symmetry

Article

Singularity-Free and Cosmologically Viable Born-Infeld
Gravity with Scalar Matter

David Benisty 12(7, Gonzalo J. Olmo 3

check for

updates
Citation: Benisty, D.; Olmo, G.J.;
Rubiera-Garcia, D. Singularity-Free
and Cosmologically Viable
Born-Infeld Gravity with Scalar
Matter. Symmetry 2021, 13, 2108.
https:/ /doi.org/10.3390/sym13112108

Academic Editor: Kazuharu Bamba

Received: 21 April 2021
Accepted: 29 October 2021
Published: 6 November 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Diego Rubiera-Garcia +*

1 DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road,

Cambridge CB3 OWA, UK; benidav@post.bgu.ac.il
2 Kavli Institute of Cosmology (KICC), University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
Departamento de Fisica Tedrica and IFIC, Centro Mixto Universidad de Valencia—CSIC,
Universidad de Valencia, Burjassot, E-46100 Valencia, Spain; gonzalo.olmo@uv.es
4 Departamento de Fisica Teérica and IPARCOS, Universidad Complutense de Madrid, E-28040 Madrid, Spain
*  Correspondence: drubiera@ucm.es

Abstract: The early cosmology, driven by a single scalar field, both massless and massive, in the
context of Eddington-inspired Born-Infeld gravity, is explored. We show the existence of nonsin-
gular solutions of bouncing and loitering type (depending on the sign of the gravitational theory’s
parameter, €) replacing the Big Bang singularity, and discuss their properties. In addition, in the
massive case, we find some new features of the cosmological evolution depending on the value of
the mass parameter, including asymmetries in the expansion/contraction phases, or a continuous
transition between a contracting phase to an expanding one via an intermediate loitering phase. We
also provide a combined analysis of cosmic chronometers, standard candles, BAO, and CMB data to
constrain the model, finding that for roughly |e| < 5- 1078 m? the model is compatible with the latest
observations while successfully removing the Big Bang singularity. This bound is several orders of
magnitude stronger than the most stringent constraints currently available in the literature.

Keywords: metric-affine gravity; non-singular cosmologies; born-infeld gravity; observational
constraints; scalar fields

1. Introduction

The standard concordance cosmological ACDM model, framed within Einstein’s
General Theory of Relativity (GR), including an early phase of inflationary expansion,
a cold dark-matter component, and a tiny cosmological constant driving the accelerated
late-time expansion of the Universe, has successfully met all observations [1,2]. Within this
model, scalar fields have found new and imaginative applications. For instance, inflationary
models in the early Universe involve from one to many scalar fields [3-12]. In the slow-roll
approximation the exact form of the scalar field potential is unknown, since many different
potentials have been studied and confronted to observations. On the other hand, a way
to parameterize dark energy is by using a scalar field, the so-called quintessence model
(for canonical scalar fields [13,14]) or its generalizations to K-essence models (when a
non-canonical scalar Lagrangian is considered [15-18]), in such a way that the cosmological
constant is replaced by a dark energy fluid with a nearly constant density [19-23]. Dark
matter can be also parameterized in terms of weakly interacting massive particles, which
can be scalar particles that are still undiscovered at colliders and other dark matter detection
experiments. Models for dark matter can also be based on other kinds of scalar fields,
for instance, via fuzzy dark matter [24], or by using a Lagrange multiplier that changes
the behaviour of the kinetic term [25-28]. Scalar field models may also be the result of
complex effective interactions between other fundamental fields in equilibrium, such as in
Bose-Einstein condensates, thus allowing for an even broader range of phenomenological
justifications. Therefore, the consideration of scalar fields within cosmological models
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is justified when building a fully consistent history of the cosmological evolution that is
compatible with observations.

On the gravity side, and despite its observational success, from a fundamental per-
spective the ACDM model still contains a visible singularity at the Universe’s past. This
is an unavoidable consequence of the singularity theorems (see, e.g., [29] for a pedagogical
discussion). To tackle this issue, it is widely assumed in the community that at the strong
curvatures and fields of the very early Universe, quantum gravity effects should come into
play to regularize this singularity. Since a quantum theory of gravity is not available to date,
an effective way to capture such hypothetical effects is via modified theories of gravity [30-33].
The plausibility of such alternative gravitational descriptions to supersede GR and represent
observationally viable alternatives to the ACDM model has been widely discussed in the
literature, according to different perspectives and approaches [34].

Among the large pool of theories which have been investigated in the literature, for the
sake of this paper, we present the proposal that was originally introduced by Banados
and Ferreira [35] and dubbed Eddington-inspired Born-Infeld (EiBI) gravity (This proposal
can actually be framed within the tradition of considering square-root action, such as in
the DBI one, e.g., [36-39].). Tto avoid troubles with ghost-like instabilities, this theory is
typically formulated in metric-affine spaces, where metric and affine connection are a priori
independent entities. EiBI theory has found many different applications in astrophysics
and cosmology, e.g., [40—49]. In particular, the existence of bouncing solutions replacing the
Big Bang singularity within EiBI gravity was first hinted at in [50], when scalar fields are
considered as the matter source. Further works on the subject in recent years have reinforced
the ability of this theory to remove such singularities according to different mechanisms (for a
review, see [51]).

The main aim of this work is to construct explicit such singularity-free solutions within
the early cosmological evolution, corresponding to a single, massless (quintaessential)
scalar field, and to further (numerically) extend this analysis to the massive case. We shall
show the existence of two kinds of singularity-free solutions depending on the sign of
the EiBI gravity parameter. The first one corresponds to bouncing solutions, where the
universe contracts down to a minimum size before entering into an expansion phase, while
the second are loitering solutions, which interpolate between an asymptotically Minkowski
past and the current cosmological evolution. For these nonsingular solutions, we carry out
a combined analysis of cosmic chronometers, standard candles, BAO, and CMB data in
order to constrain the EiBI parameter, finding the bound |e| < 51078 m2.

This paper is organized as follows: in Section 2 we introduce EiBI gravity, discuss
its properties, and construct its cosmological equations when coupled to a scalar field.
In Section 3 we consider massless scalar fields and discuss their corresponding bouncing
and loitering solutions, extending these results in Section 4 to the massive case. Section 5
sees the theory fit with the latest observations (on ACDM background), and we conclude
in Section 6 with a summary and some perspectives.

2. Eddington-Inspired Born-Infeld Gravity
2.1. Action and Basic Field Equations

The action of EiBI gravity can be conveniently written as

1
SEiBI = @ /d4x[\/?q_ /\\/Tg] +Sm(gyv/lpm) ’ (1)

where k2 = 871G/ c* is Newton’s constant, € is EiBI parameter, A is a dimensionless constant,
g is the determinant of the space-time metric g,y and g the determinant of an auxiliary
metric defined as:

Guv = &uv + €R () (I, 2)

where the (symmetric part of the) Ricci tensor R, (I') = RFf,,(T) is a function solely

of the (torsionless) affine connection I' = Fﬁw assumed to be a priori independent of the
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space-time metric g, (metric-affine or Palatini formalism). This symmetrizing requirement
ensures that the theory is invariant under projective transformations, which avoids the pres-
ence of ghost-like instabilities [52,53]. For the matter sector, S, = f d4x\/—7g£m( Suvs Pm),
it is assumed to be minimally coupled to the space-time metric g,y (e.g., [54] for a definition
of minimal coupling in metric-affine theories), with ¢, collectively denoting the matter
fields. It is worth pointing out that EiBI gravity recovers the GR dynamics and its solutions
in the |R;,| < €~ ! limit [51] (from now on, vertical bars indicate a determinant), inheriting
an effective cosmological constant A,¢r = % This fact allows EiBI gravity to naturally
pass weak-field limit tests, such as those based on solar system observations.

