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ABSTRACT
Isolated brown dwarfs provide remarkable laboratories for understanding atmospheric physics in the low-irradiation regime, and
can be observed more precisely than exoplanets. As such, they provide a glimpse into the future of high-signal-to-noise ratio
(SNR) observations of exoplanets. In this work, we investigate several new considerations that are important for atmospheric
retrievals of high-quality thermal emission spectra of sub-stellar objects. We pursue this using an adaptation of the HyDRA

atmospheric retrieval code. We propose a parametric pressure–temperature (P–T) profile for brown dwarfs consisting of multiple
atmospheric layers, parametrized by the temperature change across each layer. This model allows the steep temperature gradient
of brown dwarf atmospheres to be accurately retrieved while avoiding commonly encountered numerical artefacts. The P–T
model is especially flexible in the photosphere, which can reach a few tens of bar for T-dwarfs. We demonstrate an approach to
include model uncertainties in the retrieval, focusing on uncertainties introduced by finite spectral and vertical resolution in the
atmospheric model used for retrieval (∼8 per cent in the present case). We validate our retrieval framework by applying it to a
simulated data set and then apply it to the HST/WFC3 (Hubble Space Telescope’s Wide-Field Camera 3) spectrum of the T-dwarf
2MASS J2339+1352. We retrieve sub-solar abundances of H2O and CH4 in the object at ∼0.1 dex precision. Additionally, we
constrain the temperature structure to within ∼100 K in the photosphere. Our results demonstrate the promise of high-SNR
spectra to provide high-precision abundance estimates of sub-stellar objects.

Key words: methods: data analysis – techniques: spectroscopic – planets and satellites: atmospheres – stars: atmospheres –
brown dwarfs – infrared: stars.

1 IN T RO D U C T I O N

The field of exoplanet and brown dwarf atmospheres is undergoing
rapid progress, with increasingly detailed characterization made
possible by state-of-the-art spectroscopic observations and sophis-
ticated retrieval methods. Thanks to the high precision and wide
spectral coverage of these observations, they allow us to probe
a range of altitudes and determine the chemical properties and
physical structures of these objects (e.g. Basri 2000; Kirkpatrick
2005; Apai et al. 2013; Buenzli et al. 2014; Helling & Casewell
2014; Sing et al. 2016; Burningham et al. 2017; Line et al. 2017;
Madhusudhan 2018). Directly imaged brown dwarfs can provide a
glimpse into the future of exoplanet observations as their lack of
stellar companion and prominent spectral features makes them ideal
for very high precision observations and characterization, while their
atmospheres bear many similarities with those of giant planets in the
low-irradiation regime (e.g. Basri & Brown 2006; Burgasser 2012;
Marley & Robinson 2015).

Most of the exoplanet atmospheres characterized to date belong
to hot Jupiters, whose large scale heights and high temperatures
(∼800–3000 K) make them conducive to atmospheric observations.
Both space-based and ground-based observations have allowed a
number of chemical species to be observed in hot Jupiters and
constraints have also been placed on their physical structures
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(e.g. Brogi et al. 2012; Deming et al. 2013; Evans et al. 2017).
Chemical constraints have also been placed for several directly
imaged giant planets (e.g. Konopacky et al. 2013; Snellen et al.
2014; Macintosh et al. 2015; Todorov et al. 2016; Lavie et al.
2017; Gravity Collaboration 2020). Such chemical constraints have
the potential to provide insights into the formation conditions of
exoplanets (e.g. Madhusudhan et al. 2016).

Isolated brown dwarfs bear many similarities to directly imaged
giant planets, which have wide orbital separations and so receive
negligible stellar irradiation (e.g. Burgasser 2012; Marley & Robin-
son 2015). Both classes of objects have H2-rich atmospheres, and
with no irradiation their spectra are dominated by internal heat.
Consequently, the physical processes in both classes of objects may
be expected to be similar for comparable effective temperatures,
making brown dwarfs exquisite analogues to investigate the physical
characteristics of exoplanets at large orbital separations.

Isolated brown dwarfs are also excellent probes of unknown sub-
stellar formation mechanisms, as they lie in the transitional domain
between planetary and stellar masses where such mechanisms are
still in debate (e.g. Whitworth et al. 2007; Luhman 2012; Chabrier
et al. 2014). Determining their compositions may contribute to
constraining such formation mechanisms by finding (dis)similarities
with planetary and stellar properties.

Similarly to exoplanets, brown dwarf spectra have traditionally
been analysed by identifying specific molecular features or fitting
them with grids of equilibrium models (e.g. Mohanty et al. 2004a;
Mohanty, Jayawardhana & Basri 2004b). Based on the presence of
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various combinations of species in different objects, this has led to
the classification of brown dwarfs into the spectral types L, T, and Y,
analogous to those of stars (Kirkpatrick 2005; Cushing et al. 2011).
Although the L–T classification is based only on spectral features,
estimates of the effective temperatures of L- and T-dwarfs (Dahn
et al. 2002; Golimowski et al. 2004; Vrba et al. 2004; Kirkpatrick
2005) have shown that the spectral sequence follows a sequence in
temperature, where early L-dwarfs are hottest and late T-dwarfs are
coolest. Furthermore, L-dwarfs show signs of clouds and dust that are
not typically seen in T-dwarfs (e.g. Marley et al. 2002; Tsuji 2002).
Cloud formation and sedimentation, as well as dynamical processes
and disequilibrium chemistry, have been explored through both self-
consistent models and observations of brown dwarf spectra (e.g.
Saumon et al. 2000; Burrows, Sudarsky & Hubeny 2006; Cushing
et al. 2008; Apai et al. 2013; Marley & Robinson 2015).

More recently – as with exoplanet atmospheres – atmospheric
retrievals have begun to be used with brown dwarf spectra (e.g.
Line et al. 2014, 2015, 2017; Burningham et al. 2017; Zalesky
et al. 2019; Kitzmann et al. 2020). Since brown dwarfs closely
resemble giant planets, the retrieval methods used are similar, though
with some notable differences. For example, unlike exoplanets, the
gravities and radii of brown dwarfs are not typically known and
these quantities are included as free parameters in the retrieval.
Furthermore, since isolated sub-stellar objects are not expected
to exhibit thermal inversions or deep isotherms, their pressure–
temperature (P–T) profiles can be parametrized differently to those
of irradiated exoplanets (e.g. Line et al. 2015; Burningham et al.
2017; Gravity Collaboration 2020; Kitzmann et al. 2020). Retrieval
methods also differ between L- and T-dwarfs, as L-dwarfs are known
to have clouds, which must therefore be included in the retrieval
analyses of their spectra (Burningham et al. 2017). In contrast, Line
et al. (2015) show that the inclusion of clouds in their retrievals of
T-dwarf spectra does not affect their results.

One of the principal differences between brown dwarf retrieval
approaches in the literature is the treatment of the P–T profile (e.g.
Burningham et al. 2017; Line et al. 2017; Kitzmann et al. 2020). For
example, Line et al. (2015, 2017) use 15 temperature parameters,
corresponding to fixed pressures, and interpolate between them in
order to compute radiative transfer at a higher resolution. Since these
temperature parameters are degenerate, they also penalize the second
derivative of the temperature profile in order to prevent unphysical
oscillations in temperature. Burningham et al. (2017), however, find
that this method – originally used with T-dwarfs – presents challenges
with cloudy L-dwarfs as the spectral contrast of their data is not able
to shift the P–T profile away from the linear fit that is preferred
by the second derivative minimization. Instead, Burningham et al.
(2017) use the parametric P–T model from Madhusudhan & Seager
(2009). Kitzmann et al. (2020) consider two further approaches to
model the P–T profile: a piecewise polynomial and an approximate
solution to radiative transfer assuming radiative equilibrium in a grey
atmosphere, both chosen to avoid unphysical oscillations.

In this work, we present various considerations that can affect the
accuracy of brown dwarf retrievals, focusing especially on T-dwarfs.
Motivated by the high-quality spectra available for brown dwarfs,
we seek ways to maximize the precision and accuracy of the results
obtained. We begin by introducing a way of considering uncertainties
in the retrieval, in particular taking into account the uncertainties in
the model. We find that it can be important to explicitly factor in
model uncertainty in order to accurately retrieve the properties of an
atmosphere from a high-signal-to-noise ratio (SNR) spectrum. We
also introduce a new multilayer P–T parametrization in which the
average slope of each layer is a parameter and the temperature nodes

between the layers are interpolated such that the first derivative of the
P–T profile is continuous throughout the atmosphere. The priors on
the slope parameters, as well as the interpolation method, are chosen
to prevent numerical artefacts. We implement this P–T model in the
HyDRA retrieval code (Gandhi & Madhusudhan 2018). We then test
our approach on simulated data and apply it to a high-SNR spectrum
of the T-dwarf 2MASS J2339+1352.

We begin by giving a general outline of the retrieval framework
we use in Section 2. Our developments in considering uncertainties
and modelling the P–T profile are then described in Sections 3 and 4,
respectively. We test the method on synthetic data in Section 5 and
apply it to a real T-dwarf spectrum in Section 6. Our conclusions and
discussion are presented in Section 7.

