
PrefEdge: SSD Prefetcher for Large-Scale Graph Traversal

Karthik Nilakant
University of Cambridge

karthik.nilakant@cl.cam.ac.uk

Valentin Dalibard
University of Cambridge

valentin.dalibard@cl.cam.ac.uk

Amitabha Roy
EPFL

amitabha.roy@epfl.ch

Eiko Yoneki
University of Cambridge

eiko.yoneki@cl.cam.ac.uk

ABSTRACT
Mining large graphs has now become an important aspect of mul-
tiple diverse applications and a number of computer systems have
been proposed to provide runtime support. Recent interest in this
area has led to the construction of single machine graph computa-
tion systems that use solid state drives (SSDs) to store the graph.
This approach reduces the cost and simplifies the implementation
of graph algorithms, making computations on large graphs avail-
able to the average user. However, SSDs are slower than main
memory, and making full use of their bandwidth is crucial for ex-
ecuting graph algorithms in a reasonable amount of time. In this
paper, we present PrefEdge, a prefetcher for graph algorithms that
parallelises requests to derive maximum throughput from SSDs.
PrefEdge combines a judicious distribution of graph state between
main memory and SSDs with an innovative read-ahead algorithm
to prefetch needed data in parallel. This is in contrast to existing
approaches that depend on multi-threading the graph algorithms
to saturate available bandwidth. Our experiments on graph algo-
rithms using random access show that PrefEdge not only is capa-
ble of maximising the throughput from SSDs but is also able to
almost hide the effect of I/O latency. The improvements in run-
time for graph algorithms is up to 14× when compared to a single
threaded baseline. When compared to multi-threaded implemen-
tations, PrefEdge performs up to 80% faster without the program
complexity and the programmer effort needed for multi-threaded
graph algorithms.

1. INTRODUCTION
Mining graph structured data is becoming increasingly important
for numerous applications, ranging across the domains of bioinfor-
matics, social networks, computer security and many others. How-
ever, the growing scale of real world graphs, which is expected to
reach billions of vertices in the near future, has made efficient ex-
ecution of graph algorithms particularly challenging. Traditional
computer systems for computation on large data sets, such as Map-
Reduce [14] and Hadoop [1], are usually inefficient at performing
graph computations due to the large amount of data propagation
needed when compared to actual computations [27]. This lack
of locality in the data has lead to the assumption that processing
large graphs necessarily requires them to be loaded entirely in main
memory. A number of distributed graph processing platforms [28,
15] have been designed around this idea, offering a high perfor-
mance solution to the problem.
A recent trend in research has been the development of graph com-
putation systems on single computers with limited amounts of main
memory. This is an attractive proposition for mainstream graph
mining on low budgets, provided that the cost benefit outweighs
any performance impact caused by switching to the use of external

storage. A key performance driver with respect to graph programs
is the ability to respond to random-access I/O requests, which is not
a strength of traditional hard disk drives. On the other hand, Solid
state drives (SSDs) are still far cheaper (an order of magnitude)
than main memory and can provide higher random-access through-
put than traditional magnetic media. However, deriving maximum
throughput from such devices is contingent on the ability to apply
parallelism to the I/O access pattern of a process.
There are two existing approaches of particular interest, which
make use of external storage for processing graphs. Pearce et
al. [33] advocate the parallelisation of graph algorithms, allowing
the generation of multiple parallel I/O requests to external stor-
age, boosting the throughput of the external storage device. Ky-
rola et al’s approach [22] is to alter the structure of external data
and prescribe a processing pattern that allows storage device’s data
throughput capability to be saturated, by exclusively employing a
sequential access pattern.
We present an alternative to both these approaches: a graph
prefetcher called PrefEdge that is able to saturate an SSD using ran-
dom accesses from a single thread of execution. We are concerned
with traversing large graphs in various vertex orders: sequential,
breadth-first, shortest-path, and other graph algorithms on a single
machine. During traversal of a graph with vertex setV and edge set
E, we placeO(|V |) amount of data in expensive main memory to-
gether with a small constant sized cache; leavingO(|E|) amount of
data on the cheaper SSD. Although this needs more memory than a
purely external memory algorithm, we believe the mix of resource
requirements is practical, given the capabilities of current commod-
ity hardware. For example, we run a single source shortest path
traversal over a dataset from Twitter [2] containing approximately
52 million vertices and 1.6 billion edges on a single machine. We
placed 2.74 GB of vertex map data in main memory and left an ad-
ditional 2 GB of main memory as cache. This 4.74 GB of required
main memory is in contrast to approximately 33 GB of edge related
data on the SSD.
While the basic premise of prefetching is not new [32, 26], our
system does not require developers to modify their algorithms to
explicitly send hints to the prefetcher. Instead, PrefEdge interacts
with three common types of graph iterator, allowing programs that
use these iterators to benefit from the prefetcher. Our experiments
show that PrefEdge is capable of hiding the effect of I/O latency
in single threaded graph traversals, such as breadth-first and single-
source shortest paths, resulting in an improvement ranging up to
14 times faster than an unassisted algorithm. When compared with
multi-threaded graph algorithms, our prefetcher offers comparable
performance, and in some cases operates up to 80% faster. We
demonstrate that PrefEdge is able to deliver these benefits for a va-
riety of different graph types and is therefore relatively insensitive

 0

 50000

 100000

 150000

 200000

 250000

 300000

 5 10 15 20 25 30 35

R
ea

d
T

hr
ou

gh
pu

t (
K

B
/s

ec
)

Inflight Requests (4K random access)

Samsung 830
Samsung 830 RAID

Samsung 4 x 830
Samsung 840

Samsung 840 RAID
Seagate

Figure 1: SSD I/O throughput: Random Read

to the structure of the graph.
We begin by describing the characteristics of general graph pro-
cessing models in Section 2. We then review the properties of the
SSD as an I/O device in Section 2.2. PrefEdge’s architecture is
presented in Section 3, including the format we used to represent
graphs in Section 3.1. The results of our evaluation of PrefEdge is
detailed in Section 4, followed by a discussion on its cost and lim-
itations in Section 5. Finally, we discuss related work in Section 6
and conclude in Section 7.

2. GRAPH PROCESSING WITH SOLID-
STATE STORAGE

In this section we give a brief summary of the properties of graphs
and graph algorithms, and how using SSDs to store graph data re-
lates to these properties.

2.1 Graph Algorithms
We distinguish between three main graph algorithm classes: traver-
sal algorithms, fixed point iterations and characterisation algo-
rithms.
Traversal algorithms involve iterating through vertices of the graph
in a graph dependent ordering. Vertices can be traversed multiple
times. This class includes search algorithms (such as breadth-first,
depth-first and heuristic search), single source shortest paths, con-
nectivity algorithms, maximum flow algorithms, minimum span-
ning tree algorithms and many more.
Fixed Point Iteration algorithms involve iterating over the entire
graph multiple times until a convergence condition is reached.
They can be implemented efficiently using the Bulk Synchronous
Parallel model. This includes a number of graph analytics algo-
rithms such as PageRank, triangle counting and diameter calcula-
tion.
Finally, characterisation algorithms perform a single computation
over the entire graph and are usually more complex than the two
classes above. They include linear algebra type algorithms such as
spectral graph algorithms.
Our focus is on the first class. Parallelising traversal algorithms
can be difficult as the next vertex to be traversed is often dependent
on the current computation. Parallel implementations of such algo-
rithms typically require some form of concurrency control, work-
load partitioning, or thread-level optimisations for optimum per-
formance. We note that in a semi-external memory scenario, the
dominant component of running time will be I/O latency. In our
system, rather than attempting to parallelise the entire computation,
we focus on parallelising I/O access.