EiBI gravity is a very well known theory in the community thanks to its many applica-
tions (for a detailed account of its properties, we refer the reader to the review [51]). Itis
actually a member of the so-called Ricci-based family of gravitational theories [55], all of
which admit an Einstein-like representation of their field equations given by

&g = [rn, gt (£ + T
V(‘i)—m v=o{ ket ||y ®3)
where L is the gravitational Lagrangian, T, = \/% ggs,y; is the stress-energy tensor of the

matter fields, T its trace, and G¥,(q) is the Einstein tensor of the auxiliary metric g, such
that I' is the Levi-Civita, that is

Vo(y/S74") = 0. @

This g,y metric is related to the space-time one g, via the relation
quv = Sua (O @)

where the deformation matrix Q) depends on-shell on the matter fields (and possibly the
space-time metric g,y as well). For EiBI gravity, this matrix is implicitly determined via
the equation

QY2 = Al — e®TH,, 6)

while the EiBI Lagrangian in (1) can also be expressed in terms of this matrix as

_19M2-2a
o ex2 ’

Lg @)

Let us point out that all terms on the right-hand side of the Equations (3) are functions
of the matter fields and the metric g;,,, thus representing a system of second-order field
equations with new couplings engendered by the matter fields. In a vacuum, T#, = 0,
one recovers the GR solutions (As a remark, we would like to note that it has been shown
that in generic RBGs, due to the non-linearities of the field equations, the deformation
matrix admits other (typically pathological) solutions besides the one that boils down
to GR in vacuum. These solutions can lead to anisotropic deformation matrices even if
the stress—energy tensor is isotropic. Remarkably, it was shown that for EiBI gravity, that
no such anisotropic solutions exist in the presence of an isotropic stress-energy tensor,
see [56].), which ensures the propagation of the two polarizations of the gravitational field
travelling at the speed of light [57].

2.2. EiBI Cosmology with Scalar Fields

As the matter sector of our model let us consider a single (real) scalar field described
by the action

Su=y [dry/=gln =3 [dx/~g(x+2V(9)), ®)
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with kinetic term X = ¢"Y0,¢ 9,¢ and scalar potential V(¢). The variation in this action
with respect to the scalar field leads to the field equations

1
——9,(/—88" o) = Vy, )
V-8 iz ( 88 V(P) ¢
(where Vy = dV /d¢$) and to the associated stress-energy tensor
1% L M
TH, = g" 9Py — > Oy . (10)

We consider next a spatially flat Friedman-Lemaitre-Robertson-Walker (FLRW) space—
time (For simplicity in this work we do not consider the cases of open and closed universes,
although the analysis could also be carried out in such cases following, for instance,
the results of [58].), with line element:

ds2 = gudxidx’ = —dt* + a®(t)d3? , (11)

where a(t) is the expansion factor and d¥? = dij dxidxi, withi,j = 1...3 for the spatial
part. From now on, we shall assume ¢ = ¢(t), the stress-energy tensor (10) reads:

142
(v 0
", — ( 9 (14 V)lss ) , (12)

where a dot denotes a derivative with respect to ¢, as usual.
From Equation (6) we can conclude that the deformation matrix needs to have a similar
algebraic (diagonal) structure as that of the stress-energy tensor of the scalar field, namely

(@) 0
[ — +
o= (% 0. ) 13)

where the identity matrix I3.3 represents the spatial sector. Plugging this ansatz and
Equation (12) into Equation (6) gives the components of this matrix as:

sz = (/\+€K2V — e";‘i’2> (/\+€K2V + e;czq'yz)

- (}\2 - c1>2) (14)

2\ 3
(Aretv—=2) G g

0% = st = , (15)
(A+ev+ ) (A+®)

where we have used the shorthand notations

A = Ae®V (16)
22
o = EF. (17)

Therefore, we are ready to cast the field Equations (3) for this problem as

L ()

eRM,(q) = o ( Geo)\ o |7 (18)
1-— >5]’

0
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where the determinant of the deformation matrix reads |Q|% = QL/ 2032 To compute the
left-hand side of the field Equation (18) one can write another line element for the auxiliary
metric that is also of the FLRW form:

ds; = qudxtdx’ = —dT? + a*(T)d% (19)
= Q. (H)d? +a*(H)Q_(t)dx?,
where, in the second line, we have used the fundamental relation (5) together with the

ansatz (13). These gravitational field equations must be supplemented with the scalar field
Equation (9) which, in the FLRW background (11), read

¢+3§4’>+V¢:0. (20)

Now, using the fact that in the g, geometry (19), we have the well-known formulas

3 d%i
t p— —_——
Re = zim @1)
: 1d% 2 (da\?
R, = ——+=(-—= 22
i ddT2+ﬁ2<dT) / 22)
with the relations
di 1 d 1
—_— — _— QZ 2
T ol & (“ —) (@3)
d%a 1 d|1d
— = —— | ——(a0?2 (24)
dT? 3 dt 1dt<a ) ’
Q7 Q7
it follows that the combination
: 6 (di\?
i_pt = [ 22
3R~ = (1) 25)
can be written as )
: 6 1d 1
R, — Rl = ——(aQ? 2
R~ Ry = 5 [adt(a )] , 6)
and a little algebra leads to
1d 1 - 1 [a/ss 2 5 PV,
which allows us to find an expression for H = 4/a
S —(At+o) 202 \/m(mﬁ_(x—z@)) . (27)
(/\2 +2d>2) ¢ “V 3e

The square of this quantity is the generalized FLRW equation for EiBI gravity coupled
to a scalar field with a potential V(¢). The + signs in front of the square root yield
expanding (+) or contracting (—) universes and must be chosen on physical grounds. In the
limit € — 0, the above expression yields

k2($? +2V)

H=+ ,
6

(28)

which recovers the FLRW dynamics of GR coupled to a scalar field.
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Note that, from Equation (12), for a scalar field, the energy density p, and pressure Py
are related to the field variables by

2

pp = %—i—V (29)
i2

Py = %—V, (30)

which allows the quantities inside the functions (21 of Equations (14) and (15) in terms of
Py and Py to be written as

>

+@ = Atex®py (31)
~® = A-—ex®Py. (32)

>

3. Massless Scalar Fields

To explicitly solve the gravitational and scalar field Equations (18) and (9), we need to
specify a form of the scalar potential V(¢). For the sake of simplicity, and to make contact
with similar settings in black hole scenarios [59], let us first consider the case of a free scalar
field, V = 0, for which the scalar field equation (20) has a first integral

;%o
(P_ a3(t) ’ (33)

with ¢p an integration constant. This equation is formally the same as in the GR case, al-
though the scale factor implicitly contains the e-corrections via the resolution of Equation (27),
smoothly reducing to their GR values in the limit € — 0, as follows from Equation (28).

Since, in this case Py = pgy = ¢?/2, the components of the deformation matrix (13)
assume the relatively simple form

1 3/2
Q(Azizz,)z;mg)‘sggm, (34)
€ )\—FSE

where we have defined the critical density p. = 1/(x?|e|) and s = 41 denotes the sign of €.
The corresponding Hubble function takes the form

3/2

03 2

) (Az_@ <A_S%f) AW 09

H2 = — (/\—5) A2—t a2t 3
3se (/\2 + Zp"’> Pe ¢ Pe

p?

As mentioned before, at low densities as compared to the scale p., this equation
recovers the GR expression, which can be solved, leading to the approximate solution
a(t) = Hot'/3. The Hubble factor here can be conveniently set to HZ = 3x*¢3 /2 to adjust
the integration constant ¢y in order to reproduce the standard cosmological evolution of
GR coupled to a massless scalar field. At higher densities, however, the dynamics strongly
depart from that of GR and it is evident that when the energy density of the scalar field
approaches its maximum value, py = Ape, the Hubble function vanishes. This corre-
sponds to a minimum value of the expansion factor for both branches of solutions s = £1,
but there are two different mechanisms by which the initial Big Bang singularity is avoided,
which we will discuss next. For simplicity, from now on, we focus on asymptotically flat
configurations, A = 1.
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For the s = —1 branch, at the critical density py = pe, the Hubble factor in Equation (35)
and its derivative behave as

27/4 0 3/4
H ~ £ 1-— 36
o) ~ F5ei(1-2) 30
dH 1
1. = F 174 37)
Wo 2hjephpc(1-22)

This indicates that at the maximum achievable density, py = pe, the Hubble factor
vanishes while its derivative goes to infinity. This implies that the universe contracts to a
minimum (maximum) value of the expansion factor (energy density), before re-expanding.
This the typical behaviour expected in standard bouncing solutions with a transition from a
contracting phase to an expanding one, where the universe could even undergo a sequence
of cyclic cosmologies with both phases. In Figure 1, we plot the form of H(p) (blue curves)
according to Equation (35) to show that while at late-times (i.e., low densities, Py K Pe)
these solutions converge to those of GR (in agreement to Equation (28)), at high densities
(0¢/pe — 1) they depart form the standard Big Bang singularity of GR.

