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Supplementary Figures 

 

 

Figure S1. Variants classification by state-of-the-art genome-wide tools M-CAP and REVEL 

did not show to stratify the survival outcomes of patients. (a) Kaplan-Meier event-free survival 

curves for patients in the SHaRe cardiomyopathy registry, stratified by genotype as interpreted 

by M-CAP. The patients with variants predicted disease-causing by M-CAP did not have 

significantly different survival time compared to those with predicted benign variants (log-rank 

test P-value = 0.31). (b) Kaplan-Meier event-free survival curves for patients in the SHaRe 

cardiomyopathy registry, stratified by genotype as interpreted by REVEL. Patients with 

predicted disease-causing variants by REVEL did not have significantly different survival time 

compared to those with predicted benign variants (log-rank test P-value = 0.30). 
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Figure S2. Variant classification performance per gene. The accuracy of high-

confidence classification and its 90% bootstrap CI (n=1,000 times) are calculated per 

gene for (a) cardiomyopathies and (b) arrhythmias. The red dashed lines indicate the 

overall accuracies of variant classification at disease-level (extracted from Table 1). 

To be noticed, here the bootstrap CI is subjected to the size of test variants for each 

gene. Only genes with more than one test variants are considered in the analysis.  

Particular care should be taken for genes with wider confidence interval in using 

CardioBoost for variant classification.  
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Supplementary Table 1. Cardiomyopathy-associated genes included in the study. 

Gene 

symbol 
Phenotype Ensemble gene ID Ensemble transcript ID Ensemble protein ID 

ACTC1 HCM1 ENSG00000159251 ENST00000290378 ENSP00000290378 

DES 
DCM3 

(syndromic) 
ENSG00000175084 ENST00000373960 ENSP00000363071 

GLA 
HCM3 

(syndromic) 
ENSG00000102393 ENST00000218516 ENSP00000218516 

LAMP2 
HCM3 

(syndromic) 
ENSG00000005893 ENST00000200639 ENSP00000200639 

LMNA DCM ENSG00000160789 ENST00000368300 ENSP00000357283 

MYBPC3 HCM ENSG00000134571 ENST00000545968 ENSP00000442795 

MYH7 HCM & DCM1 ENSG00000092054 ENST00000355349 ENSP00000347507 

MYL2 HCM ENSG00000111245 ENST00000228841 ENSP00000228841 

MYL3 HCM ENSG00000160808 ENST00000395869 ENSP00000379210 

PLN Intrinsic CM2 ENSG00000198523 ENST00000357525 ENSP00000350132 

PRKAG2 
HCM3 

(syndromic) 
ENSG00000106617 ENST00000287878 ENSP00000287878 

PTPN11 
HCM3 

(syndromic) 
ENSG00000179295 ENST00000351677 ENSP00000340944 

SCN5A DCM ENSG00000183873 ENST00000333535 ENSP00000328968 
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TNNI3 HCM & DCM1 ENSG00000129991 ENST00000344887 ENSP00000341838 

TNNT2 HCM1 ENSG00000118194 ENST00000367318 ENSP00000356287 

TPM1 HCM1 ENSG00000140416 ENST00000403994 ENSP00000385107 

1 While there are several genes in this table that have been associated with more than one 

type of cardiomyopathy, e.g. with different variants causing HCM and DCM, our training and 

test data included variants associated with just one type of cardiomyopathy for all genes 

except MYH7 and TNNI3.  For MYH7 and TNNI3, the output of CardioBoost should be 

interpreted as “probability of pathogenicity for HCM or DCM”.  For other genes associated 

with more than one subtype the classifier is trained for a particular disease only, and should 

be interpreted as such. 

2 The cardiomyopathic phenotype associated with variants in PLN does not fit neatly into the 

clinical definitions of HCM and DCM, so it has been classified under the broader umbrella of 

intrinsic cardiomyopathy1. 

3 These conditions typically present with cardiomyopathy in the context of a broader 

syndromic phenotype, but may also present with isolated heart disease1.  
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Supplementary Table 2. Arrhythmia-associated genes included in the study. 

Gene 

symbol 
Phenotype Ensemble gene ID Ensemble transcript ID Ensemble protein ID 

CACNA1C 

Timothy 

Syndrome 

(LQT) 

ENSG00000151067 ENST00000399655 ENSP00000382563 

CALM1 LQT ENSG00000198668 ENST00000356978 ENSP00000349467 

CALM2 LQT ENSG00000143933 ENST00000272298 ENSP00000272298 

CALM3 LQT ENSG00000160014 ENST00000291295 ENSP00000291295 

KCNH2 LQT ENSG00000055118 ENST00000262186 ENSP00000262186 

KCNQ1 LQT ENSG00000053918 ENST00000155840 ENSP00000155840 

SCN5A 
LQT & 

BrS1 
ENSG00000183873 ENST00000333535 ENSP00000328968 

(LQT = Long QT syndrome; BrS = Brugada syndrome) 

1For SCN5A, the output of CardioBoost should be interpreted as “probability of pathogenicity 

for LQT or BrS”.   
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Supplementary Table 3. Data sets used for the development of CardioBoost. The 

number of missense variants in the training and hold-out test datasets is shown for two groups 

of inherited cardiac conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

  Cardiomyopathies  Arrhythmias 

  Pathogenic Benign Total  Pathogenic Benign Total 

Training 

data set 
 238 202 440  168 158 326 

Test data 

set 
 118 100 218  84 79 163 

Total  356 302 658  252 237 489 
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Supplementary Table 4. The training data and hold-out test data grouped by gene used 

by CardioBoost for cardiomyopathies. The number of missense variants in the training and 

hold-out test datasets is shown for each gene. 

Gene symbol 

 Training  Test 

 Benign Pathogenic  Benign Pathogenic 

ACTC1  0 2  1 0 

DES  13 3  4 0 

GLA  5 5  3 3 

LAMP2  5 2  1 0 

LMNA  6 10  5 7 

MYBPC3  47 19  27 14 

MYH7  25 125  13 64 

MYL2  1 11  1 1 

MYL3  4 3  2 1 

PLN  1 2  1 0 

PRKAG2  14 2  7 2 

PTPN11  8 1  2 1 

SCN5A  55 2  27 0 

TNNI3  6 23  4 8 
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TNNT2  8 14  2 8 

TPM1  4 14  0 9 

Total  202 238  100 118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 11 

Supplementary Table 5. The training data and hold-out test data grouped by gene used 

by CardioBoost for arrhythmias. The number of missense variants in the training and hold-

out test datasets is shown for each gene. 

Gene symbol 

 Training  Test 

 Benign Pathogenic  Benign Pathogenic 

CACNA1C  37 4  19 3 

CALM1  0 5  0 1 

CALM2  0 4  0 6 

CALM3  0 3  0 0 

KCNH2  33 54  19 22 

KCNQ1  12 55  6 31 

SCN5A  58 43  26 21 

Total  140 168  70 84 
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Supplementary Table 6. Input variant features collected from existing computational 

tools. 

