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Neural Network based Linear and Nonlinear
Noise Estimation

F.J. Vaquero Caballero(1), D. J. Ives (1), C. Laperle(2), D. Charlton(2), Q. Zhuge(2), M. O’Sullivan(2),
Seb J. Savory(1)

Abstract—Operators are pressured to maximize the
achieved capacity over deployed links. This can be
obtained by operating in the weakly nonlinear regime,
requiring a precise understanding of the transmission
conditions.

Ideally, optical transponders should be capable of
estimating the regime of operation from the received
signal and feeding that information to the upper
management layers to optimizate the transmission
characteristics, however this estimation is challeng-
ing.

This paper addresses this problem by estimating the
linear and nonlinear SNR from the received signal.
This estimation is performed by obtaining features
of two distinctive effects: nonlinear phase noise and
second-order statistical moments. A small neural net-
work is trained to estimate the SNRs from the ex-
tracted features.

Over extensive simulations covering 19,800 sets of
realistic fibre transmissions, we verified the accu-
racy of the proposed techniques. Employing both
approaches simultaneously gave a measured perfor-
mances of 0.04 and 0.20 dB of std error for the linear
and nonlinear SNR, respectively.

Index Terms—Coherent communications, Metrol-
ogy, Optical performance monitoring, Machine Learn-
ing

I. INTRODUCTION

Growing traffic demands increase the pressure on
operators to maximise the capacity over their deployed
networks. Flexible Optical Networking and Impair-
ment Aware Networking will heavily rely on signal
quality information for routing decisions, requiring
information extracted from the received signal.

Optical Performance Monitoring (OPM) is the field
of optical communications that aims to characterise
the impairments suffered through transmission from
features extracted from the received optical signal
[1]. The extracted information is especially relevant
for the upper management layers since it provides
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accurate information of the current state of transmis-
sion, enabling the identification of sources of under-
performance and possible countermeasures to improve
performance.

Most of the linear impairments suffered dur-
ing transmission, such as inter-symbol interference
(ISI) from chromatic dispersion (CD), and state-of-
polarization rotation (SOPR), can be compensated by
DSP with insignificant penalties [2].

Therefore, the source of impairments that penal-
ize signal performance in an optical link is noise.
Two sources of transmission noise can be considered:
amplified spontaneous emission (ASE) and nonlinear
interference noise (NLI). ASE noise is a result of the
amplification from the Erbium doped fibre amplifiers
(EDFA), which compensates for the signal attenuation.
Nonlinearities are caused by the power dependence of
the fibre refractive index, where the resultant non-
linear interference is proportional to the cube of the
signal power, p.

The transmitter and receiver of the optical sig-
nal are also subjected to penalties due to non-ideal
components, internal amplifications, shot noise, and
quantisation, undermining the maximum achievable
performance in the optical link [3]. These effects are
commonly modelled as transceiver noise. Although sig-
nificant, it is known as its characterisation is usually
provided by the equipment manufacturer.

The total signal-to-noise ratio (SNR) in an optical
link can be defined as:

SNR−1 =
σ2

ASE
p

+ σ2
TRx︸ ︷︷ ︸

SNR−1
LIN

+ ηNL p2︸ ︷︷ ︸
SNR−1

NLI

, (1)

where σ2
ASE, σ2

TRx p, and ηNL p3, model the ASE,
transceiver, and nonlinear noise, respectively. Instead
of defining 3 SNRs accounting for the individual contri-
bution, we define two SNRs accounting for the linear
(ASE and transceiver), and nonlinear contributions:
SNRLIN and SNRNLI .

Analytical models such as the GN [4] and the EGN
[5] models provide acurate predictions of nonlinear
noise, they require an accurate characterisation of
the fibre light-path, such as its fibre parameters, and
information of the neighbouring channels such as
their modulation format, symbol-rate, and transmitted
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power. The preceding requirements are impractical
as they are not readily available in heterogeneous
dynamic networks.