Vv 1€| Hlog]
0.6}

0.4

o
Zo

0.2f ~

0.2 0.4 : 0.8
-0.2f N

-0.4f

-0.6f

—— Bouncing —— Loitering ----- GR

Figure 1. Representation of the Hubble function +/]e|H (pg) vs. the energy density for EiBI gravity
(solid) and GR (dashed) with massless scalar field as a function of the ratio pp/pe. Note how the
trajectories of the EiBI theory are bounded, while that of GR (dashed black) is open. Bouncing
solutions (blue) reach the maximum density forming a 7t/2 angle with the horizontal axis, while the
loitering branch (red) reaches it tangentially.

For the s = 41 branch, we find that the evolution of the Hubble factor as we approach
the maximum density py = e is given instead by

3v3
1

P 6v/2\/3p¢

which means that the Hubble factor vanishes there as well, but instead of being divergent,
its derivative takes a finite value (which is actually zero). This implies that the expansion
factor reaches a fixed value a(t) = a,,, corresponding to an asymptotically Minkowski
past, and starts expanding as we move forward in time after some reference time t = tp.
In Figure 1 we depict this behaviour (red curves) of these so-called loitering solutions,
where the qualitative differences with the bouncing solutions are manifest. Again, at late
times (low densities), the standard GR evolution is recovered. Therefore, we see that a

H(pp) ~ =+ (38)

(39)
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free massless scalar field coupled to EiBI gravity is able to yield nonsingular evolutions in
both s = 1 branches according to these two mechanisms, something that is not possible
within GR.

4. Massive Scalar Field

Let us now consider a massive scalar field with a potential of the form

V(p) = 5179, (40)

where y is a constant. This choice for the potential, besides being the simplest form, corre-
sponds to the natural mass associated to a canonical scalar field. In this case, the Hubble
function (27) develops an explicit dependence on both p, and Py [to lighten the notation,
from now on we shall drop the label ¢ in these quantities] via Equations (31) and (32).
Since the resulting expression does not provide any useful insight, we will not write it
explicitly here. Instead, for the sake of comparison with the massless case of the previous
section, we find it more illustrative to provide a parametric representation of H(t) versus
p(t). These functions are obtained by numerically integrating the second-order equation
for i that follows from (22), together with its corresponding right-hand side. The result
of the integration is used to construct the quantity a/a, which is then compared with the
Formula (27) to check the consistency of the numerical integration. Again, we split our
discussion of the corresponding results into the s = £1 cases.

In Figures 2 and 3, we show the function H(p(t)) from Equation (27) with the help of
(14) and (15) particularized to the potential above, for solutions corresponding to several
values of the reduced mass o = y?/p. in the case s = —1. The corresponding expansion
factors a(t) (obtained from integrating the previous function H) appear in Figure 4, while
in Figure 5 we show the function 4(t) of those same examples and in Figure 6 their Hubble
functions. As one can see from all these plots, the case s = —1 still represents bouncing
solutions for all the explored mass range, which goes from ¢ ~ 1078 up to ¢ ~ 04,
with little variation with respect to the massless scenario for masses as high as ¢ ~ 1072
(see Figure 2). For higher masses, the egg-shaped Hubble function develops a fish-like
structure, with asymmetric fins. This asymmetry is also manifest in the contracting branch
of the expansion factor (see Figure 4), which becomes increasingly asymmetric as the mass
parameter grows from zero. A similar behaviour can be observed in the density profiles of
the scalar field depicted in Figure 7.

V1€l H[Y
0.3}
0.2} /

01t/

Il Il Il Il E t
0.2 04 06 0.8 10 pll
~0.11\
—0.2}

—0.3t “‘\\~ VA‘.ﬂ‘A_AA

— o=10"® 0=10"° 0=1073
Figure 2. Parametric plot of /|e|H(#) as a function of p(t)/pe for small masses when s = —1
(bouncing solutions). The (reduced) mass parameter is taken, such that o = ;42 / Pe.
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-0.6+

— 0=10"% —m--- 0=0.1 ===-- 0=0.2 ----- 0=0.3 ----- g=0.4

Figure 3. Parametric plot of \/|e|H(t) as a function of p(¢) for larger values of the reduced mass
0 = p?/pe when's = —1. As compared to Figure 2, in this case, the development of fish-like
structures is clearly visible as o grows large enough.

a[t]
2.0r

200 T I o
—— 0=10®% —— 0=10°% —— 0=10* —— 0=10"3
— =102 ----- 0=0.1 ----- 0=0.3 ----- 0=0.5

Figure 4. Expansion factor a(t) representing bouncing solutions for various values of the reduced
mass parameter o = ]/tz/pg whens = —1.
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aft]
0.10;
, 0.05
] L
il
N
| | | : | t
o
‘ ~0.05)
~0.10]
~0.15"
— 0=10"®% —— 0=10°%® —— g=10"* —— =103

Figure 5. Time derivative of the expansion factor representing bouncing solutions for various values
of the reduced mass parameter o = yz /pe. The colors of the curves are the same as in Figure 4. Note
that the blue and magenta curves will bounce at some point and begin a similar growing oscillatory
trajectory to the red dashed curve, with this being a generic behavior of all these solutions.

HIt]
I 0.4+
II L
i
noom
ook ’
\ H 0.2
gl n L
11 n
11 [}
i1 §L‘\
:E e
SN S — AN § 0 S it S t
-200 150 T e ~100] | =
Seeel S
Sso vy g0 !
TR
\\\“ ﬁ“\‘i -02¢
! \
\llli 'l:
[\
L |
'i -0.4
— =108 ----- 0=10"2 ----- 0=0.1 ----- 0=0.3

Figure 6. Hubble function H = 4/a for various values of the reduced mass parameter o = 2/ pe of
thes = —1 case.



