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We present a novel multipole formulation for
computing the band structures of two-dimensional
arrays of cylindrical Helmholtz resonators. This
formulation is derived by combining existing
multipole methods for arrays of ideal cylinders
with the method of matched asymptotic expansions.
We construct asymptotically close representations for
the dispersion equations of the first band surface,
correcting and extending an established lowest-order
(isotropic) result in the literature for thin-walled
resonator arrays. The descriptions we obtain for
the first band are accurate over a relatively broad
frequency and Bloch vector range and not simply in
the long-wavelength and low-frequency regime, as is
the case in many classical treatments. Crucially, we
are able to capture features of the first band, such
as low-frequency anisotropy, over a broad range
of filling fractions, wall thicknesses and aperture
angles. In addition to describing the first band we
use our formulation to compute the first band gap
for both thin- and thick-walled resonators, and find
that thicker resonator walls correspond to both a
narrowing of the first band gap and an increase in the
central band gap frequency.

1. Introduction
In recent years, researchers within the metamaterials
and composite materials communities have uncovered
a vast array of media exhibiting interesting and
unexpected wave scattering properties. These have
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ranged from ultralow frequency band gaps to one-way edge states and negative refraction [1–
3], in a diverse range of wave settings, for example, from acoustics and elasticity through to
electromagnetism. The ongoing development of novel materials remains a very topical and
important endeavour for mathematicians, physicists, engineers and materials scientists alike. In
order to describe compactly the performance of meta/composite materials, significant attention
has been directed towards the efficient calculation of band diagrams and on obtaining effective
medium descriptions, i.e. homogenization of the medium, in a range of settings.

From across the literature, a diverse selection of homogenization tools have likewise emerged,
ranging from fully numerical procedures to analytical methods that yield elegant closed-form
expressions [1,2,4]. One established and well-known analytical procedure combines multipole
methods with conventional asymptotic methods to obtain closed-form descriptions for two-
dimensional arrays of cylinders embedded in a background material [4,5]. These descriptions for
non-resonant arrays of scatterers have proven exceptionally useful for developing highly tuned
materials whose properties lie between those of the inclusion and matrix phase (analogously to
the way an array of resistors combined in series or in parallel form effective resistances). However,
as with the vast majority of effective medium descriptions, the analytical representations describe
the first band surface only at both low frequencies and at long wavelengths. In place of this limited
description, it is much more advantageous to obtain descriptions of the first band over a broader
range.

In this work, we attempt to obtain simple asymptotic descriptions of the first band surface over
the entire Brillouin zone for a two-dimensional Helmholtz resonator array, and more generally,
present a multipole formulation for computing band diagrams over a wide frequency range. We
use a combination of multipole methods [4,6] and the method of matched asymptotic expansions
[7–9] to obtain results for an array of thin-walled resonators, deriving and providing a small
correction to the result published in Llewellyn Smith & Davis [10], as well as extending treatments
to obtain crucial next-order corrections that capture the anisotropy of the medium. We also
derive an analogous formulation for thick-walled resonator arrays and present corresponding
results. Our multipole solutions rely upon a careful choice of ansatz for the leading-order outer
fields; these assume that a monopole contribution from the aperture, in addition to a cylindrical
harmonic basis, is able to accurately describe the modal field at low frequencies. For a very narrow
aperture this is a perfectly reasonable assumption, and we are able to show that a monopole
contribution is generally able to recover the first band even for very wide aperture values.
That said, our treatment may be extended to much higher frequencies by considering dipole,
quadrupole or higher-pole source contributions at the aperture mouth.

The expressions obtained here for the first band will prove useful for practical applications,
admitting closed-form expressions for both the phase and group velocity inside the crystal, for
example. In addition to capturing Bloch vector and frequency dependence (spatial and frequency
dispersion), our descriptions also give the width of the first (subharmonic) band gap in a range of
resonator array configurations. To the best of our knowledge, we are unaware of such analytical
results for two-dimensional resonant arrays, although there are close similarities to a lowest-
order result for thin-walled Helmholtz resonator arrays [10]. That said, relatively few analytical
studies of this nature exist due to the complexity involved in their derivation, although there is an
extensive literature on numerical results (e.g. [11,12]). In this work, we do not rely upon lumped-
element models or lumped acoustic elements, which have been used extensively in the literature to
model Helmholtz resonators; such treatments replace the resonator with an equivalent mass-and-
spring or circuit, which has proven useful in the past for describing resonators in the deeply
long-wavelength regime [13].

The descriptions we obtain for the first band complements other work in the literature on
two-dimensional arrays of resonators governed by Helmholtz’s equation, such as work on thick
cylindrical resonators possessing multiple apertures [14,15] that exhibit effects such as negative
refraction. Other Helmholtz equation studies of this type include work on two-dimensional
arrays of thick-walled split-ring resonators [16] and two-dimensional arrays of closely packed
solid cylinders [17]. Estimates for the upper and lower bounds of the first band gap in elastic
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resonator array problems have also been considered [18]. Research on resonator arrays has also
been conducted extensively for Maxwell’s equations, including a numerical study on determining
effective optical constants of a two-dimensional array of infinitesimally thin split-ring resonators
[19]. Another related area examines arrays of gas bubbles in liquids; the fundamental frequency
at which the bubble wall oscillates is analogous to a Helmholtz resonance and induces low-
frequency band gaps within the fluid medium [20]. There has also been interest within the water
waves community on arrays of graded thin-walled Helmholtz resonators, which can exhibit
strong field amplification, a feature which may prove useful in energy harvesting systems [21].

The outline of this paper is as follows. First we present the boundary value problem for a
two-dimensional doubly periodic array of thin-walled Helmholtz resonators in §2. We then set
up the matching scheme by examining the field close to an aperture in §3, and derive field
asymptotics as we move out from this inner region. Next, we construct an outer solution outline
in §4, where the presence of the small aperture is modelled by a simple source term. We then
conduct asymptotic matching in §4c to obtain our eigensystem in §4d. This allows us to derive
the leading-order dispersion equation for the first spectral band in §4e followed by its first-order
correction in §4f. In §5 we consider numerics for a selection of geometries to demonstrate the
efficacy of our approximations. This is followed by a treatment for thick-walled resonators in
§6, where we outline all modifications and present additional numerical results. Finally we offer
some concluding remarks in §7.

