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Abstract

Knowledge of the mechanisms of assembly of amyloid proteins into aggregates is of central

importance in building an understanding of neurodegenerative disease. Given that oligo-

meric intermediates formed during the aggregation reaction are believed to be the major

toxic species, methods to track such intermediates are clearly needed. Here we present a

method, electron paramagnetic resonance (EPR), by which the amount of intermediates

can be measured over the course of the aggregation, directly in the reacting solution, without

the need for separation. We use this approach to investigate the aggregation of α-synuclein

(αS), a synaptic protein implicated in Parkinson’s disease and find a large population of olig-

omeric species. Our results show that these are primary oligomers, formed directly from

monomeric species, rather than oligomers formed by secondary nucleation processes, and

that they are short-lived, the majority of them dissociates rather than converts to fibrils. As

demonstrated here, EPR offers the means to detect such short-lived intermediate species

directly in situ. As it relies only on the change in size of the detected species, it will be appli-

cable to a wide range of self-assembling systems, making accessible the kinetics of interme-

diates and thus allowing the determination of their rates of formation and conversion, key

processes in the self-assembly reaction.

Introduction

The function of the α-synuclein protein (αS) is associated with its ability to bind to the mem-

branes [1–3] of intracellular vesicles and thought to involve membrane remodeling and vesicle

trafficking [4–6]. It mainly localizes at the synaptic terminus where it plays a role in synaptic

transmission. The binding of αS to membranes may directly contribute to membrane remod-

eling by generating curvature [7–9] or, indirectly, by acting as a non-conventional chaperone

for the SNARE protein synaptobrevin [10]. Additionally the ability of αS to connect vesicles
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plays a role in vesicle trafficking at the synapse by controlling the distal synaptic vesicle pool

[11]. While the exact functions of the αS protein only now start to become clear, its association

with Parkinson’s disease is well documented.

The in vitro aggregation of αS revealed that besides the cross-β fibrils, which represent the

end-point of the amyloid aggregation, oligomers are also formed [12–18]. Several works have

shown that these oligomeric species are toxic to cells [19, 20], however, most studies rely either

on fluorescently labelled αS species, use kinetically trapped oligomers, which may not consti-

tute intermediates of the aggregation reaction, or involve biochemically isolated oligomers and

indirect detection [21–24].

While these approaches are invaluable for structural and toxicological studies, they cannot

detect the oligomers in situ, to reveal how the oligomers develop in the aggregating solution.

Also labelling with the relatively large fluorescent labels and isolation of oligomers may cause a

significant modification of the protein or oligomer structure. Thus, there is need for methods

to detect such intermediates, directly in solution during the aggregation reaction, without the

need for large fluorescence labels. Here we present an approach that closes this gap: In situ

continuous wave electron paramagnetic resonance (EPR). This method measures the rota-

tional diffusion time of spin labelled objects in liquid solution at room temperature. Sensitivity

of the EPR lineshape of nitroxide-spin labels to time scales in the nano-second regime ensures

that the aggregates of interest (see Fig 1) are well covered.

To apply the method, the αS is labelled with the spin label shown in Fig 1b. This label is

attached to a cysteine at position 56 that was introduced by site selective mutagenesis, resulting

in the construct R1-αS, where R1 stands for the spin label. We chose to place the spin label at

position 56, because this is a region of αS expected to be immobilized in the aggregates. Posi-

tions in the C-terminus, residues 100–130, and close to the N-terminus, are avoided because

they are expected to remain flexible in most aggregation models. The spin label itself, see Fig

1b, is significantly smaller than commonly used fluorescent labels, and the scarceness of

unpaired electrons in biological systems makes the method background free.

We use this methodology to reveal the appearance of an intermediate aggregated species.

We present a kinetic model that explains the development of intermediates and fibrils.

