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Abstract 

 

Objective:  

Esophageal adenocarcinoma (EA) incidence has risen sharply in Western countries over recent decades. 

Local and systemic inflammation is considered an important contributor to EA pathogenesis. Established 

risk factors for EA and its precursor, Barrett’s esophagus (BE), include symptomatic reflux, obesity, and 

smoking. The role of inherited genetic susceptibility remains an area of active investigation. Here, we 

explore whether germline variation related to inflammatory processes influences susceptibility to BE/EA. 

Design: 

We used data from a genome-wide association study (GWAS) of 2,515 EA cases, 3,295 BE cases, and 

3,207 controls. Our analysis included 7,863 single nucleotide polymorphisms (SNPs) in 449 genes 

assigned to five pathways: cyclooxygenase (COX), cytokine signaling, oxidative stress, human leukocyte 

antigen, and NFB. A principal components-based analytic framework was employed to evaluate 

pathway-level and gene-level associations with disease risk.  

Results: 

We identified a significant signal for the COX pathway in relation to BE risk (P=0.0059, FDR q=0.03), and 

in gene-level analyses found an association with MGST1 (microsomal glutathione-S-transferase 1; 

P=0.0005, q=0.005). Assessment of 36 MGST1 SNPs identified 14 variants associated with elevated BE 

risk (q<0.05). Four of these were subsequently confirmed (P<5.5 × 10
-5

) in a meta-analysis encompassing 

an independent set of 1,851 BE cases and 3,496 controls, and are known strong eQTLs for MGST1. 

Three such variants were associated with similar elevations in EA risk.  

Conclusion: 

This study provides the most comprehensive evaluation of inflammation-related germline variation in 

relation to risk of BE/EA, and suggests that variants in MGST1 influence disease susceptibility. 
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1. What is already known about this subject: 3-4 bullet points  

 Local and systemic inflammation are considered important contributors to the pathogenesis of 

Barrett’s esophagus (BE) and esophageal adenocarcinoma (EA) 

 Inherited genetic variation in inflammation-related pathways and genes may modulate the 

functional intensity of inflammatory signaling networks 

 Small-scale candidate gene-based studies suggest possible associations between inflammation-

related genetic variation and altered risk of BE/EA 

 

2. What are the new findings: 3-4 bullet points  

 Germline variation in the cyclooxygenase (COX) pathway is associated with altered risk of BE, 

based on analysis of the largest-available consortium GWAS dataset for this condition 

 The pathway-level association signal for COX and risk of BE appears to be driven in part by 

variation at the microsomal glutathione S-transferase 1 (MGST1) gene locus 

 Several intronic SNPs with strong regulatory potential (eQTLs) at the MGST1 locus exhibit 

significant associations with risk of BE, with confirmation in a large independent sample set 

 

3. How might it impact on clinical practice in the foreseeable future? 

Our data identify the MGST1 gene as a novel susceptibility locus for Barrett’s esophagus. These 

findings further enhance our understanding of the biological pathways that likely underlie 

differential susceptibility to this cancer precursor lesion in human populations. Such insights will 

contribute to the ongoing effort to develop comprehensive population-based risk assessment 

tools for BE that integrate behavioral, clinical, and genetic data to identify and target individuals at 

highest risk of disease for preventive interventions. 
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Introduction 

 The incidence of esophageal adenocarcinoma (EA) has risen rapidly over recent decades in 

Western countries [1, 2]. EA typically arises within a metaplastic precursor epithelium known as Barrett’s 

esophagus (BE) [3]. Established risk factors for EA and BE include symptomatic gastroesophageal reflux 

disease (GERD), abdominal adiposity, tobacco smoking, European ancestry, and male sex [3, 4, 5]. A 

prevailing conceptual model has linked chronic inflammation and genomic instability to EA pathogenesis 

[3]. Several exposures associated with elevated disease risk, such as GERD, obesity, and smoking, 

increase levels of local and systemic inflammation, while use of non-steroidal anti-inflammatory drugs 

(NSAIDs) and statins has been associated with reduced risk [6, 7, 8]. It remains poorly understood, 

however, whether and to what extent inherited genetic variation in specific genes and pathways 

implicated in inflammatory signaling may modulate disease susceptibility and interact with these 

established risk factors. 

 A biologic link between chronic inflammation and cancer risk has long been appreciated [9, 10]. 