2. Problem formulation
We consider a two-dimensional square array of thin-walled resonators spaced a distance d apart
that are modelled as cylinders of radius b, each containing an aperture of arc length 2� centred
about the central angle θ0. These are immersed in an acoustic medium of infinite extent satisfying
the two-dimensional scalar Helmholtz equation

(∂2
x + ∂2

y )φ + k2φ = 0, (2.1)

with Neumann boundary conditions imposed on all resonator walls, and where ∂x denotes a
partial derivative with respect to x, for example. The overbar is used to denote dimensional
quantities, and we take φ to be the steady-state monochromatic field oscillating at angular
frequency ω, i.e. the observed time-dependent field is Re{φ exp(−iωt)}, but we omit reference
to this henceforth for brevity. Owing to the symmetries of the full array problem, we consider
Helmholtz’s equation in the fundamental unit cell Ω containing a single resonator and satisfying
Bloch conditions between adjacent cells (defined below). Here, (x, y) represents dimensional
Cartesian coordinates, k = ω

√
ρ/B the wave number, ω the angular frequency, B the bulk modulus

and ρ the mass density of the surrounding acoustic medium. For future reference, we also denote
the dimensional Bloch vector by (kBx, kBy), and we note that all Cartesian dimensional quantities
possess an overbar, along with φ(x, y), but that the remaining quantities do not (i.e. ρ, ω, B and k).

In order to reduce the number of parameters, and to better understand the mathematical
treatment to follow, we non-dimensionalize as

x = x
k

, y = y
k

, b = b
k

, d = d
k

, � = �

k
, and (kBx, kBy) = k(kBx, kBy), (2.2)

to obtain the governing equations for our problem inside the unit cell Ω , shown in figure 1, in the
form

(∂2
x + ∂2

y + 1)φ = 0 for (x, y) ∈ Ω\S, with (2.3a)

and
∂rφ = 0 for (x, y) ∈ S and φ(x + md, y + nd) = φ(x, y) ei(kBxmd+kBynd), (2.3b)

where φ(x, y) = φ(x, y) and we represent the infinitesimally thin cylinder with an aperture by S =
(b cos θ , b sin θ ) with θ ∈ (θ0 + θap, 2π − θap + θ0). The definition for S prescribes an infinitesimally
thin resonator of radius b with an aperture centred at θ0 and a half-width angle of θap = �/b
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Figure 1. (a) Fundamental (dimensionless) unit cell for a square array of period d containing a thin cylindrical resonator of
radius b with aperture of arc length 2� centred at (b, θ0) in polar coordinates, i.e. with half-angle subtended by the aperture
given by θap = �/b; (b) corresponding unit cell in reciprocal space, for high symmetry values of θ0, expressed in terms of non-
dimensional Bloch coordinates (kBx , kBy) with irreducible Brillouin zone shaded, bounded by blue lines andmarkedwith vertices
Γ = (0, 0), X = (π/d, 0), Y = (0,π/d) andM= (π/d,π/d). (Online version in colour.)

(i.e. a gap with total arc length 2� = 2k�). For the Bloch condition (2.3b), we define the integers
m, n ∈ Z and lattice period for a square array d. In this work, we treat half the arc length for the
aperture as the small parameter ε = �, as this is the appropriate regime for resonance, and we
begin by considering the problem local to the aperture to commence our asymptotic solution.

3. Inner problem formulation
As outlined in the literature [7–9], solutions obtained using the method of matched asymptotic
expansions require both an inner and an outer solution, in addition to a rigorous matching rule.
In general, the inner solution describes the near field (i.e. close to a boundary or object), and the
outer solution describes the behaviour in the far field (i.e. far away from the boundary or object)
[7]. For our problem, the curvature of the resonator wall boundary is locally zero as we focus in
on the aperture, and so, the walls may be regarded as flat (i.e. we take the asymptotic limit as the
radius of the cylinder is long relative to the aperture size). This idea of vanishing local curvature
is equivalent to the concept of a plane wave, which formally corresponds to a source point placed
at infinity.

As a first step, we rotate and translate the array via (x̃, ỹ) �→ (x sin θ0 − y cos θ0, x cos θ0 +
y sin θ0 − b) so that the aperture in the fundamental cell is centred about the origin. Subsequently,
we introduce the inner scaling

X = x̃
ε

and Y = ỹ
ε

, (3.1)

as well as posing the regular expansion φ =
∞∑

m=0
εmΦm(X, Y). Substituting the scaling (3.1) and

expansion into the Helmholtz equation (2.3a) and Neumann condition (2.3b), we obtain the
leading-order inner problem given by

(∂2
X + ∂2

Y)Φ = 0 for (X, Y) ∈ R
2\Sin and ∂YΦ = 0 for (X, Y) ∈ Sin, (3.2)

where Sin = {(X, Y) : |X| ≥ 1, Y = 0}, i.e. the geometry looks locally planar as shown in figure 2, and
we omit the subscript for Φ0 for clarity. Next we introduce the mapping W = arcsin(Z) where Z =
X + iY = R exp(iΘ) and W = U + iV, which transfers the problem of solving Laplace’s equation in
R

2\Sin to solving Laplace’s equation in an infinitely extending strip, as shown in figure 2b, and
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Figure 2. Inner problem domain comprising an infinitely extending screen with resonator mouth of length 2 in terms of the
inner coordinates (X , Y); (b) equivalent representation obtained via the mappingW = arcsin(Z) in terms of transformed inner
coordinates (U, V). (Online version in colour.)

as described by

(∂2
U + ∂2

V)ΦD = 0 for (U, V) ∈ D and ∂UΦD = 0 for U = ±π

2
, (3.3)

where D = {(U, V) : |U| ≤ π/2, V ∈ (−∞, ∞)}. The appropriate solution is given by ΦD =
C1Re(iW) + C2, where Cj are as yet unknown, and we will see in the following sections why this
form is the correct one for matching. Subsequently, the solution in the original domain follows as

Φ = C1Re(i arcsin(Z)) + C2 = C1Re
{

log(iZ +
√

1 − Z2)
}

+ C2, (3.4)

where we define
√

1 − Z2 = i
√

Z2 − 1 .

(a) Limiting behaviour of inner solution as R= |X2 + Y2|1/2 → ∞
We now require the field Φ as R → ∞ in both the lower- and upper-half planes. To ensure single-
valuedness, we introduce the double-angle representation√

Z2 − 1 =
√

|Z2 − 1|ei(Θ1+Θ2)/2, (3.5a)

over the cut plane Z ∈ C\BC where Z − 1 = R1 exp(iΘ1) and Z + 1 = R2 exp(iΘ2) for Θ1 ∈ (−2π , 0)
and Θ2 ∈ (−π , π ), with BC = {(X, Y) : X ∈ (∞, −1) ∪ (1, ∞) × Y = 0} denoting the branch cuts. Thus,
if we proceed vertically to infinity in the upper-half plane (i.e. Θ1 → −3π/2 and Θ2 → π/2) and
in the lower-half plane (i.e. Θ1 → −π/2 and Θ2 → −π/2) we obtain

lim
Z→i∞

√
Z2 − 1 ≈ −Z + 1

2Z
+ O(Z−3) and lim

Z→−i∞

√
Z2 − 1 ≈ Z + O(Z−1). (3.5b)

Accordingly the inner solution has, from (3.4), the asymptotic form

lim
R→∞

Φ

∣∣∣∣
R=r̃/ε

∼
⎧⎨⎩−C1

[
log(r̃) − log

( ε

2

)]
+ C2, Z ∈ C

U,

C1

[
log(r̃) − log

( ε

2

)]
+ C2, Z ∈ C

L,
(3.6)

where C
U and C

L denote the upper- and lower-half segments of the complex plane, respectively,
and where we re-express the solution with respect to the original outer coordinate frame. We now
proceed to the outer problem for our resonator array.