Already several approaches have been considered for
the estimation of nonlinearities, both [6], [7] based
their study on the correlations in the received sig-
nal due to nonlinearities. Characterization of a auto-
covariance function over nonlinear noise by principal
component analysis and its prediction through neural
networks was proposed in [8]. But very little progress
has been made on the estimation of the linear noise
from the received signal. It is possible to perform a
3-parameter fit of Equation 1, [9], but it requires to
modify the transmitted power which would compro-
mise performance and be impossible on real networks.
We recently proposed a new method capable of jointly
estimating the linear and nonlinear SNR, based on the
measurement of the nonlinear phase noise [10].

This paper expands our last contribution over an
extensive set of realistic simulation data, discussing
the limitations of the proposed technique in terms of
modulation format and reach. Additionally, we pro-
pose a new approach based on the estimation of the
temporal properties of nonlinearities through time-
varying ISI matrices, whose estimation is not limited
to those scenarios where nonlinear phase noise is a
major nonlinear contribution.

II. THEORETICAL BACKGROUND

In this section we introduce the time-domain first
order regular perturbation solution of the nonlinear
Schroedinger equation, suitable for modelling self-
phase modulation (SPM) and cross-phase modulation
(XPM) under the framework of pulse collisions [11].
The additional assumptions are that four-wave mixing
(FWM) contributions are insignificant and there is
polarisation aligment between channels. More complex
models considering additional nonlinearities and dif-
ferent polarisation states can be found in [12] and
[13]. This model is not only capable of accurately
modelling the pulse propagation in the fibre and the
characterisation of nonlinearities, but also provides an
intuitive approach to understand the nature of the
nonlinearities.

During this paper we employ the Bra–ket notation
[14]: |b〉 denotes 2-D complex Jones column vectors
[bx, by]T, 〈b| denotes its Hermitian transpose [b∗x , b∗y ],
〈b|c〉 denotes the scalar product b∗xcx + b∗ycy, and |b〉〈c|
is their dyadic operator:[

bxc∗x bxc∗y
byc∗x byc∗y

]
, (2)

We also denote: 〈b〉 as the average of b(k). In a WDM
set-up, the nonlinear interference noise caused by an
interfering channel B into channel A in the symbol

TABLE I: Characteristics of the different pulse
collisions as noted by [13].

2PC 3PC(I) 3PC(II) 4PC

Nature: PN & PS PN & PS CN CN
Mod. dependence.: Yes No Yes No

l condition: l = 0 l = 0 l 6= 0 l 6= 0
k and m condition: k = m k 6= m k = m k 6= m

n = 0, commonly known as XPM, is given by:

|∆a(0)〉 = jγ ∑
l,k,m

Xl,k,m

(
〈b(k)|b(m)〉I + |b(m)〉〈b(k)|

)
|a(l)〉,

(3)
where I is the 2x2 identity matrix. The transmitted
symbols of the channel of interest and interfering
channel are |an〉 and |bn〉, respectively. The coefficients
Xl,k,m define the nature and efficiency of the NLI, and
are dependent on the normalized waveform g(z, t),
symbol duration T, chromatic dispersion β2, and chan-
nel spacing Ω [rad/s]. The analytical expression of
Xl,k,m is given by:

Xl,k,m =
∫ L

0

∫ −∞

−∞
f (z)g∗(z, t)g(z, t− lT)

g∗(z, t− kT − β2Ωz)g(z, t−mT − β2Ωz) dt dz,
(4)

Equations 3 and 4 are directly obtained from the
first-order regular perturbation approximation of the
nonlinear Schroedinger equation [15], which is a
widely used approximation of the Kerr effect. The
previous equations are implicitly defined for inter-
channel nonlinearities where the channel of interest is
different from the interfering channels, although this
model is also suitable for SPM.