2.2 SSD I/O Characteristics
Unlike magnetic media, SSDs can service multiple random access

requests in parallel without suffering degradation in the latency of
servicing an individual request. We refer to the number of requests
that can be handled concurrently in the paper as the number of “in-
flight” requests (also referred to in literature as the queue depth).
To illustrate the impact of varying the inflight target, we compare
the performance characteristics of some commercially available
storage devices: a Samsung 830 series SSD, a Samsung 840 SSD, a
RAID-0 array containing 4 Samsung 830 SSDs, and a Seagate hard
disk drive. We used the Flexible I/O (fio [3]) benchmarking tool
to obtain the response curve for throughput (measured in kilobytes
of data read per second) with a varying number of inflight requests
for that device. Figure 1 shows how throughput varies in a manner
consistent with Little’s Law [24], as the number of inflight requests
for 4KB pages is increased.
As described earlier, the I/O access pattern exhibited by sequential
traversal algorithms is not conducive to producing a large number
of inflight requests. Typically a single I/O request will be made for
each vertex processed. Our evaluation shows that this leads to very
large I/O stalling rates. The aim of our system is to reduce this by
identifying future vertices and retrieving the associated data from
external storage ahead of time.

2.3 Processing Models
With PrefEdge, our processing model is relatively straightfor-
ward. We couple sequential (single-threaded) graph processing al-
gorithms with a background prefetcher. The prefetcher ensures that
edge data (which is stored on the SSD) is available in memory when
the processing algorithm needs it. This reduces I/O stalling time,
allowing the algorithm to complete more quickly.
An alternate approach would be to employ parallelism within the
graph processing algorithm itself. Rather than stalling every time
an I/O request occurs, this would allow other processing threads
to progress while a request is being serviced. Furthermore, multi-
ple threads can concurrently request blocks from external storage,
thereby increasing the number of inflight requests to the storage de-
vice and increasing throughput. However, developing an efficient
multi-threaded implementation of an algorithm can be challenging:
one must handle concurrent accesses to shared data in a consis-
tent manner, which necessitates the use of various synchronisation
mechanisms. Often, architecture-specific optimisations may need
to be employed to implement efficient locking or atomic operations
on shared data.
Our evaluation of PrefEdge shows that prefetching offers compara-
ble performance to algorithmic parallelism, in some cases outper-
forming the multi-threaded alternative. However, for algorithms
where the prefetcher is able to eliminate I/O waiting times com-
pletely, employing parallelism within the processing algorithm may
be the only way to further increase performance. For example, our
evaluation of the PageRank algorithm revealed that I/O stalling
times could be eliminated almost completely by the prefetcher,
meaning that the single-threaded computation could be easily out-
performed by a parallelised implementation.

2.4 OS support for I/O latency optimisation
Modern operating systems contain a number of optimisations for
mitigating the operational latency of external storage. Filesys-
tem caching and storage scheduling techniques such as request
re-ordering and coalescing are now mature concepts that are in
widespread use. Indeed, the basic concept of filesystem readahead
is not novel [10]; many operating systems and storage controllers
implement sequential prefetching as a standard feature.
Unfortunately, these existing techniques do not always suit the pur-
poses of our problem area. In graph traversal, data is rarely reused,

High Bandwidth
Low Latency

Low Bandwidth
High Latency

SSD

Edge data

$/byte
O(|E|)/edges

RAM

Program
state

Work list
+ edge
index

File
system
cache

$$$/byte
O(|V|)/Vertices
+ O(1)/Cache

CPU

Figure 2: Semi-external data layout

which hinders the effectiveness of caching, especially when cache
capacity is much smaller that the size of external data. Further-
more, graph traversal algorithms often exhibit a random access pat-
tern that cannot be optimised using sequential prefetching. In the
end, OS support techniques usually affect performance negatively,
as system resources are spent retrieving and storing useless data,
and possibly evicting useful data from the cache. Our objective
with PrefEdge is to provide an application-driven framework for
random access prefetching, identifying and retrieving data from an
external device before it is processed by the application. When
stalling is unavoidable, we aim to maximise the throughput of the
SSD by issuing multiple requests in parallel.

3. PREFEDGE SYSTEM ARCHITECTURE
There are two basic design aspects that make up the PrefEdge sys-
tem: we economise on resource costs by adopting a semi-external
storage model, whereby bulky edge data is stored on one or more
SSDs; secondly, we attempt to offset the performance impact of
using external storage by employing a prefetcher that can interact
with a variety of graph programs.

3.1 Data Layout and Storage Format
A conceptual diagram of memory usage in our system is shown
in Figure 2. The most relevant components of our system are a
CPU, RAM and persistent storage in the form of an SSD. We lock
program state and the adjacency list index in memory, and leave
all edge data on external storage. We process graphs stored in the
Compressed Sparse Row (CSR) format. The CSR format is aimed
at efficient storage of sparse matrices, in our case we use it to store
the sparse adjacency matrix of the graph. This approach is con-
sistent with GraphChi [22] and the work of Pearce et al.[33]. The
basic principles of our system could be applied to other storage
formats, however we chose CSR for the sake of comparability. The
CSR format consists of two components: the row index and col-
umn index. The row index ofAG is a vectorRG of size|V | with
RG[i] being the index of the first non-zero element of rowi in the

1

2 3

Row Index

Graph (G) Adjacency Matrix (A
G

)

1

2

1 2

3

3

1 00

0 0 0

1 0 0

Column Index

2
1

1
2
2

Figure 3: Example of CSR format

Algorithm 1 PrefEdge Prefetcher
Require: v is the current position of the vertex iterator
Require: IFT is the inflight-target
Require: Issued is a constant sized hash of issued requests
Needed := Read-ahead(IFT)
for all x in Needed considered in orderdo

if x /∈ Issued then
Issue prefetch request for CSR page ofx
Add x to Issued

column index. The column index ofAG is a vectorCG of size|E|
which is a row-wise listing of the column numbers of those ele-
ments inAG, which are non-zero. We note that the traditional CSR
format includes an auxiliary value vector paired with the column
index that actually stores the values in the sparse matrix. Since the
adjacency matrix is binary, we dispense with the value vector in the
representation as the value is implicitly always1.
Figure 3 illustrates how a directed graph of 3 nodes is stored in
CSR format. It should be evident that we can recover the original
adjacency matrix from the CSR format. It should also be evident
that CSR permits direct access to the set of neighbours of a vertex
through the row index and iteration over that set. The termination
point of the iterator is determined by looking up the start of the next
row fromRG.
We process graphs by storing theO(V) sized indexRG in main
memory while leaving the|E| sizedCG on the SSD. The objective
of PrefEdge is to minimise the cost of I/O to move edges related
information inCG from the SSD into main memory for processing.
For the rest of this paper we refer toCG using the better known and
functionally equivalent term ‘adjacency list.’

