regression slopes of naive cells and Tregs for the same genes.

4.3.4 Coloc genes have higher probability of being loss of function intolerant

I wanted to further investigate if colocalising genes were truly biologically more relevant

to the studied diseases. If that would be the case I would expect them to be less tolerant

to loss of function mutations. I therefore assessed the identified eQTL and colocalising

genes in the context of protein-coding studies and human knock-out variants (Lek et al.,

2016). In this catalog each gene is assigned a probability of being loss of function intol-

erant (pLI) by counting the number of observed loss of functions alleles in 50 thousand

exomes and extrapolating that to the probability of a gene being intolerant to being
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knocked-out, therefore labelling it as essential. This means that a gene with an assigned

high score is likely to be indispensable to the cell’s core pathways. In their study the

authors reported that eQTL genes are more tolerant to loss of function mutations. When

assessing 10,747 genes that were expressed in Tregs and had calculated pLIs, I observed

that the median pLI was 0.087, which decreased to 0.039 when only considering genes

with eQTL effects in Tregs (Figure 4.9 A). This is concordant with the fact that genes with

eQTLs are more likely to withstand genetic variability. When restricting the analysis

to eQTL genes in immune GWAS loci, I observed a similarly low median pLI of 0.058.

However, for the eQTL genes that colocalised with immune disease signals the median

pLI increased to 0.2, indicating that disease colocalising Treg eQTL signals are enriched

for genes that are more likely to be disease causal.
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Figure 4.9: Probability of coloc genesbeing loss function intolerant (pLI). A.Distribution of prob-
ability of genes being loss function intolerant (pLI) grouped by whether (i) they are
expressed in the dataset (ii) they fall within GWAS loci, defined by the lead reported
variants and LD R2 ≥ 0.8. (iii) they are eQTLs in the dataset, (iv) they are eQTLs and
they fall in immune GWAS loci, and (v) they colocalise with immune GWAS signals. B.
Distribution of COLOC gene’s pLIs.

Using a combination of colocalisation of eQTL and immune disease GWAS signals and

restricting the list to the genes with pLI scores greater than the median, that is pLI >

0.2, I obtained a list of 33 genes with higher confidence of being truly disease relevant.

Interestingly, I observed that many colocalising genes involved in the signalling of the
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immune response (CD28, TNFRSF14 and MAP3K8) and essential transcription factors

(ELMO1, BACH2 and IKZF4) were characterised by a pLI higher than the median 0.2

(Figure 4.9 B). Furthermore, for loci where a GWAS signal colocalised with a variant

regulating the expression of more than one gene, this analysis allowed me to prioritise

the most relevant gene. For example, ORMDL3 and GSDMB both colocalised with a signal

from RA, T1D, ALL, UC, CD, IBD, asthma (AST) and systemic lupus erythematosus (SLE).

However, the pLI of ORMDL3 (0.7) was much higher than that of GSDMB (0.0), which

would indicate that ORMDL3 is more essential for the cell’s function, and therefore

variation in its expression might have a higher phenotypic impact. Of the 33 genes, 7

are likely to play a role in disease biology through specifically affecting Treg function,

since these were not eQTLs in naive cells (CD28, KDELR2, MAP3K8, IKZF4, STAT5A, ZNF652

and PIM3).

4.3.5 eQTLs are enriched in active chromatin marks

Amongst the mechanisms by which eQTLs and trQTLs might exert their effects are

alterations of transcription factor binding sites, leading to differential binding between

the two alleles, switching on/off alternative promoters and altering the interactions

between enhancers and promoters. These events are reflected in regulatory regions of

the genome mapped by histone modifications and chromatin accessibility. I therefore

tested if regulatory annotations were enriched in the vicinity of the eQTL and trQTL

variants. I measured the density of functional annotations in a one million bp window

around the lead associated variant reported for each eQTL or trQTL gene. I observed

that both eQTLs and trQTLs were enriched in ATAC-seq, H3K27ac, H3K4me1 and H3K4me3

ChM-seq defined peaks (Figure 4.10 ). On the other hand, they were depleted from

H3K27me3 ChM-seq peaks. Furthermore the observed enrichment was higher than in

non-QTL genes. Having confirmed that both eQTLs and trQTLs were enriched in active

regulatory regions, I proceeded to perform a QTL analysis using ATAC-seq, H3K27ac and

H3K4me3 ChM-seq annotation layers.

4.3.6 Coordinated influence of gene expression and regulatory QTLs on
GWAS loci

For the same individuals for whom I mapped eQTL and trQTLs I obtained QTL results

for H3K27ac ChM-seq (91 individuals), H3K4me3 ChM-seq (88 individuals) and ATAC-seq
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ber of peaks called for the different chromatin assays was counted in 1,000 bp bins
around 1,000 kbp of the positions of the top eQTL and trQTL for the significant
genes.