Features Data type Description 

Grantham score Integer 

Substitution matrix scoring the distance from one amino 

acid to the other 
BLOSUM62 Integer 

PAM250 Integer 

SIFT Float 
Estimate intolerance to variation from closely-related 

species sequence alignment 

Polyphen2 Float x 2 
Machine learning method to predict functional effects using 

structural and sequence features 

LRT_score Float The original LRT two-sided P-value 

MutationTaster Float Bayes classifier used to predict pathogenicity of variants 

MutationAssessor Float Predicts functional impact of amino acid substitutions 

FATHMM Float HMM model to predict functional effects of variants 

PROVEAN Float 
Predicts whether an amino acid substitution or indel has an 

impact on the biological function of a protein 

VEST3 Float 
Machine learning method to predict variant functional 

effects 

CADD Float 
SVM models to predict pathogenicity for coding and non-

coding variants 
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DANN Float 
Scores whole-genome variants by training a deep neural 

network 

FATHMM-MKL Float 
Machine learning method to predict variant functional 

effects 

MetaSVM Float Machine learning method to predict SNVs functional effects 

MetaLR Float Very similar to MetaSVM, but better interpretable 

Eigen Float x 2 
Unsupervised machine learning methods to predict function 

effects of coding and non-coding variants 

M-CAP Float 
Gradient boosting tree to predict functional effects of 

missense variants 

REVEL Float 
Random Forest to predict functional effects of missense 

variants 

GERP++ Float Identify constrained elements in multiple alignments 

PhyloP Float x 2 Base pair level multi species conservation 

Integrated_fitcons Float Estimate of fitness consequences 

PhastCons Float x 2 Regional multi species conservation metric 

SiPhy Float Detect bases under selection based on multiple alignments 

paraZscore Float 
Estimate conservation across related proteins within-

species from gene paralog 
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paraZscore_exist Integer 
Indicate whether the paraZscore of a missense variant is 

available 

misbadness Float 

Measures the increased deleteriousness of amino acid 

substitutions when they occur in missense-constrained 

regions 

misbadness_exist Integer 
Indicate whether the misbadness score of a variant is 

available 

MPC Float Integrated score of misbadness, polyphen-2 and constraint 
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Supplementary Table 7. Cross-validated out-of-sample performance for 

cardiomyopathy variant pathogenicity prediction. We compared nine classification 

algorithms including best-in-class representatives of all of the major families of machine 

learning algorithms. AdaBoost was selected with the best cross-validated out-of-sample 

performance. PR-AUC: Area under the Precision Recall Curve; ROC-AUC: Area under the 

Receiver Operating Curve; MCC: Mathew Correlation Coefficient. 

Method category Algorithm 
PR- 

AUC (%) 

ROC- 

AUC (%) 
Brier score MCC 

Regression GLMNET 90 88 0.15 0.10 

Tree-based 

CART 83 81 0.18 0.43 

RF 90 89 0.14 0.36 

BART 91 89 0.14 0.38 

Boosting-based 

XGBoost 90 87 0.15 0.51 

GBM 87 87 0.15 0.43 

Adaboost 90 88 0.14 0.58 

Other classification 

algorithms 

KNN 89 88 0.15 0.43 

SVM-RBF 89 87 0.14 0.36 

Existing genome-

wide classification 

tools 

M-CAP 80 79 0.19 0.35 

REVEL 79 81 0.19 0.25 
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Supplementary Table 8. Cross-validated out-of-sample performances for arrhythmia 

variant pathogenicity prediction. We compared nine classification algorithms including 

best-in-class representatives of all of the major families of machine learning algorithms. 

AdaBoost was selected with the best cross-validated out-of-sample performance.  

Method category Algorithm 
PR- 

AUC (%) 

ROC- 

AUC (%) 
Brier score MCC 

Regression GLMNET 91 91 0.12 0.22 

Tree-based 

CART 82 86 0.14 0.56 

RF 93 92 0.10 0.45 

BART 93 92 0.11 0.43 

Boosting-based 

XGBoost 88 90 0.12 0.56 

GBM 87 89 0.12 0.60 

Adaboost 90 90 0.13 0.65 

Other classification 

algorithm 

KNN 92 91 0.12 0.45 

SVM-RBF 92 92 0.10 0.47 

Existing genome-

wide classification 

tools 

M-CAP 81 85 0.16 0.38 

REVEL 89 90 0.17 0.59 
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Supplementary Table 9. Brier Scores to compare performances of probabilistic variant 

pathogenicity predictions in the hold-out test data set.  

 Cardiomyopathies Arrhythmias 

CardioBoost 0.12 0.09 

M-CAP 0.20 0.17 

REVEL 0.19 0.17 

PrimateAI 0.21 0.18 
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Supplementary Table 10. Performance comparison on variants “unseen” and indirectly 

“seen” in the hold-out test data set for cardiomyopathy variant pathogenicity prediction. 

To assess whether bias is introduced in evaluating variants previously used in the training of 

M-CAP and REVEL, the performance of CardioBoost on wholly “unseen” data (not used in the 

training of M-CAP and REVEL), and indirectly “seen” data” (used in the training of M-CAP and 

REVEL) were compared with M-CAP and REVEL. For each predictive performance measure 

(see Supplementary Methods for details) the best algorithm is highlighted in bold. 

  

“Unseen” data 

Npathogenic = 41 

Nbenign = 24 

 

“Seen” data 

Npathogenic = 77 

Nbenign = 76 

  
CardioBoost 

(%) 

M-CAP 

(%) 

REVEL 

(%) 
 

CardioBoost 

(%) 

M-CAP 

(%) 

REVEL 

(%) 

PR-AUC  90.2 80.2 73.8  91.8 78.6 76.7 

ROC-AUC  86.3 71.1 70.2  92.1 79.8 81.9 

Brier Score  13.4 21.5 19.5  11.8 19.0 19.2 

Overall 

Accuracy 
 60.0 30.8 12.3  64.7 27.5 19.6 

Proportion of 

variants 

classified with 

high confidence  

 69.2 40.0 20.0  70.6 31.4 22.9 
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Accuracy of 

high-confidence 

classifications 

 86.7 76.9 61.5  91.7 87.5 85.7 

Proportion of 

variants with 

indeterminate 

classifications 

 30.8 60.0 80.0  29.4 68.6 77.1 

TPR  70.7 43.9 19.5  68.8 40.3 32.5 

PPV  82.9 75.0 61.5  88.3 86.1 83.3 

TNR  41.7 8.3 0.0  60.5 14.5 6.6 

NPV  100.0 100.0 NA1  95.8 91.7 100.0 

1 No variants are classified as benign by REVEL. 
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Supplementary Table 11. Performance comparison on variants “unseen” and indirectly 

“seen” in the hold-out test data set for arrhythmia variant pathogenicity prediction. To 

assess whether bias is introduced in evaluating variants previously used in the training of M-

CAP and REVEL, the performance of CardioBoost on entirely “unseen” data (not used in the 

training of M-CAP and REVEL), and indirectly “seen” data” (used in the training of M-CAP and 

REVEL) were compared with M-CAP and REVEL. For each predictive performance measure 

(see Supplementary Methodsfor details) the best algorithm is highlighted in bold. 