4. Outer problem formulation
The leading-order system for the outer problem is obtained by taking the limit ε → 0 directly
in the formulation (2.3), which returns a system with an identical structure to (2.3) but with
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an updated unit cell Ω �→ Ωout, which is identical to Ω except for the resonator geometry
replacement S �→ Sout, and the updated Neumann boundary conditions

∂rφ = S0 for (x, y) ∈ Sout, (4.1)

where Sout = (b cos θ , b sin θ ), with θ ∈ (0, 2π )\θ0, with the aperture acting as a point source S0 at
θ = θ0 with a yet to be determined amplitude. We now decompose the unit cell into two domains
and consider a solution outside the resonator (the outer exterior solution φext) and inside the
resonator (the outer interior solution φint).

(a) Outer exterior ansatz
In the region exterior to the resonator, but inside the fundamental unit cell, we pose the ansatz

φext = AH(1)
0 (̃r) +

∞∑
n=−∞

{anJn(r) + bnYn(r)}einθ , (4.2)

where A, an and bn are as yet unknown constants, r̃2 = r2 + b2 − 2rb cos(θ − θ0), Jn(z) and Yn(z)
denote Bessel functions of the first and second kind, respectively, and H(1)

n (z) represents Hankel
functions of the first kind. The impact of periodicity will be incorporated later in §4d. Next, we
express the Neumann boundary condition (4.1) as

∂rφext
∣∣
r=b = S0 = C

b
δ(θ − θ0) = C

2πb

∞∑
n=−∞

ein(θ−θ0), (4.3)

where C is unknown. The relationship between C and A is determined by applying Graf’s
addition theorem [22, eqn (8.530)]

H(1)
0 (̃r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∞∑
n=−∞

Jn(b)H(1)
n (r)ein(θ−θ0), r > b,

∞∑
n=−∞

Jn(r)H(1)
n (b)ein(θ−θ0), r < b,

(4.4)

and taking the limit n → ∞. By matching the Dirac delta singularity in (4.3) with the logarithmic
singularity in the solution ansatz at (b, θ0) in (4.2), we obtain the necessary form of the boundary
condition C = 2iA. Subsequently, after imposing the updated Neumann condition we obtain

φext = AH(1)
0 (̃r) −

∞∑
n=−∞

{
AQn

2J′n(b)
e−inθ0 + Y′

n(b)
J′n(b)

bn

}
Jn(r)einθ +

∞∑
n=−∞

bnYn(r)einθ , (4.5)

where Qm = Jm(b)H(1)′
m (b) + J′m(b)H(1)

m (b), and a prime denotes a derivative with respect to
argument, i.e. J′m(b) = ∂zJm(z)|z=b. Note that the constants bn and A are as yet unknown, but that
the form of φext is prescribed.

(b) Outer interior ansatz
Next we construct a corresponding form of the outer solution inside the resonator following an
identical procedure to the above. Hence, we write

φint = BH(1)
0 (̃r) +

∞∑
n=−∞

fnJn(r)einθ , (4.6)

where B and f n are as yet unknown constants, and consider the Neumann boundary condition
∂rφint|r=b = Dδ(θ − θ0)/b, where D is once more unknown. Imposing the Neumann condition
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above, using Graf’s addition theorem (4.4), and considering the limit n → ∞, we find that
D = −2iB on matching divergent terms. Imposing the updated Neumann condition yields

φint = BH(1)
0 (̃r) − B

2

∞∑
n=−∞

Qn

J′n(b)
Jn(r)ein(θ−θ0), (4.7)

where B remains unknown. We can now take the outer solutions in the exterior (4.5) and interior
(4.7) domains, and determine their asymptotic forms as we approach the aperture

lim
θ→θ0

lim
r→b

φ ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2iA
π

[
γe − iπ

2
+ log

(
r̃
2

)]
+

∞∑
n=−∞

bnYn(b)einθ0

−
∞∑

n=−∞

{
AQn

2
+ bnY′

n(b)einθ0

}
Jn(b)
J′n(b)

, r ↓ b,

2iB
π

[
γe − iπ

2
+ log

(
r̃
2

)]
− B

2

∞∑
n=−∞

Qn

J′n(b)
Jn(b), r ↑ b,

(4.8)

where γe denotes the Euler–Mascheroni constant. Having determined partial solutions (up
to an infinite set of constants) for both the inner and outer solutions, and their asymptotic
representations near the aperture, we now proceed to asymptotic matching.

(c) Matched asymptotics procedure with partial solutions
The unknown terms A, B, C1 and C2 in the above are obtained by matching terms (to leading
order) from the inner and outer solution representations in the following limit [7,8]

lim
θ→θ0

lim
r→b

φ = lim
R→∞

Φ

∣∣∣∣
R=r/ε

, (4.9)

where the asymptotic forms are given above in (4.8) and (3.6). Specifically, we match the inner and
outer solutions, in the interior/lower and exterior/upper regions, and then compare logarithmic
and non-logarithmic terms to obtain a system of equations. These yield B = −A and

A = 2
πbhε

∞∑
n=−∞

bn

J′n(b)
einθ0 , where hε = 4i

π

[
γe − iπ

2
+ log

( ε

4

)]
−

∞∑
n=−∞

QnJn(b)
J′n(b)

. (4.10)

(d) Lattice contributions and asymptotic resonator system
The final step in our derivation of an eigenvalue problem for the resonant array involves returning
to the exterior solution ansatz (4.5) and applying Graf’s addition theorem (4.4) to obtain