2 ATMOSPHERI C MODEL

In this work, we use the retrieval method of Gandhi & Madhusudhan
(2018) (HyDRA), with some modifications. This method involves
a parametric atmospheric forward model coupled to PyMultiNest
(Feroz, Hobson & Bridges 2009; Buchner et al. 2014), a nested
sampling Bayesian parameter estimation algorithm (Skilling 2006).
For a given P–T profile and chemical abundances, the forward model
calculates the corresponding spectrum. HyDRA has thus far been used
to retrieve the thermal emission spectra of transiting exoplanets.
Here, we adapt the retrieval method to apply it to high-SNR brown
dwarf spectra. In particular, HyDRA uses a parametric P–T profile
(similar to that of Madhusudhan & Seager 2009) that allows for
features that can be present in irradiated atmospheres, such as deep
isotherms and thermal inversions. In this work, we develop a new
parametric P–T profile as the spectra we consider have a much higher
SNR than typical exoplanet spectra. As a result, the data are better
able to constrain the P–T profile and a more flexible P–T model is
desirable to fully capture the information in the spectrum. In addition
to a new P–T model, we also adapt the retrieval method to include
sources of model uncertainty, which can become significant when
observational uncertainty is very small.

Another important difference between transiting planets and di-
rectly imaged brown dwarfs is that the radius and mass of transiting
planets can be obtained through primary transit and radial velocity
observations, and the distance to the host star (and therefore the
planet) is typically known. In contrast, these quantities are unknown
for isolated brown dwarfs and, hence, need to be included as free
parameters in the model. We include them as the radius–distance
ratio (R/d) and log gravity [log(g)] as these quantities are independent
in the calculation of the spectrum (note that radius and distance
only affect the spectrum through the quantity R/d, so are perfectly
degenerate, as shown in equation 5).

Since giant planets and brown dwarfs both have H2-rich atmo-
spheres, the chemical species we include in the forward model
are largely similar to those in exoplanet studies. To decide which
species to include, we turn to previous analyses of T-dwarf spectra,
which have shown that H2O, CH4, and collision-induced absorption
(CIA) from H2–H2 and H2–He interactions dominate their spectra
(Kirkpatrick 2005). Na and K are also known to be present in the near-
infrared spectra of T-dwarfs, especially towards shorter wavelengths
in the wings of their strong optical lines. Although CO is not expected
to occur in equilibrium at the temperatures in T-dwarfs, it has been
observed in some cases including the first discovered T-dwarf, GJ
229b (Noll, Geballe & Marley 1997; Kirkpatrick 2005), and is likely
indicative of atmospheric vertical mixing (Moses et al. 2011). NH3

is also expected to appear in T-type spectra, although not as strongly
as H2O and CH4 (Roellig et al. 2004). For completeness, we also
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5138 A. A. A. Piette and N. Madhusudhan

retrieve the abundances of CO2 and HCN that could potentially be
significant in H2-rich atmospheres. The cross-sections we use in our
models, apart from those of Na and K, are calculated as in Gandhi
& Madhusudhan (2017) from the HITEMP, HITRAN, and ExoMol
line list data bases [H2O, CO, and CO2: Rothman et al. (2010),
CH4: Yurchenko et al. (2013), Yurchenko & Tennyson (2014), NH3:
Yurchenko, Barber & Tennyson (2011), HCN: Harris et al. (2006),
Barber et al. (2014), CIA: Richard et al. (2012)]. The broadening we
use for Na and K is described in detail in Section 3.1. Note that, since
clouds are not typically detected in T-dwarfs, we do not include them
in the model (e.g. Tsuji 2002; Kirkpatrick 2005; Line et al. 2015, but
see also Morley et al. 2012; Buenzli et al. 2014).

The forward model spectrum is generated from the P–T parame-
ters, chemical abundances, and bulk parameters by solving radiative
transfer, hydrostatic equilibrium, and the ideal gas law successively
across thin layers of the atmosphere (Gandhi & Madhusudhan 2018):

μ
dIν

dτ
= Iν − Bν (1)

dτν =
∑

i

σinidz (2)

dP

dz
= −ρg (3)

P = nkBT (4)

where P, T, ρ, n, τ ν , and dz are the pressure, temperature, gas
mass density, gas number density, optical depth, and thickness of
the atmospheric layer, respectively. g is the gravitational field at the
radius of the layer, Iν is the specific intensity, Bν(T) is the Planck
function, and μ = cos(θ ), where θ is the angle of a ray relative
to the normal. In equation (2), the sum is over all species in the
atmosphere and σ i and ni are the cross-section and number density
of the i-th species, respectively. In the retrieval, the abundances of
the chemical species are characterized by their mixing ratios, Xi =
ni/n. We nominally use 100 thin atmospheric layers for the radiative
transfer calculation, but investigate the effect of this number on the
accuracy of the spectrum in Section 3.1.

At the top of the atmosphere, the emergent flux, Fν, em, is

Fν,em = 2π

∫ 1

0
Iν,em(μ) μ dμ,

where Iν,em is the emergent spectral intensity. The flux at the observer
is then

Fν = R2

d2
Fν,em. (5)

This model spectrum is convolved with HST’s PSF and then binned
into simulated data points at the resolution of the HST/WFC3 (Hubble
Space Telescope’s Wide-Field Camera 3) data.

The parameters listed above are estimated for a given observed
spectrum using the nested sampling algorithm (Skilling 2006), im-
plemented using PyMultiNest (Buchner et al. 2014). The algorithm
estimates the posterior probability distributions of each parameter.
These posteriors are given by Bayes’ Theorem:

P (θ |d,M) = L(d|θ,M) π (θ )

P (d|M)
,

where θ is the vector of model parameters, d is the data, M is
the model, P(θ |d, M) is the posterior distribution, L(d|θ,M) is the
likelihood function, π (θ ) are the priors on the parameters, and P(d|M)
is the Bayesian evidence. The priors used for each parameter are
shown in Table 1. One of the advantages of nested sampling over other
Bayesian parameter estimation methods is that the Bayesian evidence

Table 1. The priors used for each model parameter. All 	Ti parameters
below pressures of 3.2 bar have the same prior range.

Parameter Prior Range

Xi log-uniform 10−10–10−2

R/d (RJ/pc) uniform 10−3–1
log(g/cm s−2) uniform 2–7
xtol uniform 8–100 per cent
T3.2b (K) uniform 300–4000
	T100−32b (K) uniform 0–2500
	T32−10b (K) uniform 0–2000
	T10−3.2b (K) uniform 0–1500
	T3.2−1b–	T10−1mb (K) uniform 0–1000

Table 2. Atmospheric parameters used to simulate the HST/WFC3 spectrum
of Gl 570D, from the retrieval of Line et al. (2015). Also shown are the
parameter values we obtain from the retrieval of these simulated data, which
are consistent with the true input values (Section 5). CO, HCN, and CO2 are
not constrained by the retrieval.

Parameter Input value Retrieved value

log(XH2O) − 3.45 −3.4 ± 0.1
log(XCH4 ) − 3.40 −3.3 ± 0.1
log(XNH3 ) − 4.64 −4.6 ± 0.1
log(XCO) − 7.53 −
XHCN 0.00 −
log(XCO2 ) − 7.76 −
logXNa − 5.50 −
logXK − 6.69 6.8+0.3

−1.1
R/d (RJ/pc) 0.1952 0.20 ± 0.01
log(g/cm s−2) 4.76 4.8 ± 0.2
xtol – 8.05+0.07

−0.03 per
cent

of the model is evaluated to high accuracy, allowing different models
to be compared and the detection significances of chemical species
to be evaluated statistically. In this work, we assume a Gaussian form
for the likelihood function:

L(d|θ ) =
∑

i

1√
2πσ 2

i

exp

[
− (modeli − datai)

2

2σ 2
i

]
, (6)

where the summation is over all data points and the uncertainties, σ i,
will be discussed in Section 3.

In order to test this retrieval method – and various P–T models
within it – we create a simulated spectrum with known input
parameters (black spectrum in the right-hand panel of Fig. 5). A
successful method should then be able to accurately retrieve these
inputs. Throughout this work, we base our simulated spectrum on
the well-studied T-dwarf Gl 570D (e.g. Burgasser et al. 2000, 2003,
2006; Geballe et al. 2001, 2009; Leggett et al. 2002; Cushing et al.
2006; Patten et al. 2006; Saumon et al. 2006; Hubeny & Burrows
2007; Line et al. 2014, 2015). For the input P–T profile, we use the
equilibrium P–T profile shown in fig. 3 of Line et al. (2015) [based
on Saumon & Marley (2008), shown here in the left-hand panel of
Fig. 5]. The abundances for H2O, CH4, NH3, CO, CO2, Na, and K
as well as the radius–distance ratio and gravity are those retrieved
by Line et al. (2015), and are listed in Table 2. In order to test our
forward model, we recreate the median retrieved spectrum from Line
et al. (2015) using their median retrieved P–T profile (different from
the equilibrium P–T profile that we use for our simulated data) and
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Figure 1. Model spectra for validation. The retrieved spectrum of Gl 570D
by Line et al. (2015) is shown by the solid line, and our reproduction of this
spectrum using the same P–T profile and atmospheric parameters is shown
by the dashed line. The two spectra are consistent with each other. Flux axis
is shown in SI units (Wm−2 m−1).

the parameters listed in Table 2. The spectrum we generate with
these inputs is consistent with that of Line et al. (2015), validating
our forward model (Fig. 1).