Symmetry 2021, 13, 2108

11 of 24

plt]
1.4}
~~~~~~~~~~ 12}
1.0} P
s\\\~\ ) ,::”’8:
N R X
~ Rl \‘ ,/'
\“ ,,' 0.4
N4 I
‘ ‘ ' t
-150 -50 0
— 0=108 -—-- alt] for 0=1078
g=10"2 alt] for 0=1072
— 0=0.3 ----- a[t] for 0=0.3

Figure 7. Energy density (solid curves) as a function of time superimposed with its corresponding
expansion factor a(t) (dashed curves) for some bouncing solutions of the s = —1 case.

Focusing now on the case with s = +1, which represents loitering solutions in the mass-
less case, Figure 8 shows that the function H(p(t)) is now qualitatively different (compared
to Figure 1). Indeed, when ¢ = 0, H(t) never crosses the horizontal axis as one approaches
the maximum allowed energy density. However, for o # 0, one either has an expanding
branch ,which starts from an almost constant a(t) = a,, initial phase or a contracting phase
that ends up in an almost constant final a(t) = a,,. Now, we observe that all solutions develop
a bounce at some high density, effectively crossing the axis and establishing a continuous
transition from a contracting phase to an expanding one. The loitering phase, with an almost
constant a(t), may last for a long period after an initial contraction but it will always end
up in an expanding branch. This is illustrated in Figure 9, where the blue dashed curve
represents a phase with a(t) almost constant for a long time (very low mass). The orange
curve has essentially the same future behaviour as the blue curve, but its loitering phase
(almost constant expansion factor) does not last as long, exhibiting a previously contracting
phase that abruptly rises. Similar behaviours arise for larger masses, and one verifies that the
instabilities in the expansion factor always lead to a bounce, never finding fully collapsed solu-
tions. This is a remarkable property of the EiBI model, since it always avoids the development
of singular solutions.

For completeness, the behaviour of i(t) and H(t) for this case s = +1 are shown in
Figures 10 and 11. The corresponding energy density profiles appear in Figures 12 and 13.
It is amusing to see how, for low-mass configurations (orange solid curve, for instance), the
energy density at early times is very low (large universe with very diluted energy) until it
rapidly increases to reach a maximum, where it stays for some time at an almost constant
value (loitering phase), with a slight decay (decompression) as we move forward in time.
Then, the density suddenly drops again, giving rise to an expanding phase. For larger
values of the scalar field mass, this process can be significantly deformed, but the qualitative
features remain.
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H[t]
plt]
————— 0=10"°% ----- ¢=510° ----- ¢g=10"* ----- ¢=3-10"* —— 0=510"*
Figure 8. Parametric plot of H(t) as a function of p(t) for small values of the reduced mass ¢ of the
s = +1 case.
a[t]

1.2

Lo//////

150  -100 -0 0
————— 0=108% —— ¢g=10"% —— =10 —— =107

Figure 9. Expansion factor representing new bouncing solutions for various values of the reduced
mass parameter ¢ when s = +1.
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0.04

0.02

1

~150 2100 | Z50

-0.02

----- 0=10"% —— 0=10"°

0=10"3 —— g=1072

Figure 10. Time derivative of the expansion factor representing bouncing solutions for the reduced

mass parameter ¢ when s = +1.

HIt]

o
S50 | <100 Z50

-0.2:—

-0.4}
ﬁ —0.6}

----- 0=10"% —— g=10"°

0=10" —— g=1072

Figure 11. Hubble function 4/a for various values of the reduced mass parameter o when s = +1.
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Figure 12. Energy density (solid curves) as a function of time superimposed with its corresponding
expansion factor a(t) (dashed curves).

38

2.5+

2.0r

1.5¢
==r_\:\/,,‘,__fff ___________________________ \ 1.0-

I‘x 0.5-
- 1.50 - 1.00 —50 ‘\\ 0 t

————— 0=10"8 0=10"° —— 0=10° —— 0=10? —— 0=5:10"

Figure 13. Zoom in on the energy density (solid curves) as a function of time superimposed with its
corresponding expansion factor a(t) (dashed curves).

5. Observational Constraints

In this section, we shall observationally test the EiBI cosmologies considered in the
previous sections by using the latest observational data to constrain the EiBI parameter ¢
preventing the singularity in the early Universe.

5.1. BBN

In the first sections, we began with the original action with the scalar field inside,
and shifted the solution to another frame. This frame, as we showed, removes the singular-
ity of the solution and, for € — 0, it recovers GR. Here, we put the density of the ACDM
that produces a solution in the “Einstein frame” that removes the singularity and recovers

GR for € — 0. Using the same procedure for a theory with matter fields p;, in the original
frame gives the density:
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_ 8(3pe —1)*(3pe +1)(2/1 —3pe/3pe +1—3e(p(2/1—3pe\/3pe +1-3) —p) —2)

p

(41)

3e((3pe + 1) (3e(ap’ + 4p) — 4) + 3ae(3pe — 1)p’)?

in the physical frame. For € — 0 the relation gives p = p, as expected.
To constrain the EiBI parameter € we use different measurements from our Universe.

The strongest one is from the Big Bang Nucleosynthesis (BBN), where z ~ 10°. In principle

the condition for the BBN constraint is [60,61]:

PEiBI — PACDM ’ < 10% 42)
PACDM

In this era, the matter dominance is radiation, so we take the density and the pressure

to be: a
pP="1 P=73 (43)

The density for the EiBI theory gives:

Q=

(a* — Oy (a* +300e€) (a* (/1 - 2 /2% +1-1) +Ope(3 - /1 B /3% 4 1))

5 (44)
3e(ad +3002%€?)
From the condition Equation (42) we get the bound (Recall that restoring dimensions
we have € — x%¢, which represents the inverse of a matter density. Accordingly, the bound
on €, which represents a squared length, can be written as |¢| < 5.53- 1078 m2.) :

‘K2€’ < 1.03-10"%, (45)

where we took Q, ~ 107%. Tt is important to note that this bound improves any previous
existing bounds on € by several orders of magnitude. In fact, the most stringent constraints
to date came from elementary particle-scattering experiments [62—64] and implied x%¢ <
1.86 - 1028 (or equivalently, € < 1072 m?).

We now proceed to describe the observational datasets along with the relevant statis-
tics in constraining the model, using the first constraint from the BBN above. The matter
fields considered are the dark energy ()5, dark matter (),,,, and radiation (), components.
The corresponding energy density reads

P Qw O

Inserting this equation in the expression of the Hubble factor (27), and assuming a
small EiBI parameter, |RW\ <el, yields the extended Friedman equation:

HZ Q. O 9202 0,0, 20,0, )
H(z)—a3+a4+QA+e<8ag”+ A >+(’)(e), (47)

where the EiBI corrections to GR solutions are apparent.

5.2. Direct Measurements of the Hubble Expansion

Cosmic Chronometers (CC): This dataset exploits the evolution of differential ages of
passive galaxies at different redshifts to directly constrain the Hubble parameter [65]. We
use the uncorrelated 30 CC measurements of H(z) discussed in [66—69]. The corresponding

x%_l function reads:
2
30 (H —H d(Z')
- p (M), @
i=1 i
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where H; is the observed Hubble rates at redshift z; (i = 1, ..., N) and H is the predicted
one from the model.

5.3. Standard Candles

As Standard Candles (SC), we use measurements of the Pantheon type Ia super-
nova [70], that were collected in [71], as well as quasars [72] and gamma ray bursts [73].
The model parameters are fitted by comparing the observed y?bs value to the theoretical
ut" value of the distance moduli, which are the logarithms:

p=m—M =5log,,(DL)+ po, (49)

where m and M are the apparent and absolute magnitudes and yg = 5log (HO_ /M pc) +25
is the nuisance parameter that has been marginalized. The luminosity distance is defined by

c z d7
ﬁo(l_l_Z).O E@)’ (50)

Dr(z) =

(here () = 0, i.e., a flat space-time and E(z) is the dimensionless Hubble parameter).