  

“Unseen” data 

Npathogenic = 17 

Nbenign = 18 

 

“Seen” data 

Npathogenic = 67 

Nbenign = 52 

  
CardioBoost 

(%) 

M-CAP 

(%) 

REVEL 

(%) 
 

CardioBoost 

(%) 

M-CAP 

(%) 

REVEL 

(%) 

PR-AUC  94.4 82.2 87.1  96.8 88.6 93.1 

ROC-AUC  94.1 85.6 86.3  95.0 84.6 92.6 

Brier Score  12.2 15.9 20.6  9.3 17.4 16.2 

Overall 

Accuracy 
 80.0 34.3 28.6  81.5 29.4 39.5 

Proportion of 

variants 

classified with 

high confidence  

 88.6 40.0 34.3  88.2 31.9 42.0 
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Accuracy of 

high-confidence 

classifications 

 90.3 85.7 83.3  92.4 92.1 94.0 

Proportion 

indeterminate 

classifications 

 11.4 60.0* 65.7  11.8 68.1 58.0 

TPR  88.2 70.6 58.8  82.1 43.3 67.2 

PPV  88.2 85.7 83.3  91.7 93.5 93.8 

TNR  72.2 0.0 0.0  80.8 11.5 3.8 

NPV  92.9 NA NA  93.3 85.7 100.0 
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Supplementary Table 12. CardioBoost outperforms existing genome-wide 

classification tools for the classification of hold-out test variants using 95%-certainty 

thresholds. While 90% is defined as a high-confidence threshold for clinical action in the 

ACMG/AMP guidelines, some may advocate a more stringent approach. We therefore 

assessed the performance of each tool using more stringent values for clinically relevant 

variant classification thresholds: high-confidence disease-causing (Pr ≥ 0.95), high-

confidence benign (Pr ≤ 0.05), and indeterminate. For each predictive performance measure 

(see Supplementary Methods for details) the best algorithm is highlighted in bold. 

Permutation tests were performed to evaluate whether the performance of CardioBoost was 

significantly different from the best value obtained by M-CAP or REVEL (significance levels: 

***P-value ≤ 0.001, **P-value ≤ 0.01, *P-value ≤ 0.05). 

(%)  Cardiomyopathies  Arrhythmias 

  CardioBoost M-CAP REVEL  CardioBoost M-CAP REVEL 

Overall 

accuracy 
 54.6*** 16.5 7.3  78.6*** 7.8 22.1 

Proportion of 

variants 

classified with 

high confidence  

 60.1*** 18.8 10.1  85.1*** 8.4 23.4 

Accuracy of 

high confidence 

classifications 

 90.8. 87.8 72.7  92.4** 92.3 94.4 

Proportion of 

variants with 

 39.9*** 81.2 89.9  14.9*** 91.6 76.6 
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indeterminate 

classification 

TPR  62.7*** 24.6 11.9  79.8*** 11.9 39.3 

PPV  87.1*** 85.3 70.0  91.8 90.9 93.9 

TNR  45.0*** 7.0 2.0  77.1*** 2.9 1.4 

NPV  97.8*** 100.0 100.0  93.1*** 100.0 100.0 
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Supplementary Table 13. Comparison of classification performance on the hold-out test 

data set with minor allele frequency < 0.01%. As novel pathogenic variants are more likely 

to be ultra-rare, CardioBoost was tested on the hold-out set of only ultra-rare variants and was 

confirmed to have comparable performance with that on rare variants. The performance of 

each tool is reported using the 90% high-confidence variant classification thresholds: high 

confidence disease-causing (Pr ≥ 0.90), high confidence benign (Pr ≤ 0.10), and indeterminate. 

For each predictive performance measure (see Supplementary Methods for details) the best 

algorithm is highlighted in bold. Permutation tests were performed to evaluate whether the 

performance of CardioBoost was significantly different from the best value obtained by M-CAP 

or REVEL (significance levels: ***P-value ≤ 0.001, **P-value ≤ 0.01, *P-value ≤ 0.05). 

  Cardiomyopathies   Arrhythmias 

  
CardioBoost 

(%) 

M-CAP 

(%) 

REVEL 

(%) 
 

CardioBoost 

(%) 

M-CAP 

(%) 

REVEL 

(%) 

Classification performance measures     

PR-AUC  93*** 85 81  97 90 95 

ROC-AUC  91**** 79 79  95 86 93 

Brier Score      0.11*0*** 0.18 0.17  0.09 0.15 0.14 

90% high-confidence classification performance measures 

Overall accuracy  64.9*** 30.9 19.7  83.6*** 33.6 42.5 

Proportion of 

variants 

classified with 

high confidence  

 71.3*** 35.6 22.9  93.3*** 93.8 95 
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Accuracy of high 

confidence 

classifications 

 91.0* * 86.6 86  93.3 93.8 95 

Proportion of 

variants with 

indeterminate 

classification 

 28.7*** 64.4 77.1  6.7*** 65.2 53.3 

TPR  70.1*** 41.9 28.2  85.4*** 50 67.1 

PPV  89.1 * 86 84.6  94.6 95.3 94.8 

TNR  56.3*** 12.7 5.6  80.8*** 7.7 3.8 

NPV  95.2* * 90 100  91.3* *      80 100 
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Supplementary Table 14. Evaluation of performances on additional test sets using 95%-

certainty threshold.  

(%)  Cardiomyopathies 

  
Pathogenic test variants 

(TPR) 
 

Benign test variants 

(TNR) 

  
SHaRe 

(N = 129) 

ClinVar 

(N = 15) 

HGMD 

(N = 145) 
 

gnomAD 

(N = 2,003) 

CardioBoost  51.2*** 60.0* 33.8***  44.2*** 

M-CAP      19.4**     13.3 9.0***  9.9*** 

REVEL       6.2*      6.7 6.9***  ***        2.6.6.6.6 

  Arrhythmias 

  
Pathogenic test variants 

(TPR) 
 

Benign test variants 

(TNR) 

 Deep Mutational 

Scanning 

(Accuracy) 

  
OMGL 

(N = 77) 

HGMD 

(N = 138) 

71.0*** 

18.8*** 

23.9 

 

gnomAD 

 (N = 1,237) 

 Calmodulin 

(N = 576) 

CardioBoost  87.0***  61.3***  25.7*** 

M-CAP  23.4***  4.3***  0 

REVEL  28.6***              1.2  0.3 
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Supplementary Table 15. Evaluation of performances on additional test sets with minor 

allele frequency < 0.01%. 