(73 individuals). There were 9,179 activity QTLs (actQTLs called from H3K27ac ChM-seq),

5,992 promoter QTLs (promQTLs called from H3K4me3 ChM-seq) and 1,253 chromatin

accessibility QTLs (caQTLs called from ATAC-seq) detected. Given that I observed that

immune disease variants colocalised with eQTL variants, and active regulatory regions

were enriched in proximity to eQTL and trQTL genes, I wanted to further investigate

if there were instances where the chromatin regulatory signals (regQTLs) would also

colocalise with disease variants. For that, I ran the colocalisation method, as previously

described, but instead of eQTL and trQTL summary statistics I used regQTLs with GWAS

signals. In immune diseases, I detected between 0 (psoriasis (PS)) and 48 (IBD) signals

colocalising with QTLs mapped for all three chromatin marks (Figure 4.11 A), and H3K27ac

showed the highest number of colocalising signals. In order to further quantify this, I

calculated the relationship between all the lead GWAS variants which colocalised with

the five QTL studies, and defined LD blocks based on R2 ≥ 0.5 (Figure 4.11 B).

I focussed on the GWAS variants that in addition to an eQTL or trQTL also colocalised

with a caQTL, promQTL or actQTL (colocalization between eQTLs and actQTLs shown
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on Table 4.2 ). Loci that overlap with QTLs for different chromatin marks and gene

expression could be particularly informative for functional fine-mapping of disease loci

and could provide a potential explanation for the observed effect on the expression

of the gene. I found 47 lead GWAS SNPs which colocalised with regQTLs, the majority

overlapped with an actQTL (42/47). Amongst these genes there were eight genes that I

previously determined to be Treg exclusive colocalisations; CCL20, CLNK, CTSH, MAP3K8,

PIM3, SP140L, STAT5A and TNFRSF9. Using the GTEx database (GTEx Consortium, 2015),

I noticed that two genes, CTSH and SP140L, were ubiquitous eQTLs (Figure 4.12 ). I did

not further investigate whether these eQTL effects were caused by the same signal as

the one observed in Tregs. The remaining genes were eQTLs in a restricted number of

tissues, which would suggest that these genes are only functional in specific cell types

or tissues. For example, MAP3K8 was only affected in skin from sun exposed areas while

TNFRSF9 was only affected in the stomach (nominal p-value < 10-6).

Figure 4.12: eQTL effects in tissues assayed in GTEx for the immune disease loci with Treg ex-
clusive eQTLs and colocalisations with regQTLs. Included are only the eQTL signals
with p-value ≤ 10-6.
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Table 4.2: Treg eQTL colocalisations with actQTLs and immune disease GWAS. SNP ID: Lead
GWAS variant colocalising rsid; Trait: GWAS immune trait (ALL: allergic disease (asthma,
hay fever and eczema); AST: asthma; CD: Crohn’s disease; CEL: celiac disease; IBD:
inflammatory bowel disease; MS: multiple sclerosis; RA: rheumatoid arthritis; SLE:
systemic lupus erythematosus; T1D: type-1 diabetes; UC: ulcerative colitis); eQTL gene:
symbols of eQTL genes; actQTL peak co-ords: peak co-ordinates for actQTLs.

SNP ID Trait eQTL gene actQTL peak co-ords
rs697693 CD TNFRSF9 1:7921757-7945632

rs9658012 CEL TNFRSF9 1:7921757-7945632

rs10746475 IBD TNFRSF9 1:7921757-7945632

rs7523335 UC TNFRSF9 1:7921757-7945632

rs301802 ALL RERE 1:8361298-8433466

rs10826797 IBD MAP3K8 10:30432917-30439043

rs968567 RA FADS1, FADS2, FADS3, TMEM258 11:61831659-61836649

rs58688157 SLE IRF7 11:599606-617445

rs12148472 T1D CTSH 15:78941912-78945542

rs9934775 IBD BRD7, ADCY7 16:50262778-50371480

rs59716545 RA GSDMB, ORMDL3 17:39912458-39929022

rs12936409 CD, UC, IBD GSDMB, ORMDL3 17:39912458-39929022

rs8067378 AST GSDMB, ORMDL3 17:39912458-39929022

rs12453507 T1D GSDMB, ORMDL3 17:39912458-39929022

17:54863502 IBD DGKE 17:56866409-56871045

rs7207591 ALL STAT5A 17:42219755-42299818

rs4803937 CD PPP5C 19:46345737-46359367

rs11667255 UC PTGIR, GNG8, CALM3 19:46599219-46627182

rs10175070 UC CCL20 2:227804673-227819641

rs7563433 CD SP140 2:230323771-230338021

rs9989735 MS SP140L, SP140 2:230323771-230338021

rs4343432 CD ADCY3 2:24899368-24923784

rs76286777 IBD ADCY3 2:24870549-24891422

rs137845 UC PIM3 22:49975365-49977811

rs2581828 CD RP11-894J14.5 3:53095151-53133630

rs7660626 RA CLNK 4:10654765-10658912

Continued on next page
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Table 4.2 – Continued from previous page