3.2 Prefetcher Design
PrefEdge is based on the observation that a large majority of graph
algorithms are built around different kinds of iterators. Informally
an iterator for a graph consists of a current vertex(v), internal state
(S) and the graph being iterated on (G). An iterator therefore may
be represented by the triple< v, S,G >. The current vertex is
simply the projectionπvertex(< x, S,G >) = x.
An iterator supports the functionNext(< v, S,G >) =<
v′, S′, G >. PrefEdge depends on the iterator being separable from
the graph. This means that there exists a read-ahead functionR
and an integerk(S) > 0 such that∀i ≤ k(S) : Ri(< v, S >) =
πvertex(Nexti(< v, S,G >)). The read-ahead function is therefore
able to determine the nextk vertices accessed, without reference to
the graphG.
PrefEdge contains two components:

1. Prefetch: Given a sequence of vertices to be accessed issue a
set of requests for the corresponding filesystem pages to the
SSD to achieve the optimum number of inflight requests. The
prefetcher invokes the read-ahead component with a targetT .

2. Read-ahead: The read-ahead component computes the result
of an iterator-specific read-ahead function to determine at
most the nextT vertices: {Rmin(k(S),T)(< v, S >)}. It
returns an ordered list.

3.3 Prefetch
The prefetcher is responsible for issuing requests to the SSD based
on the Read-ahead function and is parameterised by the inflight
target (IFT). We identify the sequential and random inflight targets
from the response curve described in the previous section. The
prefetching algorithm used in PrefEdge is shown in Algorithm 1.
The PrefEdge prefetcher is based on the simple observation that

execution of the graph algorithm is synchronous and therefore stalls
on an I/O. Hence, starting from the current position of the vertex
iterator (where the algorithm is likely stalled) the prefetcher issues
requests for the nextIFT number of needed vertices from the CSR
file.

3.4 Read-ahead
In this paper, we discuss read-ahead functions for three types of it-
erators. We use the example of discovering connected components
using breadth-first search shown in Figure 4 for illustration. That
example contains two iterators: the first is a simple sequential iter-
ator over the vertices at Line2 while the second is a breadth-first
iterator at Lines7 -8. We discuss each of these in turn followed
by a simple extension to the breadth-first search iterator, the priority
queue iterator.

3.4.1 Sequential Iterator:
The sequential iterator iterates over the vertices in turn. Therefore,
given the current vertex numberv the next vertex is simplyv +
1. The read-ahead function therefore is simplyRi(< v, S >) =
I(v) + i (whereI(v) is the vertex number corresponding to vertex
v). k(S) is just the remaining number of vertices to iterate over.

3.4.2 Breadth-first Iterator:
The breadth-first iterator state is maintained in a queue of vertices
to be visited and this queue is accessed in First In First Out (FIFO)
order. If the size of the queue isk then the nextk vertices are simply
the nextk elements of the queue in order. Thereforek(S) is the size
of the FIFO queue encapsulated by the stateS andRi(< v, S >)
is simply theith element of the FIFO queue encapsulated inS.

3.4.3 Priority Queue Iterator:
Workloads such as single-source shortest path (SSSP) [12] are es-
sentially like breadth-first search but replace the FIFO queue with
a priority queue of vertices. Each vertex is assigned a (changing)
weight from the time when it is discovered and put in the priority
queue to when it is finally removed at the point where it has the
minimum weight among all elements in the priority queue. The
fact that weight can change during execution renders it difficult to
come up withRi(< v, S >) without reference to the underlying
graphG. However a reasonable approximation is to ignore changes
to the weights in the priority queue as we iterate over it. We then
pick the topk elements from the priority queue wherek is much
smaller than the number of elements in the priority queue. This
approximation depends on the topk elements not changing during
the nextk steps of the iterator, an assumption that tends to hold in
practise as weight updates are bounded below by the weight of the
vertex that is removed from the priority queue.
There are a number of priority queue data structures that allow se-

components = 0; for(i=0;i<vertices;i++) { 1

if(!vertices[i].visited) { 2

components++; 3

bfs_queue.push_end(i); 4

visited[i]=TRUE; 5

while(!bfs_queue.empty()) { 6

v = bfs_queue.pop_front(); 7

CSR_FOREACH_NEIGHBOUR(v, x) { 8

if(!visited(x)) { 9

bfs_queue.push_end(x); 10

visited[x] = TRUE; 11

}}}}} 12

13

Figure 4: Connected components for an undirected graph

Figure 5: PrefEdge Architecture

lection of the topk elements. A simple solution is to fixk and then
use a sorted array for the topk vertices while the remaining vertices
are maintained in a standard heap, keeping asymptotic bounds the
same as a heap for all the elements. Since PrefEdge is tolerant of
incorrect vertex selection (as incorrectly predicted pages are simply
left unused in cache), we use an even simpler approximation in our
implementation: we use a binary heap (of dynamic size|S|) stored
in an array (of size|V |) and consider the topmin(T, |S|) elements
of the array for each request forT vertices from the prefetch com-
ponent. We show in our evaluation that in spite of these approxi-
mations, PrefEdge provides good speedups for SSSP.

3.5 Handling Multiple Iterators
We use two prefetchers, one for sequential iterators and the other
for random access iterators. This is driven by the observation that
SSDs demonstrate very different I/O characteristics for sequential
reads as compared to random reads and therefore we use a differ-
ent prefetcher for each type, with a different setting for the inflight
target (IFT) for each. We allow the operating system scheduler to
divide available I/O bandwidth between these two types of request
streams.
We handle multiple instances of the same type of iterator by par-
titioning the quota of inflight requests between them. The alloca-
tion depends on the nesting of iterators. We allocate the entire IFT
budget first to the innermost iterator and then move up allocating
leftover inflight request budgets to the next outer iterator. For two
iterators at the same level, we allocate equally to the two, inter-
leaving prefetch requests from each iterator. The rationale behind
this allocation strategy is to prefetch pages from the CSR file in the
order in which they are required by the synchronously executing
graph algorithm.
Multiple iterators of the same type occur in this paper with SSSP.
We store edge weights in a separate file and therefore we have two
iterators at the same level with SSSP, one reading the structure from
the CSR file and the other reading edge weights from the property
file. Following the strategy outlined above, we allocate half of the
IFT budget for the random access prefetcher to the CSR file and the
other half to the property file.

3.6 Implementation
The core components of our current implementation of PrefEdge
are illustrated in Figure 5. We have implemented PrefEdge as
C libraries that are used by algorithms and iterators written in
C. At startup, vertex metadata is initialised and locked in mem-
ory, including the CSR index which is loaded from storage. The
CSR adjacency list file and auxiliary edge weights are accessed
using memory-mapped I/O; attempts to read pages that have not
been fetched already will result in a major page fault and stalling.

In a separate thread, the prefetcher invokes any registered call-
backs, which access the current state of the main program’s iter-
ator. The callback converts vertex IDs to page addresses, returning
batches of pages for the prefetcher to retrieve. Asynchronous page
load requests to the operating system are issued via the standard
posix_fadvise interface using theWILLNEED hint. Such re-
quests immediately initiate a fetch of the referenced page by the
virtual memory subsystem. This process is repeated continuously,
ensuring that pages containing future data move quickly to the ac-
tive LRU list. After the data from a page has been used, its eventual
eviction from the cache is managed by the OS.

