
ALANet:Autoencoder-LSTM for pain and protective behaviour
detection

Xinhui Yuan1, Marwa Mahmoud2

1 School of Science, ChangChun University of Science and Technology, ChangChun, China
2 Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom

Abstract— Automatic detection of pain and protective
behaviour can help chronic pain patients to get proper
assistance and helpful treatment with the help of medical
professionals. Using the EmoPain datasetwe study how
autoencoder-based and attention-based deep learning models
can be used to automatically detect pain and protective
behavior that is usually associated with it. We propose a deep
learning architecture called Autoencoder-LSTM-Attention-Net
(ALANet), which can improve the automatic detection of pain
and protective behaviors. Through comparative experiments
with other machine learning models trained on the EmoPain
dataset, we found that by using a combination of autoencoder
and attention mechanisms, we can not only improve the
recognition performance, but also greatly increase the speed
of training the model. In addition, we analyse the effect
of extracting temporal information from each body part
separately compared to all body parts combined.

I. INTRODUCTION

Fear of pain and injury in people with chronic pain results
in reducing physical activity or using movement strategies
(e.g. guarding, stiffness, hesitation, bracing) [1][2][3], col-
lectively called protective behaviors [4]. Such behaviors
cause further debilitation and reduced participation in valued
activities, e.g. employment or social life [2][5]. Automatic
detection of pain and protective behaviour can help those
patients get further help from other people. At present, the
number of researches on automatic analysis of emotion-
influenced movement behavior is very small, as most studies
in pain-related situations focus on facial expression of pain
or physiological responses to acute/stimulated pain [6][7].
This is partly because of the limited data available for body
movements and not enough previous work done in this field
compared to facial expression analysis [8][9].

In order to study pain and protective behavior, we used
the EmoPain dataset[10]. The dataset contains 26 joint-based
whole-body motion capture (MoCap) data and 4 skin surface
electromyography (sEMG) data. Previous work on Mocap
and sEMG data of the EmoPain dataset mainly used feature
engineering methods [10][11] [12], Stacked-LSTM [13], or
attention mechanisms [14]. In this paper, we propose an
architecture called ALANet, which is a combination of
autoencoders, LSTMs, and attention based deep learning
architecture. This structure can analyze different actions and
extract discriminative features that can best determine when
pain signals and protective behavior are exhibited in the data.
Then it automatically analyzes when - temporal attention
- and what - bodily attention - subsets of the joint-based

data contribute most to the detection of pain and protective
behaviour[14]. Our contributions can be summarized as:

1. We propose a deep learning architecture using a com-
bination of autoencoders, LSTMs and attention mechanisms
to automatically detect and classify pain and protective
behaviour.

2.We demonstrate experimentally that our model out-
performs the state-of-the-art models while increasing the
training speed by reducing the dimensions of the raw data
using the autoencoder layers.

3. We experiment with extracting temporal information
from the whole body and from each body part separately
to show the role of the autoencoder structure in feature
extraction and the potential associations between different
body parts.

II. RELATED WORKS

One of the first experiments on EmoPain dataset was done
by Aung et al. [10]. They used a random forest(RF) algorithm
to study the MoCap and sEMG data to detect the protective
behaviours in some specific exercises. Then, Wang et al. [13]
conducted a study, using a stacked LSTM architecture to
detect protective behavior using a sliding window approach
extracted from different movements.

Numerous experiments show that using attention mech-
anism can greatly improve the performance of automatic
human activity recognition (HAR). Zeng et al. [15] applied
temporal attention to the hidden layer of LSTM, filtered out
the irrelevant parts of the data and applied sensor attention
to the input layer of LSTM to obtain the information of
important sensors. Their works solved two problems in
previous research: 1) Some useful information only appears
in a short time interval, 2) Some unimportant sensors will
mix a lot of noise into the data. Then they also propose con-
tinuous attention constraints to further improve performance.
Murahari et al. [16] used a similar attention mechanism. They
added the attention layer to the end of a deepconvlsm [17],
without changing any other hyper-parameters. Yao et al. [18]
added sensor attention to the lower layers of DeepSense
framework [19] and added temporal attention to the higher
layers of [19], which got better performance than the results
achieved by the original DeepSense framework [19]. A more
recent study was done by Wang et al. [14], which achieved
the state-of-the-art results so far. They proposed a network
named BANET. This architecture combined LSTM with
temporal attention (convolution layer and softmax classifier)



Fig. 1. An overview of the Autoencoder-LSTM-Attention-Net. Each sample contains joint angle, energy and sEMG features.

and bodily attention (full connected layer, tanh activation
function and softmax classifier) to learn the features ex-
tracted from MoCap and sEMG data. As shown in previous
work, using attention mechanism can greatly improve the
recognition performance of HAR. Our proposed approach
extends the attention mechanism methods by integrating it
with Autoencoder and LSTM architecture in order to extract
better feature representation instead of applying attention
mechanisms directly on raw data.