SNP ID Trait eQTL gene actQTL peak co-ords
rs6894249 AST SLC22A5 5:132369046-132371617

6:90947340 CD BACH2 6:90264695-90268560

rs57585717 RA JAZF1 7:28168193-28183051

rs4722758 ALL JAZF1 7:28168193-28183051

rs917116 MS JAZF1 7:28120760-28131482

rs11981405 UC WBSCR27, CLDN4, ABHD11 7:73846994-73854377

I further investigated two of the Treg exclusive colocalising signals to gain a better

understanding of how the gene expression and regulation QTL analysis coalesce with

the GWAS signals. The approach of combining the colocalisation of GWAS variants with

different types of QTL analyses allowed me to prioritise genes and suggest functional

variants. An IBD GWAS signal, tagged by the top variant 10:30690376, colocalised with a

MAP3K8 eQTL signal and a 6.13 kbp peak marking the transcription start site of MAP3K8

actQTL signal (Figure 4.13 ). The whole locus was characterised by 5 genetic variants in

high LD (R2 ≥ 0.8) with the top IBD variant and 69 genetic variants in medium LD (R2

≥ 0.5) that were shared between the GWAS summary statistics and the Treg summary

statistics. Because not all of the variants from the Treg QTL studies were present in

the IBD GWAS summary statistics, I used the LD information, precomputed using the

hundred individuals of the Treg cohort, to determine the closest proxy SNPs. The eleven

variants that overlapped the actQTL (p-value < 0.001), formed two blocks whereby the

first block was in strong LD with the reported GWAS top variant (6 SNPs; LD 0.75) and

the second block was in medium LD (5 SNPs; LD 0.5). All the SNPs had p-value < 10-11 in

the IBD GWAS study. I tested whether any of the SNPs overlapped with H3K4me ChM and

ATAC peaks and found that two SNPs overlapped an ATAC peak. Of these only one had

p-value < 10-6 in both the eQTL (nominal p-value 2.25x10-8) and the actQTL (nominal

p-value 1.46x10-7) analysis, 10:30722908. This variant is common (MAF=0.354), and the

minor allele C is the protective allele (regression slope = 0.09). It results in decreased

levels of acetylation (regression slope = -0.19) and consequently decreased levels of

MAP3K8 expression (regression slope = -0.25).

128 4 Linking genetic effects of molecular phenotypes of regulatory T cells to immune disease

associated variants



Another GWAS signal for IBD, UC, CD and CEL colocalised with an eQTL and a trQTL

affecting the expression of TNFRSF9, and a trQTL of PARK7, an adjacent gene encoded

on the opposite strand. Additionally, the signal colocalised with an actQTL marking the

promoter of TNFRSF9 and overlapping an H3K4me3 peak (Figure 4.14 ). There were five

SNPs in the actQTL peak that were significant in the IBD GWAS study (p-value < 5x10-8),

in the actQTL study (p-value < 0.0005) and the eQTL study (p-value < 0.001). One of the

five variants mapped onto the H3K4me3 peak, 1:7997183. This SNP is also in a target

region that interacts with the PARK7 promoter (bait) detected by promoter capture Hi-C

in CD34+ cells and the GM12878 cell line (Mifsud et al., 2015). The minor allele of this

SNP, A, was the risk allele (regression slope = 0.12) and resulted in decreased levels of

acetylation of the TNFRSF9 enhancer, and subsequently decreased levels of TNFRSF9

and PARK7 expression.
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Figure 4.14: Fine-mapping of a colocalisation signal between the IBD GWAS variants, a TNFRSF9
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and PARK7. Of the five variants I prioritised a single variant, 1:7997183. I used the
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4.3.7 regQTLs without gene expression QTLs are indicative of condition
specific effects

Importantly, in addition to the loci where I was able to link disease associated variants

to regQTLs and ultimately gene expression effects, I observed that the highest number

of colocalising signals was between the disease variants and actQTLs, without an af-

fected gene. I found that of the 191 LD blocks associated with immune diseases that

colocalised with any of the 5 Treg QTLs, 62 were supported by a gene expression effect,

while 96 were supported by a QTL in a regulatory mark, and only 33 were supported

by both chromatin mark and gene expression (Figure 4.11 B). Since H3K27ac mark is

known to be highly cell type specific, this could be indicative that while I assayed the

disease relevant cell type, the gene expression could only be manifested in a specific

cell state, e.g. upon cell stimulation. In order to assess whether this was the case,

I investigated how many of the actQTL peaks had a differentially regulated gene, as

identified in Chapter 3, within a 150 kbp window. Of the 78 actQTL loci, 34 contained at

least one upregulated gene and 32 contained at least one downregulated gene, with 15

of the loci containing both (Figure 4.15 A). Amongst the upregulated genes in actQTL loci

colocalising with immune GWAS, I found many immune relevant genes such as CTLA4,

PRDM1, LIF and LRRC32.