4. EVALUATION
We now present an evaluation of PrefEdge to analyse its perfor-
mance in the light of its design goal: accelerating SSD-based graph
traversal through prefetching. Our evaluation highlights the follow-
ing aspects of PrefEdge’s performance:

• Prefetching allows sequential algorithms to run up to 14
times faster. The resultant processing rate approaches that of
completely in-memory execution. The prefetcher continues
to deliver these benefits even in memory constrained envi-
ronments.

• PrefEdge is applicable across a range of graph types and al-
gorithms.

• When compared to the alternative of multi-threading, PrefEdge
can offer superior performance without the program com-
plexity and programmer effort needed for multithreaded
graph algorithms.

• We show that PrefEdge’s performance can be superior to
GraphChi [22], a similar external memory graph engine that
makes use of sequential access.

We have used PrefEdge to process a graph with 1 billion vertices
with 40 billion edges on a single industry standard server illustrat-
ing the usefulness and scalability of our approach.

4.1 PrefEdge-Assisted Algorithms
As described earlier, we developed read-ahead functions for three
different types of iterators: FIFO queue, priority queue, and se-
quential. For the priority queue iterator, we added a property file
with random floating-point edge weights in the range[0, |V |) for
the graphG = (V,E). We used these iterators in turn to imple-
ment the following textbook single-threaded algorithms:
Page-Rank: We compute the page-rank of a graph: the probabil-
ity for each vertex that random walk will reach that vertex. This
is a well known metric [31] that we compute using an iterative ap-
proach where each vertex propagates its current probability to all
its neighbours. We implement page-rank using a sequential iterator
that is repeatedly run till convergence.
Weakly Connected Components (WCC): Treating every edge as
undirected, perform a breadth-first traversal (i.e. BFS) of every
component in the graph. Repeat this process for every unvisited
vertex in the graph, to discover all components.
Strongly Connected Components (SCC): Computes the strongly
connected components of the graph using a label passing approach.
Breadth-first label propagation occurs both in the direction and
reverse-direction of the edges. If two vertices have different la-
bels, they must belong in different SCCs. The algorithm eventually
converges to have one label per SCC.
Single source shortest path (SSSP): Compute the length of the
shortest path from a randomly chosen source vertex to every other
node in the graph, using the weight data associated with each di-
rected edge. SSSP is implemented using the priority queue iterator.
KCore Decomposition: Identifies nested subset of vertices, called

Table 3: Test environment hardware platform.

cores, to discover the central components of the graph. Thekth core
of a graph is the maximal subgraph in which each vertex has degree
at leastk. This is implemented using the algorithm proposed in [9],
in which the lowest degree vertices are removed one by one from
the current maximal subgraph. Here, we use the BFS iterator over
the re-ordered adjacency list index.
In addition to these five algorithms we also implemented solutions
to the problems of maximal independent set, computing conduc-
tance over graphs, minimum cost spanning trees and the A* heuris-
tic search algorithm. We found that in each case, their performance
was comparable to one of the algorithms above. This is unsurpris-
ing as they consist of the same basic iterators and are I/O bound.
We therefore report only the basic algorithms listed above.

4.2 Graph Datasets
We evaluated the PrefEdge on a set of graphs with differing charac-
teristics. This included synthetic random graphs, scale-free graphs
generated using the Graph500 reference code [4], and a real-world
graph extracted from the Twitter follower network [5]. We con-
verted the only undirected graph, Watts-Strogatz, into a directed
one. The largest connected component in this converted graph tra-
versed by BFS and SSSP is 18,954,432 vertices out of 20,000,000,
ensuring we remained close to the undirected structure.
Table 1 shows the runtime memory footprints for all the combina-
tions of graphs and benchmarks that we have run. Unless otherwise
specified, we limit the available memory for the OS cache (that
caches pages from the SSD) to exactly 2 GB. This includes space
for operating system data structures, the kernel and application im-
ages. The sum of the numbers in any row, with the exception of
the last two entries is therefore the precise amount of RAM used
during the execution. The table underlines a key design philosophy
of this paper: more bulkyO(|E|) data resides on the SSD while
smallerO(|V |) data is placed in main memory.

4.3 Methodology
Our testing environment consisted of two machines, each with a set
of storage devices – these configurations are detailed in Table 3. We
used machine A to generate and process the medium scale graph
data in Table 1 (TW, ER, WS, SF). Machine B was used for pro-
cessing the larger graphs (SF27-30). The large amount of memory
on machine A allowed us to evaluate the performance of running
each algorithm after pre-loading an entire graph in memory. As de-
scribed earlier, the current implementation of PrefEdge relies on the
vertex map and metadata being pinned in memory, and utilises left-
over memory for as a cache for adjacency list and auxiliary data. To
measure performance, we compare the runtime of PrefEdge against

Graph
RAM Cache + SSD

WCC SSSP Pagerank SCC K-Cores Adjacency List Edge Weights
Twitter (TW) 1.18 2.74 1.57 2.10 1.68 10.40 24.65

Erdõs-Réyni (ER) 0.45 1.04 0.60 0.80 0.64 12.41 30.54
Watts-Strogatz (WS) 0.45 1.04 0.60 0.80 0.64 12.41 30.54

Scale-free (SF) 1.10 1.05 1.00 1.34 1.07 13.07 32.18
Scale-free (SF27) 3.00 7.00 4.00 – – 46.56 101.61
Scale-free (SF28) 6.00 14.00 8.00 – – 73.84 162.96
Scale-free (SF29) 12.00 28.00 8.00 – – 152.98 326.37
Scale-free (SF30) 24.00 56.00 16.00 – – 316.80 654.04

Table 1: Memory footprint in gigabytes.

Graph Vertices (M) Edges (B) Cache (20%)
Total Runtime (minutes)

WCC BFC(GC) SSSP Pagerank
Scale-free (SF27) 134 6.71 9.3GB 42 32 88 29
Scale-free (SF28) 268 10.73 14.8GB 79 60 164 51
Scale-free (SF29) 536 21.47 30.4GB 164 126 329 112
Scale-free (SF30) 1073 42.95 63.3GB 319 306 607 230

Table 2: Large Graph Runtime Environment

two benchmarks: the ‘baseline’ refers to runtime performance of a
cache-restricted unassisted version of each algorithm. The ‘opti-
mal’ case involves pre-loading the entire graph in memory prior to
running the unassisted algorithm. In order to change the available
cache memory in each trial dynamically, we made use of Linux
control groups (cgroups), which allow resource limits to be im-
posed on groups of processes. We cleared the filesystem cache
before each trial.
Both of the machines used in our test platform were configured with
a standard Ubuntu 12.04 64-bit system image. Each storage device
was formatted with the ext4 filesystem. The default configuration
of block devices on each machine was changed, to disable reada-
head on those devices, due to the reasons described in Section 2.4.
We exclude the time taken to create in-memory structures from our
runtime figures, since such setup time is either constant or not com-
parable among the versions.