Material and methods

Protein expression and labeling

Mutagenesis, protein expression and purification were performed as described previously [25,

26]. The mutated protein was spin labeled following a standard protocol. The αS56 (cysteine

Fig 1. a) Overall reaction pathways and intermediates of α-synuclein aggregation shown schematically. Blue spheres:

monomers within oligomers (shapes of oligomers are arbitrary). Red stars: R1 nitroxide spin label (see b). b) Molecular

structure of the R1 spin label attached to the protein. No specific kinetic pathways are shown.

https://doi.org/10.1371/journal.pone.0245548.g001
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mutant in position 56) was reduced with a six-fold molar excess per cysteine with DTT

(1,4-dithio-D-threitol) for 30 minutes at room temperature. Removal of DTT was done by

passing the samples twice through a Pierce Zeba 5 ml desalting columns. Immediately after-

wards, a ten-fold molar excess of the MTSL spin label [(1-oxyl-2,2,5,5-tetramethylpyrroline-

3-methyl)-methanethiosulfonate] was added (from a 25 mM stock solution in DMSO) and

incubated for one hour in the dark at room temperature. The initial protein concentration was

250 μM, the spin label concentration was 2.5 mM. After this, free spin label was removed by

two additional desalting steps. Protein samples were applied onto Microcon YM-100 spin col-

umns to remove any precipitated and/or oligomerised proteins and then diluted in buffer (10

mM Tris-HCl, pH 7.4). Due to the high reactivity of the MTSL and the easily accessible cyste-

ine, near stochiometric labeling was achieved under these conditions [27]. To determine the

labelling degree, protein concentration was measured via the extinction at 280 nm (ε = 5600

cm-1 M-1), and the spin concentration via the double integral method of EPR described below.

Samples were stored at -80˚C.

Sample preparation

Description of experiment. A stock solution of spin-labeled α-synuclein (concentration

between 150 μM and 250 μM) was diluted into 3 mL of buffer (10 mM Tris-HCl, pH 7.4), to a

final concentration of 10 μM. The solution also contained 90 μM wild-type α-synuclein for

diamagnetic dilution (see below). The solution was divided into three 2 ml LoBind Eppendorf

tubes, resulting in a volume of 1 ml per Eppendorf tube. The experiments were carried out

over five days. After an initial measurement was taken at the time the spin-labelled protein was

diluted (t = 0), the samples were allowed to aggregate on a thermomixer (Eppendorf, Thermo-

mixer comfort) with a speed of 1000 rpm at 37˚C. At each time point, 40 μL samples were

drawn from the aggregation solution and kept in the fridge at 4˚C. From these, samples for

EPR and Thioflavin T (ThT) fluorescence measurements were made. At the beginning samples

were collected every 3 hours, at later times the intervals were longer (see text).

The data shown are from the first of these Eppendorf tubes, and the data set is referred to as

LV1, low aggregation volume number 1. Data from additional experiments are shown in the

SI of S1 File only: One data set obtained using the solution from the second Eppendorf (LV2),

which has similar behavior to LV1 (see S4b Fig of S1 File). A second set of aggregation experi-

ments was performed at a lower surface to volume ratio: These data sets are referred to as HV1

and HV2, and their aggregation conditions and results are described in the SI of S1 File, the

data are shown in S4c and S4d Fig of S1 File.

EPR measurement conditions

The 9 GHz, continuous-wave EPR spectra were recorded using an ELEXSYS E680 spectrome-

ter (Bruker, Rheinstetten, Germany). The measurements were done under the following con-

ditions: room temperature, a microwave power of 0.63 mW and a modulation amplitude of

0.25 mT at a modulation frequency of 100 kHz. The time expended on each measurement was

adapted according to the spectral lineshape, i.e., the aggregation time, and they could last from

3 to 8 hours. At long aggregation times the spectral amplitude decreases due to line broaden-

ing, and therefore, to obtain the desired signal-to-noise ratio, a longer accumulation time is

needed. In practice, we inspected the signal-to-noise ratio of each EPR spectrum after a given

accumulation time and increased the measurement time if the spectral quality was not yet suf-

ficient. Glass micropipettes of a volume of 50 μL (Blaubrand Intramark, Wertheim, Germany)

were filled with 20 μL of the sample for each measurement. The spin concentration was deter-

mined by comparing the double integral of the EPR spectra with the double integral of a
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reference sample (MTSL, 100 μM). The spin concentrations were� 10 μM for a total protein

concentration of 100 μM.