The actQTL enhancer in the proximity of LRRC32 has been shown to interact with the

promoter of LRRC32 in the GM12878 cell line and in primary endothelial precursor cells,

B cells, macrophages and monocytes (Javierre et al., 2016). This locus colocalises with

a GWAS signal from IBD, UC, CD, ALL and AST. In total, 28 SNPs overlapped with the

actQTL peak, located 57 kbp downstream of LRRC32, of which 10 were significant actQTLs

(p-value < 0.0003) (Figure 4.15 B). The lead IBD GWAS variant was located within the

peak, and it was an insertion, where the major allele G became GT and correlated with

an increase in IBD risk (regression slope = 0.149). Presence of the GT haplotype led

to decreased levels of acetylation (regression slope = -0.094) which would probably

correspond to decreased levels of LRRC32 upon stimulation.
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by taking at 150kbp window around the start and end co-ordinates of the peak.
Highlighted are a few gene examples along with their pLIs. B. Fine-mapping of a
colocalisation signal between IBD GWAS variants and a LRRC32 enhancer actQTL. The
two colocalising signals are plotted using the same coordinates on the x-axis and the
significance for the different variants on the y-axis. Each variant is represented by a
dot, coloured based on the LD relationship with the top GWAS variant 11:76298625.
The lower panel is the actQTL peak highlighted in red, while the remaining called
peaks are in grey. The promoter Hi-C interactions between the LRRC32 promoter and
nearby enhancers are highlighted. I used the alleles of 11:76298625 to plot the read
pile-ups of the actQTL peak.
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4.4 Discussion

In this chapter I integrated eQTLs and trQTLs mapped in CD4+ naive and regulatory T

cells to reveal multiple effects on the regulation of expression of genes associated with

immune diseases. Despite the close nature of the two cell types, I observed hundreds

of cell type specific effects, many of which play an important role in T cell activation

pathways. Given the different roles of naive and regulatory T cells in regulating the

immune response, whereby the naive cells exert an effector function upon stimulation

by proliferating and secreting pro-inflammatory cytokines while the second returns

the system to homeostasis, these differences could be essential to better understand

CD4+ T cell biology. For example, I was able to recapitulate a CTLA4 eQTL effect that

was previously reported in whole CD4+ and CD8+ cells (Kasela et al., 2017) specifically

in naive T cells. On the other hand, the expression of the CD28 gene, which is 130 kbp

upstream of CTLA4, was an eQTL specifically in Tregs. CTLA4 is a hallmark Treg gene, and

is known for its inhibitory role in T cell mediated immune responses by outcompeting

CD28 for ligand binding (Read et al., 2000; Zheng et al., 2006). CD28 is the main co-

stimulatory receptor found on the surface of all T cells, and its engagement is essential

for a successful T cell activation event. Both of these genes sit within the 2q33.2 locus

which has been associated to CEL and RA (Trynka et al., 2011; Okada et al., 2014), but

the lead variants affecting their expression are not in LD (Raychaudhuri et al., 2009).

Interestingly, only the CD28 eQTL colocalised with a disease variant associated with CEL,

where the minor allele T (MAF=0.23) was the risk allele and resulted in decreased levels

of CD28 expression. In fact, while the majority of the observed colocalisations were

shared between the two cell types, there were many that were cell type exclusive. This

highlights the value of carrying out genomic analysis in isolated rare cell populations.

By performing expression QTL analysis in conjunction with transcript ratio QTL, I was

able to determine instances of colocalisation with immune traits in which the observed

variability in gene expression could be attributed to an affected transcript. However,

these only represented a minority (13/191) of eQTL genes colocalising with GWAS. In my

effort to understand how the remaining eQTL effects might arise, I observed that eQTL

signals were enriched in active chromatin regions (Gaffney et al., 2012; Pelikan et al.,

2018), thereby providing a potential gene expression regulation mechanism for their

action. I found that for 33/191 of cases the effect could be attributed to the disruption
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of a promoter, enhancer or accessible chromatin, as marked by H3K27ac, H3K4me3 and

ATAC-seq. This number is in the same range as previously reported for naive CD4+ T cells

(26%), neutrophils (18%) and monocytes (27%), using H3K27ac, H3K4me1 and DNA methy-

lation (Chen et al., 2016). I observed that in 96/191 of cases there was an epigenetic QTL

without an immediate effect on the expression of nearby gene. This might be indicative

of either long-range interactions which are missed by the current cis-QTL window or

that the effect would be manifested in a specific condition. Similar observations have

been previously noted for other cells, such as monocytes and induced pluripotent stem

cell derived macrophages (Fairfax et al., 2014; Alasoo et al., 2018). Therefore, while the

promoters and enhancers are primed for expression, they require an additional stimulus

to have an effect on the expression of the gene. In fact, it has been reported that 53% of

eQTLs are stimulation specific in monocytes, which is in the same range of the regQTLs

reported here without a gene (Fairfax et al., 2014). For example, while no CTLA4 eQTL

colocalisation was observed in naive cells, an actQTL peak colocalised with a lead GWAS

variant, 2:204738919, that has been associated with T1D and has been suggested to affect

the gene expression levels of CTLA4 via the disruption of an enhancer (Chen et al., 2016;