4.4 Performance Comparison with Baseline
We first consider the performance benefit that PrefEdge brings to
single-threaded graph algorithms. We ran each algorithm on the
four medium-scale graphs with the filesystem cache size restricted
to 2000 megabytes for the baseline and PrefEdge trials. This cor-
responds to approximately 15–20% of the adjacency list size for
each graph. Figures 6a, 6b, 6c, 6d and 6e show the total runtime
for each algorithm (WCC, SSSP, PageRank, SCC, and K-Cores re-
spectively), on each graph, in each test case (baseline, PrefEdge
and optimal). The figures show that each algorithm runs 3 to 14
times faster than the baseline. For those algorithms with a lower
speedup compared to the baseline (e.g. PageRank), this is usually
due to the fact that the algorithm’s runtime is close to optimal with
prefetching. In most cases, using PrefEdge delivers performance
that is comparable with the optimal case, despite using approxi-
mately 80–85% less memory.
The prefetcher improves the running rate of an algorithm in two
ways: (1) data to be traversed next is continuously moved into
memory by the prefetcher before it is needed, reducing the per-
centage of time spent by the main thread waiting for I/O; and (2)
the prefetcher issues requests for multiple pages from the SSD at
once, boosting throughput from the SSD. To illustrate this differ-
ence, Table 4 compares the average throughput from the SSD and
percentage of time spent waiting for external storage by CPU, by
PrefEdge against the baseline. The rate of improvement delivered
by PrefEdge on each type of graph structure is related to the differ-

ence in these figures.

4.5 Impact of Cache Restrictions
One of the strengths of PrefEdge is that it performs well even with
a small amount of cache memory. The prefetcher tries to ensure
that the edge data that the main thread needs to progress is always
available in memory – as long as enough edge data is available to
keep the main thread busy, I/O stalling will be eliminated.
Figure 7 illustrates the runtime performance of WCC on the Twitter
dataset, with respect to maximum cache size. With a cache size of
100 megabytes, the algorithm completes in under half the time of
the unassisted BFS run presented above (where the cache size was
2000 megabytes). Conversely, increasing the cache size to 4000
megabytes results in a runtime that is approximately1.5× the opti-
mal case (which requires all data to be preloaded in memory prior
to running). In Section 4.7, we show that PrefEdge outperforms
multi-threaded algorithms as the cache size is reduced.
Since the prefetcher is able to function with only a small proportion
of all edge data in cache is, it is possible to process datasets with
edge data that far exceeds memory capacity on a machine, as shown
in the following section.

4.6 Processing Large Graphs
The larger scale-free datasets in Table 2 were processed using ma-
chine B, which contained enough storage capacity to hold each
of the graphs. Figure 8 illustrates the runtime performance of
PrefEdge-assisted WCC, PageRank and SSSP on these graphs. The
non-PrefEdge baseline results are omitted in this scenario; for the
largest graph, unassisted runtime would run to several days. We
restricted available cache memory in two different ways for this

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1000 2000 3000 4000

R
un

ni
ng

 T
im

e
fo

r
W

C
C

 o
n

T
w

itt
er

 (
se

c)

Edge Data Cache Size (MB)

PrefEdge Runtime
Multi Thread

Figure 7: Cache Size Sensitivity (WCC on Twitter)

 0

 1000

 2000

 3000

 4000

 5000

 6000

TW WS SF ER

R
un

tim
e

(s
ec

on
ds

)

Graph Type (WCC)

PrefEdge
Baseline

Optimal (memory)

(a) WCC Runtime

 0

 5000

 10000

 15000

TW WS SF ER

R
un

tim
e

(s
ec

on
ds

)

Graph Type (SSSP)

PrefEdge
Baseline

Optimal (memory)

(b) SSSP Runtime

 0

 500

 1000

TW WS SF ER

R
un

tim
e

(s
ec

on
ds

)

Graph Type (Pagerank)

PrefEdge
Baseline

Optimal (memory)

(c) Pagerank Runtime

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

TW WS SF ER

R
un

tim
e

(s
ec

on
ds

)

Graph Type (SCC)

PrefEdge
Baseline

Optimal (memory)

(d) SCC Runtime

 0

 1000

 2000

 3000

 4000

 5000

TW WS SF ER

R
un

tim
e

(s
ec

on
ds

)

Graph Type (KCore)

PrefEdge
Baseline

Optimal (memory)

(e) K-Cores Runtime

Figure 6: Runtimes: Comparison to Single Thread Processing and Memory-based operation

Graph Throughput (MB/s) Throughput (MB/s) CPU I/O Wait % CPU I/O Wait %
Baseline PrefEdge Baseline PrefEdge

TW 18.6 96.1 74 31
WS 16.6 224.7 80 18

SF25 17.4 140.1 78 28
ER 17.0 219.2 78 12

Table 4: SSD Throughput and I/O Stalling (WCC)

experiment: (1) as in the prior experiment, the cache size was fixed
at 2 gigabytes; or (2) the cache size was fixed at a proportion of
20% of the adjacency list size for each graph. In Figures 8a and
8b, we compare the processing rate (in terms of edges visited per
second), in each cache scenario. For the random access algorithms
(SSSP and WCC), fixing the cache at 2GB appears to reduce the
traversal rate by a constant factor. The degradation in PageRank’s
performance at higher scale may be due to increased OS memory
management activity (since PageRank is CPU-bound). The data
point for the SSSP on the SF30 graph is missing in the 2GB fig-
ure; one vertex in that graph has edge and weight data that exceeds
2GB, causing errant behaviour. The SF30 graph was able to run
with a 4GB cache at a similar rate. We note that GraphChi’s min-
imum memory requirement is also equal to the size of the largest
edge data for any vertex in the graph.
The unassisted running time of each algorithm on the medium size
scale-free graph (SF) lies between the PrefEdge-assisted running
time on graphs SF28 and SF29. In other words, PrefEdge allows a
graph to be processed in the same time that an unassisted algorithm
would take to process a graph that is possibly an order of magnitude
smaller.

4.7 Comparison to Multi-Threading
Although our focus is on providing performance enhancements
for single-threaded programs, we also present a comparison of

PrefEdge against a multi-threaded algorithm. For this task, we
chose to parallelise the weakly connected components algorithm.
From a conceptual level, there are two approaches to parallelis-
ing WCC. Recall (from Figure 4) that the sequential WCC algo-
rithm contains two nested loops; the inner loop iterates through the
BFS queue, while the outer loop iterates through unvisited com-
ponents. The first parallel WCC approach entails parallelising the
BFS traversal loop, while leaving the outer loop sequential. The
other approach involves traversing all components in the graph in
parallel, using a label propagation technique. The latter approach
is used by GraphChi – we present a comparison in the next section.
To evaluate the former approach, we modified the existing WCC
implementation to perform the BFS traversal with multiple threads
reading from the queue. We used OpenMP [13] for this purpose.
Our modified implementation closely resembles the shared queue
random access algorithm described by Hong et al. [20]. The run-
time performance results from running the multithreaded imple-
mentation on each medium scale graph are presented in Figure 9a.
The trials were conducted using 8, 32 and 128 processing threads.
Note that PrefEdge’s runtime is lower than the multithreaded WCC
algorithm on each of the graphs.
Figure 9b however can be construed to be unfair on the multi-
threaded algorithms due the lack of parallelism available in small
sub-components of the graph, all of which must be explored by
WCC. We therefore also measured the runtime for traversing the