Xl,k,m analytical expression is very illustrative of the
nature of the nonlinearities: nonlinearities are created
by four pulse collisions, consisting of the match filter
at the receiver, g∗(z, t), including chromatic dispersion
compensation (CDC) and three waveforms correspond-
ing to the symbols: |al〉, |bk〉, and |bm〉.

Depending on the indexes, the contributions can be
classified into two-pulse collisions (2PC, l = 0, k = m),
three-pulse collisions (3PC, type I: l = 0, k 6= m,
or type II: l 6= 0, k = m), and four-pulse collisions
(4PC, l 6= 0, k 6= m). The different types of pulse
collisions result in different noise contributions in the
form of phase noise (PN), polarization-scattering (PS),
and circular noise (CN). Table I summarizes the nature
of the different pulse collisions.

An alternative form of Equation 3, consist of merg-
ing the contributions: Xl,k,m

(
〈b(k)|b(m)〉I+ |b(m)〉〈b(k)|

)
,

into a set of 2x2 matrices H(n)
l . Since H(n)

l includes the
transmitted symbols, the matrices are time-varying.
Due to its similarity to a linear filtering process where
the filtering effect results in ISI, the set of H(n)

l are
commonly denoted as the 2x2 time-varying ISI matri-
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(c) TWC, -1 dBm.

Fig. 1: ACF(H(n)
l ) for 1,3,7, and 9 WDM channels. l = 0 (blue), l = 1 (red) and l = 2 (green).For different

types of fibres simulated noise-less over 10 spans as defined in Table II.

ces, given by:

|∆a(n)〉 = jγ ∑
l

H(n)
l |a

(n−l)〉, H(n)
l =

H(n)
l,xx H(n)

l,xy

H(n)
l,yx H(n)

l,yy


(5)

where l indexes the different orders of the ISI matrices.
The zero order of the ISI matrices, H(n)

0 , gathers all
the 2PC and 3PC(I) contributions, grouping all the
elements that induce PS and nonlinear PN together.
Although the ISI matrices are time-varying, their sta-
tistical properties can be studied through the auto-
covariance function (ACF). In [16], a metric capable
of extracting their temporal properties from the post-
DSP received symbols, â(n)r , was derived:

Ĥ(n)
l,rs = (â(n)r − a(n)r )/a(n−l)

s , r, s ∈ {x, y},

ACF(∆n)
l,rs = lim

K→∞

1
K

K

∑
n=1

Ĥ(n)
l,rs Ĥ∗(n+∆n)

l,rs

(6)

Figure 1 shows the evolution of the real part of
the most relevant orders of ACF for SSMF, ELEAF
and TWC fibres over 10 spans, accounting for a total
transmission of 1000km. The real part is the most
significant contribution for the considered cases. More-
over, it is observed that the ACF of l = 0 is the
strongest contribution for the three cases: l = 0, 1, 2.

III. METRICS AND TOOLS

In this section we introduce different strategies and
metrics to estimate linear and nonlinear noise from the
received signal. We review the most relevant metrics
from the literature and propose a novel metric based
on the ACF, covered in the aforementioned section. We
also briefly introduce the foundations of dimensional
reduction and neural networks relevant for our specific
applications.

A. Amplitude Noise Covariance
Equation 3 illustrates the nature of nonlinear noise,

consisting of the mixing of triplets of symbols from

the channel of interest and the interfering channel,
weighted by Xl,k,m. Consequently, the resultant non-
linear noise exhibit correlation over the transmitted
symbols.