3 TR E ATM E N T O F M O D E L U N C E RTA I N T I E S

Retrievals performed on exoplanet and brown dwarf spectra to date
have had sufficiently low SNR that model uncertainties may not
have been significant. However, for high-precision spectra, it can be
important to consider model uncertainties in addition to observational
uncertainties. The data considered in this work, obtained by the
HST/WFC3, have an extremely high SNR at only an ∼0.1 per cent
noise level. The uncertainties in models could therefore add a
potentially significant contribution to the σ i term in the likelihood
function (equation 6). We discuss sources of model uncertainty
in Section 3.1, and quantify the magnitude of uncertainty due to
resolution effects. In Section 3.2, we describe how simulated data
are generated such that the effects of these uncertainties on a retrieval
can be tested (Section 5). In Section 3.3, we discuss how quantified
model uncertainties can be incorporated in a retrieval, along with a
‘tolerance’ parameter that captures unknown sources of model and/or
observational uncertainty.

3.1 Uncertainties in the model spectra

In this work, we focus on quantifying two important sources of
model uncertainty: spectral and vertical resolution. In particular,
we explore various methods and spectral resolutions for sampling
molecular cross-sections, as well as the number of atmospheric
layers used to calculate the radiative transfer (i.e. vertical resolution).
In this section, we assess the magnitude of these uncertainties.
As a compromise between precision and computational runtime,
we choose to use spectral and vertical resolutions that result in
a combined uncertainty of ∼8 per cent in the spectrum. We also
consider uncertainties due to the broadening of the Na and K lines
and briefly discuss other potential sources of model error that could
be addressed in future work.

3.1.1 Spectral resolution

Since the calculation of each model in the retrieval must be very
fast, the resolution to which a model spectrum can be calculated
(before binning) is limited. The molecular cross-sections are typi-
cally computed at very high resolution with a grid spacing of 0.01–
0.1 cm−1. The cross-sections of each species must be sampled at
lower resolution, which affects the accuracy of the spectrum. This
can be done in several ways, e.g. sampling individual points, log
averaging the cross-sections over wavelength bins, or using the
correlated-k method (e.g. Irwin et al. 2008; Amundsen et al. 2017).
Here we compare the accuracies of the following four sampling
methods:

(i) Point-sampling: Values of the cross-sections are taken at the
chosen spectral resolution.

(ii) Geometric mean: The cross-sections are divided into bins at
the chosen spectral resolution, and the representative cross-sections
in each bin are log averaged from the native resolution. The averaged
cross-section is associated with the central wavelength of the bin.

(iii) Taking the arithmetic mean: Similar to (ii), but the arithmetic
mean is taken rather than log averaging.

(iv) Taking the log median: Similar to (ii) again, but the median
log cross-section of the bin is used rather than the log average.

We also wish to test how the native resolution of the cross-
sections affects the accuracy of the spectrum; i.e. is sampling from a
0.1 cm−1 resolution cross-section less accurate than sampling from
a 0.01 cm−1 resolution cross-section? Since the model spectra are
ultimately binned to the resolution of the data (R ∼ 100), spectral
information is lost and using very high resolution cross-sections is
likely unnecessary. In our models, we use molecular cross-sections
for the various species at a native spacing of 0.1 cm−1. Here, we also
test models with an even higher resolution (spacing of 0.01 cm−1)
to evaluate its effect on spectral accuracy. Since the cross-section
profile of CIA from H2 and He is very smooth, we use a resolution of
1 cm−1 for CIA opacity throughout this work; a higher resolution is
not needed as no sharp absorption features are revealed by doing this.
In order to test the effect of the native resolution on the spectrum, we
use a model atmosphere including only H2, He, and H2O and compare
the 0.01 and 0.1 cm−1 native resolutions of the H2O cross-sections.
We generate the spectra assuming a H2O mixing ratio of 10−3.45 and
using the P–T profile shown in the left-hand panel of Fig. 5.

In Fig. 2, we show the effect of spectral resolution and sampling
method on the accuracy of spectra. We consider three sampling
resolutions: 2000, 4000, and 6000 linearly spaced wavelength points
in the range 1.1–1.7 μm (i.e. R ∼ 5000, 10 000, and 15 000
in the WFC3 band). We investigate the four sampling methods
mentioned previously, which are performed on cross-sections of H2O
for which the native resolution is either 0.1 cm−1 (shown by squares)
or 0.01 cm−1 (shown by triangles). The accuracy of these spectra is
evaluated against a spectrum generated at native resolution using the
higher resolution (0.01 cm−1) H2O cross-sections.

We confirm that, as expected, the native resolution of the cross-
sections that are sampled (between 0.01 and 0.1 cm−1) makes very
little difference to the binned spectrum. The effects of the four
sampling methods are, however, quite different. The geometric and
arithmetic mean methods result in very large inaccuracies in the
spectrum in some wavelength ranges, so we choose not to use
these methods. Point-sampling and taking the log median introduce
comparable magnitudes of uncertainty to the spectrum, but taking the
log median performs slightly better; using 4000 wavelength points
results in up to >10 per cent uncertainty with point-sampling, but
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Figure 2. Fractional error in the spectrum for different cross-section sam-
pling methods. The orange, red, and maroon lines and markers correspond
to different spectral resolutions, i.e. 2000, 4000, and 6000 linearly spaced
wavelength bins in the range 1.1–1.7 μm, respectively. Whether the cross-
sections being sampled have a native resolution of 0.01 cm−1 (triangles) or
0.1 cm−1 (circles) does not have a significant effect on the spectral error. The
region of ≤8 per cent error is shaded in grey.

≤∼8 per cent with using the log median. Using the log median
sampling method therefore results in a better accuracy pay-off for a
given spectral resolution of the model.

We therefore choose to use the median sampling method in our
retrieval framework. The number of wavelength bins used to compute
the model spectra is then a compromise between computation time
and accuracy. We choose to use 4000 bins as the ≤∼8 per cent
uncertainty it introduces still allows very good constraints to be
placed on the atmospheric model parameters, while preserving a
reasonable computation time.

3.1.2 Vertical resolution

As described in Section 2, equations (1)–(4) are solved iteratively
through each discrete layer in the model atmosphere between
maximum and minimum pressures. These pressure limits should
be sufficiently generous that the spectrum is not affected by them,
but narrow enough that not too many layers are needed to cover
the pressure range. The minimum pressure, Pmin, is dictated by the

Figure 3. Fractional error in the spectrum for different numbers of atmo-
spheric layers in the model (between 100 and 10−3 bar). The region of
≤2 per cent error is shaded in grey.

pressure at which the optical depth of the atmosphere is low enough
not to affect the spectrum significantly. From Fig. 5, we see that using
Pmin = 10−3 should generously allow the photosphere to be probed.
Since the spectrum is not affected by the deep regions of the atmo-
sphere where the optical depth is very high, Pmax should lie deeper
than the deepest pressure that affects the spectrum. Fig. 5 shows that
contributions to the spectrum become small below ∼70 bar, making
100 bar a suitable choice that amply captures the photosphere.

Given this pressure range, increasing the number of atmospheric
layers increases the accuracy of the model spectrum, akin to the
improvement in accuracy of a numerical integrator by decreasing
its step size. However, since the computation time of one model
spectrum scales linearly with the number of atmospheric layers,
the optimal number of layers should be the minimum number
needed for the contribution to the model uncertainty to be relatively
insignificant. Fig. 3 shows that using 100 layers between 100 and
10−3 bar only contributes ∼2 per cent uncertainty to the model, and
this also allows for a manageable computation time. We therefore
choose to calculate model spectra in the retrieval using 100 layers
between 100 and 10−3 bar.

Our chosen spectral and vertical resolutions in the current models
therefore result in a combined ∼8 per cent uncertainty when added in
quadrature. Given that the majority of the error is from the spectral
resolution, this model uncertainty could be reduced if we were to
consider higher spectral resolution, albeit at a greater computational
cost. In what follows, we consider that the uncertainty in our present
model has a lower limit of ∼8 per cent. In Section 3.3, we describe
how this lower limit is included in our retrievals.

3.1.3 Na and K cross-sections

Both Na and K have strong features in the optical (at ∼0.6 and
∼0.8 μm, respectively) with broad wings that extend into the near-
infrared, as well as smaller lines in the optical and infrared. In
particular, the K lines at ∼1.25 μm produce a clear spectral feature
present in the spectra of several T-dwarfs, including that of 2MASS
J2339+1352 (Buenzli et al. 2014), which we discuss in Section 6. In
the past, various treatments have been used for the broadening of both
the strong optical and weaker infrared lines (Burrows & Volobuyev
2003; Allard, Spiegelman & Kielkopf 2007). We use the recent line
profiles of Allard, Spiegelman & Kielkopf (2016) and Allard et al.
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(2019) for the strong lines. However, for the smaller lines, there is
some uncertainty as to which broadening profile is most appropriate.

In this work, we attempt to address the uncertainty in this
broadening by using a simple parametrization for the cross-sections
of the strongest K lines in the spectral range of interest. We apply
the broadening profiles of Allard et al. (2016), scaled by line
strength (Kramida et al. 2019), to the K lines at 1.169, 1.177,
1.178, 1.244, and 1.253 μm, and modulate their cross-sections with
a multiplicative factor that is a free parameter in the retrieval. We use
two multiplicative factors: one (mK1) for the lines at 1.244 and 1.253
μm and another (mK2) for the group of lines at 1.169, 1.177, and
1.178 μm. To avoid degeneracies between these parameters and the
retrieved abundance of K (XK), we choose to retrieve XK1 = mK1 ×
XK and XK2 = mK2 × XK. As well as the opacity due to these K lines,
we also include the wings of the broadened optical lines at ∼0.6
and ∼0.8 μm from Na and K, respectively, which we parametrize
according to the abundances of Na and K (XNa and XK, respectively).