III. METHODLOGY

In this section, we present our proposed deep learning
architecture that we use for pain detection and protective
behaviour detection. An overview of the proposed architec-
ture is shown in Fig. 1, where we show how we combine
Autoencoder LSTMs with an attention network.

A. Autoencoder LSTM

The first step in our network is an Autoencoder LSTM
network. Autoencoders [20] have been used in many previous
works to encode raw data by reducing the dimensionality of
the data. We combine autoencoder structure with LSTM[21]
neural network, which gives the autoencoder structure the
ability to process and encode temporal information. This is
useful to produce a concise temporal representation of the
raw features. Our autoencoder network architecture has five
layers: Masking, LSTM, RepeatVector, LSTM and TimeDis-
tributed layer. The input is body movement features: angles,
energy and sEMG. The features extracted by the first LSTM
layer are reconstructed to produce an output as close as
possible to the original input data. Then the features extracted
from the autoencoder LSTM are passed to the attention
layers.

B. Attention Mechanism

As mentioned in section II, attention mechanisms have
been used successfully in body movement related tasks.
After the temporal body features are encoded using the
Autoencoder LSTM, it is passed to the attention layers. Our
attention layers are based on the work described in [14].
Using attention layers allows the network to pay more
attention to the most salient features (body attention) and
frames (temporal attention). Temporal attention layer is a
convolution layer with softmax activation. Body attention
layers contain one full connected layer with tanh activation
and one fully connected layer with softmax activation. After
the attention layers, the last part in our architecture is one
fully connected layer with softmax activation to produce the
final output.

IV. DATA PREPARATION

A. Data Segmentation

To evaluate our model, we use EmoPain dataset [10] as
part of Emopain2020 challenge[22]. The dataset is collected
from 14 patients with chronic pain and 9 healthy participants.
The training set contains 10 chronic pain participants and 6
healthy participants. The validation set contains 4 chronic
pain participants and 3 healthy participants. The features
extracted from each sample video are the angles of the 13
whole-body joints, the energy of each angle(The energy is
based on the square of each angular velocity. The positions of
the 13 joints in the whole body are shown in the Fig. 2 [22])
and the sEMG data obtained from the 4 skin electromyogra-
phy sensors (shown in Fig. 3 [22]). We tested our proposed
model on task two and task three sub-challenges [22]. Task
two[23] is about pain detection. The training set contains
398 samples containing 226 samples labeled with ’healthy’,
92 samples labeled with ’low-level pain’ and 80 samples
labeled with ’high-level pain’. The testing set contains 416



Fig. 2. Joint angle illustration as explained in [22]

samples containing 313 samples labeled with ’healthy’, 89
samples labeled with ’low-level pain’ and 14 samples labeled
with ’high-level pain’. Task three [24] is about protective
behaviour detection. As described in the challenge, input
samples are defined using a sliding window approach [13]
with an overlap of 75%. Since the labels for data are provided
for every frame, in order to generate one label for every
sliding window, we use a majority-voting approach to assign
the most frequent label to the whole window segment. This
produces 6440 samples in the training set containing 5334
non-protective behaviour and 1106 protective behaviour, and
2833 samples in the validation set containing 2651 non-
protective behaviour and 182 protective behaviour.

Fig. 3. sEMG data from 4 sensors on the back as described in [22]

B. Data Augmentation

As shown in the previous section, the data is not very well
balanced. For example, the protective behaviour task has 182
samples compared to 2651 non-protective behaviour in the
validation set. To reduce the impact of small dataset and
unbalanced labels, we apply two data augmentation methods
on the training set of both tasks, based on the methods
described in [13][14]. The first method creates new instances
by adding normalized Gaussian noise to the original data

with 3 different standard deviations: 0.05, 0.1 and 0.15 [14].
The second approach creates new instances by randomly
setting the data of some frames and some body parts to 0
with selection probability of 0.05, 0.1 and 0.15 [13]. These
methods were chosen because they simulate missing data and
extend the size of the dataset without the risk of overfitting.
After augmenting the data in the training set, we finally
got 1882 samples containing 678 healthy, 644 low-level
pain and 560 high-level pain in the pain detection task and
18410 samples, containing 10668 non-protective behaviour
and 7742 protective behaviour in the protective behaviour
detection task.