 (significance levels: ***P-value ≤ 0.001, **P-value ≤ 0.01, *P-value ≤ 0.05). 

(%)  Cardiomyopathies 

  
Pathogenic test variants 

(TPR) 
 

Benign test variants 

(TNR) 

  
SHaRe 

(N = 129) 

ClinVar 

(N = 14) 

HGMD 

(N = 143) 
 

gnomAD 

(N = 1,999) 

CardioBoost  62.0*** 71.4* 42.0***  51.5*** 

M-CAP       37.2     42.9 22.4***  20.3*** 

REVEL       24.0      57.1 23.1***  *** 5.7.6.6.6 

  Arrhythmias 

  
Pathogenic test variants 

(TPR) 
 

Benign test variants 

(TNR) 

 Deep Mutational 

Scanning 

(Accuracy) 

  
OMGL 

(N = 77) 

HGMD 

(N = 138) 

72.5*** 

39.9 

52.9 

 

gnomAD 

(N = 1,232) 

 Calmodulin 

(N = 576) 

CardioBoost  88.3***  64.4***  29.0*** 

M-CAP  59.7  9.8**  0.3 

REVEL  68.8  2.8  4.2 
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Supplementary Table 16. CardioBoost variant classification stratifies variants with increased disease Odds Ratio for sarcomere-

encoding genes. Odd Ratios (ORs) and their confidence intervals were calculated for rare variants observed in sarcomere-encoding genes 

using SHaRe HCM cohorts and gnomAD. We compared the ORs for three groups of variants: (i) all rare variants, (ii) rare variants predicted 

disease-causing by CardioBoost (Pr ≥ 0.9, and excluding those seen in our training data), and (iii) rare variants predicted as benign by 

CardioBoost (Pr  0.1, and excluding those seen in our training data). The ORs of variants classified by M-CAP and REVEL were also calculated.  

Gene 

symbol 

all observed rare 

variants 

(95% CI) 

CardioBoost 

disease-causing 

variants 

(95% CI) 

CardioBoost 

benign variants 

(95% CI) 

M-CAP 

disease-causing 

variants 

(95% CI) 

M-CAP 

benign 

variants 

(95% CI) 

REVEL 

disease-

causing 

variants 

(95% CI) 

REVEL 

benign 

variants 

(95% CI) 

MYH7 
14.5 

(13.4-15.7) 

14.7 

(12.9-16.7) 

1.2 

(0.7-1.9) 

14.8  

(12.9-16.9) 
-* 

15.9 

(13.1-19.2) 
-* 

TNNI3 
12.6 

(10.1-15.9) 

14.0 

(6.1-32.3) 

3.3 

(1.7-6.4) 

1.0 

(1 -1.1) 

4.7 

(1.6 – 14) 

12.1 

(4-35.9) 

1.0 

(1-1.1) 

TPM1 11.2 33.7 1.4 

1.0 

(1 -1.1) 

0.5 

(0.1 – 3.6) 

38.9 

(5.9-256.6) 
-* 
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(8.2-15.3) (18.3 – 62.2)  (0.5-3.8) 

ACTC1 
11.2 

(6.9-18.2) 

15.2 

(8.2-28.3) 

1.0 

(1-1.1) 

1.0 

(1 -1.1) 

1.0 

(1 - 1.1)  

19.8 

(9.4-42) 
-* 

TNNT2 
6.0 

(4.8-7.5) 

17.7 

(10.1-31.1) 

2.8 

(1.5-5.1) 

1.0 

(1 -1.1) 

1.0 

(0.1 – 7.1) 

25.8 

(3.3-199.1) 

28.9 

(5.2-161.6) 

MYBPC3 
5.6 

(5.1-6.0) 

55.1 

(41-74.1) 

1.2 

(0.9-1.4) 

1.0 

(1 -1.1) 

0.7 

(0.4-1.1) 

12.8 

(7.6-21.8) 

1.2 

(0.8-1.8) 

MYL2 
5.2 

(4.0-6.9) 

3.8 

(2.0-7.5) 

1.0 

(0.9-1.1) 

1.0 

(1 -1.1) 

0.2 

(0-1.6) 

1.7 

(0.4-7) 

1.0 

(1-1.1) 

MYL3 
2.7 

(1.9-3.8) 

7.9 

(3.5-17.8) 

0.8 

(0.4-1.9) 

1.0 

(1 -1.1) 

0.3 

(0-2.2) 

19.4 

(8.3-45.4) 
-* 

OR not calculated since the number of missense variants predicted as benign is zero in the gnomAD population. 
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Supplementary Table 17. Comparison of out-of-sample classification performances for 

alternative disease-specific classification tasks. We explored alternative variant 

classification models as exemplified for cardiomyopathies with relatively larger size of training 

data: two syndrome-specific models (HCM-specific and DCM-specific) and three gene-

syndrome-specific models (MYH7-HCM-specific, MYH7-DCM-specific and MYBPC3-HCM-

specific). Here the broadly cardiomyopathies-specific model was chosen since none of the 

alternative models had comparable performances. 

Predictive task Number of training variants Precision-Recall AUC (%) 

CM-specific 440 91 

HCM-specific 348 79 

DCM-specific 309 48 

MYH7-HCM-specific 152 87 

MYH7-DCM-specific 152 35 

MYBPC3-HCM-specific 106 76 
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Supplementary Methods 

The data flow diagram from data collection, machine learning model training and testing is 

illustrated in Figure 1. 

 

Background 

While we have extensively benchmarked with genome-wide tools, the idea of gene-specific or 

syndrome-specific models for inherited cardiac conditions have been developed previously 

including a MYH7-specific predictor2, our Bayesian syndrome-specific classification predictor 

APPRAISE3,  a HCM-specific classification model PolyPhen-HCM4 and a cardiomyopathy-

specific model PathoPredictor5. Compared to these existing important works, we have 

improved the disease-specific classifiers in terms of the size and diversity of the predictive 

features and training datasets. We collected substantially relevant features (n=76) for variant 

classifications including conservation, existing pathogenicity scores and genetic constraint 

scores.  Our models were trained with larger size of high-quality expert-curated variants 

including as many disease genes as possible (CM: genes = 16, variants = 440; IAS: genes = 

7, variants = 326). 

 

The details of data collection for training and testing are provided below.  

 

Primary training and test data collection 

We consider rare missense variants whose allele frequency is less than 0.1%, using gnomAD 

(v2.0.1) as our reference population. The value at 0.1% is taken as a conservative maximum 

credible population allele frequency6 across a range of inherited cardiac conditions, above 

which variants are unlikely to cause penetrant disease. The predicted molecular 

consequences of variants were annotated with Ensembl Variant Effect Predictor7 (version 91.1 

for hg19/GRCh37 human genome assembly) on canonical transcripts relevant to heart tissue 

(Table S1 and Table S2). 
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Pathogenic variants in sixteen genes associated with cardiomyopathies (Table S1) were 

collected from the targeted sequencing data of 9,007 patients with either HCM or DCM, 

recruited or referred for diagnostic sequencing at the Royal Brompton & Harefield Hospitals 

NHS Trust (RBH, UK), Oxford Medical Genetics Laboratories (OMGL, UK)8, and the Partners 

Laboratory of Molecular Medicine (LMM, US)9,10. The pathogenic variants from RBH and 

OMGL were interpreted according to ACMG/AMP guidelines. The pathogenic variants from 

LMM were interpreted using equivalent previously-described clinical-grade variant 

classification criteria9,10. 