We apply this parametrization in the retrieval of the HST/WFC3
spectrum of 2MASS J2339+1352 (Section 6). In the spectral range
we consider in this work (1.1–1.7 μm), the wing of the Na optical
line is fairly weak, so we do not expect a strong constraint on the
abundance of Na. However, since the K lines at ∼1.25μm correspond
to a noticeable feature in the spectrum of 2MASS J2339+1352, we
expect that XK1 will be strongly constrained. Note that without a
detection of the K wing (i.e. a constraint on XK), the retrieved value
of XK1 does not result in an estimate of mK1; instead, this parameter
simply allows the K feature at ∼1.25 μm to be fitted. More data
at shorter wavelengths, where the wings of the Na and K optical
lines are stronger, would allow better constraints on the absolute
abundances of these species.

3.1.4 Other sources of uncertainty

Although we only quantify two sources of model uncertainty in this
work, we stress that other sources of error can also play an important
role. This is especially true if uncertainty due to prominent effects
(e.g. spectral resolution) is substantially reduced (e.g. by significantly
increasing the spectral resolution or potentially using correlated-k,
e.g. Amundsen et al. 2017), at which point other effects may dominate
as the principal sources of model uncertainty. Such effects include
potential inaccuracies in molecular and atomic line lists, or indeed in
the broadening of these lines as discussed above in the case of Na and
K. The assumption of constant-with-depth chemical abundances may
also impact model uncertainties, though in the case of T-dwarfs the
abundances of H2O and CH4 (the dominant absorbers) are typically
found to be constant with depth in equilibrium models (e.g. Line
et al. 2017). The presence of clouds and any horizontal structure
(including patchy clouds) could also be important, especially for
objects with known variability (e.g. Apai et al. 2013; Buenzli et al.
2014). In future work, consideration of these effects could lead to
an increasingly comprehensive understanding of model uncertainties
and the potential to interpret brown dwarf spectra with ever increasing
precision and accuracy.

3.2 Generating simulated data

As described in Section 2, we investigate different aspects of our
model using a simulated data set based on Gl 570D. A simple way
of doing this is to generate a reference model spectrum using the
atmospheric model from the retrieval framework. However, such a
spectrum would not factor in the model uncertainties described in

Section 3.1 as, unlike real data, the simulated spectrum would be
exactly described by the atmospheric model. In order to emulate real
data as closely as possible and thereby test the retrieval framework’s
robustness to model uncertainties, we instead use the atmospheric
model to generate the reference spectrum as accurately as possible,
i.e. at the highest feasible resolution in both wavelength and pressure
space. While this does not incorporate physical features that are not
included in the atmospheric model (e.g. the presence of Na and K), the
main numerical sources of uncertainty in the retrieval’s atmospheric
model are addressed and their effects on the retrieval can be tested.

We calculate the reference spectrum at the native resolution of the
cross-sections (0.1 cm−1), which is then binned in the same way as
the HST/WFC3 data. Since the real HST/WFC3 data that we analyse
have uncertainties of 0.1–0.2 per cent, each binned model point is
then shifted by a value randomly drawn from a Gaussian distribution
with a standard deviation equal to 0.2 per cent of the simulated data
point’s flux value. The simulated uncertainty is 0.2 per cent of the
flux in the respective spectral bin. The radiative transfer calculation
is done over 1000 layers (compared to 100 in the retrieval). Note
that the simulated data are generated with the same pressure limits
as the model in the retrieval framework and no Na or K is included,
so uncertainties due to these factors are not present.

3.3 Treatment of uncertainties

We have considered the magnitude of uncertainty in our model
spectra in Section 3.1. We now wish to include this information in
the retrieval such that the retrieved atmospheric parameters are not
biased by the model uncertainties. In addition, we would also like to
allow for any unknown sources of error that may affect either the data
or the model. This can be achieved by adding a ‘tolerance’ parameter
to the model that characterizes the ‘extra’ uncertainty in addition to
the known observational uncertainties. Previous studies have done
this by adding a wavelength-independent parameter in quadrature to
the uncertainty of each data point (e.g. Line et al. 2015; Burningham
et al. 2017). The σ i term in equation (6) that Line et al. (2015) use is
given by

σi =
√

σ 2
i,d + 10b, (7)

where σ i, d is the uncertainty in the i-th data point and b is a free
parameter with a uniform prior. The prior bounds on b are such
that the minimum possible value of 10b is very small (typically
less than the smallest error bar in the data), meaning that the
retrieval is not obliged to account for the known model uncertainty.
Otherwise put, this form of the tolerance parameter relies on the
retrieval being able to ascertain the model uncertainty without it being
included in the prior information. We test whether this can work by
implementing this form of the tolerance parameter in our retrieval
framework, with the uniform prior on b going from log10(0.01 σ 2

d,min)
to log10(10 000 σ 2

d,max), where σd,min and σd,max are the minimum and
maximum uncertainties in the data, respectively.

Fig. 4 shows the posterior distributions of a selection of model
parameters from a retrieval that uses this tolerance parameter (in
purple). The retrieved value of b is equivalent to adding an uncertainty
of 10b = 6.5 × 10−23 Wm−2 m−1, i.e. many orders of magnitude
smaller than the estimated ∼8 per cent uncertainty in the model
(10b < 2 × 10−10 per cent of the minimum flux value in the
simulated data). This underestimate in uncertainty is manifested
as very narrow posterior distributions that, for parameters such as
the H2O abundance, result in the median retrieved value being
consistently offset from the true value by more than 1 standard
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Figure 4. Posterior probability distributions obtained with two different tolerance parameters. Squares and error bars show the median retrieved parameter
values and 68 per cent confidence intervals, respectively, and the true input values are shown by yellow dashed lines. Purple histograms and light purple squares
(top) show the retrieval output when the tolerance parameter takes the form in equation (7), with a prior that allows a negligibly small value of the tolerance to
be retrieved (note that the error bars are smaller than the symbol). In this case, the uncertainty in the retrieved parameters is noticeably underestimated. Blue
histograms and light blue squares and error bars (bottom) correspond to the tolerance parameter described in equation (8), with a prior that explicitly accounts
for known model uncertainties. This form of the tolerance parameter successfully retrieves the atmospheric parameters to within 1 standard deviation.

deviation. Effectively, the ‘noise’ introduced by the known model
uncertainty is easily overfitted by a slight offset in the model
parameter values. This can be remedied by explicitly accounting for
known model uncertainties in the tolerance parameter, as discussed
below.

Another potential issue with the tolerance parameter in equation
(7) is that it is wavelength independent, whereas the model uncer-
tainty is not. From Figs 2 and 3, the uncertainties from cross-section
sampling and the number of atmospheric layers used are, to within
a few per cent, proportional to flux (for a sufficiently large number
of atmospheric layers and cross-section sampling resolution). We
therefore investigate a new form of the tolerance parameter:

σi =
√

σ 2
i,d + x2

tolf
2
i,m, (8)

where fi,m is the value of the i-th model binned point and changes
in each iteration of the nested sampling algorithm, and xtol is a free
parameter with a uniform prior. In order to fully account for the model
uncertainty that is known, the lower bound of this prior is chosen to
be the estimated level of uncertainty of the model, i.e. ∼8 per cent.
The upper bound of the prior on xtol is arbitrarily set to the large value
of 100 per cent. Using this form for the tolerance parameter in the
retrieval framework results in the posteriors shown in Fig. 4 (in blue).
As expected, the posteriors are much wider and the atmospheric
parameters are successfully retrieved within 1 standard deviation of
the true value. We therefore choose to use the xtol tolerance parameter
in the work that follows. Note that when retrieving real data, unknown
uncertainties (taken into account by the xtol parameter) may be of the
order of 8 per cent or more. In this case, imposing a lower limit of
8 per cent on xtol does not make much difference and the retrieved
posteriors are similar for both of the aforementioned uncertainty
consideration methods. Nevertheless, it is worth accounting for the
model uncertainty in case the unknown uncertainties are smaller.

4 A P–T M O D E L FO R B ROW N DWA R F S

In this section, we present a new parametric P–T model for
brown dwarfs, which comprises multiple atmospheric layers and
is parametrized according to the changes in temperature across those

layers, as well as a fiducial temperature. While several parametric P–
T models are available for exoplanet atmospheres, we consider a new
P–T profile for the following reasons: First, isolated brown dwarfs
have much steeper temperature profiles compared to irradiated
planets, and changes in the P–T gradient can have significant effects
on the emergent spectrum. This, combined with the high precision of
brown dwarf spectra, means that the P–T model must be adequately
flexible such that the parameter space of P–T gradients can be
properly explored in the retrieval. Secondly, since the thermal profiles
of brown dwarfs are so different to those of irradiated planets, the
photospheres of brown dwarfs can occur at different pressure ranges
compared to planets. As such, it is important that the P–T model
is able to capture this and provide flexibility in the photosphere,
which is the atmospheric region best constrained by the spectrum. We
begin by exploring these properties of brown dwarfs in Section 4.1,
with the purpose of informing our P–T model. In Section 4.2, we
present the P–T model and discuss the challenges of developing
a P–T parametrization that satisfies the above requirements given
known numerical artefacts that have been encountered in existing
prescriptions.