Westra et al., 2018). Amongst the regQTLs that colocalised with immune disease variants,

I also identified an actQTL nearby LRRC32 which colocalised with variants associated

with IBD, allergy and asthma (Lange et al., 2017; Ferreira et al., 2017a; Demenais et al.,

2018). LRRC32 encodes for GARP protein, which binds the latent form of TGF-β and its

blockade results in loss of Treg suppressive capacity (Konopacki et al., 2015). LRRC32

gene expression and protein levels are upregulated upon stimulation (Marson et al.,

2007), therefore, it is likely that the disease variants in the enhancer could affect the

gene expression of LRRC32 upon stimulation.

Finally, as an example of successful functional fine-mapping I presented two loci,

TNFRSF9/PARK7 and MAP3K8, where I observed colocalisation of disease associated

variants with gene expression QTLs that were further supported by chromatin regulatory

QTLs. TNFRSF9 gene expression and protein levels (4-1BB or CD137) increase specifically

in activated Tregs and not conventional T cells (Marson et al., 2007; Nagar et al., 2010).

The expression of CD137 has been reported to correlate with a Treg phenotype by display-

ing increased suppressor function on effector T cell proliferation (Schoenbrunn et al.,

2012), increased FoxP3 expression and epigenetic Treg identity through the demethy-

lation of FOXP3 and CTLA4 amongst other Treg genes (Nowak et al., 2018). Therefore, a

4.4 Discussion 135



QTL that would lead to decreased TNFRSF9 expression might lead to a decrease in Treg

suppressor capacity. PARK7 also has a documented role in Treg development, where

one study demonstrated that PARK7 knockout mice had dysfunctional induced Tregs,

with regards to their proliferative ability, while natural Tregs remained normal (Singh

et al., 2015).

While the correlation between the expression of TNFRSF9 and Treg phenotype are well

established (Schoenbrunn et al., 2012), the effect of MAP3K8 expression in Treg remains

a matter of controversy. MAP3K8 encodes for a serine/threonine kinase, referred to

as Tpl-2 or COT, which plays an important function in the processing and signal trans-

duction of the inflammatory cytokine TNF-α (Dumitru et al., 2000). Both a positive and

a negative regulation of FoxP3 have been suggested for Tpl-2. One study that used a

mouse strain prone to develop intestinal adenoma found that Tpl-2 ablation resulted

in increased inflammation-induced intestinal tumorigenesis, which correlated with

decreased levels of IL-10 and Treg generation (Serebrennikova et al., 2012). On the other

hand, a screen using a luciferase-based reporter system to identify which of 192 kinases

could modulate the DNA binding activity of FoxP3 highlighted Tpl-2 as an inducer of

Treg instability (Guo et al., 2014).

This chapter provides the first QTL study of Tregs, a rare cell type with an increasingly

important role in therapeutic settings. Some of the genes identified and discussed here

are already investigated as potential new drug targets. This study could therefore serve

a valuable resource for suggesting additional targets for future studies in the context

of immune-mediated diseases.
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5Discussion

Collaboration note
Parts of the discussion in this chapter have been published as “Immunogenomic ap-

proaches to understand the function of immune disease variants” (Glinos et al., 2017).

Many sections of the manuscript have been directly copied into this chapter.

The overarching theme of my research over the past three years has been understanding

the gene expression regulation of CD4+ cells. Starting from a fundamental immuno-

logical question, the differential requirement of co-stimulation in naive and memory

T cells, I set out to identify groups of genes that displayed increased sensitivity to a

specific stimulus. I then applied what I had learned in Tregs, but this time I focussed on

the mechanisms of gene expression regulation by assessing the effects of stimulation

across different gene regulatory layers, as well as their interplay. Finally, I reached

a population-scale problem, and set out to study the impact of genetic variation on

molecular traits in Tregs. I focussed on the overlap of the molecular genetic effects to

gain an understanding of the disturbed immunological pathways and their impact on

the development of immune-mediated diseases.

5.1 Mapping QTL effects in rare immune cell types

Over the past few years there have been a number of studies investigating the corre-

lation of quantitative immunogenomic phenotypes with disease associated loci (Nica

et al., 2010; Westra et al., 2013). These approaches have allowed to prioritise causal

variants (Hormozdiari et al., 2016), explained a proportion of the missing heritability

(Gamazon et al., 2018) and suggested disrupted gene pathways and cellular functions.