Simulations of EPR spectra

MATLAB (version 9.4.0.813654, R2018a, The MathWorks, Inc., Natick, MA, USA) and the

EasySpin package (5.2.4) were used for simulations of the EPR spectra [28]. The parameters of

the simulation were manually adjusted to agree best with the experimental spectra. For all sim-

ulations, an isotropic rotation of the nitroxide (S = 1/2) was utilized. The following g-tensor

values were used: g = [2.00906 2.00687 2.00300]. These values were obtained in previous exper-

iments [29] and we used these values for the simulations presented here. The spectra were sim-

ulated with a superposition of four components: two fast fractions using the “Garlic” function

and a medium and a slow fraction using the “Chili” function. The principal values of the 14N
hyperfine coupling tensor were Axx = Ayy = 13 MHz and Azz = 110 MHz. For the slow compo-

nent Azz = 106 MHz was used instead. A Gaussian component with a linewidth of 0.12 mT

was used for all simulations. The spectrum obtained at t = 0 could be simulated with a single

component, the fast fraction. The τr obtained at t = 0 was kept constant for all other simula-

tions. From t = 3 hours a new component appeared, τr = 0.24 ns which we attribute to free

spin label. Its contribution to the spectra never exceeded 10%. Optimal τr values of the

medium and slow components were derived from later time-point spectra and then kept con-

stant for the entire series. For each time point, the relative contribution of the four components

was optimized considering all time points.

Because of the diamagnetic dilution, which increases the spin-spin distance, the only spec-

tral changes expected derive from mobility differences: By diluting with wt-αS the distances

between spin labels should exceed those to which cw-EPR could be sensitive, also in aggre-

gates. Exchange interaction could be visible at around 0.5 nm and below, and up to 1 nm

under specific circumstances, dipolar interactions, neither of which are likely to occur with a

10 fold diamagnetic dilution.

Fitting of kinetics

The EPR measurements yield, after processing, the monomer-equivalent concentrations of

monomers, intermediates and fibrils at different time points. We fit a minimal model of the

aggregation of αS into fibrils that additionally includes the formation of oligomers directly

from monomers with rate constant ko, for details on the meaning of n, see below. Oligomer

dissociation proceeds at rate constant kd. Oligomers can be converted to fibrils by rate constant

kc. Fibrils grow by addition of monomers to their ends with rate constants k+ and we allow for

the presence of secondary processes, i.e. the possibility of fibrils to multiply in a monomer-

independent manner, e.g. by fragmentation, by rate constant k2. We do not include oligomeric

species formed by a secondary process. More detailed descriptions of these kinetic models can

be found for example in Meisl et al [30–32].

Invoking conservation of mass, mtot = m(t) +M(t) +O(t), the aggregation process can be

described by the following set of differential equations:

dPðtÞ
dt
¼ kc O tð Þ þ k2 mtot � n OðtÞ � mðtÞð Þ

dMðtÞ
dt
¼ 2kþP tð Þm tð Þ
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dmðtÞ
dt
¼ � 2 kþP tð Þm tð Þ � nkomðtÞ

n
þ n kdO tð Þ

dOðtÞ
dt
¼ komðtÞ

n
� kc þ kdð ÞO tð Þ

Where M(t) is the monomer-equivalent concentration of fibrils, P(t) and O(t) are the number

concentrations of fibrils and of oligomers, respectively, m(t) is the free monomer concentra-

tion, and n the oligomer reaction order, which, under specific conditions (see Discussion), can

be related to oligomer size. These equations were numerically integrated and fitted to the data

by least squares minimization. This model assumes that oligomers are on-pathway, but as we

show in the SI of S1 File, the data are also consistent with an off-pathway model. We assumed

a monomer-concentration independent secondary mechanism, such as fragmentation, based

on previous studies of αS [32, 33] aggregation into amyloid fibrils and the fact that vigorous

shaking tends to induce fragmentation [34]. Additionally, given that the experiments were

only recorded at a single initial monomer concentration, they do not provide strong con-

straints on the reaction orders of both oligomerisation, n, and the secondary process [35]. The

data provide constraints for a number of parameters: oligomers are in fast equilibrium with

monomers, thus the equilibrium constant, ko/kd can be determined accurately but only an

approximate lower bound can be given for the individual rates (corresponding to the require-

ment that the oligomerization reaction proceeds fast enough to be in effective equilibrium rela-

tive to monomer depletion). This lower bound is shown in the fits, see Results. Equally, the

rates of elongation, the secondary process and conversion are interdependent (as is the case in

all unseeded aggregation reactions) and thus only the products k+kc and k+k2 can be con-

strained. Finally, the data show only a weak dependence on the reaction order of the oligomer-

ization reaction, n.