4.1 Thermal and opacity structure of brown dwarfs

The majority of retrieval analyses to date have been performed on hot
Jupiters. However, the thermal structure of an isolated brown dwarf
differs greatly from that of a hot Jupiter as it does not receive stellar
irradiation. Thus, these objects are not expected to exhibit thermal
inversions or to have isotherms deep in their atmospheres (∼1 bar),
as found in hot Jupiters (Hubeny, Burrows & Sudarsky 2003; Fortney
et al. 2008). This has implications on how deeply we can probe the
atmosphere of a brown dwarf; in known hot Jupiters, the isotherm at
∼0.1–1 bar (Gandhi & Madhusudhan 2017) means that the spectrum
is not sensitive to the atmosphere below this point. However, this
limit does not exist for isolated objects, whose temperatures increase
monotonically with pressure. Instead, the maximum depth that we
are sensitive to in a brown dwarf is limited by the height at which
the atmosphere becomes optically thick.

To investigate how a brown dwarf atmosphere is probed by its
spectrum, we consider the origins of the spectrum as a function of
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Atmospheric retrieval of brown dwarfs 5143

Figure 5. Left-hand panel: approximation of the P–T profile of G1 570D, based on the equilibrium profile from Line et al. (2015). The range of pressures
probed by the τ = 1 surface is shaded in grey. Right: colour map shows fractional change in spectral intensity, |dIν |/Iν , where darker regions denote more
absorption. The solid black line is the smoothed emergent spectrum for this atmosphere. The smoothed τ = 1 surface is shown by the dashed grey line and is
indicative of the pressure to which a given part of the spectrum is most sensitive to. Flux axis is shown in SI units (Wm−2 m−1).

pressure and wavelength. To quantify this, we define the fractional
change in spectral intensity, |dIν |/Iν , where Iν is the incoming spectral
intensity at the bottom of an atmospheric layer and dIν is the change
in the spectral intensity across that layer. We plot this quantity for our
simulated model of G1 570D in Fig. 5, showing the depths which
each point in the spectrum is sensitive to. The line of unit optical
depth, τ = 1, represents the depth which the spectrum at a given
wavelength is most sensitive to. In the case of this model atmosphere,
we find that the spectrum is highly sensitive to pressures between 1
and 20 bar, and significantly affected by pressures up to several tens
of bar.

The implications of such a deep photosphere are that (i) we are able
to probe T-dwarf atmospheres much more deeply than hot Jupiters;
(ii) the choice of parametrization for the P–T profile should allow for
a lot of flexibility between ∼1 and ∼100 bar, as the spectrum is able
to strongly constrain this part of the profile. It is also informative to
see how each species in the model contributes to the absorption map
in Fig. 5. Fig. 6 shows these contributions, from which it is clear
that H2O, CH4, and NH3 have the strongest features in this spectral
range and are most likely to be constrained by the retrieval. It is also
clear that there are degeneracies between the contributions of each
molecule, although high-quality data are able to distinguish between
their individual fingerprints.

Degeneracies also exist between the abundances of certain species
and aspects of the P–T profile. This can be understood by considering
the effects of the slope of the P–T profile on the spectrum, as shown in
Fig. 7. The slope of the deepest part of the P–T profile has a significant
effect on the high-flux regions of the spectrum, which is expected
since those parts of the spectrum are formed in the high-pressure
regions of the atmosphere. These flux peaks are also strongly shaped
by the abundances of the most active species in the atmosphere (in
this case, H2O, CH4, and NH3). As a result, the slope of the deepest
part of the P–T profile is degenerate with the abundances of H2O,
CH4, and NH3. Flexibility in the high-pressure region of the P–T
model is therefore crucial, as any deviation from the true P–T profile
may be propagated to the retrieved chemical abundances.

4.2 P–T parametrization

In existing work on the retrieval of exoplanet atmospheres, a common
approach has been to describe the P–T profile with an analytic
model (e.g. Madhusudhan & Seager 2009; Guillot 2010). Studies
using brown dwarf spectra (e.g. Burningham et al. 2017) have also
considered such profiles (e.g. that of Madhusudhan & Seager 2009).
These analytic models are well suited to atmospheric retrievals as
they are able to capture a broad variety of P–T profiles with only a
few parameters. Indeed, they have been proven to work well with
the current data quality of exoplanet spectra (e.g. Blecic, Dobbs-
Dixon & Greene 2017; Gandhi & Madhusudhan 2018). However,
this simplicity can come at a cost as an analytic function may not
always be capable of exactly capturing the underlying P–T profile,
particularly for very high quality data. In the case of T-dwarfs, an
incorrect P–T slope could potentially introduce biases into other
retrieved parameters, as discussed in Section 4.1.

A second approach that has been used for retrievals of isolated or
poorly irradiated sub-stellar objects is to use physically motivated
non-irradiated P–T profiles. For example, one of the models consid-
ered by Kitzmann et al. (2020) is an approximate solution to radiative
transfer assuming a grey atmosphere and radiative equilibrium. They
find that such a solution struggles to fit the temperature profile at
lower pressures. Gravity Collaboration (2020) use a parametric P–T
model that applies the Eddington approximation in the photosphere
and a moist adiabat below the radiative–convective boundary.

An alternative way of describing the P–T profile is to allow
the temperatures at certain pressures in the atmosphere to be free
parameters, which can then be interpolated to the resolution at which
radiative transfer is calculated (e.g. Line et al. 2015, 2017; Zalesky
et al. 2019; Kitzmann et al. 2020). This form of parametrization has
the advantage of allowing a lot of freedom in the P–T profile, but
this freedom is susceptible to overfitting. In particular, oscillations
in the P–T profile (or ‘ringing’) are a common problem. Line et al.
(2015, 2017) overcome this by penalizing the second derivative of
the P–T profile in the likelihood function, disfavouring features in
the profile that are not required by the data. Kitzmann et al. (2020)
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Figure 6. Contributions of each species to atmospheric absorption. We take the synthetic spectrum of an atmosphere described by Table 2, and perturb each
species’ abundance by the amount stated in the top left corner of each panel. The two black lines in each panel show the smoothed spectra with the positive and
negative perturbations, respectively. Each colour map is the difference in |dIν |/Iν between the positive and negative perturbations. Note that larger perturbations
in the abundances of HCN, CO, and CO2 (compared to H2O, CH4, and NH3) are needed to make comparable changes in the spectrum. Note that HCN has been
included in the reference model with an arbitrary mixing ratio of 10−7, and all other abundances are the same as in Table 2. Flux axes are shown in SI units
(Wm−2 m−1).

Figure 7. Effect of changing the slope of the P–T profile at high pressures
on the spectrum. Each P–T profile in the inset corresponds to the spectrum
with the matching colour. The slope of the P–T profile at pressures greater
than 10 bar has a significant effect on the flux peaks in the spectrum. Flux
axis is shown in SI units (Wm−2 m−1).

consider a different approach and fit the P–T profile with a piecewise
polynomial.

We present a new approach to describing the P–T profile that
allows for a high level of freedom but excludes unphysical features.
In particular, we aim to avoid ringing and large oscillations that
resemble thermal inversions, as these can easily overfit the data
but are evidently not physical. Large oscillations in the P–T profile
rely on the freedom to have temperature increasing towards lower
pressures, and so one way to avoid this is to exclude P–T models with

a negative gradient at any point. This can be done by assigning a very
low likelihood to any models with a temperature profile that does not
monotonically increase with pressure. However, this typically results
in a very low acceptance rate in the nested sampling algorithm and
hinders its convergence. To overcome this, we instead characterize
the temperature profile by the changes in temperature, 	Ti, across
multiple atmospheric layers, plus a temperature parameter that acts
as an anchor point (‘slope’ P–T model or ‘SPT’; see Fig. 8). The
temperature parameter is placed in the photosphere as this is where
the P–T profile is best constrained by the data. Based on Fig. 7, the
range of pressures covered by the photosphere is expected to include
∼1–10 bar, so we place the temperature parameter at 3.2 bar (T3.2b).

In each atmospheric layer, 	Ti is the increase in temperature
from the low-pressure side of the layer to the high-pressure side.
We therefore set the lower bound of the prior distributions on the
	Ti to 0 K such that only models where temperature increases with
pressure are considered. The upper bounds of the priors are shown
in Table 1. The prior for each 	Ti parameter is chosen to be a very
generous temperature range given typical P–T profiles of T-dwarfs.
We avoid placing unrealistically high limits on the 	Ti priors as
this would result in many models extending to unfeasibly high or
low temperatures. Instead, we choose a suitably wide prior for each
individual 	Ti parameter.