For the Snla data the covariance matrix is not diagonal and the distance modulus is given

as y; = pup; — M, where pp ; is the apparent magnitude at maximum in the rest frame for

redshift z; and M is treated as a universal free parameter, quantifying various observational

uncertainties [70]. Following standard lines, the chi-square function of the standard candles
is given by

2 -1 T
Xsc (‘P:) = Hs Cs,cov Hs /s (51)

where us = {p1 — pm(z1,9"), .., Un — (2N, ¢¥) } and the subscript ‘s’ denotes Snla
and QSOs.

5.4. Baryon Acoustic Oscillations

We use uncorrelated datapoints from different Baryon Acoustic Oscillations (BAO).
BAOQ are a direct consequence of the strong coupling between photons and baryons in the
pre-recombination epoch. After the decoupling of photons, the over densities in the baryon
fluid evolved and attracted more matter, leaving an imprint in the two-point correlation
function of matter fluctuations with a characteristic scale of around r; ~ 147 Mpc that
can be used as a standard ruler and to constrain cosmological models. Studies of the
BAO feature in the transverse direction provide a measurement of Dy (z)/r; = ¢/ H(z)ry,
with the comoving angular diameter distance [74,75]:

z cdz
Dy = /0 el (52)

The angular diameter distance D4 = Dj;/ (1 + z) and the quantity Dy (z)/r; with
Dy (z) = [zDp(2) D (2)]'/? (53)

are a combination of the BAO peak coordinates above. The surveys provide the values
of the measurements at some effective redshift. We employ the BAO datapoints collected
in [76] from [77-88], in the redshift range 0.106 < z < 2.34. The BAO scale is set by the
sound horizon at the drag epoch z; ~ 1060 when photons and baryons decouple. In our
analysis, we used r; as an independent parameter.

The BAO data represent the absolute distance measurements in the Universe. From the
measurements of correlation function or power spectrum of a large-scale structure, we
can use the BAO signal to estimate the distance scales at different redshifts. In practice,
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the BAO data are analyzed based on a fiducial cosmology and the sound horizon at drag
epoch. We calculate the redshift of the drag epoch as:

1291w 5!

2y = 2 m 11 4wl 54
1= Ty 0o e >y
where
by = 0313w, 41 +0.607w%674), (55)
by = 0.238w%%%. (56)

The uncorrelation of this dataset yields the corresponding x?:

2
17 [ D; — Do (2;)
X%Aozz<l Agj : , (57)
i=1

where D; is the observed distant module rates at redshift z; (i = 1, ..., N) and D, is the
predicted one from the model.

5.5. CMB Distant Priors

We use the CMB distant priors that based on the latest CMB measurements [2]. Its
contribution in the likelihood analysis is expressed in terms of the compressed form with
CMB shift parameters:

R = /QuH3r(z.)/c, (58)
lo = mr(ze)/rs(zy), (59)

where 75(z) is the comoving sound horizon at redshift z, and z, is the redshift to the
photon-decoupling surface. These two CMB shift parameters, together with w;, = O, h?
and spectral index of the primordial power spectrum 7, ,can give an efficient summary of
CMB data for the dark energy constraints.

The comoving sound horizon is given by

da’

c a
=)= /o 30+ Rpa ) E2 (7))

(60)

The radiation term in the expression of E(z) for the CMB data analysis should not be
ignored. It can be determined by the matter-radiation equality relation Q; = Q,/ (1 + zeq),
and zeqg = 25X 10%w,, (Tems/2.7K) —4 where w,, = Quh%  The sound speed is
cs = 1//3(1 + Rya), with Rya = 3p,/(4p,), and R, = 31,500w,(Tcpp/2.7K) 4. We
assume the CMB temperature Tcyp = 2.7255K. The redshift z, can be calculated by the
fitting formula:

z, = 1048[1 4 0.00124w, *"*¥][1 + g1w3?], (61)

where
0.0783cw,, 038 0.560

=% = 62
14395078 827 1301105 ©2)

81
5.6. Direct Detection of the Hubble Parameter
We include the latest measurement of the Hubble parameter:
Hy = (73.2 £ 1.3)km/s/Mpc (63)

reported by [89]. The measurement presents an expanded sample of 75 Milky Way
Cepheids with Hubble Space Telescope (HST) photometry and Gaia EDR3 parallaxes,
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which uses the extragalactic distance ladder to recalibrate and refine the determination of
the Hubble constant. The combination is related via the relation

Hy —73.2\2
Koy = <013> . (64)

The Xlzqub estimates the deviation from the latest measurement of the Hubble constant.

5.7. Joint Analysis and Model Selection

In order to perform a joint statistical analysis of 4 cosmological probes, we need to use
the total likelihood function; consequently, the x2, expression is given by

Xoot = XBBN + Xemp + XH + Xoc + XBao + Xtiup: (65)

In order to perform a joint statistical analysis of these four cosmological probes, we
need to use the total likelihood function. Regarding the problem of likelihood maximization,
we use an affine-invariant Markov Chain Monte Carlo sampler [90], as was implemented
within the open-source packaged Polychord [91] with the GetDist package [92] to present
the results. The prior we choose has a uniform distribution, where Q,, € [0.;1.], Qp €
[0.;1 —Qpn], Hy € [50;100] Km/sec/Mpec. For the EiBI parameter €, we set the range
K%e| € [0.;10733].

The posterior distribution of Hy vs. the EiBI parameter € is presented in Figure 14 and 15.
The Hubble parameter is Hy = 64.99 & 0.556km/sec/Mpc, which is between the Planck
estimation of the Hubble function [2] and the latest SHOES measurement [89]. The dark-matter
component is ), = 0291 £ 0.0074, and the dark energy component is
Qp = 0.689 4 0.0084. The fit for the EiBI parameter gives x’e¢ = (4.764 & 3.074) - 10733,
We point out that the value of € = 0 (which corresponds to GR) is very close to the mean
value. Therefore, for |e| < (5.76 4-3.53) - 10~8m? the theory is able to fit to the data while
being able to successfully remove the Big Bang singularity. We point out again that this
improves the previous strongest constraints for EiBI gravity’s parameter, as obtained from
particle physics experiments, by several orders of magnitude [62-64].

We finally point out that from the Bayes factor difference between the models that
reads AB;; = 0.51, we get an indistinguishable difference for the ACDM model. Therefore,
EiBI gravity with this constraint on its parameterm when coupled to a scalar, yields very
similar properties for the ACDM model, but prevents the initial singularity.



Symmetry 2021, 13, 2108 19 of 24

N EiBI
s N\CDM

0.295 | 1
0.294 1
g 0293
0.292
0.291

0.290 |

0.690

0.688 |
<

Q

0.686 |

0.684

10—6 -

w
5x1077 F

0.685 0.690 0.0 0.5 1.0
Qa &

64 65 66
Ho(km/sec/Mpc)

63
x107°

Figure 14. The posterior distribution for the simplest case of the EiBI and for ACDM model (blue curve). The ratios of the
matter density (), dark energy Q. The final results for cosmological parameters for the EiBI and the ACDM models are

summarized Table 1. In order to compare the models, we calculate the Bayes factor.

Table 1. The cosmological parameters for EiBI gravity as compared to ACDM, and the corresponding

bound on €.
Model Hp (Km/sec/Mpc) Q, Qx €(1078) AB;;
EiBI 64.99 £+ 0.556 0.291 £0.0074  0.689 +0.0084  (5.76 £3.53) 0.51

ACDM 64.94 +0.525 0.291 £0.008  0.6891 £ 0.00865 - -
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Figure 15. The posterior distribution for the Hubble parameter Hy vs. the EiBI parameter €.

6. Conclusions and Discussion

In this paper, we analyzed homogeneous and isotropic cosmological solutions in
the context of Eddington-inspired Born-Infeld gravity coupled to a single scalar field.
In the massless case, we discussed the existence and properties of such solutions by direct
resolution of the modified gravitational field equations, which depend on the sign of the
EiBI parameter. For the bouncing solutions (s = —1), one finds that, at the maximum
achievable density of the scalar field, the expansion factor gets to a minimum non-vanishing
value (vanishing Hubble factor) undergoing a transition from a contracting phase to an