Inflammation may act at multiple stages of disease development to disrupt tissue homeostasis, induce 

aberrant proliferative responses, modulate the tumor microenvironment, and compromise immune 

surveillance [11, 12]. Inflammatory physiologic changes such as oxidative stress are known to exert 

downstream genotoxic effects [13], and when sustained over extended periods, can promote the 

emergence of cancer-initiating mutations. In the esophagus, long-term exposure to gastric acid or bile 

salts results in the release of pro-inflammatory cytokines (e.g., interleukin-8), activation of nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-kB) and cyclooxygenase-2 (COX2), and direct tissue 

damage to the squamous epithelium [14, 15, 16]. Cigarette smoking can also expose the esophagus to 

deleterious toxins while simultaneously inducing systemic inflammatory responses based on activation of 

cytokine signaling, NFB activation, and COX pathway stimulation [17, 18, 19]. Abdominal adiposity and 

obesity have been associated with elevated circulating levels of pro-inflammatory mediators such as 

tumor necrosis factor-α (TNFα), C-reactive protein (CRP), interleukin-6 (IL-6), and leptin [20]. 

 Recent large-scale GWAS have provided comprehensive assessments of genetic susceptibility to 

BE and EA [21, 22, 23, 24, 25]. Novel associations have been identified with variants in or near several 

transcription factors implicated in embryonic esophageal development, a transcriptional co-activator, and 
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the human leukocyte antigen (HLA) region. It remains likely, however, that additional loci that did not 

satisfy the commonly used, stringent statistical threshold (p<5x10
-8

) may be involved in modifying disease 

risk. In this regard, pathway-based analytic methods can offer significant advantages over conventional 

genome-wide analyses, by simultaneously reducing the number of statistical comparisons and increasing 

power via aggregating large numbers of low-magnitude signals [26]; such methods allow for the 

systematic analysis of coherent biological processes most likely implicated in disease etiology. 

 Given the central role of inflammation in BE and EA pathogenesis, we examined genetic variation 

in five inflammation-related pathways—COX, cytokine signaling, oxidative stress, HLA, and NFB—using 

a principal components analysis (PCA)-based framework. Using genotyping data from the International 

Barrett’s Esophagus and Adenocarcinoma Consortium (BEACON) GWAS of 2,515 EA cases, 3,295 BE 

cases, and 3,207 controls, we selected 7,863 SNPs in 449 genes and assessed associations with risks of 

BE and EA in a pre-specified tiered fashion, first at the pathway level, next at the gene level, and 

ultimately at the SNP level. 

 

Methods 

Study population and SNP genotyping 

The BEACON GWAS included individuals diagnosed with EA or BE, and control participants 

pooled from 14 individual studies conducted in Western Europe, Australia, and North America, as 

described previously [21]. The current analysis employed a pooled dataset [27] that included participants 

of European ancestry from the BEACON GWAS, additional BE and EA patients from the UK Barrett’s 

Esophagus Gene Study and the UK Stomach and Oesophageal Cancer Study (SOCS), respectively [21], 

and additional control participants from a hospital-based case-control study of melanoma conducted at 

the MD Anderson Cancer Center (Houston, TX) [28]. Genotyping of buffy coat or whole blood DNA from 

all participants was conducted using the Illumina Omni1M Quad platform, in accordance with standard 

quality control procedures [29]. All participants gave written informed consent, and this project was 

approved by the ethics review board of the Fred Hutchinson Cancer Research Center. We selected all 

unrelated participants with <2% missing genotyping calls, as described previously [21]. The final study 
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sample included 2,515 EA cases, 3,295 BE cases, and 3,207 controls. Three control participants were 

excluded from analyses involving BE cases, because of familial relation to cases. 

 

Selection of genes in inflammation-related pathways 

 Five pathways implicated in chronic inflammation were selected for analysis: 1) cyclooxygenase 

(COX) (n=40 genes), 2) pro- and anti-inflammatory cytokines (n=198 genes), 3) oxidative stress (n=117 

genes), 4) HLA (32 genes), and 5) NF-kB (n=125 genes). Selected genes (Table S1) were identified 

based on an extensive survey of the prior literature on inflammation in cancer and EA pathogenesis [11, 

30, 31, 32, 33, 34], and as described in public databases (eg. KEGG, Biocarta).  

 

SNP selection 

 SNPs selected for this study are located in or near (+/- 2.0 kilobases) the genes chosen for 

analysis. We included only those SNPs that passed Illumina quality measures and standard quality 

control procedures [29], as previously described [21], and had a minor allele frequency (MAF) of ≥1%.  

Imputation of missing values for genotyped SNPs was conducted using SHAPEIT [35]. After imposing the 

above filters, we identified all available Omni1M SNPs located within the selected genes. Segments of 2.0 

kb of flanking sequence proximal to the transcriptional start sites and distal to the 3’UTRs were also 

included, based on gene boundaries defined in hg19/GRChB37. No Omni1M SNPs were available for 16 

genes initially selected (cytokines: n=14, oxidative stress: n=2) (Table S1). Minor and major alleles were 

reported throughout using the ‘plus’ strand designation.  