V. EXPERIMENTED EVALUATION

A. Implementation Details

We trained our ALANet using Keras with a TensorFlow
back-end. For the Autoencoder-LSTM part, we used Adam
optimizer [25] to update the weights. The learning rate
and batch size were set to the default sizes of Keras.
We used MSE function to be the loss function. For the
attention layers part, we used the same implementation of
the attention mechanism used in [14]. The 1 * 1 convolution
layer and softmax layers are used as temporal attention,
and the fully connected layer, tanh activation function, and
softmax activation function are used as body attention. The
temporal feature output from the first LSTM layer of the
Autoencoder-LSTM part is used as the input to the attention
part. As for the structure of the attention mechanism, we only
change the number of hidden units in the fully connected
layer to correspond to the input data, without changing other
parameter settings. We also used the Adam optimizer [25]
with learning rate=0.003 and batch size=40. Two methods
were used to evaluate our proposed approach. One method
is hold-out validation, where we use the training set to train
the model and the validation set to evaluate it. The second
method is leave-one-subject-out cross-validation (LOSOCV).



TABLE I
RESULTS FOR PROTECTIVE BEHAVIOUR DETECTION TASK USING

HOLD-OUT VALIDATION

Model ACC F1-Score Training Time

0 –
Stacked-LSTM [26] 0.4636 1 – –

Average 0.48

0 0.86
BANet [14] 0.77 1 0.28 > 10 hours

Average 0.57

0 0.91
ALANet 0.85 1 0.26 < 30 minutes

Average 0.59

B. Protective Behaviour Detection Task

In protective behaviour detection task, we use hold-out
validation method and compare with the challenge baseline
model [26] and BANet [14]. The results are shown in
Table I. Our model(ALANet) achieves an accuracy of 0.851,
and mean F1-score of 0.587, which are significantly better
than the baseline results [26](accuracy of 0.4636, mean
F1-score of 0.4811). It also achieves comparable results
to BANet [14](accuracy of 0.77, mean F1-score of 0.57).
In terms of speed of training the model, our model only
takes less than 30 minutes, while BANet takes more than
10 hours. Compared to BANet, although the increase in
performance of our model is not significantly high, the
training speed improves a lot. This is due to the use of the
autoencoder LSTM step, which decreases the size of the raw
data significantly before applying the attention layers.

Moreover, we study the effect of encoding the temporal
features of every body part separately compared to the
whole feature set combined. We do that by changing the
architecture presented in section III and use the autoencoder
on every feature - body part - separately. As shown in table
II, encoding every body part separately performed worse
than encoding all body parts together. This may be because
there is usually an association between various body parts
especially during specific actions or movements. Therefore,
encoding the temporal information for all body parts together
takes care of this association between different body parts.

C. Pain Detection Task

Pain detection task results are shown in Table III. Here we
use two evaluation methods: hold-out validation and leave-
one-subject-out cross-validation (LOSOCV). As shown in
table III, when using hold-out validation, our model achieves
comparable results to KNN and SVM mentioned in [26]. But
in accuracy, our model achieves the best results(accuracy of
0.66), which outperforms the other two methods. When using
LOSOCV, KNN achieves an accuracy of 0.37 and mean F1-
score of 0.34, while SVM achieves an accuracy of 0.44 and
mean F1-score of 0.41. Our model achieves the best results
(accuracy of 0.56 and mean F1-score of 0.41)

TABLE II
BANET VS. ALANET RESULTS WHEN EXTRACTING TEMPORAL

FEATURES FROM EVERY BODY PART SEPARATELY USING HOLD-OUT

VALIDATION

Model Acc F1-Score
0 0.69

BANet [14] 0.54 1 0.09
Average 0.39

0 0.87
ALANet 0.78 1 0.18

Average 0.53

TABLE III
RESULTS FOR PAIN DETECTION TASK USING LOSOCV AND HOLD-OUT

VALIDATION

Model Evaluate method Acc F1-Score
LOSOCV 0.37 Average 0.34

0 0.39
KNN [26] Hold-out 0.35 1 0.09

2 0.44
Average 0.31

LOSOCV 0.44 Average 0.41
SVM(Sigmoid/ 0 0

Gaussian Hold-out 0.07 1 0.14
kernels) [26] 2 0

Average 0.34
LOSOCV 0.526 Average 0.426

0 0.403
ALANet Hold-out 0.4561 1 0

2 0
Average 0.134

VI. CONCLUSIONS

This paper proposes a novel architecture ALANet that
uses autoencoder LSTMs with attention mechanisms to au-
tomatically detect pain levels and protective behaviour in
the movement of patients suffering from chronic pain. In
protective behaviour detection task, when comparing our
proposed approach with the baseline model [26] and state-
of-the-art models, our approach manages to achieve better
results with the least training time. The results show that
the Autoencoder-LSTM structure is more helpful than single
LSTM layers in extracting tamporal information. As for
training time, our model achieves the fastest training time
(less than 30 minutes). The Autoencoder-LSTM structure
only focuses on the most discriminative temporal informa-
tion. In pain detection task, the accuracy of our model
outperformed the baseline model [26] despite the fact that
the mean F1-score did not improve much. We think that
this is because of the limited number of samples for specific
categories and the unbalanced dataset. For future work, we
would like to evaluate our model on bigger datasets and also
on different tasks other than pain detection, such as behaviour
modelling for psychological distress.
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