φext =
∞∑

n=−∞

[
AJn(b)e−inθ0 − A

2
Qn

J′n(b)
e−inθ0 − Y′

n(b)
J′n(b)

bn

]
Jn(r)einθ

+
∞∑

n=−∞
[iAJn(b)e−inθ0 + bn]Yn(r)einθ =

∞∑
n=−∞

{cnJn(r) + dnYn(r)}einθ , (4.11)

where the cn and dn coefficients are related through the dynamic Rayleigh identity [4, eqn (3.119)]

cn =
∞∑

m=−∞
(−1)m+nSY

m−n(kB)dm, (4.12)

which follows from an application of Green’s second identity inside the unit cell. The Rayleigh
identity incorporates multiple scattering contributions from neighbouring cells by imposing the
Bloch conditions (4.1). Expressions for the lattice sums SY

m are given in appendix A for reference.
At this point, we possess an identity relating cn and dn in (4.12), expressions for cn and dn

in terms of A and bn in (4.11), and a relation between A and bn from the matched asymptotics
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procedure (4.10). Combining all of these expressions, we obtain the eigenvalue problem

gn +
∞∑

m=−∞
(−1)m+nSY

m−n(kB)
J′m(b)
Y′

n(b)
e−i(m−n)θ0 gm

+ i
πbhε

⎛⎝ ∞∑
q=−∞

gq

⎞⎠(En + 2
∞∑

m=−∞
(−1)n+mSY

m−n(kB)
Jm(b)
Y′

n(b)
e−i(m−n)θ0

)
= 0, (4.13)

which must be satisfied for all n ∈ Z, where

bn = J′n(b)gne−inθ0 and En = J′n(b)Yn(b) + Y′
n(b)Jn(b)

J′n(b)Y′
n(b)

. (4.14)

In the limit as the gap is closed ε → 0 then hε → −i∞ and we recover the conventional system for
an array of homogeneous Neumann cylindrical inclusions [4, eqn (3.120)]. Next, for numerical
and analytical purposes, we require that the infinite dimensional system (4.13), and all sums
contained therein, are truncated in order to obtain a finite-dimensional system; imposing a
vanishing determinant condition then yields the dispersion equation for that truncation (denoted
by the truncation level L). In general, the accuracy of the determinant is improved as we increase
the truncation level to include higher orders. For reference, care must be taken for large L as
accurate band diagrams may be constructed but inaccurate modal fields may arise (i.e. from (4.5)
and (4.7)) as errors in the asymptotic approximations could become significant.

It is well known that for periodic problems involving cylinders with Neumann boundary
conditions, a lowest order (monopole) truncation is unable to accurately describe the eigenstate
at low frequencies. As such, we proceed to the next section by considering a dipolar truncated
system.

(e) Leading-order approximation to the dispersion equation
Considering the system (4.13) we now truncate all sums, and consider all orders, to within a
dipole approximation L = 1 (i.e. keeping terms n = −1, 0, 1) to construct the dipole system. We
then evaluate Taylor series in the small b (long wavelength) limit to obtain the leading-order
system A0g = 0 given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + 1
4
πb2SY

0 − 1
hε

ibSY∗
1 eiθ0 + 1

4
πb3SY∗

1 eiθ0 −1
4
πb2SY∗

2 e2iθ0

−1
4
πbSY

1 e−iθ0 − 2i
πb2hε

+ iSY
0

hε
+ 1 − 1

4
πb2SY

0
1
4
πbSY∗

1 eiθ0

−1
4
πb2SY

2 e−2iθ0
1
hε

ibSY
1 e−iθ0 − 1

4
πb3SY

1 e−iθ0 1 + 1
4
πb2SY

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ g1

g0
g−1

⎤⎥⎦=

⎡⎢⎣0
0
0

⎤⎥⎦ , (4.15)

and where we have made use of the lattice sum asymptotic forms [4, eqns (3.132)–(3.134)] in the
long wavelength and low frequency limits

lim
kB→Γ

lim
k→0

{SY
0 , SY

1 , SY
2 } ∼

{
− 4

d2
1

k2
B − 1

, −4ikB

d2
eiθB

k2
B − 1

,
4k2

B
d2

e2iθB

k2
B − 1

}
, (4.16)

with (kB, θB) representing the polar form of the Bloch vector kB and ∗ denoting the complex
conjugate operation. In the system above, we have also made use of the dominant balance scaling
d = O(b), to avoid implicitly examining the vanishing filling fraction f = πb2/d2 limit as b → 0, and
also used the dominant balance scaling log(ε/(2b)) = O(b−2) appearing in

lim
b→0

hε ∼ 4i
πb2

[
1 − b2

8
+ b2 log

( ε

2b

)]
= 4i

πb2 fε . (4.17a)
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Next we introduce the substitutions

SY
0 = 4

πb2 A0, SY
1 = 4i

πb2 A1eiθB , and SY
2 = 4

πb2 A2e2iθB , (4.17b)

where A0, A1 and A2 are strictly real, and evaluate the determinant of the system (4.15) to obtain
the leading-order dispersion equation

(1 + A0 + A2)
{(

1 − 1
fε

)
[A0(1 + A0 − A2) − 2A2

1] −
(

1 − 1
2fε

)
(1 + A0 − A2)

}
= 0, (4.18)

and so after returning to the forms for SY
m in (4.16) once more we obtain the lowest-order

approximation for the dispersion equation of the first band in the form

k2
B = 1 + f

1 − f

(
1 − 2f (1 − fε)

1 − 2fε

)
, where we repeat that f = πb2

d2 . (4.19)

In the limit of vanishing aperture, we have that fε → ∞ and subsequently we recover the classical
result for an array of Neumann cylinders in the form k2

B = 1 + f [4, eqn (3.158)]. Thus, by
specifying purely geometric parameters, namely the radius b̄, half-angle θap and filling fraction
f , as well as the Bloch wave vector k̄B, it is then possible to solve for k in (4.19) and obtain the
leading-order approximation to the first band surface over the entire Brillouin zone. Note that the
absence of θB in the above means that the leading-order approximation is unable to describe the
low-frequency anisotropy present in the first band. For this reason, we proceed to a first-order
correction, but first discuss some of the features of the approximation (4.19). For example, by
substituting the leading-order behaviour

fε =
[

1 − b2

8
+ b2 log

( ε

2b

)]
∼ 1 + b2 log

(
θap

2

)
, (4.20)

into the dispersion equation (4.19), we obtain the result presented in Llewellyn Smith & Davis
[10], which we correct for an errant sign error to:

2b2 log
(

2
θap

)
= k2

B − (1 + f )/(1 − f )

k2
B − (1 + f )

. (4.21)