 0

 1e-006

 2e-006

 3e-006

 4e-006

 5e-006

 0 10 20 30 40 50

N
um

be
r

of
 E

dg
es

 /
se

co
nd

s
w

ith
 2

G
B

 C
ac

he

Number of Edges (billion) in Graph500 graph

WCC
PageRank

SSSP

(a) Edges/sec with 2GB as Memory Cache for Edge Data

 0

 1e-006

 2e-006

 3e-006

 4e-006

 5e-006

 0 10 20 30 40 50

N
um

be
r

of
 E

dg
es

 /
se

co
nd

s
w

ith
 2

0%
 C

ac
he

Number of Edges (billion) in Graph500 graph

WCC
PageRank

SSSP

(b) Edges/sec with 20% of Total Edge Data Size as Memory Cache

Figure 8: Large Graph - Scalability

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

TW WS SF ER

R
un

tim
e

(s
ec

on
ds

)

Graph Type (WCC)

PrefEdge
Multi-thread 128 (Hong)

Multi-thread 32 (Hong)
Multi-thread 8 (Hong)

(a) WCC runtime

 0

 200

 400

 600

 800

 1000

TW WS SF ER

R
un

tim
e

(s
ec

on
ds

)

Graph Type (BFS (GC))

PrefEdge
Multi-thread 128 (Hong)

Multi-thread 32 (Hong)
Multi-thread 8 (Hong)

(b) BFS on Giant Component runtime

Figure 9: Comparison to Multithread Processing

largest component found by WCC (since each component is visited
separately, this can be timed separately). This is essentially the time
taken to perform a parallel breadth-first search of the giant compo-
nent in each graph. On the Twitter and scale-free datasets, when
operating with a cache capacity of 2GB, the multi-threaded algo-
rithm is then able to outperform the PrefEdge-enhanced algorithm
but only at high thread counts. This indicates that a large number
of threads are better at handling the large BFS queue during traver-
sal of the giant component in those graphs, but are encumbered by
the lack of parallelism when processing smaller components. Fur-
ther to this, PrefEdge consistently outperforms the multi-threaded
algorithm on all types of graph, when the amount of cache capacity
is reduced. Figure 7 compares the multi-threaded WCC algorithm
with 8 threads on the Twitter dataset with PrefEdge, with succes-
sively smaller cache capacities. The multi-threaded approach may
result in destructive competition between the threads for limited
cache, whereas the prefetcher is able to ensure that pages remain in
cache until the data in the pages are no longer required.

4.8 Comparison to GraphChi
GraphChi is an existing system with similar target applications
to PrefEdge. However, there are several key differences between
PrefEdge and GraphChi that we summarise here, prior to present-
ing an indicative performance comparison.
The major architectural difference is that GraphChi does not re-
quire vertex metadata to be pinned in memory. As a result,
GraphChi programs do not have direct access to remote vertex
metadata – instead, updates must be communicated to neigh-
bouring vertices by employing a BSP-style programming pat-

tern. Secondly, GraphChi rearranges edge data such that it is al-
ways accessed in sequence in each iteration superstep. As a re-
sult, GraphChi saturates the SSD, and I/O stalling is almost non-
existent. However, to support this mode of operation, the graph
must be “sharded” into chunks of edge data that can fit into avail-
able memory on the machine. In contrast to PrefEdge, in order to
take advantage of additional memory, GraphChi would need to re-
shard an entire graph to support the new memory capacity. The
same is also true if a new graph processing program requires a dif-
ferent amount of metadata per edge.
Our aim in this section is to provide some insight into effects of
the different approach taken by the two systems. We tested version
0.2.1 of GraphChi on machine A, using the default configuration
parameters. Each of the medium-scale graphs was converted into
the GraphChi compressed format. GraphChi includes implemen-
tations of WCC and PageRank as example applications, which we
tested on each dataset. The results are shown in Figure 10.
As described above, BSP-based WCC implementation employed
by GraphChi works by labelling all components of the graph con-
currently. The number of iterations required to traverse each graph
depends on its diameter, but the program only loads vertex and
edge data for vertices that have been scheduled for visitation in
each iteration. GraphChi’s WCC ran approximately 1.5 to 4 times
slower than the PrefEdge-assisted single threaded algorithm on
each graph. Note that we did not restrict the cache for GraphChi,
however this is largely irrelevant because GraphChi programs do
not experience I/O stalling. In contrast, PageRank completed sig-
nificantly faster with GraphChi. PrefEdge almost eliminates I/O
stalling for PageRank, which means that the only mechanism for

 0

 200

 400

 600

 800

 1000

 1200

 1400

TW WS SF ER

R
un

tim
e

(s
ec

on
ds

)

Graph Type (WCC)

PrefEdge
GraphChi

(a) WCC Runtime

 0

 100

 200

 300

 400

 500

TW WS SF ER

R
un

tim
e

(s
ec

on
ds

)

Graph Type (PR)

PrefEdge
GraphChi

(b) PageRank Runtime

Figure 10: Comparison to GraphChi

further performance improvement is by employing algorithmic par-
allelism. Since GraphChi employs multiple execution threads, it is
able to take advantage of more cores on the machine to process the
graph faster.

5. COSTS AND LIMITATIONS
In order for PrefEdge to successfully hide I/O latency it is important
that the internal state of the iterator can be maintained entirely in
main memory. We note that the iterator state in all the examples
given above are of sizeO(|V |) and our underlying assumption in
this paper is that we are willing to pay the cost of storing such data
structures in main memory. However, a possible extension would
be to reduce the space necessary to store the iterator. TheO(|V |)
data structure is the row index part of the CSR encoding, we show
that by storing a summary of this index along with the full index
on the SSD, we can reduce the memory needed with little cost on
performance.
The row index contains the positions of vertices within the adja-
cency list, storing it on the SSD implies two sequential fetches are
needed to retrieve a vertex’s neighbours: one for its position the
adjacency list and an other for its edges. We propose to store in
memory a summary of the row index that can be used to get the
approximate position of a vertex on the adjacency list. This way,
when a vertex needs to be prefetched, we can in parallel fetch its
position on the adjacency list from the row index, and a block of
memory from the adjacency list that contains its edges as shown
in Figure 11. Since sequential reads on SSDs are cheap, fetch-
ing a block instead of a single address should come at a low cost.
Finding this approximation also requires extra computations, but
they come almost for free as during graph computations the CPU
is often unused and waiting for I/O. In very general term,we move
the bottleneck away from memory and latency, and trade them off
for computations and bandwidth. A simple estimation done on the
degree distribution of the Twitter graph showed that for a graph
of 4 billion nodes, it would be reasonable to obtain a summary of
100MB.
A fundamental limitation is the dependency on being able to predict
future work. Those algorithms where the iterator is not separable
from the graph preclude the construction of a read-ahead function
for the iterator. An example of such an algorithm is Depth First
Search (DFS). DFS uses a stack of vertices, with the next vertex to
be explored being some neighbour of the vertex at the top of the
stack (unless it is possible to store the nextIFT neighbours along
with a vertex in the stack, which can be used to compute the read-
ahead). In practice, this limitation is somewhat consistent with the

ability to parallelise an algorithm (i.e. take a block of future work
and distribute it amongst multiple workers).
Another important limitation is the need for concurrent access to
iterator state. There are a number of well known techniques for
concurrent access to data structures that can be used for safely inter-
leaving access for both threads. In our case the iterators have stat-
ically allocatedO(|V |) sized structures (such as the queue in the
BFS example of Figure 4). We appropriately initialise these struc-
tures and allow the read-ahead to traverse it without synchronisa-
tion. This leads to the read-ahead working on an inconsistent snap-
shot. However PrefEdge tolerates approximations to the read-ahead
function and therefore our design trades synchronisation overheads
for wasted prefetch bandwidth.