Although the majority of individual allelic effects have a minuscule effect on the overall

phenotype, such as a specific disease or height, the effects can be higher on the molec-

ular or cellular levels. Hence, some of the current efforts are focused on identifying

the critical disease cell types in which the associated variants are functional.[0.5cm]
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A challenge in GWAS functional follow up studies is that often the causal cell types

are unknown. Typically, for immune-mediated diseases, cell types can be identified

through immunology studies, where a limited set of specific cell markers, both intra- and

extracellular, used to characterise different cell populations between disease cases and

healthy control subjects. An alternative method that is independent from a predefined

set of markers, is single cell RNA sequencing (scRNA-seq). This approach can identify

previously unknown heterogeneity in a sample based on gene expression measured

at the individual cell level. There are now major international efforts that aim to use

scRNA-seq to characterise all human cells, the Human Cell Atlas (Regev and Others,

2016). This resource will provide the most comprehensive annotation of gene expression

in the human body which, when integrated with GWAS variants, has the potential to

improve our understanding of immune-mediated diseases by carrying single cell QTL

studies (Wills et al., 2013; Wijst et al., 2018). Since scRNA-seq outputs gene expression

measurements per cell, this approach will allow to group different cells together and

carry eQTL analsyses, thereby improve on understanding cell type specific effects.

In Chapter 4 I carried out a QTL study using a rare cell type, regulatory T cells, which only

represent 1-2% of total lymphocytes and need to be isolated using reliable cell markers

and cell sorting. Tregs, as well as other isolated cell populations, are difficult to culture

in vitro, rendering the identification of condition specific effects problematic. In addi-

tion, in order to reach sufficient statistical power to detect eQTL effects, it is important

to obtain blood from a high enough number of individuals. This is not only a laborious

task, but also increases the number of variables included in the repetition of blood

drawing and processing. Novel systems that allow cell culture and stimulation of cells

by limiting the batch effect as well as the establishment of standardised differentiation

protocols are necessary for future studies investigating rare cell types. Such approaches

are currently being developed by international consortia, such as the Milieu Interieur,

who by standardizing the blood culture of healthy volunteers and using flow cytometry

analysis have successfully deconvoluted complex immune response signatures and

provided valuable insights into the natural variation of immune cells (Urrutia et al.,

2016; Patin et al., 2018). Furthermore, as I showed in Chapter 3, the development of

reliable genomic protocols that work with low cell numbers is essential when scaling-up

to large cohorts (Buenrostro et al., 2013; Schmidl et al., 2015).
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The establishment of these standards might facilitate the expansion of QTL studies

in patient consortia. These efforts have so far been limited due to the difficulty in

discerning the etiology of a disease from the consequences. Furthermore, it is often not

possible to find patients in the early stages of the disease that have not been subjected

to a drug treatment, an effect that is not well understood. Clinical trials are promising

cohorts to study the effects of a drug on gene expression, and the interaction between

genotypes and drug effect. There are already a few studies that veer towards this direc-

tion. One study investigated the effect of an anti-IL-6 drug in SLE patients (Davenport

et al., 2018) and another study looked at the genomic determinants of variation in sepsis

patients (Davenport et al., 2016).

5.2 Predicting gene expression in CD4+ T cells

Gene expression regulation is complex and arises from the tight interplay of histone

modifications, transcription factor binding and post-transcriptional processes such as

small RNAs inhibiting translation. In Chapter 3 I assessed changes in gene expression,

transcript ratios, splicing junctions, H3K4me3, H3K27ac and ATAC measurements induced

by stimulation in Treg cells. I observed that many of the individual transcript ratios

affected by the presence of a stimulus, as well as the differentially spliced introns, were

not observed when only examining whole gene counts. This is concordant with past

research which showed that 60% of genes express different alternative spliced isoforms

in T cells (Ergun et al., 2013). While I did not examine alternative transcription events

initiated by CD28 in Chapter 2, this could be an interesting analysis to carry. Past re-

search has shown that changes in alternative transcription events are mostly mediated

through co-stimulation (Butte et al., 2012), with CD28 signalling directly affecting the

levels of the splicing regulator hnRNPLL. The role of histone marks in the regulation of

alternative transcription is not well understood, but it has been shown that alternative

promoter usage is marked by a change in the levels of H3K4me3 (Luco et al., 2010), but

it is important to find a way of reliably validating these findings using spatiotemproal

approaches approaches such as RNA fluorescent in-situ hybridization or data driven

approaches such as shotgun proteomics (Hu et al., 2015b).

It is also especially interesting to study transcript ratios, in addition to gene expression
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measurements, in the context of diseases. In Chapter 4 I observed that eQTLs and

trQTLs were largely independent of each other, a finding that has also been shown

in past studies (Lappalainen et al., 2013; Alasoo et al., 2018). The colocalisation anal-

ysis indicated that trQTLs and eQTLs had a similar enrichment in GWAS loci, despite

testing less genes in trQTLs, which has also been previously shown (Li et al., 2016c).

When examining patient studies, significant differences in alternative isoforms were

detected in multiple sclerosis patients that harboured a SNP in exon 4 of the PTPRC gene

that encodes for CD45 (Jacobsen et al., 2000) and a switch of the primary alternative

transcript used in human islets in response to cytokines (Eizirik et al., 2012). Together

these findings highlight the importance of studying alternative transcription events in

complex diseases.