In [6] by the definition of the amplitude noise covari-
ance (ANC), the correlation characteristics of the non-
linear noise were exploited to estimate the strength
of the nonlinearities. For received symbols post-DSP,
the noise is calculated in the normal direction of the
constellation, as illustrated in Figure 2:

∆a(n)r = |â(n)r | − |a
(n)
r |, r ∈ {x, y} (7)

Finally, ANC can be defined as:

ANC(m)
rs = cov(∆a(k)r , ∆a(k+m)

s ), r, s ∈ {x, y}, (8)

resulting in 3 ANCs: {xx, xy, yy}. The existence of 3
ANC components comes from the nature of nonlin-
earities and the polarization effects: due the nature
of nonlinearities, birefringence, and the random state-
of polarization of the fibre, the nonlinear correlation
is not limited to either polarization and is therefore
present in both. The limitation of the study of the
covariance to the normal direction is motivated by the
effect of phase noise from the transmitted and received
laser over the tangential components, which can alter
the measured covariance.

A transformation to the ANC was proposed by [17]:

ALANCrs = 10 log10(1/
6

∑
k=1
|ANC(k)

rs |), (9)

this metric adds the most significant elements of the
covariance metric into a single term through a set of
nonlinear transformations. In the following sections,
we will refer to ALANCxx as simply ALANC, since
very little improvement is obtained by considering the
remaining ALANCyy and ALANCxy metrics in our
estimations. The resultant metric has an almost linear
mapping with SNRNLI for high values of SNRLIN.

Figure 3 shows the evolution of ALANC for noise-
less SSMF transmission (red) and noise-loaded case
(blue). We observe that the metric has very similar
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Fig. 3: ALANC for 1,3,5,7,9 WDM channels of
SSMF, for 5 to 15 spans. NF=4.5dB and

SNRTRx =16dB.

behaviour for both noise-loaded and noise-less cases
with SNRNLI < 25dB.

B. Normal and Tangential Components

An alternative set of metrics can be obtained by
decomposing the constellation into its normal, n, and
tangential, t, components of the noise variance for each
individual symbol. This approach enables us to quan-
tify the different contributions of nonlinearities: the
tangential components are affected by nonlinear PN,
PS, and CN, whilst the normal components are only
affected by nonlinear PS and CN. Alternatively, linear
noise contributions from amplification and transceiver
noise affects equally both n and t components. Figure
2 illustrates this decomposition for 3 constellation
symbols in each of the power-constant rings of a 16-
QAM signal.

Since phase noise induces broadening as a function
of the magnitude of each ring, it is possible to average
the n and t components for each constellation ring

resulting in Nv and Tv, where v indexes the constel-
lation ring (v = {1, 2, 3}). These metrics correspond to
a classification of the noise components of the error
vector magnitude (EVM) metric, which can be directly
related to SNR as:

SNR =
1

EVM2 =
4

N1 + 2N2 + N3 + T1 + 2T2 + T3
(10)

The most significant contributions of the phase noise
were studied for a single polarization in [11], where
the phase noise is proportional to the variance of the
symbols’ power. For the two polarizations case, the
induced nonlinear phase noise increases monotonically
with the fourth order modulation factor (FOMF) [13]:

FOMF =
〈|b|4〉
〈|b|2〉2 (11)

Therefore, this method may not be suitable for mod-
ulation formats such as QPSK due to its constant
power and consequently low nonlinear phase noise.
This metric is still relevant due to the growing in-
terests in higher-order modulation formats such as
16-QAM, 32-QAM, and probabilistic shaping aiming
for Gaussian-like power distributions. Those advanced
modulation formats present a higher FOMF, producing
more nonlinear phase noise.

Although advanced modulation formats have lim-
ited reach, depending on the transmission distance
different types of pulse collisions may dominate the
nonlinear contributions. For long links, where 3PC and
4PC dominate, the amount of nonlinear phase noise
relative to the total nonlinearities will decrease [13],
[18], which can penalize the estimation of linear and
nonlinear noise based on Nv and Tv metrics. These
conditions of non-linear phase noise were not met for
the simulation data considered in this paper.

C. PCA of ACFl,rs(∆n), and second-order statistics
We have shown in the previous subsections that by

studying the covariance of the received signals it is
possible to obtain estimates of the SNRNLI , and by
measuring the nonlinear phase noise, we can also ob-
tain insightful metrics about the relationship between
linear and nonlinear noise. In this subsection, we in-
troduce a novel technique for the separation of SNRLIN
and SNRNLI , based on second-order statistics of the
auto-covariance function and a dimensional reduction
technique. The proposed technique does not rely on the
estimation of nonlinear phase noise.