Figure 11: Illustration of the row index summary: The row index
and the adjacency list are stored on the SSD and the summary in
memory. When vertexvk is needed, the two areas shaded along
the row index and adjacency list are prefetched. The area for the
adjacency list is deduced by linearly interpolating between the two
pages pointed to by anchorsai andai+1.

6. RELATED WORK
Single-machine graph processing. A key feature of current SSD
hardware is that the device must service multiple requests in paral-
lel to achieve maximum throughput. The approach taken by Pearce
et al. [33] is to employ an asynchronous processing model that en-
sures the SSD is kept busy, by issuing requests from multiple pro-
cessing threads. They propose a suite of parallelised graph algo-
rithms for this purpose. However, the design and implementation
of efficient multithreaded graph algorithms is is a difficult research
problem [35, 39, 30, 18]. In contrast, PrefEdge does not require
multithreading but delivers comparable performance. Furthermore,

multithreading could be combined with prefetching to improve per-
formance on certain graph structures and algorithms. In the context
of broader research on pointer-based prefetching [32, 26], our work
differs by taking advantage of future state stored within iterators,
rather than dereferencing pointers in the adjacency list structure di-
rectly.
We have presented a comparison of our system with GraphChi [22].
Their on-disk representation results in sequential access when exe-
cuting vertex-centric algorithms. However this results in their hav-
ing to move large chunks of data into memory even when all of it
is not required. A good example of this is breadth-first traversal
(BFS), which is the basis of many popular graph algorithms [7]. In
contrast, PrefEdge’s random access prefetching ensures only nec-
essary data is retrieved during traversal.
Somewhat similar to the BSP model, the Parallel Boost Graph Li-
brary [16] is a contains a number of key generic graph algorithms
with an implementation based on MPI. In contrast, the Green-Marl
platform provides a domain-specific language for creating graph
processing programs, and optimises breadth-first traversal in such
programs [19]. Our intention is to integrate with suites such as
these, augmenting their performance on external memory. A recent
system with similar aims to PrefEdge is TurboGraph [17], which
focuses on problems that can be represented as matrix-vector mul-
tiplication, using both thread-level parallelism and I/O optimisation
mechanisms. The main difference is that PrefEdge is designed to
work with existing graph programs with minimal modification. X-
Stream [36] is another recent system which takes a very different
approach, by attempting to avoid random-access I/O completely,
relying on sequential access to optimise throughput. One disad-
vantage of that approach is the number of wasted edges processed
in each iteration, similar to the pattern seen in our comparison with
GraphChi. However such systems provide compelling performance
on non-traversal algorithms.
Distributed Graph Processing. A large amount of recent research
has focused on analysing large scale data with distributed com-
puting resources. However general purpose frameworks such as
MapReduce [14] have been found to be inadequate for graph pro-
cessing for a number of reasons: complex data dependencies within
the data result in poor locality of access; a variety of processing pat-
terns exist that do not translate easily to the map/fold model. For
this reason, a number of systems specifically for graph processing
have arisen. Most of them provide a “think as a vertex” abstrac-
tion similar to the one proposed in the Bulk Synchronous Parallel
(BSP) [38] model. Pregel [28] is a distributed system based on the
BSP model. GraphLab [25] implements a similar model but using
a distributed shared memory view instead of message passing, and
allows for asynchronous operations. PowerGraph [15] builds on
GraphLab and uses a very similar computational model but with an
implementation tuned for natural graphs with degrees following a
power law distribution.
A number of systems have proposed distributed matrix computa-
tion as a platform for graph algorithms. Pegasus [21] implements
a generalised iterated sparse matrix multiplication. MadLinq [34]
implements a distributed computation library for .NET products.
Kineograph [11] uses a time evolving approach, producing con-
sistent snapshots of the graph data at regular intervals. Naiad
[29] presents a general incremental computation model, differen-
tial dataflow, which can be used for graph computation. Finally,
graph databases have seen a substantial amount of work recently,
both with distributed implementations such as Trinity [37] and sin-
gle machine implementation such as Neo4j [6]. The basic tech-
niques described here are applicable to transactional and analytical
workloads.

Applications. There has been a recent surge of interest in the
area of extracting information from graphs due to the rapidly grow-
ing amount of graph structured data available. Applications range
across the domain of biology [40], social and information networks
[23], and many others.

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented a novel prefetcher, PrefEdge, de-
signed to reduce I/O latency in graph traversals for graphs stored
on SSDs. The prefetcher almost eliminates the difference between
operating from external memory and operating in-memory, for a
range of algorithms and graph structures. Prefetcher-assisted al-
gorithms can achieve these benefits even with proportionally small
memory caches. Furthermore, PrefEdge offers comparable (and
in some cases, superior) performance to parallel algorithms. We
have shown the system offers a practical alternative approach to
GraphChi that is more easily able to scale with changing memory
conditions.
Our main aims for further development of the platform include: ad-
dressing the performance of the prefetcher on low-degree vertices;
generalising the prefetcher to allow integration with a larger class
of algorithms, in addition to providing fine-grained cache manage-
ment; and relaxing the requirement to lock vertex metadata in mem-
ory, by utilising the index summarisation methodology described
earlier.
It is interesting to contrast other results in the single machine cat-
egory with ours. Bader et al. [8] report on breadth-first search on
a scale free graph with 1 billion edges in 2.5 seconds on a Cray
MTA-2. In comparison our system performs breadth-first search
of 1 billion edges in 0.21 hours or about 300 times slower. On
the other hand our system costs under $2500 while a Cray MTA-
2 would be in the region of millions of dollars: about 1000 times
more expensive.

8. REFERENCES
[1] http://hadoop.apache.org/.
[2] http://www.twitter.com/.
[3] http://freecode.com/projects/fio.
[4] http://www.graph500.org/.
[5] http://twitter.mpi-sws.org/.
[6] http://neo4j.org/.
[7] AGARWAL , V., PETRINI, F., PASETTO, D., AND BADER,

D. A. Scalable graph exploration on multicore processors. In
Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking,
Storage and Analysis(2010), IEEE Computer Society,
pp. 1–11.

[8] BADER, D. A., AND MADDURI , K. Designing
multithreaded algorithms for breadth-first search and
st-connectivity on the Cray MTA-2. InProceedings of the
2006 International Conference on Parallel Processing
(2006), IEEE Computer Society, pp. 523–530.

[9] BATAGELJ, V., AND ZAVERSNIK, M. An o (m) algorithm
for cores decomposition of networks.arXiv preprint
cs/0310049(2003).