 

For inherited arrhythmia syndromes, pathogenic variants in seven genes (Table S2) were 

extracted from the ClinVar database (ClinVar Full Release 201912), considering only variants 

with Pathogenic or Likely pathogenic classifications and no conflicting interpretations (Benign 

or Likely benign). 

 

Rare benign variants for both conditions were collected from the targeted sequencing of 

2,090 healthy volunteers. The age range for the healthy volunteer cohort is 5 to 88 years 

(mean age = 39, SD=15). It included samples recruited from three sites: Royal Brompton 

Hospital (n=921, range=18-80 years, mean age=39, SD = 13), Egypt Aswan Heart Centre 

(n=423, range=5-79, mean age = 30, SD=10) (Aguib, Y. et al. Genomics of Egyptian Healthy 

Volunteers: The EHVol Study. bioRxiv (2019) https://doi.org/10.1101/680520 (unpublished 

data)) and Singapore National Heart Centre (n=746, range=18-88 years, mean age = 45, 

SD=17). These volunteers were confirmed to have no cardiac history, no family history of, or 

suggestive of, an inherited cardiac condition, and no evidence of cardiomyopathy or 

channelopathy on ECG or cardiac MRI. This cohort provides a lower disease prevalence 

than a general population (i.e. the prevalence of inherited cardiomyopathies and arrhythmias 

in a general population is estimated at ~0.75% by summing the combined prevalence of 

HCM, DCM, LQTS and Brugada syndrome6). Thus, the variants found in their disease panel 

genes could be considered as highly likely benign for inherited cardiac conditions, while 
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acknowledging the potential for a low background error rate due to incomplete and age-

related penetrance. 

 

Three genes are each associated with two related disease phenotypes in the training & test 

data (MYH7 and TNNI3 with hypertrophic and dilated cardiomyopathies; SCN5A with two 

arrhythmia syndromes, LQT & BrS), with distinct variants causing each phenotype. For each 

of these genes variants were aggregated so that the model was trained to discriminate 

disease-causing for either condition vs. benign. The phenotype associated with variation in 

PLN does not fit neatly into the clinical definitions of either HCM or DCM1, so the output of the 

model for PLN variants is interpreted as probability of variants causing intrinsic 

cardiomyopathy. For all other genes the model was exposed to variants associated with just 

one phenotype (HCM, DCM, BrS or LQT; Tables S1-S2). 

 

Additional replication test data collection 

To further validate CardioBoost performance on “unseen” data, we collected additional 

independent data sets which did not overlap with either the training data of CardioBoost, M-

CAP and REVEL or the hold-out test data of CardioBoost. 

 

For cardiomyopathies, these pathogenic test data sets are composed of 129 

Pathogenic/Likely Pathogenic variants identified in HCM patients from the SHaRe Registry11, 

15 ClinVar (ClinVar Full Release 201912)12 variants adjudicated as Pathogenic/Likely 

Pathogenic for cardiomyopathies with at least two-star review status, and 145 variants of the 

Disease Mutation (DM) class from HGMD Pro version 201712 after excluding those also seen 

in HGMD version 2015.2, since these variants were used in the training of M-CAP and REVEL. 

For arrhythmias, 77 variants reported to be Pathogenic/Likely Pathogenic by OMGL, and 138 

variants of the DM class from HGMD Pro version 201712 were collected after excluding those 

seen in HGMD version 2015.2. For the three calmodulin genes (CALM1, CALM2 and CALM3), 

we also collected variant functional scores from a previous deep mutational scanning study13. 
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In this study, a complete functional map for each possible amino acid change in calmodulin 

protein was generated by employing a high-throughput functional complementation assay in 

S.cerevisiae. Since the three calmodulin genes encode the same protein sequence, the 

functional map is same for the three genes. We think this functional map study provides an 

orthogonal test dataset to validate our prediction because calmodulin protein is highly 

conserved in eukaryotes. However, we also recognise that the yeast functional assay cannot 

fully indicate the clinical impact of variants specific to higher organisms14.  

 

We expect most variants in disease-associated genes identified in gnomAD to be benign for 

inherited cardiac conditions since the prevalence of inherited cardiomyopathies and 

arrhythmias in gnomAD should not exceed those in a general population. Since ExAC15 

variants (ExAC version release 0.3, which represents a subset of gnomAD) were used to train 

M-CAP and REVEL explicitly, we curated a test set of 2,003 gnomAD variants in which the 

variants seen in ExAC were excluded. Similarly, for arrhythmias, 1,237 gnomAD variants were 

collected. 

 

Input variant features collection and pre-processing 

Feature collection. We combined both variant effect features collected from previous 

computational tools, and original newly-derived features. 

 

There are two types of pre-existing computational tools for prediction of variant effect: (i) 

those that estimate the evolutionary conservation level of the genomic site or the variant 

itself; (ii) those that estimate the likelihood of variant pathogenicity combing both the 

conservation scores and biochemical properties of a variant. We used ANNOVAR16 to 

collect features from published computational tools (Table S6). Fourteen conservation or 

constraint scores of amino acid change were included from BLOSUM6217, PAM25017, 

Grantham Score18, LRT19, PhyloP20, PhastCons21, SIPHY22, fitCons23, GERP++24, 

para_zscore25 and misbadness (Samocha, K. E. et al. bioRxiv (2017). doi:10.1101/148353 



 35 

(unpublished data)). To utilise the predictions of existing genome-wide tools, twenty 

pathogenicity scores were collected from SIFT26, Polyphen227, MutationTaster28, 

MutationAssessor29, FATHMM30, FATHMM-MKL30, PROVEAN31, VEST332, CADD33, 

DANN34, MetaSVM35, MetaLR35, Eigen36, M-CAP37, REVEL38 and MPC (Samocha, K. E. et 

al. bioRxiv (2017). doi:10.1101/148353 (unpublished data)). 

 

To incorporate interspecies conservation maximally, we also derived new features measuring 

evolutionary conservation level from orthologous sequence alignments of disease genes. 