 

Statistical analysis 

We examined each of the five inflammation-related pathways using an application of principal 

components analysis (PCA) [36] (Figure S1). We first constructed a genotype matrix comprising all SNPs 

assigned to the indicated pathway, inclusive of case patients of the selected type (BE or EA) and all 

control participants. Individual SNP variables, coded as 0, 1, or 2 minor alleles, were standardized across 

participants to have a mean of zero and standard deviation (SD) of one. The first N principal components 

(PCs) that captured ≥50% of the genotypic variance of the pathway were selected. Association between a 
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given pathway and risk of BE or EA was assessed using the likelihood ratio test (LRT). Two logistic 

regression models were compared: i) a full model containing N pathway-level PCs (PC1,p…PCN,p), age, 

sex, and the first four PCs derived from ancestry-informative markers (AIM) to account for population 

stratification (PC1,AIM-PC4,AIM) [27]; and ii) a reduced model containing only age, sex and PC1,AIM-PC4,AIM. 

HLA loci were excluded from the set of ancestry-informative markers, as described previously [21]. We 

selected pathways for which the resulting LRT P value was <0.05, after correction for multiple 

comparisons (n=5) via the false discovery rate method (FDR) (Figure S1, step 1). 

To prioritize genes within a selected pathway for further analysis at the gene level, we examined 

SNP loading factors within the first pathway-level principal component (PC1,p). SNPs within PC1,p were 

rank-ordered by the absolute values of their loading coefficients. The first ten genes represented by these 

rank-ordered SNPs were advanced to gene-level analysis (Figure S1, step 2). PCA was conducted for 

each of these genes using a genotype matrix comprised of all SNPs assigned to the indicated gene; the 

first N PCs that captured ≥50% of the genotypic variance were selected. Association between a given 

gene and risk of BE or EA was assessed as above using the LRT, comparing i) a full model inclusive of 

the selected gene-level PCs (PC1,g-PCN,g), age, sex, and PC1,AIM-PC4,AIM; and ii) a reduced model 

containing age, sex, and PC1,AIM-PC4,AIM. Multiple comparisons (n=10) were accounted for via the FDR 

method (Figure S1, step 3). 

Genes satisfying FDR q<0.05 were selected for additional analysis at the SNP level. 

Unconditional logistic regression was used to compute odds ratios (ORs) for risk of BE or EA associated 

with a given SNP variant, under an additive model (per-allele) with adjustment for age, sex, and PC1,AIM-

PC4,AIM, and correcting for multiple comparisons via the FDR method (Figure S1, step 4). Observed 

associations were visualized graphically using LocusZoom [37]. 

Gene-environment interactions were investigated using a subset of the overall study population 

for which exposure data were available; BE/EA case patients from SOCS and the UK BE Gene Study, 

and control participants from MD Anderson were excluded. Reflux symptoms, BMI, smoking history, and 

NSAID use were defined as follows: reflux/heartburn: ≥weekly symptoms (yes or no); BMI: <25, 25-29, 

30-34, or 35+; smoking: ever or never, or pack-years: 0, 1-14, 15-29, 30-44, or 45+; NSAID use: ever or 

never. Pack-year smoking history and BMI were modeled as continuous covariates in tests for interaction. 
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All PCA-based statistical analyses, as well as SNP-based tests and interaction studies, were conducted 

using STATA/SE version 14 (College Station, TX). 

 

Validation studies 

An independent dataset comprised of 1,851 BE patients and 3,496 control participants from the 

UK, described previously [22], was used for validation studies. Summary statistics for the associations of 

13 genotyped SNPs at the MGST1 locus and risk of BE were extracted and used in a subsequent meta-

analysis based on the inverse-variance weighting method [38]. Validation analyses were conducted in R 

v3.2.1. 

 

Results 

Characteristics of study participants 

 The distributions of demographic and behavioral characteristics among control participants, BE 

case patients, and EA case patients are shown in Table 1. EA cases were somewhat older and more 

often male compared to controls and BE cases. The percentage reporting ever having smoked cigarettes 

was higher among BE and EA cases than among controls, and heavy smoking (45+ pack years) was 

more prevalent among EA cases. Obesity (BMI 30+) and weekly reflux/heartburn were more prevalent 

among BE and EA cases than among controls. NSAID use appeared similarly common across the three 

groups.  