expanding one (or vice versa). In the loitering solutions (s = +1) the cosmological evolution
starts from an asymptotically Minkowski past with a minimum constant value of the
expansion factor, such that, at a given time, a canonical cosmological expansion phase is
triggered. These results are consistent with the expectancy raised in the seminal paper [35]
and the numerical evidence found in more recent works [93] when considering perfect
fluids as the matter source.

Alhough the massless case was known to have only two types of solutions, namely,
bouncing and loitering, some kind of instability was expected for the loitering case beyond
the massless scenario. It was not previously known if they would lead to singular solutions
of if they would remain nonsingular. Our analysis suggests that the model is absolutely
robust against singularities and that the loitering case gives rise to a new type of solution
in which an unstable Minkowskian phase (almost constant expansion factor) is possible
between a contraction phase and an expansion phase. The duration of this Minkowskian
period (see Figure 9) depends on model parameters and the initial conditions. No singular
solutions are found in our analysis, in either the massless or the massive case. All the
nonsingular solutions recover the late-time GR cosmological evolution.

Getting into the details, for the s = —1 (bouncing) branch we found that, for low
masses, the solutions closely resemble the behaviour of those of the massless case. However,
for masses above a certain threshold, the parametric representation of the Hubble function
versus the energy density develops a kind of fish-like asymmetric fins at certain time in
the cosmological evolution, a feature that is not present in the massless case (compare
Figure 1 with Figures 2 and 3). The s = +1 (loitering) branch also exhibits unusual features,
showing that, during the loitering (almost Minkowskian) phase, the energy density can
grow significantly while the Hubble function remains close to zero and positive (see
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Figure 8). This represents a kind of intermediate state in a continuous transition from
a contracting phase to a final expansion one. This behaviour is triggered by the energy
density stored in the massive scalar field, whose drop marks the end of the loitering phase
and the beginning of the expansion phase (see Figures 12 and 13).

To conclude, the results obtained in this paper further support the effectiveness of
EiBI gravity to remove singularities in cosmological and astrophysical scenarios when
coupled to different matter sources. In the present scenario with scalar fields, this can be
perforned while being consistent with the latest cosmological observations, provided that
the EiBI parameter is kept roughly within |e| < 51078 m?. One important aspect of the
solutions that are not tackled here is whether they are stable under tensorial perturbations.
We point out that, in the present case, the equation of state is of the form w = w(t), since
the energy density and the pressure of the scalar field (in the massive case) are not trivially
related. In turn, this should have an impact on the behaviour of the quantities that are
prone to the development of instabilities in the tensorial perturbations equation, such as
the sound speed [93,94]. Therefore, one would need to carry out such an analysis to further
support the feasibility of this theory and their associated solutions to replace the Big Bang
singularity with observationally viable nonsingular cosmologies.

Author Contributions: Writing—original draft preparation, D.B., G.J.O. and D.R.-G.; writing—
review and editing, D.B., G.J.O. and D.R.-G. All authors contributed equally to the manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: D.B. gratefully acknowledges the support from the Blavatnik and the Rothschild fel-
lowship. G.J.O. is no longer funded by the Ramon y Cajal contract RYC-2013-13019 (Spain) be-
cause he became permanent. D.R.-G. is funded by the Atraccién de Talento Investigador programme
of the Comunidad de Madrid (Spain) No. 2018-T1/TIC-10431, and acknowledges further sup-
port from the Ministerio de Ciencia, Innovacién y Universidades (Spain) project No. PID2019-
108485GB-100/ AE1/10.13039/501100011033, and the FCT projects No. PTDC/FIS-PAR/31938/2017
and PTDC/FIS-OUT/29048/2017. This work is supported by the Spanish Grant FIS2017-84440-C2-
1-P funded by MCIN/AEI/ 10.13039/501100011033 “ERDF A way of making Europe”, Grant PID2020-
116567GB-C21 funded by MCIN/AEI/10.13039/501100011033, the project PROMETEO/2020/079
(Generalitat Valenciana), the project i-COOPB20462 (CSIC) and the Edital 006/2018 PRONEX
(FAPESQ-PB/CNPQ, Brazil, Grant 0015/2019). This article is based on work from COST Action
CA18108, supported by COST (European Cooperation in Science and Technology).

Acknowledgments: D.B. thanks the Department of Theoretical Physics of the Complutense Univer-
sity of Madrid for their hospitality during the elaboration of this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Amendola, L. Cosmology and fundamental physics with the Euclid satellite. Living Rev. Relativ. 2013, 16, 6. [CrossRef]

2. Aghanim, N. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [CrossRef]

3.  Starobinsky, A.A. Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 1979, 30, 682—685.

4.  Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. 1980, 91B, 99-102. [CrossRef]

5. Guth, A.H. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev. 1981, D23, 347-356.
[CrossRef]

6.  Albrecht, A.; Steinhardt, P.J. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev.
Lett. 1982, 48, 1220-1223. [CrossRef]

7. Mukhanov, V.E; Chibisov, G.V. Quantum Fluctuations and a Nonsingular Universe. JETP Lett. 1981, 33, 532-535.

8. Guth, A.H,; Pi, S.Y. Fluctuations in the New Inflationary Universe. Phys. Rev. Lett. 1982, 49, 1110-1113. [CrossRef]

9. Linde, A.D. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and
Primordial Monopole Problems. Phys. Lett. 1982, 108B, 389-393. [CrossRef]

10. Barrow, ].D.; Cotsakis, S. Inflation and the Conformal Structure of Higher Order Gravity Theories. Phys. Lett. 1988, B214, 515-518.
[CrossRef]

11. Barrow, J.D. The Premature Recollapse Problem in Closed Inflationary Universes. Nucl. Phys. B 1988, 296, 697-709. [CrossRef]

12. Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Saez-Gomez, D.; Faraoni, V. Reconstructing the universe history, from inflation to

acceleration, with phantom and canonical scalar fields. Phys. Rev. D 2008, 77, 106005. [CrossRef]


http://doi.org/10.12942/lrr-2013-6
http://dx.doi.org/10.1051/0004-6361/201833910
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1103/PhysRevLett.48.1220
http://dx.doi.org/10.1103/PhysRevLett.49.1110
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://dx.doi.org/10.1016/0370-2693(88)90110-4
http://dx.doi.org/10.1016/0550-3213(88)90040-5
http://dx.doi.org/10.1103/PhysRevD.77.106005

Symmetry 2021, 13, 2108 22 of 24

13.

14.

15.

16.
17.

18.
19.

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

42.
43.

44.

45.

46.
47.

48.

49.

Ratra, B.; Peebles, PJ.E. Cosmological Consequences of a Rolling Homogeneous Scalar Field. Phys. Rev. 1988, D37, 3406.
[CrossRef] [PubMed]

Caldwell, R.R.; Dave, R.; Steinhardt, P.J. Cosmological imprint of an energy component with general equation of state. Phys. Rev.
Lett. 1998, 80, 1582-1585. [CrossRef]

Kehayias, J.; Scherrer, R.J. New generic evolution for k -essence dark energy with w ~ —1. Phys. Rev. 2019, D100, 023525.
[CrossRef]

Oikonomou, V.K.; Chatzarakis, N. The Phase Space of k-Essence f(R) Gravity Theory. Nucl. Phys. 2020, B956, 115023. [CrossRef]
Chakraborty, A.; Ghosh, A.; Banerjee, N. Dynamical systems analysis of a k -essence model. Phys. Rev. 2019, D99, 103513.
[CrossRef]

Babichev, E.; Ramazanov, S.; Vikman, A. Recovering P(X) from a canonical complex field. arXiv 2018, arXiv:1807.10281.