Using the multiple alignment of amino acid (AA) sequences of a set of species, for a given 

missense variant (with known site, reference AA and alternative AA) four types of features 

were extracted: 

 

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐴𝐴 =
#orthologs in the set that have the reference AA at that site

#orthologs in the set that have no gap at that site
  

 

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐴𝐴 =
#orthologs in the set that have the alternative AA at that site

#orthologs in the set that have no gap at that site
  

 

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑁𝑜 − 𝐺𝑎𝑝 =
#orthologs in the set that have no gap at that site

#orthologs in the set
  

 

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑂𝑟𝑡ℎ𝑜𝑙𝑜𝑔𝑠 =
#orthologs in the set

#species in the set
 

 

We downloaded multiple sequence alignments of orthologous genes from the UCSC hg19 

100-way Multiz alignment39. The above four scores were calculated for nine different sets of 

species: (1) all species included in the 100-way alignment; sets of species clade: (2) Primate 

(3) Euarchontoglires; (4) Laurasiatheria; (5) Afrotheria; (6) Mammal; (7) Aves; (8) 



 36 

Sarcopterygii and (9) Fish (For species in each clade subset see 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/multiz100way/). 

 

We also derived region-level features from the AA alignment. 

𝑀𝑒𝑎𝑛 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐴𝐴 measures the average ratio of 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐴𝐴 among 

the allele’s 10 nearest neighbouring sites. Similarly, 𝑀𝑒𝑎𝑛 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑁𝑜 − 𝐺𝑎𝑝 measures the 

average 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑁𝑜 − 𝐺𝑎𝑝 among the allele’s 10 nearest neighbouring sites. 

 

Using the alignment of multiple nucleotide sequences, 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑁𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒 and 

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑁𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒  calculate the frequency of reference nucleotide and 

alternative nucleotide observed in all orthologs given there is no gap at this site respectively. 

Similarly, 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐶𝑜𝑑𝑜𝑛  and 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐶𝑜𝑑𝑜𝑛  are derived as a 

measure of conservation at the codon level. 

 

Missing features imputation. Variant pathogenicity scores derived from existing genome-wide 

classifiers and included as features in our model were not available for all variants considered. 

We estimated these missing values by using condition mean imputation. For test data, missing 

values were imputed by using the mean derived in the training data40. 

 

Features normalisation. In total, we collected 76 features per missense variant. After collecting 

all the features, we conducted a z-score normalisation on the features of the training data. The 

features in test data were also standardised using the means and standard variations of the 

training data. 

 

Defining high-confidence classification performance measures 

Existing machine learning variant classification tools adopted a single threshold to discriminate 

pathogenic and benign variants. However, the choice of this classification threshold is arbitrary 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/multiz100way/
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and not consistent among different tools, for example M-CAP37 made a binary classification 

using a threshold with 95% true positive rate (see the relevant discussion in Supplementary 

Methods: Limitations in applying a high-sensitivity threshold for variant interpretation) and 

PolyPhen-227 made a ternary classification using two thresholds based on false positive rates. 

 

This arbitrary choice of classification threshold might not be optimal in order to control Type I 

and Type II error for different applications. Moreover, the use of high-sensitivity threshold for 

variant classification is unlikely optimal for clinical interpretation of individual variants. Instead 

of using classification thresholds derived from a specific classification method/data set, here 

we adopt high-confidence classification definitions aligned with ACMG/AMP guideline 

recommendations for clinical practice41: the classification of variants into Likely 

Pathogenic/Pathogenic or Likely Benign/Benign is proposed to be with at least 90% 

classification certainty. In other words, variants with pathogenicity score equal to or larger than 

0.9 would be classified as “disease-causing” and those with pathogenicity score equal to or 

smaller than 0.1 are classified as “benign”. Variants with pathogenicity scores between 0.1 

and 0.9 receive an indeterminate classification (variants of unknown significance) (Figure 1b 

and Figure 1c). 

 

With the defined high-certainty classification thresholds, we derive the corresponding 

confusion matrix (Figure 1c) from which a series of measures of direct clinical relevance can 

be computed. We use TPR, the proportion of actual pathogenic variants predicted to be 

disease-causing, and PPV, the proportion of predicted disease-causing variants that are 

correctly classified, to evaluate the classifier’s ability to classify pathogenic variants. TNR, the 

proportion of actual benign variants predicted to be benign and NPV, the proportion of 

predicted benign variants that are correctly classified are used to assess benign classifications 

correspondingly. Taking both cases together, the accuracy of high-confidence classifications 

measures the probability that a classification in the actionable range is correct. The proportion 

of clinically indeterminate classifications measures the probability of a variant not classified 
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with clinical confidence. Formulae for each measure of clinical relevance we used are 

described in the below session. 

 

Calculation of high-confidence classification measures 

 

 

Based on the confusion matrix shown in Figure 1c (shown above), we calculated the 

following ratios of clinical relevance in variant interpretation given n test variants 

 

TPR =
TP

T
 

 

TNR =
TN

F
 

 

FPR =
FP

F
 

 

PPV =
TP

P
 

 

NPV =
TN

N
 

 

FNR =
FN

T
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Number of high − confidence classifications = P + N 

 

Number of indeterminate classifications = 𝑛 − (P + N) 

 

Proportion of high − confidence classifications =
P + N

𝑛
 

 

Accuracy of high − confidence classifications =
TP + TN

P + N
 

 

Overall accuracy =
TP + TN

𝑛
 

 

Proportion of indeterminate classifications =
𝑛 − (P + N)

𝑛
 , 

 

where T: Actual pathogenic, F: Actual benign, P: Predicted disease-causing (Pathogenicity 

Pr ≥ 0.9), N: Predicted benign (Pr ≤ 0.1), Indeterminate: 0.1  Pr  0.9, TP: True Positive, 

TN: True Negative, FP: False Positive, FN: False Negative, T = TP + FN, F = FP + TN, P = 

TP + FP and N = FN + TN. 

 

Machine learning model training and selection 

The analyses were conducted using the R environment23 and the package mlr24. We trained 

and tested representatives of each of the major classes of statistical and machine learning 

methods in order to obtain the best classification performances over our training data.  Neural 

network methods were not included due to limited scope for interrogation and interpretation of 

feature weightings. Classification algorithms included in the analysis are: Classification and 

Regression Tree (CART)44, K nearest neighbours (KNN)45, Elastic Net Logistic Regression 

(GLMNET)46, Support Vector Machine with Radial Basis Kernel Function (SVM-RBF)47, 
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Random Forest (RF)48, Bayesian Additive Regression Trees (BART)49, Adaptive Boosting 

(AdaBoost)47, Gradient Boosting Tree (GBM)47 and Extreme Gradient Boosting (XGBoost)50. 

 

To fine-tune hyper parameters for each model and identify the model with the best 

generalisation performance (i.e. best prediction performance on “unseen” data), we applied a 

nested cross-validation51. In this nested cross-validation, the inner-test set (also called 

“validation set” or “development set”) is used to choose the optimal set of hyperparameter for 

a given classification algorithm. After the classification algorithm is fitted on the inner loop data 

set, the outer test set is used to select the best tuned classification algorithm with respect to 

its performance on “unseen” test data. We used 5-fold cross-validation in the inner cross-

validation loop and 10-fold in the outer cross-validation loop. 