The relationship between gene expression and chromatin marks is well documented

(Roadmap Epigenomics Consortium et al., 2015). I was able to annotate many genes to

differentially active enhancers or promoters in naive, memory and regulatory T cells. I

only annotated differentially active elements, however the degree to which different

histone marks change upon stimulation is not as well studied as gene expression. This

is because histone marks currently lack a reference against which peaks can be called

and the combinatorial presence of different modifications within the same locus is

not well understood. The establishment of computational protocols would help in the

standardisation of these analyses and in the integration of different datasets. The

concordance between histone marks and gene expression was reinforced in Chapter 4,

where I observed that a third of GWAS colocalising eQTLs could be explained by changes

in regQTLs. However, the opposite was not true, and many regQTLs were not assigned

an affected gene. By using the differential gene expression analysis from Chapter 3, I

was able to deduce a subset of genes that might only be eQTLs upon stimulation. Given

the high costs of sequencing, the labour invested in isolating cell types and the wide

range of possible stimuli, this provides a potential framework for the identification of a

few optimal conditions to carry condition specific eQTL analyses.

QTL effects have in fact mostly been annotated in the context of expression assays,

however, a proportion of GWAS variants may not act through gene regulation measured

by bulk gene expression assays, calling for the assessment of QTL effects using differ-

ent assays for gene expression regulation. In Chapter 4 I carried out gene expression
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profiling in parallel with multiple assays to understand gene expression regulation. A

promising technology is chromatin interaction analysis performed using Hi-C (Belton

et al., 2012) and coupled with chromatin immunoprecipitation (Mumbach et al., 2017).

This approach has recently been applied on CD4+ T cells, and the authors observed that

the majority of H3K27ac peaks do not necessarily interact with the closest gene. This

was the case of the LRRC32 gene that I observed to be regulated by an enhancer located

downstream. Furthermore, this method provides a direct mechanism for a genetic

variant to act, which might not be obvious when assaying H3K27ac alone. Therefore,

results from chromatin conformation assays can be used to help functionally fine map

disease associated variants.

5.3 Regulation of co-stimulatory pathways in immune diseases

A recurrent theme across this thesis has been the role of co-stimulation in the initi-

ation of the immune response, and how its perturbation can contribute towards the

predisposition to immune diseases. The main co-stimulator is CD28, which assists T

cell receptors in the conduction of a successful activation event. CD28 is encoded on

the same locus as its main competitor, CTLA-4, which has higher affinity for the same

ligands. While CD28 is constitutively expressed on the surface of T cells, CTLA-4 is only

expressed upon stimulation, outstripping the activating ligands from the surface of

other cells, and allowing the T cell to regain equilibrium. Interestingly, in Chapter 4 I

observed that both of these genes are under genetic control. CD28 was an eQTL in Tregs

and CTLA4 was an eQTLS in naive T cells. This is especially intriguing in the context

of my findings in Chapter 2, that memory T cells are more sensitive to the levels of

CD28 cross-linking, and the fact that Tregs have many characteristics of memory T cells.

This could provide an explanation as to why the CD28 eQTL is specific to Tregs; since

these are these cells are sensitive to its level. Naive T cells on the other hand mostly

depend on TCR signalling. As a future experiment, it would be important to carry out

proliferation assays in cells isolated from homozygous carriers for each allele affecting

the levels of CD28 and CTLA4 in order to confirm this hypothesis.

The experimental setting devised in Chapter 2 could be used to assess the impact of

genetic variability in co-stimulation sensitivity. This would be especially important
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for the design of future therapies that rely on targeting co-stimulatory pathways. The

central role of co-stimulation in T cell function has indeed rendered it an attractive

target for drug development. Strategies using CD28 and CTLA-4 blockade in animal

models have achieved success, paving the way to a number of clinical trials and safe

drugs (Ford et al., 2014; Lo et al., 2015). The most notable example is abatacept, a soluble

CTLA4-binding domain linked to an Ig region that binds the ligands CD80 and CD86, used

for the treatment of rheumatoid arthritis (RA) (Genovese et al., 2005). There are currently

more than 60 active clinical trials using CTLA4Ig drugs for treating a range of immune

diseases (clinicaltrials.gov). However, targeting CTLA-4 has mainly been successful in

immune diseases characterised by an increased Th1 response, probably due to the

fact that these cells display increased sensitivity to CD28 blockade (Ford et al., 2014).

This highlights the need to increase our understanding of alternative co-stimulatory

pathways in a cell type specific context.