[10] CAO, P., FELTEN, E. W., KARLIN , A. R., AND L I , K. A
study of integrated prefetching and caching strategies. In
Proceedings of the 1995 ACM SIGMETRICS joint
international conference on Measurement and modeling of
computer systems(New York, NY, USA, 1995),
SIGMETRICS ’95/PERFORMANCE ’95, ACM,

pp. 188–197.
[11] CHENG, R., HONG, J., KYROLA , A., M IAO , Y., WENG,

X., WU, M., YANG, F., ZHOU, L., ZHAO, F., AND CHEN,
E. Kineograph: taking the pulse of a fast-changing and
connected world. InProceedings of the 7th ACM european
conference on Computer Systems(2012), ACM, pp. 85–98.

[12] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND

STEIN, C. Introduction to Algorithms. MIT Press, 2001.
[13] DAGUM , L., AND MENON, R. Openmp: an industry

standard api for shared-memory programming.
Computational Science & Engineering, IEEE 5, 1 (1998),
46–55.

[14] DEAN, J.,AND GHEMAWAT, S. Mapreduce: simplified data
processing on large clusters. InProceedings of the 6th
conference on Symposium on Operating Systems Design &
Implementation - Volume 6(2004), USENIX Association,
pp. 10–10.

[15] GONZALEZ, J. E., LOW, Y., GU, H., BICKSON, D., AND

GUESTRIN, C. Powergraph: distributed graph-parallel
computation on natural graphs. InProceedings of the 10th
USENIX conference on Operating Systems Design and
Implementation(2012), USENIX Association, pp. 17–30.

[16] GREGOR, D., AND LUMSDAINE, A. The parallel bgl: A
generic library for distributed graph computations.Parallel
Object-Oriented Scientific Computing (POOSC)(2005).

[17] HAN , W.-S., LEE, S., PARK , K., LEE, J.-H., KIM , M.-S.,
K IM , J.,AND YU, H. Turbograph: a fast parallel graph
engine handling billion-scale graphs in a single pc. In
Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining(New
York, NY, USA, 2013), KDD ’13, ACM, pp. 77–85.

[18] HAN , Y., AND WAGNER, R. A. An efficient and fast
parallel-connected component algorithm.J. ACM 37, 3 (July
1990), 626–642.

[19] HONG, S., CHAFI , H., SEDLAR, E., AND OLUKOTUN , K.
Green-marl: a dsl for easy and efficient graph analysis. In
Proceedings of the seventeenth international conference on
Architectural Support for Programming Languages and
Operating Systems(2012), ACM, pp. 349–362.

[20] HONG, S., OGUNTEBI, T., AND OLUKOTUN , K. Efficient
parallel graph exploration on multi-core cpu and gpu. In
Parallel Architectures and Compilation Techniques (PACT),
2011 International Conference on(2011), IEEE, pp. 78–88.

[21] KANG, U., TSOURAKAKIS, C. E.,AND FALOUTSOS, C.
Pegasus: A peta-scale graph mining system implementation
and observations. InData Mining, 2009. ICDM’09. Ninth
IEEE International Conference on(2009), IEEE,
pp. 229–238.

[22] KYROLA , A., AND BLELLOCH, G. Graphchi: Large-scale
graph computation on just a PC. InProceedings of the 10th
conference on Symposium on Opearting Systems Design &
Implementation(2012), USENIX Association.

[23] LESKOVEC, J., KLEINBERG, J.,AND FALOUTSOS, C.
Graph evolution: Densification and shrinking diameters.
ACM Transactions on Knowledge Discovery from Data
(TKDD) 1, 1 (2007), 2.

[24] L ITTLE , J. D. A proof for the queuing formula:L = λW .
Operations Research 9, 3 (May 1961), 383–387.

[25] LOW, Y., GONZALEZ, J., KYROLA , A., BICKSON, D.,
GUESTRIN, C., AND HELLERSTEIN, J. M. Graphlab: A
new framework for parallel machine learning.arXiv preprint
arXiv:1006.4990(2010).

[26] LUK , C.-K., AND MOWRY, T. C. Compiler-based
prefetching for recursive data structures. InProceedings of
the Seventh International Conference on Architectural
Support for Programming Languages and Operating Systems
(New York, NY, USA, 1996), ASPLOS VII, ACM,
pp. 222–233.

[27] LUMSDAINE, A., GREGOR, D., HENDRICKSON, B., AND

BERRY, J. Challenges in parallel graph processing.Parallel
Processing Letters 17, 1 (2007 2007), 5–20.

[28] MALEWICZ , G., AUSTERN, M. H., BIK , A. J., DEHNERT,
J. C., HORN, I., LEISER, N., AND CZAJKOWSKI, G.
Pregel: a system for large-scale graph processing. In
Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data(2010), ACM,
pp. 135–146.

[29] MCSHERRY, F., ISAACS, R., ISARD, M., AND MURRAY,
D. G. Composable incremental and iterative data-parallel
computation with naiad. Tech. Rep. MSR-TR-2012-105,
2012.

[30] MEYER, U. Design and analysis of sequential and parallel
single-source shortest-paths algorithms. PhD thesis, 2002.

[31] PAGE, L., BRIN, S., MOTWANI , R., AND WINOGRAD, T.
The pagerank citation ranking: Bringing order to the web.
Technical report, Stanford University, 1998.

[32] PATTERSON, R. H., GIBSON, G. A., GINTING , E.,
STODOLSKY, D., AND ZELENKA , J. Informed prefetching
and caching. Tech. rep., New York, NY, USA, 1995.

[33] PEARCE, R., GOKHALE , M., AND AMATO , N. M.
Multithreaded asynchronous graph traversal for in-memory
and semi-external memory. InProceedings of the 2010
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis(2010), IEEE
Computer Society, pp. 1–11.

[34] QIAN , Z., CHEN, X., KANG, N., CHEN, M., YU, Y.,
MOSCIBRODA, T., AND ZHANG, Z. Madlinq: large-scale
distributed matrix computation for the cloud. InProceedings
of the 7th ACM european conference on Computer Systems
(2012), ACM, pp. 197–210.

[35] REGHBATI, E., AND CORNEIL, D. G. Parallel computations
in graph theory.SIAM J. Comput. 7, 2 (1978), 230–237.

[36] ROY, A., M IHAILOVIC , I., AND ZWAENEPOEL, W.
X-stream: edge-centric graph processing using streaming
partitions. InProceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles(New York,
NY, USA, 2013), SOSP ’13, ACM, pp. 472–488.

[37] SHAO, B., WANG, H., AND L I , Y. Trinity: A distributed
graph engine on a memory cloud. Tech. rep., New York, NY,
USA, 2013.

[38] VALIANT , L. G. A bridging model for parallel computation.
Communications of the ACM 33, 8 (1990), 103–111.

[39] YOO, A., CHOW, E., HENDERSON, K., MCLENDON, W.,
HENDRICKSON, B., AND CATALYUREK , U. A scalable
distributed parallel breadth-first search algorithm on
bluegene/l. InACM/IEEE conference on Supercomputing
(2005).

[40] ZERBINO, D. R., AND BIRNEY, E. Velvet: algorithms for de
novo short read assembly using de bruijn graphs.Genome
research 18, 5 (2008), 821–829.