For given 	Ti and T3.2b, the temperature nodes defined by these
parameters are interpolated with a monotonic spline and smoothed
with a Gaussian kernel of width 0.3 dex in pressure. Note that we
do not use a ‘traditional’ spline fit as this is prone to introducing
oscillations, even if the nodes it is fitting are monotonically de-
creasing. The number of 	Ti parameters and the thicknesses of the
atmospheric layers between them are free to be chosen – we use
the seven layers defined between pressures of 100, 32, 10, 3.2, 1,
0.1, 0.01, and 0.001 bar as this concentrates the 	Ti parameters at
deeper pressures, where more flexibility is needed, and has fewer
parameters at lower pressures, where the spectrum does not strongly
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Figure 8. ‘SPT’ parametric P–T model used in our retrieval framework. The P–T points are defined by the changes in temperature between them, as well as the
absolute temperature at 3.2 bar. They are then interpolated using a monotonic spline fit and smoothed with a Gaussian kernel of width 0.3 dex in pressure.

constrain the P–T profile. We note, however, that this P–T model is
not strongly sensitive to the chosen atmospheric layers as long as
enough flexibility is given in the photosphere.

5 R ETRIEVA L OF SIMULATED DATA

We now present a test retrieval on our simulated data (described
in Section 3.2) using the chosen tolerance parameter and the SPT
P–T model from Sections 3 and 4, respectively. There are a total of
19 parameters: 8 chemical abundances, 8 P–T parameters, gravity,
radius-to-distance ratio, and the tolerance parameter. The cross-
sections we use for Na and K include the wings of the strong optical
lines (at 0.6 and 0.8 μm, respectively) as well as the other Na and K
lines present in the spectral range 1.1–1.7 μm (Kramida et al. 2019).
We use the broadening profiles of Allard et al. (2016, 2019) for all of
the lines, scaled appropriately according to line strength. We run this
retrieval on the simulated data described in Section 3.2, for which
the input parameters are known.

The retrieved parameter values match the known parameter values
excellently (Figs 9 and 10, Table 2). All of the constrained parameters
are retrieved within 1σ of the true values, and the simulated data
points are successfully fitted by the median retrieved spectrum. In
particular, the abundances of H2O, CH4, NH3, and K as well as
gravity and the radius-to-distance ratio are strongly constrained. The
abundances of CO, HCN, CO2, and Na are not constrained but this is
expected since they do not have strong features in this spectral range.
The retrieved P–T profile in Fig. 9 is an excellent fit to the input
profile in the photosphere, where it is most tightly constrained by
the spectrum, though below pressures of ∼1 bar and above ∼30 bar
the P–T profile has little influence on the spectrum and is not tightly
constrained. We therefore conclude that this retrieval framework

is consistent, in the sense that it is able to accurately retrieve a
high-precision brown dwarf spectrum generated using its parametric
model. Furthermore, the retrieval is able to successfully use a lower
resolution atmospheric model to retrieve a model spectrum generated
with higher spectral and vertical resolution.

The test retrieval also highlights degeneracies that exist between
certain pairs of parameters, although they do not prevent the retrieval
from finding the true parameter values. It is informative to understand
the origins of these degeneracies, which we describe below. The
strongest degeneracies between the parameters, visible in Fig. 10,
are between the chemical abundances, gravity, and R/d.

(i) Gravity and chemical abundances: Gravity and the chemical
abundances are positively correlated because they both affect the
optical depth of the atmosphere. Since pressure is an independent
variable in our atmospheric model, the equation of hydrostatic
equilibrium (equation 3) scales the physical depth of each atmo-
spheric layer across which radiative transfer is calculated. A larger
log(g) results in a smaller scale height and a lower optical depth.
Conversely, greater chemical abundances result in a greater optical
depth (equation 2). This can be expressed by combining equations (2)
and (3):

dP

dτ
= ρg∑

i σini

,

where the sum is over all species. The optical depth can be
kept constant for an increasing g if the following expression also
increases:
∑

i σini

ρ
=

∑
i

σiXi

m̄
,
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Figure 9. Left: The median retrieved spectrum (maroon line) from the retrieval of our simulated data. 1σ and 2σ confidence intervals are shown by dark and
light orange shadings, respectively. The simulated data points are shown by blue circles, and error bars show the median retrieved tolerance. Yellow diamonds
show the median binned model. Flux axis is shown in SI units (Wm−2 m−1). Right: The input (blue line) and median retrieved (maroon line) P–T profiles. 1σ

and 2σ confidence intervals are shown by dark and light orange shadings, respectively.

where m̄ is the average particle mass. In a hypothetical spectral
range in which only one species is absorbing, this can be achieved
by increasing that species’ abundance. However, for a spectral band
in which multiple species are absorbing, those with stronger cross-
sections will have increased abundances while those with weaker
cross-sections will have decreased abundances (since

∑
iXi = 1).

In this case, H2O, CH4, and K are the strongest absorbers in their
respective bands, so their abundances are positively correlated with
log(g). However, NH3 has a much weaker effect on the spectrum
and is negatively correlated with log(g). Since different species
dominate in different spectral bands, the effect of varying the
chemical abundances has a different wavelength dependence to
varying the gravity. As such, this degeneracy does not prevent the
true abundances and gravity from being determined in the retrieval.

(ii) R/d and gravity: Gravity and R/d are negatively correlated
as they both scale the flux level of the spectrum. As discussed above,
a larger value of log(g) results in a lower optical depth and a higher
flux. Since R2/d2 is a direct multiplicative factor in the flux (equation
5), increasing it also results in a larger flux. An increase in log(g)
can therefore be somewhat offset by a decrease in R/d, resulting in
a negative correlation. Nevertheless, the wavelength dependences of
these effects are different, meaning that this is not a strong degeneracy
and is broken in the retrieval.

(iii) P–T parameters: The 	T parameters deeper than 1 bar
are all degenerate with each other and show an interesting pattern
of negative correlations between adjacent atmospheric layers and
positive correlations between 	Ts separated by an odd number of
layers. This pattern is indicative of oscillations in the P–T profile
and is significantly accentuated by the smoothing of the profile, as
profiles with small oscillations become equivalent to ones without
them.

(iv) Chemical abundances: The abundances of some of the
constrained species (H2O, CH4, and K) are strongly positively
correlated. If the spectral fingerprints of these molecules were not
entirely distinguishable, one would expect a negative correlation
between their abundances. However, the data are able to distinguish
each species and the degeneracy instead comes from the fact that
the chemical abundances are degenerate with bulk properties of the
atmosphere such as gravity and R/d. For example, an increase in the

abundance of H2O can be offset by changes in log(g) or R/d, but
these quantities are also degenerate with the abundances of CH4 and
K that must then also increase.

6 A PPLI CATI ON TO DATA

We now demonstrate our retrieval framework on an emission spec-
trum of the brown dwarf 2MASS J23391025+1352284 (Buenzli
et al. 2014). Properties of 2MASS J2339+1352 from the literature
are shown in Table 3. This object was discovered by the Two Micron
All-Sky Survey (2MASS; Skrutskie et al. 2006) and identified as
a T-dwarf by Burgasser et al. (2002). Its infrared spectral sub-type
is T5 (Burgasser et al. 2006) and it is therefore expected to have an
effective temperature in the range of ∼1000–1500 K (e.g. Kirkpatrick
2005). A high proper motion has also been measured for this object
(Schneider et al. 2016; see Table 3), consistent with its nearby
estimated distance of 18.8 ± 3.8 pc (Dupuy & Liu 2012; Buenzli et al.
2014). Buenzli et al. (2014) observed 2MASS J2339+1352 using
the HST/WFC3 in the range 1.1–1.7 μm, which is the spectrum
we use for this retrieval. These data are part of a spectroscopic
survey searching for brown dwarf variability, which in turn may
indicate the presence of patchy photospheric clouds. Buenzli et al.
(2014) find that, in contrast to many of the brown dwarfs in their
survey, 2MASS J2339+1352 is only tentatively variable. This object
is therefore a suitable demonstration for our cloud-free retrieval.
The uncertainties on the data are of the order of 0.1 per cent, with
an estimated 2 per cent systematic flux calibration uncertainty. The
model uncertainties considered in Section 3 are therefore significant
and justify the use of the tolerance parameter. As described in
Section 3, we also parametrize the cross-sections of the strongest
K lines in this spectral range.

Figs 11 and 12 show the results of the retrieval. In what follows,
we describe the retrieved values of the model parameters.

6.1 Chemical abundances

6.1.1 H2O and CH4

We obtain strong detections of H2O and CH4 with log abundances of
−3.85 ± 0.09 and −4.4 ± 0.1, respectively. The ∼0.1 dex precisions
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Figure 10. Marginalized posterior probability distributions from the retrieval of simulated data based on Gl 570D. Off-axis plots are 2D marginalized posteriors
and show the correlations between pairs of parameters. 1D marginalized posteriors are shown for each parameter along the diagonals, with median values and
68 per cent confidence intervals shown by the dark squares and error bars, respectively. Dashed lines show the input values of each parameter, used to generate
the simulated data.

Table 3. Properties of 2MASS J23391025+1352284 from the literature.
References: 1. Skrutskie et al. (2006), 2. Burgasser et al. (2006), 3. Buenzli
et al. (2014), 4. Wright et al. (2010), and 5. Schneider et al. (2016).