Results

The aggregation of 100μM α-synuclein was monitored at pH 7.4 and 37˚C under rapid shak-

ing (1000rpm), over the course of 120 hours. Fig 2 shows the development of the EPR spectra

of R1-αS over time for four selected time points, the full set of spectra is shown in S1 Fig of S1

File. The spectra at the start of the aggregation and after nine hours of aggregation (9 h) are

dominated by the three narrow lines typical of nitroxides in fast rotational motion.

Starting at nine hours a new component with a broader linewidth (marked by an arrow)

develops, that increases in amplitude with time. Its lineshape is due to a nitroxide with a slower

rotation and shows that a fraction of R1-αS becomes more immobilized as the aggregation

progresses. Line broadening by spin-spin interaction can be excluded, because the R1-αS was

diluted in a 1: 9 ratio with wt-αS, which increases the distance between the spins of the nitrox-

ides sufficiently to suppress spectral effects of their interaction (diamagnetic dilution, see

Materials and methods).

By spectral simulation [28], three components can be extracted, referred to as the fast,

medium and slow components. The slow and fast components are adjusted from the spectra at

the end and the beginning of the aggregation, respectively. From these building blocks the

intermediate-time spectra are constructed, revealing the medium component and enabling the

recognition of the slow component marked by the arrow in Fig 2b and 2c, for example. The

respective rotation correlation times (τr) of the three components are given in Table 1, and

their lineshape is shown in S2 Fig of S1 File. The τr value of the fast fraction agrees with the τr

values of monomeric αS with the spin label at the position of R1- αS [36]. The amount by

which each fraction contributes to the spectra is shown in Fig 3.
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Fig 2. Room temperature EPR spectra of α-synuclein (R1-αS) at different time points of aggregation. Full spectra:

Inset, the box shows the region zoomed into. Zoomed-in spectra: Amplitude expanded four-fold with respect to inset.

a) Start of aggregation (t = 0). b) 9 hours of aggregation. c) 24 hours of aggregation. d) 42 hours of aggregation. Black:

Experimental spectra. Red: Simulated spectra. Arrow: feature of broad spectral component (see text).

https://doi.org/10.1371/journal.pone.0245548.g002

Table 1. Rotation correlation time (τr) of R1-αS in the three fractions observed by EPR.

fast medium slow

τr (ns) 0.40 4.00 10

https://doi.org/10.1371/journal.pone.0245548.t001

Fig 3. Aggregation of α-synuclein as a function of time derived from EPR. Amount of fast fraction (green dots)

caused by monomers. Amount of medium fraction (blue dots) assigned to oligomers. Amount of slow fraction (red

dots) assigned to fibrils. The solid lines are the fractions of monomer, oligomer and fibrils predicted from the best fit of

the model, with a reaction order of n = 7.

https://doi.org/10.1371/journal.pone.0245548.g003
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The magnitude of τr relates to the size of the aggregated species, where, qualitatively, a lon-

ger τr corresponds to a larger species, see for example M. Hashemi Shabestari et al [37]. There-

fore, the medium fraction can be attributed to smaller aggregates than the slow fraction.

The fast component decays to zero within the first 40 hours. The medium fraction is already

present at the earliest time point (25%) and increases quickly to a maximum value of 40%. At

30 hours, this component has fully decayed. The medium fraction thus disappears before the

monomer fraction is fully depleted. The slow fraction appears after 10 hours, it increases to

reach 100% at 40 hours, and then remains at its plateau level until the end of the measure-

ments, at 120 hours.

The kinetics of monomer, fibrillar and oligomeric fractions determined in this way were

used in a kinetic analysis to determine the mechanism of aggregation and the respective reac-

tion rates. The minimal model that was able to describe the data included an oligomeric spe-

cies, formed directly from monomer, that can convert to growth-competent fibrils in a

unimolecular reaction. A model in which these oligomers cannot convert to fibrils, and fibril

nucleation instead proceeds by a separate process is also consistent with the data (see SI of S1

File). Fibrils grow by addition of monomers and existing fibrils can lead to the formation of

new fibrils via a secondary process, but they do not significantly affect the production of oligo-

mers. The processes and rate constants considered in this model are shown in Fig 4.

Discussion

Methods to determine the time course of amyloid aggregation are important as intermediates

of aggregation are believed to be key toxic species [19, 20, 38–40]. Here we focus on αS, an

amyloid protein related to Parkinson’s disease, whose physiological role is yet to be

determined.