Zlatev, I.; Wang, L.M,; Steinhardt, P.J. Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 1999,
82, 896-899. [CrossRef]

Caldwell, R.R. A Phantom menace? Phys. Lett. 2002, B545, 23-29. [CrossRef]

Chiba, T.; Okabe, T.; Yamaguchi, M. Kinetically driven quintessence. Phys. Rev. 2000, D62, 023511. [CrossRef]

Bento, M.C.; Bertolami, O.; Sen, A.A. Generalized Chaplygin gas, accelerated expansion and dark energy matter unification.
Phys. Rev. 2002, D66, 043507. [CrossRef]

Tsujikawa, S. Quintessence: A Review. Class. Quant. Grav. 2013, 30, 214003. [CrossRef]

Hu, W,; Barkana, R.; Gruzinov, A. Cold and fuzzy dark matter. Phys. Rev. Lett. 2000, 85, 1158-1161. [CrossRef] [PubMed]
Anagnostopoulos, FK.; Benisty, D.; Basilakos, S.; Guendelman, E.I. Dark energy and dark matter unification from dynamical
space time: Observational constraints and cosmological implications. JCAP 2019, 1906, 003. [CrossRef]

Benisty, D.; Guendelman, E.; Haba, Z. Unification of dark energy and dark matter from diffusive cosmology. Phys. Rev. 2019,
D99, 123521. [CrossRef]

Benisty, D.; Guendelman, E.I. Unified dark energy and dark matter from dynamical spacetime. Phys. Rev. 2018, D98, 023506.
[CrossRef]

Benisty, D.; Guendelman, E.I. Interacting Diffusive Unified Dark Energy and Dark Matter from Scalar Fields. Eur. Phys. J. 2017,
C77,396. [CrossRef]

Senovilla, ].M.M.; Garfinkle, D. The 1965 Penrose singularity theorem. Class. Quant. Grav. 2015, 32, 124008. [CrossRef]

De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Relativ. 2010, 13, 3. [CrossRef] [PubMed]

Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167-321. [CrossRef]

Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution.
Phys. Rep. 2017, 692, 1-104. [CrossRef]

Heisenberg, L. A systematic approach to generalisations of General Relativity and their cosmological implications. Phys. Rep.
2019, 796, 1-113. [CrossRef]

Bull, P. Beyond LambdaCDM: Problems, solutions, and the road ahead. Phys. Dark Univ. 2016, 12, 56-99. [CrossRef]

Banados, M.; Ferreira, P.G. Eddington’s theory of gravity and its progeny. Phys. Rev. Lett. 2010, 105, 011101. [CrossRef]
Alishahiha, M; Silverstein, E.; Tong, D. DBI in the sky. Phys. Rev. D 2004, 70, 123505. [CrossRef]

Liu, Y.X.; Yang, K.; Guo, H.; Zhong, Y. Domain Wall Brane in Eddington Inspired Born-Infeld Gravity. Phys. Rev. D 2012,
85, 124053. [CrossRef]

Choudhury, S.; Pal, S. DBI Galileon inflation in background SUGRA. Nucl. Phys. B 2013, 874, 85-114. [CrossRef]

Choudhury, S.; Pal, S. Primordial non-Gaussian features from DBI Galileon inflation. Eur. Phys. J. C 2015, 75, 241. [CrossRef]
Harko, T.; Lobo, ES.N.; Mak, M.K,; Sushkov, S.V. Structure of neutron, quark and exotic stars in Eddington-inspired Born-Infeld
gravity. Phys. Rev. D 2013, 88, 044032. [CrossRef]

Wei, SSW.,; Yang, K.; Liu, Y.X. Black hole solution and strong gravitational lensing in Eddington-inspired BorntextendashInfeld
gravity. Eur. Phys. ]. C 2015, 75, 253. [CrossRef]

Shaikh, R. Lorentzian wormholes in Eddington-inspired Born-Infeld gravity. Phys. Rev. D 2015, 92, 024015. [CrossRef]
Avelino, P.P. Inner Structure of Black Holes in Eddington-inspired Born-Infeld gravity: The role of mass inflation. Phys. Rev. D
2016, 93, 044067. [CrossRef]

Prasetyo, I.; Husin, L; Qauli, A.I; Ramadhan, H.S.; Sulaksono, A. Neutron stars in the braneworld within the Eddington-inspired
Born-Infeld gravity. JCAP 2018, 01, 027. [CrossRef]

Chen, C.Y.; Bouhmadi-L'opez, M.; Chen, P. Black hole solutions in mimetic Born-Infeld gravity. Eur. Phys. ]J. C 2018, 78, 59.
[CrossRef]

Shaikh, R. Wormholes with nonexotic matter in Born-Infeld gravity. Phys. Rev. D 2018, 98, 064033. [CrossRef]

Jana, S.; Shaikh, R.; Sarkar, S. Overcharging black holes and cosmic censorship in Born-Infeld gravity. Phys. Rev. D 2018,
98, 124039. [CrossRef]

B"ohmer, C.G.; Fiorini, F. The regular black hole in four dimensional BorntextendashInfeld gravity. Class. Quant. Grav. 2019,
36, 12LTO01. [CrossRef]

Delhom, A.; Macedo, C.EB.; Olmo, G.J.; Crispino, L.C.B. Absorption by black hole remnants in metric-affine gravity. Phys. Rev.
2019, D100, 024016. [CrossRef]


http://dx.doi.org/10.1103/PhysRevD.37.3406
http://www.ncbi.nlm.nih.gov/pubmed/9958635
http://dx.doi.org/10.1103/PhysRevLett.80.1582
http://dx.doi.org/10.1103/PhysRevD.100.023525
http://dx.doi.org/10.1016/j.nuclphysb.2020.115023
http://dx.doi.org/10.1103/PhysRevD.99.103513
http://dx.doi.org/10.1103/PhysRevLett.82.896
http://dx.doi.org/10.1016/S0370-2693(02)02589-3
http://dx.doi.org/10.1103/PhysRevD.62.023511
http://dx.doi.org/10.1103/PhysRevD.66.043507
http://dx.doi.org/10.1088/0264-9381/30/21/214003
http://dx.doi.org/10.1103/PhysRevLett.85.1158
http://www.ncbi.nlm.nih.gov/pubmed/10991501
http://dx.doi.org/10.1088/1475-7516/2019/06/003
http://dx.doi.org/10.1103/PhysRevD.99.123521
http://dx.doi.org/10.1103/PhysRevD.98.023506
http://dx.doi.org/10.1140/epjc/s10052-017-4939-x
http://dx.doi.org/10.1088/0264-9381/32/12/124008
http://dx.doi.org/10.12942/lrr-2010-3
http://www.ncbi.nlm.nih.gov/pubmed/28179828
http://dx.doi.org/10.1016/j.physrep.2011.09.003
http://dx.doi.org/10.1016/j.physrep.2017.06.001
http://dx.doi.org/10.1016/j.physrep.2018.11.006
http://dx.doi.org/10.1016/j.dark.2016.02.001
http://dx.doi.org/10.1103/PhysRevLett.105.011101
http://dx.doi.org/10.1103/PhysRevD.70.123505
http://dx.doi.org/10.1103/PhysRevD.85.124053
http://dx.doi.org/10.1016/j.nuclphysb.2013.05.010
http://dx.doi.org/10.1140/epjc/s10052-015-3452-3
http://dx.doi.org/10.1103/PhysRevD.88.044032
http://dx.doi.org/10.1140/epjc/s10052-015-3469-7
http://dx.doi.org/10.1103/PhysRevD.92.024015
http://dx.doi.org/10.1103/PhysRevD.93.044067
http://dx.doi.org/10.1088/1475-7516/2018/01/027
http://dx.doi.org/10.1140/epjc/s10052-018-5556-z
http://dx.doi.org/10.1103/PhysRevD.98.064033
http://dx.doi.org/10.1103/PhysRevD.98.124039
http://dx.doi.org/10.1088/1361-6382/ab1e8d
http://dx.doi.org/10.1103/PhysRevD.100.024016

Symmetry 2021, 13, 2108 23 of 24

50.

51.

52.
53.

54.
55.

56.

57.

58.

59.
60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.
80.

Avelino, PP; Ferreira, R.Z. Bouncing Eddington-inspired Born-Infeld cosmologies: An alternative to Inflation ? Phys. Rev. D
2012, 86, 041501. [CrossRef]

Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D. BorntextendashInfeld inspired modifications of gravity. Phys.
Rep. 2018, 727, 1-129. [CrossRef]

Beltr’an Jim’enez, J.; Delhom, A. Ghosts in metric-affine higher order curvature gravity. Eur. Phys. ]. C 2019, 79, 656. [CrossRef]
Jiménez, ].B.; Delhom, A. Instabilities in metric-affine theories of gravity with higher order curvature terms. Eur. Phys. . 2020,
C80, 585. [CrossRef]

Delhom, A. Minimal coupling in presence of non-metricity and torsion. Eur. Phys. J. 2020, C80, 728. [CrossRef]

Afonso, V.I.; Olmo, G.J.; Rubiera-Garcia, D. Mapping Ricci-based theories of gravity into general relativity. Phys. Rev. D 2018,
97, 021503. [CrossRef]

Jiménez, ].B.; de Andrés, D.; Delhom, A. Anisotropic deformations in a class of projectively-invariant metric-affine theories of
gravity. Class. Quant. Grav. 2020, 37, 225013. [CrossRef]

Jana, S.; Chakravarty, G.K.; Mohanty, S. Constraints on Born-Infeld gravity from the speed of gravitational waves after GW170817
and GRB 170817A. Phys. Rev. D 2018, 97, 084011. [CrossRef]

Barragan, C.; Olmo, G.J. Isotropic and Anisotropic Bouncing Cosmologies in Palatini Gravity. Phys. Rev. 2010, D82, 084015.
[CrossRef]

Afonso, V.I; Olmo, G.J.; Rubiera-Garcia, D. Scalar geons in Born-Infeld gravity. JCAP 2017, 08, 031. [CrossRef]

Sol’e, J.; G’'fmez-Valent, A.; de Cruz P’erez, J. First evidence of running cosmic vacuum: Challenging the concordance model.
Astrophys. ]. 2017, 836, 43. [CrossRef]

Barrow, ].D.; Basilakos, S.; Saridakis, E.N. Big Bang Nucleosynthesis constraints on Barrow entropy. Phys. Lett. 2021, B8§15, 136134.
[CrossRef]

Jim’enez, ].B.; Delhom, A.; Olmo, G.J.; Orazi, E. Born-Infeld gravity: Constraints from light-by-light scattering and an effective