Following the discussion in Llewellyn Smith & Davis [10], under the limit of vanishing aperture,
θap → 0, the representation (4.21) returns the classical result for an array of Neumann cylinders
as given above. Likewise in the low-frequency limit ω → 0 we obtain a lowest-order dispersion
relation for our Helmholtz resonator array [10] in the form

k2
B = 1 + f

1 − f
, or ω =

√
B
ρ

√
1 − f
1 + f

k̄B, (4.22)

however numerical investigations show this leading-order result to be accurate along one high-
symmetry direction alone. As a final remark on the leading-order dispersion equation (4.19), we
note that although it is unable to correctly describe the first band, it is able to approximate the
cut-off frequency of the first band to within moderate accuracy (i.e. the maximum eigenfrequency
of the first band but not necessarily the lower bound on the first band gap). This is done using the
vanishing denominator condition in (4.19) to obtain

kmax ≈ 2

b̄

[
1 + 8 log

(
2

θap

)]−1/2
, or ωmax ≈ 2cp

b̄

[
1 + 8 log

(
2

θap

)]−1/2
. (4.23)

The above expression may also be used to determine the configuration of the resonator within the
unit cell, for example, if we seek a resonance in air cp = √

B/ρ = 343.21 m · s−1 at the frequency
fmax = 60 Hz with the (arbitrary) design restriction of the half aperture length being �̄ = 0.01 m =
1 cm, then we require a radius of b̄ = 0.312 m = 31.2 cm.
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(f) First-order correction to the dispersion equation
The first-order correction to the system (4.15) within a dipolar truncation takes the form

Bg = 0, (4.24a)

where B = A0 + A1, with A0 given in (4.15), and

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

− ib
hε

SY∗
1 eiθ0

ib2

2hε
(SY

0 − SY∗
2 e2iθ0 ) − ib

hε
SY∗

1 eiθ0

− 2i
πb2hε

+ i
hε

SY
0

ib
2hε

(SY∗
1 eiθ0 − SY

1 e−iθ0 ) − 2i
πb2hε

+ i
hε

SY
0

ib
hε

SY
1 e−iθ0

ib2

2hε
(SY

0 − SY
2 e−2iθ0 )

ib
hε

SY
1 e−iθ0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.24b)

Solving for det B = 0 we obtain the principal result of this paper:

k2
B = (f + 1)[b2f (2f − 1) + fε(f + 1)(2fεf − 2fε − 2f + 1)]

b2f cos(2[θ0 − θB]) + b2f 2 + fε(2fε − 1)(f 2 − 1)
, (4.25a)

which is an asymptotic dispersion equation implicitly describing the first spectral band surface.
The expression (4.25a) is crucially able to capture the low-frequency anisotropy (i.e. differing low-
frequency slopes) present in the first spectral band. In the closed aperture limit fε → ∞, we recover
the result for an array of perfect Neumann cylinders k2

B = 1 + f from (4.25a). We now briefly
discuss the features of the dispersion relation derived above; note the presence of all angular
dependencies: θ0, θap (via fε), and θB, and that the analogue to (4.21) is considerably less compact
as f 2

ε terms are present. Rearranging (4.25a) we obtain a low-frequency dispersion relation of the
form ω = ceff

p (θB, ω)k̄B where

ceff
p (θB, ω) =

√
B
ρ

√
b2f cos(2[θ0 − θB]) + b2f 2 + fε(2fε − 1)(f 2 − 1)

(f + 1)[b2f (2f − 1) + fε(f + 1)(2fεf − 2fε − 2f + 1)]
, (4.25b)

in which the effective wave speed ceff
p possesses dependence on both the frequency and Bloch

vector direction (i.e. exhibits both temporal and spatial dispersion). By differentiating (4.25a)
the group velocity is obtained explicitly but is not included here for compactness. A detailed
discussion of homogenization methods is made in Part II of this work [23].

5. Numerical results
In this section, we compare results from a full finite-element treatment for the original array
problem (2.3) against results from the multipole-matched asymptotic system (4.13), as well as the
leading order (4.19) and first-order (4.25a) dispersion equation approximations. The objective is to
examine the impact of varying the central aperture angle θ0, the filling fraction f and the half-angle
aperture width θap upon the first band and first band gap. We use finite-element results obtained
from existing and readily available software to independently benchmark the multipole-matched
asymptotic results obtained here.

In figure 3, we examine the first band surface of a representative resonator array possessing a
moderate half angle θap = π/12, apertures located at θ0 = 0 and filling fraction f = πb2/d2 ≈ 0.28:
in figure 3a we compare results for the first band over the edge of the irreducible Brillouin
zone (highlighted in figure 1b) using both finite-element methods and our multipole-matched
asymptotic system (4.13). Key features of the first band include different low-frequency slopes
along the high symmetry directions Γ X and Γ Y, the existence of an almost flat band at the
cut-off frequency along MY and a saddle point frequency located at X. In this representative
example, we find that the system (4.13) is able to describe the first band well over its entire
frequency range (solid red line) within a dipole truncation, even with the use of lattice sum
approximations (dashed black line), demonstrating that although the full system overestimates



11

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220124

..........................................................

k  

0

0.5

1.0

1.5

X MYM

k  

0

0.5

1.0

1.5

X MYM

(a) (b)

G G 

Figure 3. Band diagrams for a square array of thin-walled Helmholtz resonators comparing: (a) the finite-element solution
(blue line) with results from the system (4.13) within a dipole truncation using either the convergent forms for SYm (A 2) (red line)
or the asymptotic forms for SYm (4.16) (dashed black line), and results from (4.13) within a quadrupolar truncation (green line);
(b) the full finite-element solution (blue line) with the symmetric lowest-order approximation (4.19) (solid red line) and the
first-order correction (4.25a) (dashed red line). In both figures we specify b̄= 0.3, d̄ = 1, θ0 = 0, θap = π/12 and inset the
unit cell. (Online version in colour.)

the frequency at Y, a dipole truncation still gives a reasonable approximation over the entire
Brillouin zone. Also superposed is the result within a quadrupolar truncation (solid green) which
is an excellent approximation over the entire range, emphasizing the importance of quadrupolar
contributions to the modes as we approach the band edge. The adjacent figure 3b overlays the
finite-element result (blue line) with the lowest (solid red line) and first-order (dashed red line)
approximations for the dispersion equation. As described earlier, the lowest-order approximation
is symmetric along all high symmetry directions (i.e. returns an isotropic approximation to the
array), but is accurate only along Γ Y, being unable to capture the saddle point at X; an improved
description is obtained using the first-order approximation, with only a minor discrepancy in the
band curvature along the XM direction. In summary, the discrepancies in curvature along XM are
due to an absence of quadrupolar terms, the series expansions for the Bessel functions, and the
lattice sum approximations, as shown in figure 3a.