Figure 1 shows the evolution of the ACF(∆n)
l,rs which

provides a description of the time correlation prop-
erties of the nonlinearities in the fibre. We cannot
directly rely on the ACF due to its high dimensionality,
since ACF(∆n)

l,rs range of interest spread over a wide
range of values for ∆n and l. But several dimension-
ality reduction techniques can be applied to obtain a
simpler representation of the ACF. Principal compo-
nent analysis (PCA) presents a simple and intuitive
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Fig. 4: The three more relevant PC0,d coefficients
for all noise-free scenarios from Table II.

Fig. 5: Percentage error of c0,1 coefficients for data
from Table II, NF=4.5dB and SNRTRx=16 dB.

approach [19]. It was already used for nonlinearities
identification in [8] and will be used in this paper. The
process of the low dimensional reduction of ACF(∆n)

l,xx
can be expressed as:

ˆACF(∆n)
l,xx =

D

∑
d=1

cl,dPC(∆n)
l,d , (12)

where D is the number of dimensions considered. For
simplicity, same number of dimensions are considered
in all l, and the study is focused on ACFl,xx only.
PC(∆n)

l,d are the principal components of the element
d-dimension, cl,d are the coefficients of the PCA, and

ˆACF(∆n)
l,rs is the resultant approximation of the auto-

covariance function.
For simplicity, we will focus on ACF for l = 0 since

it is the major contribution. Figure 4 illustrates the
three most significant PC0,d of ACF(∆n)

0,xx , ∆n 6= 0, with
their percentage of explained variance. By making use
the first two c0,d, d = {1, 2}, it is possible to explain
99.2% of the variance. Consequently, we can obtain a
low-dimensional description of the ACF by just a few
c0,d coefficients.

It is worth noting that the calculation of the ACF is
based on second-order moment estimations where the
linear noise also contributes. The linear components
are mainly from ASE noise and quantization at the
transceiver [3], both contributions can be modelled
as additive white Gaussian noise (AWGN). The lin-

Algorithm 1 separation SNRNLI and SNRLIN

1: pre-compute the PCA basis, PC(∆n)
0,d , ∀∆n 6= 0, based

on simulation noise-less data,
2: process ACFnoise,(∆n)

0,rs of the received sequence
3: calculate c0,d of ACF, ∀∆n 6= 0
4: Use c0,d and ACFnoise,(0)

0,rs as features to estimate
both SNRNLI and SNRLIN

ear noise can be assumed to be uncorrelated. Con-
sequently, in a noisy scenario the measured auto-
covariance function, ACFnoise,(∆n)

l,rs , can be expressed as:

ACFnoise,(∆n)
l,rs = ACF(∆n)

l,rs , ∆n 6= 0,

ACFnoise,(0)
l,rs = ACF(0)

l,rs + K · σLIN ,
(13)

where K is a constant accounting for the signal nor-
malization of the DSP and the effect of the weighted
average by the transmitted symbols involved in the
ACF calculation. Equation 13 illustrates the delta-
behaviour of the ACF for AWGN, implying that all the
difference between noise-less and noise-loaded scenar-
ios is captured in ∆n = 0.

A simple approach to exploit that effect can be to
apply PCA analysis to ACFnoise,(∆n)

0,rs , ∀∆n 6= 0. By doing
so, we obtain a description of the nonlinearities based
on the tail of the ACF, where linear noise does not have
an effect in ACF. From the estimate of c0,d the nonlin-
ear contribution to ACF(0) can be found; this allows
the estimation of the linear noise contribution KσLIN.
Algorithm 1 provides an step-by-step explanation of
this process.