Under the conditions investigated here, αS is expected to fibrilize slowly, i.e. over the course

of days. We track the aggregation of α-synuclein in situ by EPR lineshape changes, which

reflect the mobility of the spin label in R1-αS.

Following the time course of the process over the period of 5 days, three distinct fractions

are observed: A fast fraction is due to monomeric R1-αS. The fast fraction decays with time

and at 40 hours has disappeared. The second fraction, with medium mobility, grows with time

with a maximum early in the aggregation reaction followed by a decay. The transientness of

this species suggests that this fraction represents oligomers which are higher in energy than the

Fig 4. Schematic of the kinetic model used to fit the experimental data, showing species, rate constants and

processes considered in the kinetic model. Because monomers and oligomers reach pre-equilibrium on a timescale

significantly faster than that of the measurement intervals, altering this model to make oligomers off-pathway does not

affect the fit quality. As such, the oligomers cannot be resolved as on- or off-pathway and must instead be considered

part of the reactant ensemble at this experimental time resolution [42]. Left: Oligomer formation (ko) and dissociation

(kd) interconvert monomers (m) and oligomers (O). Conversion (kc) or nucleation (kn), green arrow, leads to fibrils

(right). Elongation, (k+) grows existing fibrils, M denotes the monomer equivalent fibril concentration and P the

number concentration of fibrils.

https://doi.org/10.1371/journal.pone.0245548.g004
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fibrillar end product of the aggregation reaction. The slow fraction appears after a lag time and

then grows to a plateau value that is close to the full population. To investigate the influence of

our chosen experimental setup, in particular the availability of surfaces, which is known to

play an important role in controlling the aggregation kinetics, we also investigated the reaction

under the same conditions, but at increased volumes. As expected, decreased rates are

observed when the surface to volume ratio is decreased, but the conclusions drawn remain

robust (details see SI of S1 File).

Relation of the EPR derived fractions to the aggregation state of αS

The contribution to the overall EPR signal reflects the relative number of αS proteins in this

particular aggregation state. Thus, the fraction with a fast rotational correlation time corre-

sponds to the fraction of total αS that is in the monomeric state. In addition to the monomeric

species, two types of aggregates can be distinguished by EPR, those with a slow rotational cor-

relation time, corresponding to large aggregates and those with a medium rotational correla-

tion time, corresponding to intermediate aggregate sizes. The time dependence (Fig 3) shows

that intermediate-sized aggregates are formed initially, their time course closely resembling

that of the monomer after the initial measurement. The larger aggregates are only formed at a

later stage.

It is not possible to derive the exact size of the aggregate, because of the local mobility of the

spin label, i.e. the rotation about the single bonds that link the pyrolidine ring to the protein

backbone (Fig 1b), see M. Hashemi Shabestari et al [37] for a more detailed discussion. In the

present context, a lower limit of the size of the aggregate can be estimated from the ratio of the

τr values of the aggregates with respect to the monomer, showing that the medium fraction

comprises minimally ten monomers, the slow fraction at least 25 monomers. We have dis-

cussed the factors entering such estimates in detail in M. Hashemi Shabestari et al [37].

The exponential increase of ThT activity appears around 35 hours (S3 Fig of S1 File), con-

sistent with the medium fraction consisting of non-fibrillar aggregates. The slight time shift

between the appearance in time of the large aggregate fraction as measured by EPR and the

ThT fluorescence (see SI of S1 File) (S3 Fig of S1 File) is likely due to the poor sensitivity of

ThT for structures with less beta-sheet content [41]. Thus, we will refer to the medium fraction

as oligomeric and the slow fraction as fibrillar.

Based on these observations we propose the following reaction scheme: Oligomers of size n
form directly from monomers with rate constant ko and dissociate with rate constant kd. They

can be converted to fibrils by rate constant kc. Fibrils in turn grow by addition of monomers to

their ends with rate constants k+ and we allow for the presence of a monomer-concentration

independent secondary process, such as fibril fragmentation, by rate constant k2. Based on the

EPR data, the oligomeric species appear to be in fast equilibrium with monomers on the time-

scale of the aggregation reaction. Indeed, we find that the rates of oligomer formation and dis-

sociation are fast with kd> 0.2 h-1 and only their equilibrium ratio being well constrained.