 

The selection of the best classification algorithm is not trivial. To this end, we pre-specified the 

following optimisation goals: 

 

Goal 1: The optimal classifier outperforms genome-wide machine learning variant 

classification tools on overall classification measured using PR-AUC. 

 

We consider the PR-AUC as a conventional threshold-independent performance measure. In 

the training process, PR-AUC is chosen as the objective measure in the inner loop for 

hyperparameter tuning, i.e. for each candidate classification algorithm considered, the 

hyperparameters that yield the highest PR-AUC are selected. Then the classification 

performance of each optimised algorithm is assessed using the outer CV loop. 

 

Goal 2: The optimal classifier has the best Matthews Correlation Coefficient52 (MCC) using 

the defined 90% high-confidence classification threshold. 
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Our aim is to find the optimal classifier that balances both Type I and Type II errors at the 90% 

high-confidence classification thresholds. When we apply the defined high-confidence 

classification above, variants are classified into one of three categories: disease-causing, 

benign and indeterminate. Since the most common application of a genetic diagnosis in 

cardiogenetic practice is familial evaluation and predictive testing, where management of 

negative and inconclusive genetic test results are equivalent53, we group these variants 

together for the purposes of model selection, and focus on performance at the higher 

actionable threshold, comparing disease-causing versus non-actionable 

indeterminate/benign/likely benign. 

 

We use the MCC, a measure of the correlation between observed and predicted binary 

classifications that is relatively robust in an imbalanced data set54, defined as: 

 

𝑀𝐶𝐶 =  
TP × TN − FP × FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 . 

 

A higher MCC reflects a stronger correlation between observed and predicted binary 

classification, indicative of performance at the ≥ 0.9 threshold most relevant in this context. 

Ideally, we would like to select a classifier that performs best on both goals. If there is more 

than one classifier satisfying both Goal 1 and Goal 2, we pre-specify selection of the models 

using Goal 2, given the most immediate relevance to this task. 

 

The performance of each candidate machine learning algorithm and the representative 

benchmarking genome-wide variant classification tools (M-CAP and REVEL) in the nested 

cross-validation are shown in Table S7 and Table S8. For cardiomyopathy variants, as shown 

in Table S7 the candidate algorithms that outperform M-CAP and REVEL on all standard 

classification measures to meet Goal 1 were GLMNET, CART, RF, BART, XGBoost, GBM, 

AdaBoost, KNN and SVM. Since AdaBoost had the highest MCC score to meet Goal 2, it was 
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selected as the best model. Next the best hyperparameter set for AdaBoost (“loss=exponential” 

and “nu=0.207”) was selected using 5-fold cross validation on the whole cardiomyopathy 

variant training set. The selected model was trained on the whole training set to generate 

predictions on unseen data. 

 

Similarly, for inherited arrhythmia syndrome variants, AdaBoost was selected as the best-

performing candidate (hyperparameters “loss=exponential” and “nu=0.435”). The prediction 

model was then trained using the whole arrhythmia training set. 

 

Permutation significance test 

Given a performance measure, we used one-sided permutation test55 to test whether an 

observed performance measure of one classifier was significantly better than that of the other 

classifier. The null hypothesis is that the two classifiers perform the same on this measure. 

The null distribution is estimated by randomly exchanging observations between the classifiers 

10,000 times. Here, an observation represents a variant pathogenic probability predicted by a 

classifier. P-value is estimated as the number of times the permutated difference is larger than 

the observed difference. 

 

Replication without reliance on gold-standard 

To ensure robustness to misclassification in the “gold-standard” out-of-sample test data, we 

employed two orthogonal approaches to assess CardioBoost’s discrimination of pathogenic 

variants and benign variants. First, we compared the proportion of rare variants in individuals 

with and without disease, and stratified these variants using CardioBoost. We derived the odds 

ratio (OR), which provides an estimate of gene-disease association.  

 

Second, we compared the survival outcomes of individuals with HCM, stratified by genotypes 

classified by CardioBoost. We applied CardioBoost to variants found in a cohort of 803 

patients with HCM and a rare missense variant in one of eight HCM-associated genes, and 
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compared survival with 1,927 genotype-negative HCM patients. We did not consider 

individuals carrying variants seen in our training data set. The “event-free survival” time (i.e. 

time until first major adverse clinical event) was analysed using Kaplan-Meier survival analysis 

and the Cox hazard-regression model. 

 

Survival analysis 

We collected genotype and clinical outcome data for patients with cardiomyopathy from the 

SHaRe HCM registry (data release 2019Q3). 

  

We included patients with a diagnosis of HCM, at least 1 clinic visit and at least 1 assessment 

of left ventricular wall thickness, and only one missense variant in any of eight genes encoding 

sarcomere proteins (MYBPC3, MYH7, TNNT2, TNNI3, TPM1, MYL2, MYL3, and ACTC1). 

Variants jdentified in SHaRe were classified by SHaRe experts according to ACMG/AMP 

guidelines. Patients with potentially pathogenic variants in genes encoding non-sarcomere 

proteins (i.e. HCM genocopies) were excluded. 

 

The primary outcome measure was a composite comprising the first occurrence of: sudden 

cardiac death, resuscitated cardiac arrest, appropriate implantable cardioverter-defibrillator 

therapy, cardiac transplantation, left ventricular assist device implantation, New York Heart 

Association class III-IV symptoms, all-cause mortality, atrial fibrillation, stroke, or death, as 

previously described11. 

 

Patients were censored either at date of first event, or at last follow-up clinical visit if event-

free. 

 

Data leakage does not explain the superior performance of CardioBoost compared with 

existing tools 
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Since CardioBoost training and test data may contain variants used as training data for 

published genome-wide classification tools whose pathogenicity scores were used as input 

features by CardioBoost, we also assessed whether using indirectly “seen" data would make 

CardioBoost overfit and outcompete existing genome-wide classifiers. In particular, we 

considered previously “seen” variants used in training M-CAP and REVEL. M-CAP was trained 

on variants of Disease Mutation (DM) Class from HGMD version 2015.2 and ExAC. REVEL 

was trained on variants of DMs from HGMD version 2015.2 and the Exome Sequencing 

Project (ESP), the Atherosclerosis Risk in Communities (ARIC) study and the 1000 Genomes 

Project (KGP) (ESP and KGP are contributing projects in ExAC). We extracted a set of “seen” 

variants from CardioBoost training data if they are ever seen in the DM Class of HGMD version 

2015.2 and ExAC. The remaining variants in the training data constitute the set of purely 

“unseen” data. We investigated the impact of using “seen” data from two different viewpoints. 