 

Pathway-level associations with risk of BE or EA 

 To obtain a top-level, global assessment of the association between germline variation within five 

selected inflammation-related pathways (COX, cytokine signaling, oxidative stress, HLA, and NFB) and 

risk of BE or EA, we employed a PCA-based approach (Figure S1). Based on logistic regression 

analyses that incorporated a subset of the derived principal components as predictor variables and 

assessed associations with disease risk, we identified a single significant (P<0.05) pathway-level signal 

for risk of BE: the COX pathway (P=0.006) (Table 2). This association remained significant after 
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accounting for multiple comparisons (FDR q=0.03). None of the five pathways examined were found to be 

associated (P<0.05) with risk of EA. 

 

Gene-level associations with risk of BE 

 To determine whether the observed pathway-level signal for COX could be further localized to 

particular individual genes, we undertook gene-level analyses using the same PCA framework (Figure 

S1). Of the 40 genes assigned to the COX pathway, we prioritized 10 for further analysis, as pre-specified 

in our analysis plan. The top 10 genes were selected based on their contribution to the overall pathway-

level genotypic variance, as reflected in rank-ordered SNP loading coefficients in the first principal 

component. Among these 10 genes assessed for associations with risk of BE (Table 3), only a single 

gene exhibited a significant signal: microsomal glutathione S-transferase 1 (MGST1) (P=0.0005, FDR 

q=0.005). A borderline-significant (P=0.07) association was observed for gene-level variation in MGST1 

and risk of EA (Table S2). 

 

SNP-level associations with risk of BE 

 Individual SNPs located within or in proximity to (± 2.0 kb) the MGST1 locus were assessed for 

associations with risk of BE. Among 36 such variants examined, 14 exhibited a significant signal (P<0.05, 

FDR q<0.05) (Table 4). The minor alleles at all 14 SNPs were associated with elevated risk of BE, with 

ORs ranging in magnitude from 1.10-1.38. The most significant association was for rs4149203 C>T 

(OR=1.16, P=9.0 x 10
-5

, q=0.001). A LocusZoom plot of the 36 assessed SNPs revealed a cluster of six 

associated 3’ variants in high linkage disequilibrium (LD, r
2
>0.8) with rs4149203 (Figure 1). A second 

cluster of six SNPs satisfying FDR q<0.05 was situated at the 5’ end of the MGST1 locus (Figure S2); 

modest to moderate LD was observed between rs2239676, the top-ranked SNP in this second region, 

and the other five variants in close proximity. Among the 14 significant SNP-level signals identified for BE, 

eight were also associated with increased risk of EA (P<0.05, q<0.05), with observed ORs ranging from 

1.10 to 1.17 (Table S3). 

 

Assessment of top MGST1 SNPs and risk of BE in an independent study sample 
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 We next evaluated whether any of the 14 MGST1 variants associated with risk of BE showed 

similar associations in a large, independent sample set from the UK comprised of 1,851 BE patients and 

3,496 control participants. 13 of the 14 SNPs were available for analysis, and four 3’ variants exhibited 

borderline-significant (P<0.10) associations with BE: rs3852575, rs4149204, rs7312090, rs4149203 

(Table 5). ORs for these SNPs were similar to those obtained in the primary analysis, though slightly 

reduced in magnitude (1.08 versus 1.16). In a subsequent meta-analysis, the P values for all four of these 

variants were highly significant (P<5.5 × 10
-5

), with an additional six SNPs satisfying P<0.05. 

 

Assessment of gene-environment interactions 

 We next conducted stratified analyses and evaluated interactions between several risk factors for 

BE/EA (smoking, obesity, reflux, and NSAID use) and the top MGST1 variants (q<0.01) associated with 

risk of BE. No statistically significant interactions were observed (data not shown). 

 

Discussion 

 Chronic inflammation may occur as a result of multiple exposures established as risk factors for 

BE and EA (gastroesophageal reflux, obesity, smoking) and is thought to represent a common pathway 

underlying the emergence and progression of these conditions [3, 39]. This study represents the first 

systematic examination of the relationship between germline genetic variation in inflammation-related 

pathways—COX, cytokine signaling, oxidative stress, HLA, and NFB—and risks of BE and EA. Drawing 

on genetic data from a large consortium-based GWAS [21], we found a significant association between 

variation in the COX pathway and risk of BE, and identified a gene-level signal for MGST1. 14 individual 

MGST1 variants were associated with elevated disease risk, including several intronic variants 

subsequently confirmed (P<5.5 × 10
-5

) in a meta-analysis encompassing a large independent sample set 

of additional BE cases and controls.  

 MGST1 is one of three microsomal glutathione S-transferase (GST) enzymes in humans, and 

belongs to a larger GST gene family encoding a number of proteins that neutralize oxidative stress 

through conjugation of endogenous and xenobiotic lipophilic electrophiles with glutathione [40, 41, 42]. 