In figure 4a, we compute the first two bands for the same resonator array configuration
used in figure 3 using both finite-element and our multipole-matched asymptotic expansion
method (4.13); we observe reasonable qualitative descriptions at dipolar truncation over both
bands, with improvements in convergence over the first band along the YM and XM symmetry
paths for quadrupolar truncations and higher. We observe that very good convergence for the
(approximate) multipole-matched asymptotic treatment is achieved at quadrupolar truncation,
and although the multipole-matched asymptotic system does not converge precisely to the finite-
element result, it still performs extremely well for an approximate description. Importantly, this
figure suggests that the width of the first band gap may be determined with reasonable accuracy
(with high enough truncation L), and that the greatest discrepancies in our model are observed
on second band at the highest frequencies, as might be expected. In figure 4b, we consider
the effect of varying the central aperture angle θ0 on the band structure curvature (over the
irreducible Brillouin zone for a high frequency configuration); results for several configurations
in the range 0 ≤ θ0 ≤ π/2 are superposed where we observe only small changes in the curvature
of the first band for different θ0 angles. Results from our multipole formulation match those
obtained using finite element methods, as expected, but are excluded here to avoid figure
overcrowding. Accordingly, we consider θ0 = 0 in all other numerical results. For θ0 = π/4 we
recover a symmetric band surface where the lowest order approximation (4.19) possesses identical
symmetry, however it overestimates frequencies at X and M; see figure 3b.

In figure 5, we examine the performance of our first-order description (4.25a) as the filling
fraction is varied, for the same configuration as in figure 3 but as we vary the radius b̄. We also
superpose the estimate for the cut-off (band edge) frequency (4.23) for instances where a band gap
exists. We observe that the description for the first band works well both in the presence (here, b̄ >

0.1) and absence (here, b̄ < 0.1) of a band gap, although at higher filling fractions, the first-order
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Figure 4. Band diagrams for a square array of thin-walled Helmholtz resonators as: (a) we increase the truncation of the
multipole system (4.13) from dipolar (green line), to quadrupolar (red line) and sextapolar (dashed black line), with finite-
element result superposed (blue line) and fundamental unit cell inset; (b) the central aperture angle is varied: θ0 = 0 (blue
line),θ0 = π/6 (dashed blue line),θ0 = π/4 (red line),θ0 = π/3 (dotted blue line) andθ0 = π/2 (black line)with curves
calculated using finite-element methods. In both figures we use b̄= 0.3, d̄ = 1 and θap = π/12. (Online version in colour.)
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Figure 5. Band diagrams for a square array of thin-walled Helmholtz resonators as the radius is varied: (a) b̄= 0.05, (b) b̄=
0.1, (c) b̄= 0.2 and (d) b̄= 0.45 with fundamental unit cells inset. Blue lines denote from finite-element solution, red dashed
lines denote results from the first-order correction (4.25a) and black lines denote estimates for the edge of the band gap (4.23).
In the above figures, we use d̄ = 1, θ0 = 0 and θap = π/12. (Online version in colour.)

description is unable to capture the cut-off frequency and the curvature with extreme precision, as
we approach the M point. In this figure we include the first two bands to examine also the effect
of filling fraction on the first band gap; we find that the gap width increases as f increases, for
fixed aperture width. Interestingly, the estimate for the cut-off frequency works best at moderate-
to-high filling fractions (i.e. f > 0.28), and that at very dilute filling fractions the bands approach
the dispersion curves for free-space, despite the presence of a resonator. Note that it is possible to
determine an upper bound on the width of the first band gap by specifying the Bloch coordinate to
lie at the Γ , X, Y and M points, solving for vanishing determinant, choosing the second eigenvalue
at these coordinates, and then selecting the minimum of these values. We advise solving the full
system (4.13) to obtain these values and advise against the use of the dispersion equation (4.25a)
for this purpose, as the accuracy of the second band values are not always assured within the
description.
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Figure 6. Band diagrams for a square array of thin-walled Helmholtz resonators as the aperture half-angle is varied: (a)
θap = π/24, (b) θap = π/12, (c) θap = π/6, (d) θap = π/4, (e) θap = π/3, (f ) θap = π/2 with fundamental unit cells
inset. Figure legends are identical to those in figure 5. In the above figures, we use d̄ = 1, θ0 = 0 and b̄= 0.3. (Online version
in colour.)

In figure 6, we investigate how well the first-order description (4.25a) works with increasing
aperture size, that is, we examine the same configuration as in figure 3 but now vary the half-angle
θap. We find that our description works well up to half-angles of θap ≈ π/4, which is perhaps
remarkable for a system formally derived in the vanishing aperture limit. We observe that the
first-order description breaks down when a clear minimum of the second band surface appears at
the Y high-symmetry coordinate, rather than at the Γ point. It also corresponds with the estimated
band maximum appearing at approximately the midpoint of the band gap, which closes with
increasing aperture size. Finally, we observe that our description still holds moderately well up
to a larger half-angle of θap = π/3, along the Γ X direction.

Having examined the parameter ranges over which our system and dispersion equation are
valid, we now investigate the effects of wall thickness on results for Helmholtz resonator arrays.

6. Extension to thick-walled resonators
We now pose the governing equations for the thick-walled resonator problem shown in figure 7a,
in terms of the non-dimensional coordinates given in (2.2). By thick-walled, we mean a cylinder
whose aperture arc length, 2�, is of the same order as its thickness. This has an identical structure
to (2.3) earlier but with S �→ ST and a modified Neumann boundary condition of the form

∂rφ = 0 for (x, y) ∈ ST, (6.1a)
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Figure 7. (a) Fundamental unit cell for a square array of period d containing a thick-walled cylindrical resonator with inner
radius a, outer radius b and an aperture centred at θ0 with half-angle θap = �/b, where the outer aperture arc length is
2�; (b)(i) inner problem geometry with unbounded polygonal (fluid) domain overlaid in grey; (b)(ii) inner problem geometry
obtained via the Schwarz–Christoffel mapping (6.3a); the capital letters A, . . . , D and A′, . . . , D′ denote the points of
correspondence in the Z(= X + iY) andW(= U + iV) complex planes. (Online version in colour.)

where ST denotes the thick-walled Helmholtz resonator. The definition of ST is chosen to ensure
that the resonator walls in the neck are parallel to one another, as shown in figure 7a, and admits
the inner problem domain presented in figure 7b. We write the non-dimensional inner radius
a = b − 2hε, where ε = � is the aperture arc half-length at the outer radius b, and h is the aspect
ratio of the channel (resonator neck). Note also that the definition of the inner radius given
above implicitly treats the aperture neck length (b − a) as O(ε), which later ensures that the filling
fraction is held constant (see below).