One is whether “seen” variants have the same classification as those in our training data. In 

Cardiomyopathies 323 out of 440 training variants were seen before in HGMD or ExAC. For 

the DM variants reported in HGMD before, 53 out of 206 cases have an opposite classification 

as in our training data. In Arrhythmias, there are 253 out of 308 variants ever seen in HGMD 

or ExAC. Among the 170 DM variants reported in HGMD previously, 38 of them have opposite 

classification in our training data. This suggests that even if some variants were used in 

building previously genome-wide classifiers, their classifications are not necessarily correct 

and thus it makes the prediction tools less accurate. The second aspect is to assess whether 

our machine learning tool could still outcompete M-CAP and REVEL on completely “unseen” 

data. We compared the prediction performance of stratified hold-out test sets: purely “unseen” 

data and “seen” data (see Table S10) with the unstratified hold-out test set. The accuracy was 

used as an overall measure to compare the performance of each dataset. For 

cardiomyopathies and arrhythmias, the performances of three datasets were comparable and 

not significantly different. Overall, we found out the variants used in previous genome-wide 

tools were not necessarily accurately classified. Our machine learning tool did improve on 
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cardiomyopathy- and arrhythmia-specific prediction both on “seen” and “unseen data” by 

leveraging over multiple diverse computational pieces of evidence. 

 

Limitations in applying a high-sensitivity threshold for variant interpretation  

In M-CAP, the authors defined a single low pathogenicity threshold as clinically relevant to 

predict disease-causing variants such that M-CAP could have 95% expected true positive rate 

(sensitivity). Given a data set, while using a low single classification threshold to increase TPR 

will decrease the number of false negative predictions, the binary classifier would tend to 

increase the number of false positive predictions (i.e., truly benign variants predicted to be 

disease-causing) as well. An ideal classification threshold would be the one that minimize the 

total sum of the cost of both errors. While one might prioritise sensitivity for variant prioritisation 

in some contexts, in the context of clinical variant interpretation, we suggest that the cost of a 

false positive prediction is at least equivalent to, and in most situations higher than, the cost 

of a false negative prediction. In neglecting to control the Type II error to have high true positive 

rate, there would be two negative consequences: (i) Low positive predictive value: this could 

be demonstrated as the negative correlation between the true positive rate and positive 

predictive value using the Precision-Recall Curve (Figure 2a and Figure 2c); (ii) High false 

positive rate: this is demonstrated as the positive correlation between the true positive rate 

and false positive rate (i.e., 1-TNR) (Figure 2b and Figure 2d). Even though the ACMG 

guidelines recommend not to use one computational tool as a sole evidence, but to consider 

the concordance of multiple computational tools for variant interpretation, the application of a 

computational tool of high TPR but low TNR or high FPR along with other computational tools 

would still make the clinical interpretation process rather difficult. For example, the disease-

causing prediction of a computation tool for a truly benign variant is very likely to conflict with 

the correct prediction from the other computational tools or the other lines of evidence of 

pathogenicity. The contradictory evidence would increase the likelihood that the variant is 

classified as variant of uncertain significance (VUS). 
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Calibration of PPV and NPV 

Given a new dataset or testing context, we could estimate the PPV and NPV of a classifier 

given the proportion of pathogenic variants amongst variants undergoing classification 

(Variant Proportion): 

 

Variant Proportion =
Number of pathogenic variants

Number of pathogenic variants + Number of benign variants
 

 

PPV =
TPR × Variant Proportion

TPR × Variant Proportion + FPR × (1 − Variant Proportion)
 

 

NPV =
TNR × (1 − Variant Proportion)

TNR × (1 − Variant Proportion) + FNR × Variant Proportion
 

 

where TPR: True Positive Rate and TNR: True Negative Rate as defined in (1) and (2), 

respectively. 

 

Estimating the proportion of pathogenic missense variants in a diagnostic series and 

a general population 

In order to estimate the PPV and NPV when applying CardioBoost in a diagnostic series and 

a general population, we first estimate the proportion of pathogenic missense variants of these 

two populations. 

 

Since in variant interpretation, the limitation of false positive prediction is prioritised. Here we 

want to derive a reasonably conservative estimate of PPVs by assuming that pathogenic 

missense variants are penetrant and that the burden of rare missense variants in controls 

provides an estimate of the burden of rare benign missense variants in any population either 

cases or control. These assumptions would provide the lower bound of the proportion of 

pathogenic variants, which is the lower bound of PPV based on.  
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Based on the above assumptions, the proportion of rare pathogenic missense variants, for a 

given gene or a gene set, amongst variants identified in a group of patients with disorders 

could be approximated as:  

 

Variant proportion in a case series =
Burden of pathogenic variants in cases  

Burden of rare variants in cases
 

 

Burden of pathogenic variants in cases

=  Burden of rare variants in cases − Burden of rare variants in control 

 

Similarly, the proportion of rare pathogenic missense variants in a general population could 

be approximated as:  

 

Variant proportion in a general population

=
Burden of pathogenic variants in a general population

Burden of rare variants in a general population
 

 

Burden of rare variants in a general population 

= Burden of pathogenic variants in a general population

+ Burden of benign variants in a general population 

 

Bruden of pathogenic variants in a general population =  

Prevalence of disease × Burden of pathogenic variants in cases =  

Prevalence of disease × (Burden of rare variants in cases − Burden of rare variants in control) 

 

Burden of benign variants in a general population = Burden of rare variants in control 
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For cardiomyopathies, here we consider both dilated cardiomyopathy (DCM) and hypertrophic 

cardiomyopathy (HCM). The disease prevalence for DCM is estimated as 1/250 and 1/500 for 

HCM56. Thus, adding the prevalence of two conditions, the disease prevalence for 

cardiomyopathies is 

 

1

250
+

1

500
≈ 0.006 

 

Using cohort studies from OMGL and LMM8, the burden of rare missense variants in cases is 

estimated at 27%. PTPN11 (it was not sequenced in these cohorts and its contribution to 

cases is assumed to be marginal) was excluded in the analysis here. Using gnomAD15 

reference population as control, the burden of rare missense variants in control was estimated 

to be 11% by adding the allele frequencies of rare missense variants seen in gnomAD for all 

cardiomyopathies-related genes (excluding PTPN11).  

 

Thus, the proportion of rare missense variants pathogenic to cardiomyopathies in a diagnostic 

series is estimated with ~ 60%. The proportion of rare missense variants pathogenic to 

cardiomyopathies in a general population is estimated as ~1%.  

 

Likewise, the proportions of rare missense variants pathogenic to arrhythmias in a diagnostic 

series and in a general population are estimated as ~71% and ~0.4% respectively. The 

disease prevalence of arrhythmias in a general population is ~0.2% by adding the disease 

prevalence of Long QT syndrome (1/2000) and Brugada syndrome (1/1000). Since the 

arrhythmias-related genes are not widely assessed in large LQTS and Brugada cohort 

studies57,58, here we could only consider four arrhythmias-associated genes KCNE1, KCNH2, 

KCNQ1 and SCN5A here from the LQTS and Brugada cohort studies57,58, which provides us 

a lower bound of exact variant proportion. The burden of rare missense variants in arrhythmias 
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is estimated as 18%. From gnomAD database, we could estimate the burden of rare missense 

variants in control (only including KCNE1, KCNH2, KCNQ1 and SCN5A) as 5%. 
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