It is not only the balance between CD28 and CTLA-4 signalling that determines the

activation status of a cell, there are many other co-stimulatory molecules that con-

tribute towards tipping the balance towards a specific response. While I performed the

titration experiments by initiating the CD28 pathways, it would be interesting to apply

the same framework using a range of stimulants in order to deconvolute the effect

of each co-stimulus from the one of TCR presence. However, if performed across all

stimulants and titrations, it would be difficult to reach a sufficiently high number of cells

per individual and to carry out the assays in parallel. In order to address the first issue,

a better measurement might be scRNA-seq, which would also indicate commitment

to specific cell fates. In order to address the second problem, a scheme to prioritise

co-stimulants might be necessary. In Chapter 4 I observed that the gene expression

of more than twenty co-stimulatory molecules and receptors were eQTLs in naive and

regulatory T cells. Among them was CD40, which is the target for a number of current

drugs being developed to attenuate a self-reactive immune response (Ford et al., 2014).

Other genes in this list would therefore also present interesting targets for clinical trials

with patients that are stratified by genotype. Among the co-stimulatory molecules that

were eQTLs in Tregs there were both TNFRSF9 (encodes for 4-1BB) and its ligand TNFSF9

(encodes for 4-1BBL). 4-1BB signalling has been shown to be CD28-independent in con-

ventional T cells cells and is able to induce cell division and proliferation (DeBenedette

et al., 1997; Cannons et al., 2001). 4-1BBL can expand Tregs ex vivo (Elpek et al., 2007) but
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also induce resistance to Treg-mediated suppression in conventional T cells (Robertson

et al., 2008). There is therefore evidence to support that 4-1BB blockade might be an

interesting target for future clinical studies.

5.4 Bridging immunology with genomics - time for proteomics?

However, it remains unclear to what degree the observed correlations between genotype

and a quantitative genomic phenotype result in alterations of protein levels. I demon-

strated in Chapter 2 a poor replicability of CD28 sensitive genes defined by RNA-seq at

the protein level. Furthermore, recent evidence suggests that less than 10% of all mRNA

variants could be validated at the protein level, using 29 healthy tissues (Wang et al.,

2019). This research was conducted as part of the Human Protein Atlas Project, which

aims to map all of the human proteins in cells, tissues and organs using a combination

of imaging, mass spectrometry-based proteomics and transcriptomic approaches. If

performed across hundreds of individuals this will prove an important resource to

carry out protein QTL (pQTL) studies. There are already a number of studies looking at

cytokine levels in combination with gene expression (Li et al., 2016b; Ahola-Olli et al.,

2017; Bakker et al., 2018) and two pQTL studies, one in human LCLs (Battle et al., 2015)

and one in mice (Chick et al., 2016). Bakker and colleagues reaffirmed the importance

of context specificity when assessing protein levels, even more so than when looking at

RNA. To obviate the need for an exhaustive stimulus assessment for a cytokine QTL study,

one can use differential gene expression analysis to prioritise a few conditions that are

more likely to result in drastic changes upon stimulation. These approaches will help to

understand how immune variants translate to dysfunctional protein products and shed

light on the unexplored post-translational mechanisms involved in immune-mediated

diseases, which have been suggested to be more important than the RNA levels (Battle

et al., 2015). This can be achieved by assessing the phosphoproteome of immune cells,

since phosphorylation is especially important in signalling cascades of CD4+ T cells.

Even when a correlation between the relative allele frequency and the level of a protein

is established, it is important to place the affected protein levels within a network. The

immune system is a highly dynamic network, with complex interactions taking place

between the different cell types and states. It has been demonstrated using protein
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protein interaction (PPI) assays that proteins encoded by genes in regions associated to

RA and Crohn’s disease form a network more closely connected compared to a random

set of proteins (Rossin et al., 2011). As such, it is becoming increasingly appreciated that

disease pathology associated with immune diseases is induced by the disruption of the

whole network. Therefore, an interesting future study would be to define PPI networks

based on the list of colocalising genes identified in Chapter 4 using purified Tregs for

which a reliable bait can be designed.

Mass cytometry has indicated that there is more heterogeneity than previously thought

in PBMCs and in different regions of the gut (Unen et al., 2016), which would imply

novel undocumented interactions between the different cellular subsets. For example,

Rieckmann and colleagues performed an extensive characterization of the proteome

and secretome of 28 human immune cell types (Rieckmann et al., 2017) and discovered

new signalling events between cells, such as a signalling event induced by IL-34 in CD4+

T cells. Therefore, even if a specific cell type is more relevant for the study of genetic

variation, this does not mean that other cell types within the affected tissue would not

display differences when compared to healthy tissues. This is why the proportion of

different immune subpopulations vary depending on the type of inflammatory diseases

(Unen et al., 2016), and while this can be a disease phenotype, it can also be a direct

result of a genetic variant. Elucidating mechanistic details of network disruption in

autoimmune diseases will contribute towards understanding how hundreds of genetic

variants affect different cellular processes and lead to a disease.

5.5 Concluding remarks

GWAS have discovered hundreds of associations with complex immune diseases, yet

deciphering the causal variants and molecular mechanisms which give rise to disease

has proven to be challenging. Through the accumulation of genetic, functional and

immunological data, a picture of how CD4+ T cell regulation is disrupted in immune

diseases is starting to emerge. I hope that in this thesis I have clarified some pixels of

this image.
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