Property Value References

RA (deg, J2000) 354.792 715 1
Dec (deg, J2000) +13.874 577 1
IR spectral type T5 2
Estimated distance (pc) 18.8 ± 3.8 3
2MASS J mag 16.239 ± 0.108 1
2MASS H mag 15.822 ± 0.151 1
W1 mag 15.218 ± 0.044 4
W2 mag 13.818 ± 0.044 4
μα (mas yr−1) 396.0 ± 41.6 5
μδ (mas yr−1) –1018.7 ± 34.6 5

of these abundances are smaller than the ∼0.5 dex achievable with
current exoplanet spectra (e.g. Gandhi & Madhusudhan 2018) thanks
to the precision of the data. Furthermore, these retrieved abundances
are lower than expectations based on solar elemental abundances
in chemical equilibrium (Burrows & Sharp 1999; Madhusudhan
2012). Using H2O and CH4 as proxies for the abundances of oxygen
and carbon, respectively, their abundances suggest that oxygen is
0.17+0.04

−0.03 times sub-solar and that carbon is 0.08+0.03
−0.02 times sub-solar

(Asplund et al. 2009). However, we note that other sources of oxygen
and carbon (e.g. silicates or CO) that are not detectable in the near-
infrared spectrum would alter these estimates.

6.1.2 NH3

Although we found that NH3 could be retrieved from our simulated
data, we only retrieve an upper limit from the spectrum of 2MASS
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5148 A. A. A. Piette and N. Madhusudhan

Figure 11. Spectrum and P–T profile retrieved for 2MASS J2339+1352. Left: The median retrieved spectrum (maroon line) and 1σ and 2σ confidence intervals
(dark and light orange shadings, respectively). Data points are shown by blue circles, and error bars depict the median retrieved tolerance. Yellow diamonds
show the median binned model. Flux axis is shown in SI units (Wm−2 m−1). Right: Median retrieved P–T profile (maroon line) and 1σ and 2σ confidence
intervals (dark and light orange shadings, respectively).

J2339+1352. This could potentially be due to a low abundance of
NH3, and to test this we create and retrieve two further sets of simu-
lated data identical to that described in Section 3.2, but with reduced
NH3 mixing ratios of 10−6 and 10−7, respectively. In both cases, we
retrieve a flat posterior for the NH3 abundance, indicating that NH3

is not detected (Fig. 13). It is therefore plausible that we are seeing
signs of a very low abundance of NH3 in the spectrum of 2MASS
J2339+1352. This is consistent with the retrieved P–T profile since
NH3 is not expected to be abundant at higher temperatures, when it
is preferentially locked up in N2; for example, the equilibrium solar
mixing ratio of NH3 at 1 bar drops from ∼10−3.7 at 500 K to ∼10−5.2

at 1000 K (Burrows & Sharp 1999; Moses et al. 2013).

6.1.3 CO, CO2, and HCN

We retrieve an upper limit on the abundance of CO of 10−5.9

(99 per cent confidence interval). However, the abundances of CO2

and HCN are unconstrained by the retrieval. This is expected since
these species do not have strong cross-sections in the spectral range
of the data (Fig. 6).

6.1.4 Na and K

We place an upper limit on the K mixing ratio of 10−6.9 (at the
99 per cent confidence level). We also find that the spectral feature
visible in the data at ∼1.25 μm is fitted by the K lines in this region,
resulting in a strong constraint on XK1. XK2 is not constrained by
the retrieval, suggesting that these lines are in fact too weak to be
recovered from the spectrum. Na is completely unconstrained by the
retrieval, as expected from the test retrieval in Section 5, as it has
very little impact on the spectrum.

In order to test the effects of Na and K on the other retrieved
parameters, we also performed a retrieval without Na and K (Figs A1
and A2, Table A1). The retrieved values of all the other parameters
are consistent between the two retrievals, though the feature at ∼1.25
μm is not fitted when K is not included. This indicates that, while
including the K lines at ∼1.25 μm improves the fit to the data, it does
not impact the other retrieved parameters.

6.2 P–T profile

The retrieved P–T profile is well constrained, especially in the photo-
sphere. Between ∼0.6 and ∼20 bar, the temperature is constrained to
within ∼100 K. We retrieve the temperature at 3.2 bar (i.e. the fiducial
temperature in the photosphere; see Section 4.2) to be 1240+110

−100 K.
As expected, the temperatures in the deepest and shallowest regions
of the atmosphere are not well constrained by the retrieval, as can
be seen by the larger 1σ and 2σ margins in the right-hand panel of
Fig. 11. This shows that the retrieval is able to fit parts of the P–T
profile that inform the spectrum while remaining agnostic about parts
that are not constrained by the data.

6.3 R/d, gravity, and tolerance

We retrieve a radius–distance ratio of 0.058 ± 0.004 RJ/pc and a
log gravity (in cm s−2) of 4.0 ± 0.2. Using a distance estimate,
these quantities can be used to infer a mass and radius for 2MASS
J2339+1352. Although a parallax measurement is not available for
this object, Buenzli et al. (2014) calculate a distance estimate based
on the relation between spectral type and absolute H-band magnitude
given by Dupuy & Liu (2012). Using this estimate of 18.8 ± 3.8 pc,
we derive a radius of 1.1 ± 0.2 RJ and a mass of 5+3

−2 MJ. We note,
however, that a direct parallax measurement could provide more
accurate mass and radius estimates. These mass and radius values
are discussed further in Section 7.

The posterior probability distribution retrieved for the tolerance
parameter is stacked against the lower prior of 8 per cent, suggesting
that no significant uncertainties above this level were found by the
retrieval. However, forcing the lower prior of this parameter to be the
minimum known uncertainty in the model (i.e. ∼8 per cent) means
that this uncertainty has been propagated to the posterior distributions
of the other retrieved parameters, preventing underestimates in their
uncertainties.

7 SUMMARY AND DI SCUSSI ON

In this work, we investigate important considerations for accurate
atmospheric retrievals of high-precision spectra of brown dwarfs.
This is motivated by the availability of very high SNR HST infrared
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Atmospheric retrieval of brown dwarfs 5149

Figure 12. Marginalized posterior probability distribution from the retrieval of 2MASS J2339+1352. Off-axis plots show 2D marginalized posteriors. 1D
marginalized posteriors are shown for each parameter along the diagonals, with median values and 68 per cent confidence intervals shown by the dark squares
and error bars, respectively.

spectra of brown dwarfs. These data present the potential to determine
the atmospheric and chemical properties of brown dwarfs with
unprecedented precision. To utilize this potential, we find that
certain approaches in modelling technique contribute significantly
to the accuracy of the results obtained. We introduce several key
developments as follows.

First, we consider the uncertainty in our atmospheric model and
explicitly include it in the retrieval framework as prior information
on a variable ‘tolerance’ parameter. This allows the retrieval to
constrain unknown sources of uncertainty (e.g. Burningham et al.
2017; Line et al. 2017) while also accounting for known sources
of error in the model. Two main sources of model uncertainty
are the sampling of chemical cross-sections and the resolution of
the pressure grid in the model atmosphere. We approximate these
effects as being proportional to model flux, and as such choose a
tolerance parameter (xtol) proportional to flux, which is then added

in quadrature to the data uncertainties. The lower bound of the
prior on xtol is then set to the level of known model uncertainties
(∼8 per cent in the present case). This error, which comes largely
from our chosen spectral resolution, can be reduced by using a higher
spectral resolution at a higher computational cost. Although we find
that using a tolerance parameter proportional to flux works well in
estimating model uncertainties, other wavelength dependences are
not accounted for and could be considered in future work. There are
also potential sources of uncertainty in the model, such as depth-
varying chemical abundances and atmospheric dynamics, which
we do not include here but which could be considered in future
work.

The second development we make is a new parametrization of
the P–T profile. We begin by investigating the thermal and opacity
structure of brown dwarfs in order to inform our choice of P–T
model and find that pressures of up to several tens of bar can be
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Figure 13. Posterior distributions of the NH3 abundance from the retrieval of simulated data with input NH3 mixing fractions of 10−4.64, 10−6, and 10−7,
respectively. Median retrieved values and 68 per cent confidence intervals are shown by the dark blue squares and error bars, respectively. Vertical dashed lines
show the true NH3 abundance for each case. NH3 is not detected when the mixing fraction is 10−6 or 10−7.

probed by the spectrum, almost two orders of magnitude deeper than
that for typical hot Jupiters. This means that the P–T model should
be sufficiently flexible at high pressures as the spectrum will be able
to constrain it there. Indeed, we find that the slope of the P–T profile
at high pressures has a very strong effect on the high-flux regions of
the spectrum.

A potential P–T parametrization is one with a series of free
temperature parameters, which allows for considerable freedom in
the retrieval. However, this can result in overfitting due to unphysical
oscillations in temperature, which must be corrected for (e.g. Line
et al. 2015; Kitzmann et al. 2020). Our new P–T model overcomes
this issue by excluding certain unphysical, overfitted P–T profiles.
The profile is characterized by the slopes of the P–T profile across
given atmospheric layers, and the priors on these slopes are chosen
such that atmospheric temperature always increases with pressure.
This eliminates large oscillations and makes the model more robust
to changes in the number of P–T parameters compared to a model
with free temperature parameters. Although it would be preferable
to allow for the possibility of finding a thermal inversion (noting that
brown dwarfs are not expected to exhibit these), it would be difficult
to distinguish the discovery of an inversion from overfitting.