(a) Inner problem formulation
As before, we first rotate and translate the array via the operation (x̃, ỹ) �→ (x sin θ0 −
y cos θ0, x cos θ0 + y sin θ0 − b + �h) so that the origin in tilde coordinates is centred and oriented
on the aperture in the fundamental cell. As in §3, we introduce the inner scaling (3.1) and a regular
expansion for φ to obtain the leading-order system

(∂2
X + ∂2

Y)Φ = 0 for (X, Y) ∈ R
2\Sin

T , with ∂NΦ = 0 for (X, Y) ∈ Sin
T , (6.2)

where ∂N denotes the normal derivative, the resonator walls are defined by Sin
T = {(X, Y) : |X| ≥

1 × Y ∈ [−h, h]} as shown in figure 7b and we omit the subscript for Φ0. Next we introduce the
Schwarz–Christoffel mapping [24] between the Z and W planes:

Z(W) =
∫W

1 �(ζ ) dζ + ∫W
−q �(ζ ) dζ

∫q
−q �(ζ ) dζ

, where �(ζ ) =
√

(ζ 2 − 1)(ζ 2 − q2)

ζ 2 , (6.3a)

in which the parameter q is related exactly to the specified aspect ratio h via

h = 1
2

[2E(q2) + (q2 − 1)K(q2)]−1[−2E(1 − q2) + (1 + q2)K(1 − q2)], (6.3b)

and E(k) and K(k) are complete elliptic integrals of the first and second kind, respectively. Note
that the aspect ratio h cannot be too high as q vanishes exponentially in the limit of large h (for
example, for h = 4 we have q ≈ 1.8879 × 10−6), which may cause accuracy issues from a numerical
perspective. Hence, the treatment we outline here implicitly assumes thick-walled resonators
where the channel aspect ratio h is not too high (in fact, we may consider it to be O(1)).
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Subsequently, using (6.3a) we map the problem of solving Laplace’s equation in the physical
junction domain R2\Sin

T shown in figure 7b to solving Laplace’s equation in the upper-half plane
of the W-plane shown in figure 7b(ii), where a vanishing Neumann condition is imposed along
the real line. For the latter problem, we may immediately offer a solution in the form Φ(W) =
C3Re{log W} + C4, where from the leading-order asymptotic form for the mapping (6.3a)

lim
W→0

Z(W) ∼ C(q)q
W

and lim
W→∞

Z(W) ∼ C(q)W, (6.4)

we obtain the leading-order result in the original inner region as

lim
R→∞

Φ

∣∣∣∣{R=r̃/ε,R=ř/ε}
∼
⎧⎨⎩C3 Re[log(r̃) − log{C(q)ε}] + C4, Z ∈ C

U,

C3 Re[log{q C(q)ε} − log(ř)] + C4, Z ∈ C
L,

(6.5)

where

C(q) = (2E(q2) + (q2 − 1)K(q2))−1 and ř =
√

(x − a cos θ0)2 + (y − a sin θ0)2, (6.6)

and we reintroduce tilde notation as before. Note that when q = 1 we have C = 1/2 and h = 0
to recover the asymptotic form for the thin-walled resonator outlined before. Next we outline
modifications to the outer problem, specifically, the outer interior problem solution.

(b) Outer problem formulation
The outer exterior solution is unchanged, and the outer interior solution proceeds analogously to
that given in §4b, but with the replacement coordinates and parameters r̃ �→ ř, b �→ a and Qm �→
Q̌m, where Q̌m = Jm(a)H(1)′

m (a) + J′m(a)H(1)
m (a). Hence, as we approach the resonator neck from the

interior and exterior domains, the outer solution now takes the form

lim
θ→θ0

lim
r→b,a

φout ∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2iA
π

[
γe − iπ

2 + log
(

r̃
2

)]
+∑∞

n=−∞ bnYn(b)einθ0

−∑∞
n=−∞

{
AQn

2 + bnY′
n(b)einθ0

}
Jn(b)
J′n(b) , r ↓ b,

2iB
π

[
γe − iπ

2 + log
(

ř
2

)]
− B

2
∑∞

n=−∞
Q̌n

J′n(a) Jn(a), r ↑ a,

(6.7)

which is the analogue to the thin-walled expression in (4.8) given earlier, but with the addition of
the inner wall radius a = b − 2hε.

(c) Matching procedure for thick-walled resonators
Having obtained the inner and outer asymptotic representations (6.5) and (6.7), we now match
inner fields at infinity, in the upper- and lower-half planes, to outer fields as we approach either
side of the neck r ↓ b and r ↑ a, respectively. As before, after matching logarithmic and non-
logarithmic terms we obtain a system of equations, from which we find that B = −A once more,
but obtain an updated relationship between A and bn analogous to that given in (4.10) but with
the replacement hε �→ ȟε where

ȟε = 4i
π

[
γe − iπ

2
+ log

(
εC(q)

√
q

2

)]
− 1

2

∞∑
n=−∞

QnJn(b)
J′n(b)

− 1
2

∞∑
n=−∞

Q̌nJn(a)
J′n(a)

. (6.8)

Thus, we obtain an eigenvalue problem for the thick-walled resonator case that is identical to
(4.13), but with the simple replacement hε �→ ȟε . This highlights a significant advantage of the
present approach, as all local details of the neck geometry are contained in the single term hε .
Note that in the limit as h → ∞ we have C ≈ 2/π and q ≈ 4 exp(−2 − πh) to obtain a specific
(one dominant balance scaling) result for extremely thick-walled resonators. This is discussed
in further detail in Part II.
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Figure 8. Band diagrams for a square array of thick-walled Helmholtz resonators for the relativewall thickness (or aspect ratio)
h values: (a) h= 1 and (b) h= 4, with fundamental unit cells inset. Multipole results for dipole (green line), quadrupole (red
line) and sextapole (dashed black line) truncations are superposed, in addition to finite-element results (blue line). In the above
figures, we use d̄ = 1, θ0 = 0, b̄= 0.3 and θap = π/48. (Online version in colour.)

(d) Leading and first-order systems
The asymptotic form for ȟε both within a dipolar truncation and in the vanishing b limit, is easily
obtained after introducing ȟε = 4if̌ε/(πb2) where

lim
b→0

f̌ε =
[

1
2

(
1 + b2

a2

)
− b2

8
+ b2 log

(
ε
√

qC(q)√
ab

)]
∼ 1

2

(
1 + b2

a2

)
+ b2 log

(
θap

√
b
√

qC(q)√
a

)
, (6.9)

which is the analogue to the earlier thin-walled expression (4.20). Hence we obtain the same
dispersion equations as before, i.e. the leading-order expression in (4.19) and the first-order
correction expression in (4.25a), but with the replacement fε �→ f̌ε , that is, for thick-walled
resonators the first-order dispersion equation is

k2
B = (f + 1)[b2f (2f − 1) + f̌ε(f + 1)(2f̌εf − 2f̌ε − 2f + 1)]

b2f cos(2[θ0 − θB]) + b2f 2 + f̌ε(2f̌ε − 1)(f 2 − 1)
. (6.10)

For reference, the analogue to the lowest-order approximation for thin resonators (4.21) follows
straightforwardly, and finally, the dipolar estimate for the cut-off frequency of the first band now
takes the form

kmax = 2
ā

⎡⎣1 − 8 log

⎛⎝ θap

√
b̄
√

qC(q)√
ā

⎞⎠⎤⎦−1/2

. (6.11)

(e) Numerical results
In this section, we briefly examine the validity of the multipole-matched asymptotic eigenvalue
problem (4.13) with the replacement hε �→ ȟε described in (6.8), as well as the new first-order
approximation for the first band in (6.10).