MGST1 shares ~40% sequence homology at the amino acid level with prostaglandin E synthase 
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(PTGES, formerly MGST1L1), a key enzyme that acts downstream of cyclooxygenases to catalyze the 

production of PGE2 from PGH2 [43]. MGST1-3 and PTGES belong to the “MAPEG” super-family of 

membrane-associated proteins in eicosanoid and glutathione metabolism. Microsomal GST1 is localized 

to the endoplasmic reticulum and outer mitochondrial membrane, and plays an important role in 

suppressing lipid peroxidation and protecting mitochondrial integrity [41]. Multiple alternatively spliced 

transcripts arise from the MGST1 gene locus, and the MGST1 promoter region has been shown to be 

transcriptionally responsive to oxidative stress [40]. Some evidence exists for an association between 

genetic variation in the MGST1 gene and altered risk of colorectal cancer in Han Chinese [44].  

 The 14 MGST1 SNPs found to be associated with risk of BE in our primary analysis were 

geographically clustered into two main groups, one at the 3’ end of the gene, and the other at the 5’ end. 

The most significant association was for rs4149203 C>T, a 3’ intronic variant in strong LD with six other 

associated 3’ SNPs (r
2
>0.8). Four of these seven SNPs, including rs4149203, were confirmed in the 

meta-analysis phase of our validation studies. These variants modify predicted sequence motifs for 

several transcription factors (eg. POU5F1, SOX, BRCA1, FOXP1) [45] and have been described as 

strong expression quantitative trait loci (eQTLs) for MGST1 in whole blood (Table S4) [46]. Of interest, 

FOXP1 was previously identified as a susceptibility locus for BE/EA [21, 25]. At the 5’ end of MGST1, 

rs2239676 C>G was the top signal identified among a cluster of six associated variants. Three of these 

SNPs lie in close proximity to the MGST1 transcriptional start site, within a region characterized as active 

chromatin in esophageal tissue (Figure S3). One of these SNPs (rs2975138), as well an upstream 

variant (rs4149186), represents a strong eQTL for MGST1 in esophageal mucosa [47]. Given that these 

5’ variants were not confirmed in the Oxford (UK) dataset, however, their association with BE risk remains 

questionable. 

 Our findings suggest that several of the identified variants may play a role in influencing MGST1 

RNA expression levels. Additional studies, however, are warranted to investigate experimentally potential 

associations between selected variants and altered tissue-specific MGST1 expression, and to explore a 

possible causal basis for the observed findings. Data from the Genotype-Tissue Expression Project 

(GTEx) further indicate that a number of MGST1 variants not included in our present analysis are also 

strong cis-eQTLs in esophageal mucosa [47]; imputed genotypes were available for 25 of these 29 
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eQTLs, but did not show significant (P<0.05) associations with disease risk (data not shown). Whether 

the other four MGST1 eQTLs exhibit associations with BE remains to be evaluated. Since BE and EA 

often arise within an epithelium chronically exposed to refluxate and to cigarette-associated toxins (ie. 

associated with inflammation), it would be of interest to determine whether MGST1 plays a protective 

biological role in counteracting such insults and maintaining tissue homeostasis. In this regard, we note 

that past studies have provided support for cytosolic glutathione S-transferases (GSTs) and glutathione 

peroxidases carrying out such functions in the esophagus, and have implicated epigenetic silencing of 

these genes as a feature of BE/EA pathogenesis [48]. 

 Given that BE is the only known precursor of EA, one expectation is that risk factors linked to 

altered risk of BE would be associated with similar alterations in risk of EA. In this study, variation in the 

COX pathway as a whole met the threshold for significance in relation to risk of BE, but not EA. A number 

of the individual MGST1 SNPs associated with risk of BE, however, did exhibit similar associations with 

risk of EA (Table S3). With respect to top SNP-level signals, the associated ORs for EA were in the same 

direction as, and of comparable magnitude to, those observed for BE. This strong level of concordance 

suggests that the identified variants, if causal, may influence disease risk primarily at the level of BE, 

rather than progression from BE to EA. 

  Previous candidate gene-based studies have reported associations between germline variation 

in PTGS2 (COX-2) and altered risk of EA [49, 50], while independent evidence has supported an inverse 

association between use of NSAIDs (inhibitors of COX-1 and COX-2 activity) and risk of EA [6, 7]. Our 

gene-level and SNP-level analyses did not include all genes assigned to the COX pathway (e.g. PTGS2), 

as only a limited subset were advanced for further study based on pre-specified selection criteria (the top 

10 genes in PC1, see Table 3). It remains possible that associations of disease risk with variation in other 

COX pathway genes may be evident in our dataset, and contribute in part to the observed pathway-level 

signal. 