We then apply the adapted retrieval framework to the HST/WFC3
spectrum of the T5 brown dwarf 2MASS 2339+1352 (Buenzli et al.
2014). To test the accuracy of the method, we first apply it to
a simulated spectrum with known input parameters. The retrieval
is able to accurately retrieve these inputs, confirming that the
method is self-consistent. When applied to 2MASS 2339+1352, the
retrieval strongly constrains the mixing fractions of H2O and CH4

at 10−3.7 and 10−4.3, respectively, with 1σ uncertainties of ∼0.1 dex
(Table 4). These abundances suggest sub-solar elemental abundances
for oxygen and carbon: 0.13 ± 0.03 and 0.07+0.03

−0.02 times solar values,
respectively (Asplund et al. 2009). We place an upper limit of 10−5.9

on the mixing ratio of NH3 (at the 99 per cent confidence level), which
is expected from the retrieved P–T profile as nitrogen is expected to
be locked in N2 at higher temperatures (e.g. above 500 K at 1 bar
(Burrows & Sharp 1999; Moses et al. 2013)). We also place an upper

Table 4. A summary of the retrieved atmospheric properties of 2MASS
J2339+1352. Upper limits show 99 per cent confidence intervals. The
abundances of CO, HCN, CO2, and Na are not constrained. The abundances
of H2O and CH4 are both found to be significantly sub-solar, at ∼0.2× and
∼0.1× solar, respectively (Gandhi & Madhusudhan 2017).

Parameter Retrieved value

log(XH2O) −3.85 ± 0.09
log(XCH4 ) −4.4 ± 0.1
log(XNH3 ) <−5.9
log(XCO) <−5.9
log(XK) <−6.9
T3.2b (K) 1240+110

−100
R/d (RJ/pc) 0.058 ± 0.004
log(g/cm s−2) 4.0 ± 0.2
xtol 8.1+0.2

−0.07 per cent

limit of 10−6.9 on the mixing ratio of K and confirm that, in this
spectral range, uncertainties in the Na and K cross-sections do not
have a significant effect since a retrieval that does not include these
species produces the same results for all other model parameters. The
retrieval also strongly constrains the P–T profile in the photosphere
between ∼0.6 and 20 bar. We estimate the effective temperature
of 2MASS J2339+1352 by extending the median retrieved model to
longer wavelengths, obtaining a value of ∼1100 K. This is consistent
with the expected range of effective temperatures for T5 dwarfs, i.e.
∼1000–1500 K (e.g. Kirkpatrick 2005).

Using a distance estimate for 2MASS J2339+1352 (Dupuy &
Liu 2012; Buenzli et al. 2014), we further estimate its mass and
radius based on our retrieval results. The values we obtain are 5+3

−2

MJ and 1.1 ± 0.2 RJ for the mass and radius, respectively. This radius
estimate is in good agreement with the expected radius for a fairly
young brown dwarf or giant planet (e.g. Baraffe et al. 2003). The
mass estimate, however, suggests that 2MASS J2339+1352 could be
a planetary object rather than a brown dwarf. We discuss two possible
scenarios that can explain this. First, that 2MASS J2339+1352 may

MNRAS 497, 5136–5154 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/497/4/5136/5895983 by U
niversity of C

am
bridge user on 15 January 2021



Atmospheric retrieval of brown dwarfs 5151

potentially be a planetary mass object. Secondly, that the low mass
and metallicity that we retrieve for 2MASS J2339+1352 may be a
result of the log(g)–abundance degeneracy discussed in Section 5,
and could potentially be rectified with a wider spectral coverage.

Microlensing observations have shown that unbound planets are
very common (e.g. Sumi et al. 2011). While the low metallicity
we derive for this object could be consistent with an old age (and
therefore inconsistent with a planetary mass, given the spectral
type), this could also be a result of planetary formation processes.
For example, Madhusudhan, Amin & Kennedy (2014) find that
formation through gravitational instability at large orbital separations
can result in both sub-solar O and C abundances in giant exoplanets
(also see e.g. Helled & Bodenheimer 2010; Öberg, Murray-Clay
& Bergin 2011). We also compare our derived mass and gravity
estimates to evolutionary models in the literature. Assuming an
effective temperature in the range of 1000–1500 K, fig. 9 of Burrows
et al. (1997) suggests an age of ∼106.5–107.5 yr, assuming a solar
composition. Baraffe et al. (2003) predict a similar age (∼107 yr) for
a 5MJ planet with an effective temperature in the range of ∼1000–
1500 K. For a sub-solar composition, this age estimate would be even
lower (e.g. Burrows et al. 2001). Sumi et al. (2011) find that unbound
planetary-mass objects have a different mass function to field brown
dwarfs, suggesting different formation pathways. In particular, they
suggest that the planetary-mass objects may form in protoplanetary
discs and subsequently be ejected (e.g. Veras, Crepp & Ford 2009). If
2MASS J2339+1352 is indeed a planetary-mass object, this would
mean that it formed and was ejected from its stellar system very
quickly. Since giant planet formation due to disc instability can
occur on relatively fast time-scales compared to core accretion (e.g.
�104 yr; Durisen et al. 2007, and references therein), this may be
possible in some scenarios (Veras et al. 2009).

An alternative explanation for the low mass and metallicity derived
from the retrieval is that these quantities may be affected by the
strong log(g)–abundance degeneracy. As discussed in Section 5,
both gravity and the abundances of the dominant species shaping
the spectrum have similar effects on the emergent spectrum, such
that a low-gravity (i.e. low-mass), low-metallicity solution is similar
to a higher gravity, higher metallicity solution. One way to break
this degeneracy would be to use a wider spectral coverage, probing
a larger number of molecular and/or atomic features. Other studies
of brown dwarf and poorly irradiated planet retrievals have also
found unexpected and/or unphysical results for some parameters,
in some cases possibly due to degeneracies between various model
parameters. For example, Lavie et al. (2017) and Kitzmann et al.
(2020) both find smaller radii than expected when an uninformative
prior is assumed. Conversely, Todorov et al. (2016) find that gravity is
not constrained in their retrieval of κ Andromedae b. This highlights
the challenging nature of retrievals for isolated objects, for which
the mass and radius are unknown and add further degeneracies
compared to atmospheric retrievals of transiting exoplanets for which
masses and radii are known a priori. However, future facilities such
as the James Webb Space Telescope (JWST) will have the capability
of providing high-precision spectra over a wide spectral range,
mitigating such biases and allowing for high-precision abundance
estimates.

Our technique shows great potential for high-precision abundance
determinations; the 0.1 dex precision we obtain here for the H2O
and CH4 mixing ratios is comparable to the precision achieved
with brown dwarf retrievals in the literature (e.g. Line et al. 2017;
Zalesky et al. 2019), and is significantly more stringent than the
∼0.5 dex achievable with current exoplanet emission spectra (e.g.
Gandhi & Madhusudhan 2018). Given the availability of numerous

high-quality brown dwarf spectra, this method can therefore enable
accurate metallicity and compositional estimates for a large number
of objects, allowing for detailed population studies and the testing
of formation scenarios. Furthermore, given distance estimates, the
retrieved radius–distance ratio and gravity can be used to place
independent constraints on the masses and radii of brown dwarfs.
Combined with self-consistent forward models, these estimates
can contribute to the understanding of the physical processes and
evolution of brown dwarfs. In the future, exoplanet spectra will also
reach this level of quality, with large facilities such as the James
Webb Space Telescope and the Extremely Large Telescope. The
considerations investigated here therefore provide a step towards
the accurate interpretation of these much-awaited observations.

This new retrieval framework for brown dwarfs provides insight
for two areas of atmospheric characterization: precise atmospheric
characterization of brown dwarfs and considerations for the analysis
of high-quality exoplanet spectra in the future. As we have shown in
this work, it is essential to understand the uncertainties of our models
and their effects on data interpretation as we approach a new era of
high-SNR exoplanet and brown dwarf spectroscopy.
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A P P E N D I X : R E T R I E VA L W I T H O U T NA A N D K

In Figs A1 and A2, we show the results of the retrieval of 2MASS
J2339+1352 without Na and K. The results are consistent with the
retrieval that includes Na and K, as discussed in Section 6. However,
when K is not included, the spectral feature at ∼1.25 μm is not fitted.
The retrieved model parameter values are shown in Table A1.

Table A1. A summary of the retrieved atmospheric properties of 2MASS
J2339+1352 without including Na and K in the retrieval. These values are
consistent with the results of the retrieval that includes Na and K (Section 6).

Parameter Retrieved value

log(XH2O) −3.88 ± 0.08
log(XCH4 ) −4.5 ± 0.1
log(XNH3 ) <−5.9
log(XCO) <−3.7
T3.2b/K 1230+130

−110

R/d 0.059+0.004
−0.003

log(g) 3.9 ± 0.2
xtol 8.1+0.2

−0.08 per cent
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Figure A1. Spectrum and P–T profile retrieved for 2MASS J2339+1352 without including Na and K in the retrieval model. Left: The median retrieved spectrum
(maroon line) and 1σ and 2σ confidence intervals (dark and light orange shadings, respectively). Data points are shown by blue circles, and error bars depict the
median retrieved tolerance. Yellow diamonds show the median binned model. Flux axis is shown in SI units (Wm−2 m−1). Right: Median retrieved P–T profile
(maroon line) and 1σ and 2σ confidence intervals (dark and light orange shadings, respectively).
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Figure A2. Marginalized posterior probability distribution from the retrieval of 2MASS J2339+1352 without Na and K. 1D marginalized posteriors are shown
for each parameter along the diagonals, with median values and 68 per cent confidence intervals shown by the dark squares and error bars, respectively.
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