In figure 8, we compare results from our updated eigenvalue formulation for various
truncations (dipole L = 1, quadrupole L = 3 and sextapole L = 5) against results obtained using
finite-element methods, as we vary the thickness, or equivalently, the width of the resonator
neck. We observe that for this narrow half-angle θap = π/48, we achieve excellent agreement with
finite-element benchmark results and rapid convergence, with results indistinguishable above
dipole truncation and higher, for both bands. In figure 9 we examine the efficacy of the first-order
approximation (6.8) for a slightly wider half-angle θap = π/24, and observe very good agreement
over a range of thickness h values; it becomes clear by figure 9d that for very large h the model
is no longer able to accurately describe the first band towards the band edge, but that at longer
wavelengths, the description is still accurate.

Reflecting upon figures 8 and 9, we observe that increasing h acts to close the band gap, to
steepen the slope of the first band at lower frequencies and to translate the frequency range of
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Figure 9. Band diagrams for a square array of thick-walled Helmholtz resonators as the wall thickness h is increased: (a)
h= 0.1, (b) h= 0.5, (c) h= 1 and (d) h= 2, with fundamental unit cells inset. Blue lines denote results from finite-element
methods, red dashed lines denote results from the first-order correction (6.10) and black lines denote estimates for the edge of
the band gap (6.11). In the above figures, we use d̄ = 1, θ0 = 0, b̄= 0.3 and θap = π/24. (Online version in colour.)
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Figure 10. Band diagrams for a square array of thick-walled Helmholtz resonators as the outer radius b (equiv. filling fraction)
is increased for fixed neck length ratio h= 0.5: (a) b= 0.2 and (b) b= 0.4, with fundamental unit cells inset. Figure legends
are identical to those in figure 9. In the above figures, we use d̄ = 1, θ0 = 0 and θap = π/12. (Online version in colour.)

the gap. This result is entirely consistent with the idea that as the thickness increases, the interior
resonator shrinks so that the cut-off frequency increases.

Finally, we consider the relationship between resonator wall thickness and filling fraction in
figure 10 where we impose a channel width aspect ratio of h = 0.5 and vary the outer radius b for
the aperture width θap = π/12. We also superpose the first-order approximation for the first band
(6.8), and the first band maximum (6.11). As in the thin-walled case, we observe a widening of
the first band surface with increasing filling fraction (outer radius); this result may prove useful
in countering the effect of thickness in the event that a wide band gap is sought. That is, although
the presence of thickness may close the band gap it may be possible to compensate against this
by tuning the outer radius. We find that the first band description generally works well, with the
exception of configurations where the first and second band are almost degenerate at the Y point,
and at this wider half-angle θap = π/12 we observe a slight loss of accuracy in the band curvature
near the saddle point at X. The behaviour of the first band gap closing at the Y high-symmetry
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point emphasizes the important point that the upper bound of the band gap cannot always be
assessed from examining the spectrum at the Γ point alone.

7. Discussion
We have constructed a multipole formulation for calculating the band structure of a medium
comprising a two-dimensional square array of thin- and thick-walled Helmholtz resonators
embedded in a uniform fluid background. The eigenvalue problem was derived using both
multipole methods and the method of matched asymptotic expansions, from which we were able
to extract a dispersion equation approximation that implicitly defines the first band surface over
the entire Brillouin zone. For thin-walled resonators we find that both the multipole formulation
and the first-band surface description perform surprisingly well over a wide selection of aperture
widths and filling fractions, compared with results from finite-element methods. Likewise, for
thick-walled resonators, we find similarly strong performance across a selection of aperture
widths and resonator neck thicknesses. A key feature of these Helmholtz resonator arrays is
the emergence of a low-frequency band gap, where wave propagation through the array is
not possible in the bulk material. We find that thin-walled resonators generally possess the
widest gaps, and therefore for soundproofing applications recommend making the resonator
walls as thin as practicably possible. The formulation we present also makes it possible to
conveniently determine configurations that return a desired phase and/or group velocity at
long wavelengths, should this be required. We anticipate that our multipole-matched asymptotic
formulation will prove useful beyond the field of acoustics, such as in electromagnetism, after a
simple replacement of constants (i.e. B �→ ε−1

r and ρ �→ μr [4]). The multipole-matched asymptotic
expansion treatment outlined here provides closed-form expressions for the dispersion relation
over a wide frequency range, which is particularly valuable, since it may be used to rapidly search
over large parameter spaces for optimal configurations. Finally, we emphasize that the first band
descriptions we obtain extend outside the classical long wavelength regime, and are therefore
useful for describing how plane waves propagate through the array over very wide frequency
ranges.
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Appendix A. Convergent lattice sum definition
The lattice sums SY

� are most often defined via the conditionally convergent form [4]

SY
� (kB) =

∑
m,n

′Y�(Rmn)ei�φmn eikB·Rmn , (A 1)

where Rmn = Rmn exp(iφmn) is the (dimensionless) lattice generator in polar coordinates (i.e.
Rmn = (dm, dn) for a square lattice of period d and where m, n ∈ Z), kB = (kBx, kBy) is the
dimensionless Bloch vector, and prime notation (with the sum) denotes summation over all points
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in the array excluding m = n = 0. There are many ways in which this conditionally convergent
sum may be regularized to obtain an absolutely convergent form [25]; we present the well-known
expression for a square lattice as [4, eqn (3.104)]

SY
m(kB) = 1

Jt(ξ )

⎡⎣−
[

Yr(ξ ) + 1
π

r∑
n=1

(r − n)!
(n − 1)!

(
2
ξ

)s
]

δm,0 − 4im

d2

∑
p,q

eimθpq

(Qpq)r

Jt(Qpqξ )

Q2
pq − 1

⎤⎦ , (A 2)

where we define the regularization parameters r, denoting a small non-negative integer (e.g. r =
3), and ξ , a small positive number which formally limits to zero (e.g. ξ = d/100). We also define the
reciprocal lattice generator for a square lattice Kpq = (2πp/d, 2πq/d) where p, q ∈ Z, the translated
generator Qpq = Kpq + kB = Qpq exp(iθpq), along with s = r − 2n + 2 and t = m + r.
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