 One of the strengths of our study was the use of a PCA framework to assess pathway-level and 

gene-level associations between germline genetic variation and risk of BE or EA. PCA is an effective 

strategy to reduce data dimensionality [36]. In this report, we adapted PCA to genetic pathway and gene 

analysis, and implemented a hierarchical strategy to identify genetic variants associated with traits. 



15 
 

Application of PCA to GWAS data offered key advantages over conventional marginal analyses that are 

based exclusively on evaluation of individual SNPs. First, by aggregating signals across multiple genes 

(of a given pathway) or across multiple SNPs (of a given gene), the PCA method increased our ability to 

detect associations characterized by multiple, independent, distributed low-magnitude signals. Second, 

by reducing the dimensionality of the genotype matrix, PCA appreciably reduced the number of multiple 

comparisons and effectively increased our statistical power. 

 Another important strength was the use of pooled data from the BEACON GWAS, which provided 

the largest sample size to date in the evaluation of inflammation-related germline variation and risks of BE 

and EA. As a consequence of analyzing both BE and EA, we had the opportunity to compare genetic 

variation associated with risk of a neoplastic precursor lesion and the cancer that arises from it. While our 

main findings were limited to BE, individual variants of the MGST1 gene were also significant for risk of 

EA. Our pooled assessment of 7,863 SNPs in 449 genes assigned to five pathways significantly expands 

past candidate gene-based efforts to examine genetic variation in inflammation-related loci in relation to 

risk of BE and EA. Finally, our use of an external independent dataset from the U.K. helped further 

strengthen the identified signal at MGST1. 

 This study also had certain limitations. First, while our tiered analysis scheme enabled us to 

restrict the number of comparisons and boost statistical power, it also narrowed the scope of our analysis 

and potentially resulted in missed association signals. Variation in four of the five included pathways was 

not examined at the gene or SNP level, while only 25% of the genes in the COX pathway were advanced 

beyond pathway-level assessment. Second, given the hierarchical nature of our statistical analysis, 

whereby we first assessed significance at the pathway level, and then proceeded to the gene level only 

for ‘significant’ pathways, the initial P values obtained for individual genes, and subsequently for individual 

SNPs, should be interpreted as the P values conditional on that pathway (or gene) already being 

selected, i.e., P(A|B), where B represents the event that a pathway (or gene) is selected, and A 

represents the event that a gene (or SNP) is significant. This conditional probability framework was well 

suited to our use of PCA as a discovery-phase approach for identifying novel associations for subsequent 

confirmation in an independent sample set. Third, missing data for smoking, obesity, reflux, and NSAID 

use in a sizable fraction of participants reduced our statistical power to evaluate gene-environment 
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interactions, underscoring the need for further studies using expanded sample sets. Fourth, while our 

study provided broad coverage of several major biological pathways of probable relevance to BE/EA, it is 

almost certain that a number of important genes or genomic loci were not included. Cytokine signaling, 

NFB activity, and oxidative stress, for example, represent complex processes likely influenced by many 

hundreds or more gene products and a large number of intergenic loci harboring both enhancer/insulator 

transcriptional elements and non-coding RNAs. The present analysis was restricted to examining 

common germline variants located within or in close (2.0-kb) proximity to defined protein-coding genes. 

 In conclusion, our study represents the most comprehensive evaluation to date of inflammation-

related inherited genetic variation in relation to risk of BE and EA. Using a PCA framework for pathway-

level and gene-level analyses, we describe evidence for novel associations between variation at the 

MGST1 locus and increased risk of BE. It appears plausible that certain associated variants may act to 

influence expression levels of MGST1, a gene with known roles in the cellular response to oxidative 

stress. Pending further validation in additional study populations, future studies are warranted to fine-map 

the identified association signals, assess experimentally the functional effects of these variants, and 

explore the biological role of MGST1 in BE/EA pathogenesis. 
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Table 1. Study participant characteristics
†
. 