When the available surface area is decreased, the dissociation rate decreases somewhat,

although the timescale of dissociation remains comparable to that of monomer depletion due

to aggregate formation (see S1 File). Therefore, monomeric and oligomeric species should be

considered part of the same ensemble of reactants for the purposes of a kinetic description. In

other words, whether new fibrils are formed directly from monomers or by conversion of olig-

omeric intermediates is thus not distinguishable based on these kinetic measurements alone

[42]. We verify this observation also by showing that fits to a model where oligomers cannot

convert to fibrils, and fibrils are instead formed directly from monomer, describe the data

equally well (see S5 Fig of S1 File). All the data are best fit by an oligomer reaction order of
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n = 7 (see Fig 3), but the dependence of the goodness of fits on this reaction order is weak, and

reasonable fits can be achieved also with smaller or larger reaction orders, such as n = 10, the

lower limit predicted for the oligomer size based on our EPR data alone (see S6 Fig of S1 File).

It is worth noting that a kinetic analysis as presented here yields reaction orders, rather than

oligomer sizes directly. In the simplest interpretation, i.e. when the reaction modelled is a sin-

gle elementary step, the reaction order is indeed equivalent to the oligomer size. However, in

more complex reactions, e.g. when heterogeneous nucleation on a surface is involved, reaction

orders can be significantly smaller than the oligomer size. The observation that reduction of

the surface to volume ratio results in slower oligomer formation, dissociation and conversion

is consistent with surfaces playing a key role in these processes. Assuming n = 7, the best fit

yields kd> 0.2 h-1 and ko/kd = 2.0x1024 M-6, k+k2 = 70 M-1h-2 and k+kc = 270 M-1h-2. Note that

only the combined rates of nucleation and elongation can be constrained; this is a result of the

fact that measurements of the mass concentration of aggregates in the absence of seeds are

determined only by a product of these rates, rather than the individual rates [35]. Typical elon-

gation rates are on the order of 106 M-1h-1 [43], thus conversion, kc, is likely to be orders of

magnitude slower than dissociation, kd. A key result is that the oligomers are formed directly

from monomer, also in the absence of fibrils, and thus constitute primary oligomers, rather

than secondary oligomers, i.e. they are potential intermediates of primary nucleation, not of

secondary nucleation, as observed for example in the aggregation of Aβ42, one of the main

proteins that aggregate in Alzheimer’s disease [44]. Furthermore, the fast oligomer dissociation

rate compared to rate of conversion of oligomers into fibrils indicates that most oligomers dis-

sociate before they can convert into fibrils. In Cremades et al [19] two types of oligomers were

identified, type A and type B. Type A oligomers are smaller than and dissociate more readily

than type B ones, and both are intermediates of fibril formation; in Dear et al [45] it was

shown that these oligomers too predominantly dissociate rather than convert into fibrils.

Thus, while the dynamics of the oligomer fraction observed here more closely resembles that

of type A than type B oligomers of Cremades et al [19], the significant oligomeric fraction we

observe here suggests that the majority of oligomers we detect are not present in single mole-

cule experiments. While the different label may play a role, the fact that our technique requires

neither dilution nor separation is likely to be the main source of the observed differences.

Given our finding of a fast dissociation rate, we would expect the oligomeric species we detect

here in-situ to dissociate significantly upon the dilution that is required to obtain single mole-

cule data. The in-situ measurement by EPR allows us to detect these meta-stable species, which

are too short-lived to be measured by other techniques.

Conclusion

We have demonstrated the power of EPR to measure the presence of oligomeric species over

the time course of the aggregation reaction, without need for dilution, size exclusion or other

techniques that could potentially alter the size distribution. We find that a large population of

non-ThT active intermediates form during the aggregation of αS at pH 7.4 and 37˚C. These

oligomeric species are in fast exchange with the monomer pool and thus the data are consistent

with them being intermediates on the primary nucleation pathway. The data are not consistent

with the detected species being secondary oligomers, i.e. formed via a process that is catalyzed

by existing fibrils, a mechanism that is believed to be the main source of oligomers during the

aggregation of Aβ42. Oligomers are short lived on the timescale of the aggregation reaction

and most disappear by dissociation, not by conversion to fibrils. Additional studies with differ-

ent spin label position in αS could provide local information about the aggregates, if they dis-

play different degrees of immobilization, I.e. different τr values. We envision that our
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combination of non-disruptive oligomer detection and kinetic analysis will be applicable to

study the effect of a range of conditions on the oligomer formation reaction of αS and other

amyloid forming proteins.
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