field theory perspective. Phys. Lett. B 2021, 820, 136479. [CrossRef]

Latorre, A.D.I.; Olmo, G.J.; Ronco, M. Observable traces of non-metricity: New constraints on metric-affine gravity. Phys. Lett.
2018, B780, 294-299. [CrossRef]

Delhom, A.; Miralles, V.; Pe’fluelas, A. Effective interactions in Ricci-Based Gravity below the non-metricity scale. Eur. Phys. .
2020, C80, 340. [CrossRef]

Jimenez, R.; Loeb, A. Constraining cosmological parameters based on relative galaxy ages. Astrophys. ]. 2002, 573, 37-42.
[CrossRef]

Moresco, M.; Verde, L.; Pozzetti, L.; Jimenez, R.; Cimatti, A. New constraints on cosmological parameters and neutrino properties
using the expansion rate of the Universe to z 1.75. JCAP 2012, 1207, 053. [CrossRef]

Moresco, M. Improved constraints on the expansion rate of the Universe up to z 1.1 from the spectroscopic evolution of cosmic
chronometers. JCAP 2012, 1208, 006. [CrossRef]

Moresco, M. Raising the bar: New constraints on the Hubble parameter with cosmic chronometers at z 2. Mon. Not. R. Astron.
Soc. 2015, 450, L16-L.20. [CrossRef]

Moresco, M.; Pozzetti, L.; Cimatti, A.; Jimenez, R.; Maraston, C.; Verde, L.; Thomas, D.; Citro, A.; Tojeiro, R.; Wilkinson, D. A
6evidence of the epoch of cosmic re-acceleration. JCAP 2016, 1605, 014. [CrossRef]

Scolnic, D. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological
Constraints from the Combined Pantheon Sample. Astrophys. J. 2018, 859, 101. [CrossRef]

Anagnostopoulos, EK.; Basilakos, S.; Saridakis, E.N. Observational constraints on Barrow holographic dark energy. Eur. Phys. ].
2020, C80, 826. [CrossRef]

Roberts, C.; Horne, K.; Hodson, A.O.; Leggat, A.D. Tests of LambdaCDM and Conformal Gravity using GRB and Quasars as
Standard Candles out to zsim8. arXiv 2017, arXiv:1711.10369.

Demianski, M.; Piedipalumbo, E.; Sawant, D.; Amati, L. Cosmology with gamma-ray bursts: I. The Hubble diagram through the
calibrated E;p,; - Eypiso correlation. Astron. Astrophys. 2017, 598, A112. [CrossRef]

Hogg, N.B.; Martinelli, M.; Nesseris, S. Constraints on the distance duality relation with standard sirens. arXiv 2020,
arXiv:2007.14335.

Martinelli, M. Euclid: Forecast constraints on the cosmic distance duality relation with complementary external probes. arXiv
2020, arXiv:2007.16153.

Benisty, D.; Staicova, D. Testing Low-Redshift Cosmic Acceleration with the Complete Baryon Acoustic Oscillations data
collection. arXiv 2020, arXiv:2009.10701.

Percival, W.J. Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample. Mon. Not. R. Astron.
Soc. 2010, 401, 2148-2168. [CrossRef]

Beutler, F.; Blake, C.; Colless, M.; Jones, D.H.; Staveley-Smith, L.; Campbell, L.; Parker, Q.; Saunders, W.; Watson, F. The 6dF
Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant. Mon. Not. R. Astron. Soc. 2011, 416, 3017-3032.
[CrossRef]

Busca, N.G. Baryon Acoustic Oscillations in the Ly-alpha forest of BOSS quasars. Astron. Astrophys. 2013, 552, A96. [CrossRef]
Anderson, L. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in
the Data Release 9 Spectroscopic Galaxy Sample. Mon. Not. R. Astron. Soc. 2013, 427, 3435-3467. [CrossRef]


http://dx.doi.org/10.1103/PhysRevD.86.041501
http://dx.doi.org/10.1016/j.physrep.2017.11.001
http://dx.doi.org/10.1140/epjc/s10052-019-7149-x
http://dx.doi.org/10.1140/epjc/s10052-020-8143-z
http://dx.doi.org/10.1140/epjc/s10052-020-8330-y
http://dx.doi.org/10.1103/PhysRevD.97.021503
http://dx.doi.org/10.1088/1361-6382/abb923
http://dx.doi.org/10.1103/PhysRevD.97.084011
http://dx.doi.org/10.1103/PhysRevD.82.084015
http://dx.doi.org/10.1088/1475-7516/2017/08/031
http://dx.doi.org/10.3847/1538-4357/836/1/43
http://dx.doi.org/10.1016/j.physletb.2021.136134
http://dx.doi.org/10.1016/j.physletb.2021.136479
http://dx.doi.org/10.1016/j.physletb.2018.03.002
http://dx.doi.org/10.1140/epjc/s10052-020-7880-3
http://dx.doi.org/10.1086/340549
http://dx.doi.org/10.1088/1475-7516/2012/07/053
http://dx.doi.org/10.1088/1475-7516/2012/08/006
http://dx.doi.org/10.1093/mnrasl/slv037
http://dx.doi.org/10.1088/1475-7516/2016/05/014
http://dx.doi.org/10.3847/1538-4357/aab9bb
http://dx.doi.org/10.1140/epjc/s10052-020-8360-5
http://dx.doi.org/10.1051/0004-6361/201628909
http://dx.doi.org/10.1111/j.1365-2966.2009.15812.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19250.x
http://dx.doi.org/10.1051/0004-6361/201220724
http://dx.doi.org/10.1111/j.1365-2966.2012.22066.x

Symmetry 2021, 13, 2108 24 of 24

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.
93.

94.

Seo, H.]. Acoustic scale from the angular power spectra of SDSS-III DR8 photometric luminous galaxies. Astrophys. |. 2012,
761, 13. [CrossRef]

Ross, A.].; Samushia, L.; Howlett, C.; Percival, W].; Burden, A.; Manera, M. The clustering of the SDSS DR7 main Galaxy sample
‘96 1. A 4 per cent distance measure at z = 0.15. Mon. Not. R. Astron. Soc. 2015, 449, 835-847. [CrossRef]

Tojeiro, R. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Galaxy clustering measurements in
the low redshift sample of Data Release 11. Mon. Not. R. Astron. Soc. 2014, 440, 2222-2237. [CrossRef]

Bautista, ].E. The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations at redshift of 0.72
with the DR14 Luminous Red Galaxy Sample. Astrophys. J. 2018, 863, 110. [CrossRef]

de Carvalho, E.; Bernui, A.; Carvalho, G.C.; Novaes, C.P,; Xavier, H.S. Angular Baryon Acoustic Oscillation measure at z = 2.225
from the SDSS quasar survey. JCAP 2018, 1804, 064. [CrossRef]

Ata, M. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement
of baryon acoustic oscillations between redshift 0.8 and 2.2. Mon. Not. R. Astron. Soc. 2018, 473, 4773-4794. [CrossRef]

Abbott, TM.C. Dark Energy Survey Year 1 Results: Measurement of the Baryon Acoustic Oscillation scale in the distribution of
galaxies to redshift 1. Mon. Not. R. Astron. Soc. 2019, 483, 4866—4883. [CrossRef]

Molavi, Z.; Khodam-Mohammadi, A. Observational tests of Gauss-Bonnet like dark energy model. Eur. Phys. . Plus 2019,
134, 254. [CrossRef]

Riess, A.G.; Casertano, S.; Yuan, W.; Bowers, ].B.; Macri, L.; Zinn, J.C.; Scolnic, D. Cosmic Distances Calibrated to 1Parallaxes
and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with LambdaCDM. Astrophys. ]. Lett. 2021,
908, L6. [CrossRef]

Foreman-Mackey, D.; Hogg, D.W.; Lang, D.; Goodman, J. emcee: The MCMC Hammer. Publ. Astron. Soc. Pac. 2013, 125, 306-312.
[CrossRef]

Handley, W.J.; Hobson, M.P,; Lasenby, A.N. PolyChord: Nested sampling for cosmology. Mon. Not. R. Astron. Soc. 2015,
450, L61-L65. [CrossRef]

Lewis, A. GetDist: A Python package for analysing Monte Carlo samples. arXiv 2019, arXiv:1910.13970.

Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D. On gravitational waves in Born-Infeld inspired non-singular
cosmologies. JCAP 2017, 10, 29. [CrossRef]

Escamilla-Rivera, C.; Banados, M.; Ferreira, P.G. A tensor instability in the Eddington inspired Born-Infeld Theory of Gravity.
Phys. Rev. D 2012, 85, 087302. [CrossRef]


http://dx.doi.org/10.1088/0004-637X/761/1/13
http://dx.doi.org/10.1093/mnras/stv154
http://dx.doi.org/10.1093/mnras/stu371
http://dx.doi.org/10.3847/1538-4357/aacea5
http://dx.doi.org/10.1088/1475-7516/2018/04/064
http://dx.doi.org/10.1093/mnras/stx2630
http://dx.doi.org/10.1093/mnras/sty3351
http://dx.doi.org/10.1140/epjp/i2019-12723-x
http://dx.doi.org/10.3847/2041-8213/abdbaf
http://dx.doi.org/10.1086/670067
http://dx.doi.org/10.1093/mnrasl/slv047
http://dx.doi.org/10.1088/1475-7516/2017/10/029
http://dx.doi.org/10.1103/PhysRevD.85.087302

	Introduction
	Eddington-Inspired Born-Infeld Gravity
	Action and Basic Field Equations
	EiBI Cosmology with Scalar Fields

	Massless Scalar Fields
	Massive Scalar Field
	Observational Constraints
	BBN
	Direct Measurements of the Hubble Expansion
	Standard Candles
	Baryon Acoustic Oscillations
	CMB Distant Priors
	Direct Detection of the Hubble Parameter
	Joint Analysis and Model Selection

	Conclusions and Discussion
	References