 

     
 

Controls
#
 

 
BE 

 
EA 

     
 

(n=3207) 
 

(n=3295) 
 

(n=2515) 

     
 

N % 
 

N % 
 

N % 

Age (years) 
             <50 
 

726 22.6 
 

449 13.7 
 

189 7.6 

    50-59 
 

885 27.6 
 

780 23.7 
 

547 21.9 

    60-69 
 

963 30.0 
 

1011 30.7 
 

884 35.4 

    70+ 
 

633 19.7 
 

1048 31.9 
 

875 35.1 

     
         Sex 
             Female 
 

880 27.4 
 

806 24.5 
 

320 12.7 

    Male 
 

2327 72.6 
 

2489 75.5 
 

2195 87.3 

     
         BMI 
             <25 
 

786 36.3 
 

425 20.7 
 

245 24.6 

    25-29.99 
 

944 43.6 
 

882 42.9 
 

455 45.7 

    30-34.99 
 

307 14.2 
 

521 25.3 
 

201 20.2 

    35+ 
 

130 6.0 
 

230 11.2 
 

95 9.5 

     
         Smoking status 
             No 
 

889 40.9 
 

798 33.7 
 

348 24.7 

    Yes 
 

1284 59.1 
 

1570 66.3 
 

1062 75.3 

     
         Smoking (p-y)

a
 

             None 
 

889 41.3 
 

798 44.5 
 

348 32.8 

    <15 
 

358 16.6 
 

320 17.9 
 

156 14.7 

    15-29 
 

326 15.1 
 

232 12.9 
 

160 15.1 

    30-44 
 

273 12.7 
 

198 11.0 
 

173 16.3 

    45+ 
 

309 14.3 
 

244 13.6 
 

225 21.2 

     
         NSAID use 
             Never 
 

814 44.0 
 

503 42.8 
 

381 46.2 

    Ever 
 

1038 56.0 
 

672 57.2 
 

444 53.8 

     
         Reflux/heartburn

b
 

           No 
 

1448 80.6 
 

957 49.0 
 

563 56.2 

    Yes 
 

349 19.4 
 

996 51.0 
 

438 43.8 

          

 
†
Numbers do not add to total subjects due to missing data; 

#
3 participants were excluded from the control group for 

comparison to BE case patients due to relatedness; 
a
Pack-years, 

b
Weekly symptoms 
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Table 2. Assessment of pathway-level associations with risk of Barrett’s esophagus (BE) or 
esophageal adenocarcinoma (EA). 

   

 
BE 

 

EA 

Pathway Genes Variants
a
 

 
PCs

b
 P

c
 q

d
 

 
PCs

b
 P

c
 q

d
 

COX 40 1241 
 

40 0.006 0.03 
 

40 0.20 0.60 

Cytokines 184 2622 
 

110 0.10 0.21 
 

109 0.28 0.60 

Oxidative stress 115 1958 
 

73 0.13 0.21 
 

73 0.58 0.60 

Immune/HLA 32 1036 
 

10 0.59 0.74 
 

10 0.60 0.60 

NFB 125 1681 
 

110 0.84 0.84 
 

109 0.42 0.60 

 
 

a
Total number of single nucleotide polymorphisms (SNPs) selected for analysis; 

b
Pathway-level principal components 

(PCs) included in the logistic regression model; 
c
Likelihood ratio P value; 

d
False discovery rate (FDR) q value. 
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Table 3. Assessment of first 10 gene-level associations with risk of BE. 

 

 
Gene 

 
Variants

a
 PCs

b
 P

c
 q

d
 

1 MGST1 Microsomal glutathione S-transferase 1 36 3 0.0005 0.005 

2 PTGER3 Prostaglandin E receptor 3 (subtype EP3) 185 4 0.11 0.51 

3 PPARG Peroxisome proliferator-activated receptor gamma 121 3 0.15 0.51 

4 TBXAS1 Thromboxane A synthase 1 (platelet) 176 5 0.29 0.58 

5 IL12RB2 Interleukin 12 receptor, beta 2 29 3 0.29 0.58 

6 CYP19A1 Cytochrome P450, family 19, subfamily A, polypeptide 1 50 3 0.40 0.66 

7 MMP2 Matrix metallopeptidase 2 25 3 0.48 0.69 

8 PPARA Peroxisome proliferator-activated receptor alpha 54 3 0.72 0.80 

9 MGST2 Microsomal glutathione S-transferase 2 57 4 0.72 0.80 

10 PTGES Prostaglandin E synthase 11 3 1.00 1.00 

 
a
Total number of SNPs selected for analysis of the indicated gene; 

b
Gene-level principal components 

(PCs) included in the logistic regression model; 
c
Likelihood ratio P value; 

d
False discovery rate (FDR) q 

value. 
 