The PC(∆n)
0,d basis should be calculated under noise-

less scenarios, to avoid PCA fitting the noise. Figure
5 shows the percentage error of the component c0,1
obtained from a noise-less transmission compared to
its value in a noisy transmission, cnoise

0,1 . 75% of the
components have an absolute percentage error smaller
than 5%, and 92% smaller than 10%.

The approach described in this section may be suit-
able for different covariance metrics, and is not limited
to the ACF described in this paper. It could be also
applied to ANC, due to its similarity to ACF. We focus
on ACF since its spread in ∆n for nonlinearities is
considerably longer than in the case of ANC. Since
for ANC(m)

rs the elements of interest over m is limited
to a few symbols. Other metrics for noise, with the
previously mentioned properties, may be also possible.

Although it was not observed in our simulations,
in some systems the linear noise component maybe
correlated over a few symbols over the ACF metric due
to suboptimal equalization, match-filtering or big roll-
off factors. Rather than discarding only ∆n = 0 for the
calculation of c0,d, the set of indexes over which the
correlation takes place must be discarded. By doing



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

g(y(1)1 )

x(0)1 g(y(1)2 ) y(2)1

x(0)2 ...
... ...

x(0)N y(2)2

g(y(1)K )

SNRLIN

SNRNLI

W
1
1,1

W
1

1,N

W 2
1,1

W 1
K,N

W
2

1,K

W
2
2,K

Fig. 6: Illustration of the structure of the single
hidden layer neural network used in this paper.

so, we do not foresee significant penalties due to the
length and smooth behaviour of ACF.

D. Neural networks based decomposition
In the previous subsections we have described sev-

eral features that can be extracted from the trans-
mitted data to estimate linear and nonlinear noise. A
part from ALANC, which has an almost linear evolu-
tion with SNRNLI , the rest of the introduced metrics
present a nonlinear relationship between their value
and the parameters to estimate. Neural networks are
a powerful tool for learning those relationships and ac-
curately provide estimates based on the input features.

Figure 6 illustrates a simple neural network consist-
ing of N inputs [x0

1,..., x0
N], 1-hidden layer with K nodes,

and two outputs [SNRLIN,SNRNLI]. The equations that
relates the inputs to the p-layer: x(p)

n , to the outputs
to the next layer: x(p+1)

n are given by [19]:

y(p)
k = bias(p)

k +
N

∑
n=1

W(p)
k,n x(p−1)

n ,

x(p)
n = g(y(p)

n ),

(14)

where g(·) is a nonlinear activation function such
as the hyperbolic tangent function (tanh), sigmoid, or
rectified linear unit (ReLU). In our case, we make use
of tanh function.

The aim of the described neural network is to find
the nonlinear mapping between the input features and
the expected outputs, in our case SNRNLI and SNRLIN.
We employ a 1-hidden layer neural network, since it
proved to be sufficient for the transduction of the input
features into accurate predictions for our application
of interest. The network is trained by the standard
70/15/15 rule for the 3 sets: train/dev/test, with early
stopping over the dev, converged by back-propagation.
Intense monitoring was performed over the errors of
the train/dev/test sets to avoid over-fitting.

The evolution of the convergence was studied over
different scenarios to evaluate the likelihood of reach-
ing a local minimum. The neural network weights

Fig. 7: Performance of 200 train runs of the
neural network for the train/dev/test.