 
  



28 
 

Table 4. Assessment of MGST1 SNPs (n=36) and risk of BE
#
 

 

     
Controls 

 
BE cases 

    

 
SNP Chr Position Alleles

a
 N MAF

b
 

 
N MAF

b
 OR

c
 95% CI P q

d
 

1 rs4149203 12 16514921 T/C 3203 0.308 
 

3288 0.346 1.16 (1.08-1.26) 0.0001 0.001 

2 rs3852575 12 16516260 T/C 3203 0.304 
 

3288 0.34 1.16 (1.08-1.25) 0.0001 0.001 

3 rs7312090 12 16515945 T/C 3203 0.304 
 

3288 0.34 1.16 (1.07-1.25) 0.0002 0.001 

4 rs4149204 12 16515062 C/T 3203 0.307 
 

3288 0.342 1.16 (1.07-1.25) 0.0002 0.001 

5 rs4149207 12 16517491 T/C 3203 0.306 
 

3288 0.338 1.14 (1.06-1.23) 0.0008 0.005 

6 rs4149208 12 16517581 T/C 3203 0.306 
 

3288 0.338 1.14 (1.06-1.23) 0.0008 0.005 

7 rs3759207 12 16516710 C/T 3203 0.31 
 

3288 0.34 1.14 (1.05-1.23) 0.0012 0.006 

8 rs4149195 12 16512128 G/A 3203 0.109 
 

3288 0.125 1.20 (1.07-1.35) 0.0013 0.006 

9 rs2239676 12 16500448 G/C 3203 0.096 
 

3288 0.113 1.19 (1.06-1.34) 0.0033 0.013 

10 rs4149187 12 16500071 G/C 3203 0.098 
 

3288 0.114 1.18 (1.05-1.32) 0.0061 0.022 

11 rs2239677 12 16500680 A/G 3203 0.021 
 

3288 0.027 1.38 (1.09-1.75) 0.0077 0.025 

12 rs2239675 12 16500265 G/A 3203 0.172 
 

3288 0.187 1.12 (1.02-1.23) 0.0172 0.049 

13 rs4149186 12 16498700 C/A 3203 0.215 
 

3288 0.235 1.11 (1.02-1.21) 0.0179 0.049 

14 rs2975138 12 16501551 A/G 3203 0.237 
 

3288 0.256 1.10 (1.02-1.20) 0.0192 0.049 

 
#
Results for n=14 SNPs satisfying FDR q<0.05, 

a
Minor/major alleles, 

b
Minor allele frequency, 

c
Odds ratio, adjusted for 

age, sex, PC1,AIM-PC4,AIM using additive model (per-allele), 
d
False discovery rate (FDR) 
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Table 5. Assessment of MGST1 SNPs and risk of BE in an independent study sample of 1,851 BE 
cases and 3,496 control participants (Oxford)

#
. 

 

   

BEACON 

 

Oxford 

 

Meta-analysis 

 
SNP Allele

a
 OR P 

 
OR P 

 
OR P 

1 rs4149203 T 1.16 0.0001 
 

1.08 0.0718 
 

1.13 3.46E-05 

2 rs3852575 T 1.16 0.0001 
 

1.08 0.0661 
 

1.13 4.04E-05 

3 rs7312090 T 1.16 0.0002 
 

1.08 0.0678 
 

1.13 5.12E-05 

4 rs4149204 C 1.16 0.0002 
 

1.08 0.0668 
 

1.13 5.25E-05 

5 rs4149207 T 1.14 0.0008 
 

1.05 0.2676 
 

1.10 0.0011 

6 rs4149208 T 1.14 0.0008 
 

1.05 0.2837 
 

1.10 0.0013 

7 rs3759207 C 1.14 0.0012 
 

1.05 0.2649 
 

1.10 0.0015 

8 rs4149195 G 1.20 0.0013 
 

1.09 0.2160 
 

1.15 0.0012 

9 rs2239676 G 1.19 0.0033 
 

0.99 0.9402 
 

1.10 0.0293 

10 rs4149187 G 1.18 0.0061 
 

0.99 0.8894 
 

1.09 0.0461 

11 rs2239675 G 1.12 0.0172 
 

1.00 0.9882 
 

1.07 0.0704 

12 rs4149186 C 1.11 0.0179 
 

0.99 0.7973 
 

1.05 0.1081 

13 rs2975138 A 1.10 0.0192 
 

1.01 0.8523 
 

1.06 0.0605 
 

 

#
Results for n=13 SNPs available for analysis among the 14 variants listed in Table 4; 

a
Effect allele (all ORs 

represent per-allele risk estimates under an additive model) 
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Figure Legends 
 
Figure 1. Regional association plot for n=36 genotyped SNPs at the MGST1 gene locus. The top-
ranked SNP associated with risk of BE is shown in solid purple. SNPs are ordered by genomic location. 
The color scheme indicates LD between the top-ranked SNP and other SNPs in the region using r

2
 values 

calculated from the 1000 Genomes Project. The y axis shows −log10 (P) values computed from 3295 BE 
cases and 3204 controls. The recombination rate from CEU (Utah residents of Northern and Western 
European ancestry) HapMap data (right y axis) is shown in light blue. 
 