Fig. 8: Distribution of the errors for the case of
0.04 and 0.2 dB of std. of std. error for SNRLIN

and SNRNLI

were randomly initialized and several trainings were
performed to verify the achieved performance is con-
sistent in all the runs. Figure 7 illustrates the spread
of the performance of the neural network for the
train/dev/test over 200 runs. It corresponds to the best
estimation scenario considered in the results section
of this paper, where 0.04 and 0.2 dB of std. error
was reported for the SNRLIN and SNRNLI , respectively.
Figure 8 shows the histogram of the performance for
the same case, 0.04 and 0.2 dB of std. for the SNRLIN
and SNRNLI . As expected, the error has a Gaussian
shape.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

IV. RESULTS

In this section, we evaluate the different methodolo-
gies introduced in this paper by computer simulations.
For the validation of the algorithm, we consider 3 types
of fibres: SSMF, TWC, and ELEAF. The span count is
varied between 5 and 15 spans in steps of 1, the length
of each span is set to 100 km for all the cases. The
channel launch power is varied across 6 dB centred
in the approximate optimum launched power (Figure
10). The gain of the amplifiers is set to compensate the
loss of the span and their noise figure (NF) is varied
uniformly between 4 and 6 dB, in steps of 0.5 dB. The
SNRTRx is similarly varied between 15 and 18 dB in
steps of 1 dB. The number of WDM channels, CW , is
varied between 1, 3, 5, 7, and 9. All the split-step
Fourier simulations are performed linear noise-free,
where noise loading is performed at the receiver. By
loading noise directly in the receiver, we are neglecting
the nonlinear interactions of the noise and between the
noise and the signal. This approach is commonly done
is simulations [17] and should provide very similar
results [20].

The channel spacing is set to 50 GHz, and the modu-
lation format of choice is 16-QAM match-filtered with
a 0.14 root-raised cosine (RRC) filter. A summary of
the simulations is given in Table II. The total amount
of transmission realisations simulated are 19800.

For all the results, the neural network responsible
for the mapping between the input features, and the
estimation is a 1-hidden-layer network with 7 nodes
(K = 7). We chose a relatively small neural network
due to the simplicity of the required nonlinear re-
gression. By keeping the number of nodes small, we
minimize the possibility of over-fitting. The perfor-
mance was worse for a smaller number of nodes and
it stabilized around 7 nodes where additional nodes
resulted in similar performance.

Figure 9 shows the performance evolution for all the
simulation data, showing the maximum spread of the
error of the estimations.

TABLE II: Simulation parameters used.

Fibre types SSMF TWC ELEAF
D [ps/nm/km] 16.7 2.8 4.3
α [dB] 0.2 0.21 0.21
γ [1/W/km] 1.3 2 1.47
Channel launch power [dBm] [-2,3] [-3,2] [-4,1]
# spans 5:1:15
WDM channels (CW ) 1, 3, 5, 7, 9
NF [dB] 4,4.5,5,5.5,6
SNRTRx [dB] 15, 16, 17, 18
Channel Spacing [GHz] 50
Modulation format 16-QAM (0.14 RRC)
Number of symbols 218

A. Nv, Tv components, and ALANC
We first consider a neural network with input fea-

tures: Nv and Tv, j = {1, 2, 3}, CW , and the accumulated

chromatic dispersion (ACD).
Figure 9a, and 9b illustrate the performance for

SNRLIN, and SNRNLI . The top plot shows the evolution
of the estimate as a function of the true SNR, while
the bottom plot shows the evolution of the error. It
is noticeable that the error for the SNRNLI presents
heteroscedastic behaviour: for high SNRNLI the vari-
ance of the estimation is higher than for lower SNRNLI .
The std. error is 0.27, and 0.08 dB of for SNRNLI and
SNRLIN, respectively.

By including ALANC of the x-polarization as an
additional input, we observed a very similar perfor-
mance.

B. PCA over ACF

Secondly, we consider the case of the PCA compo-
nents where the inputs to the neural network are:
ACF(0)

0,xx, c0,1, c0,2, CW , and ACD.
For simplicity, we focus on the xx component of the

ACF for the case l = 0, which is the strongest contri-
bution, and we only consider the first two components:
c0,1, and c0,2, since they already account for 99.2% of
the variance.

For SNRLIN, the performance was very similar to the
previous case: 0.08dB of std error: Figure 9c. For the
case of SNRNLI , the performance was slightly worse
than in the case of Nv, and Tv components, resulting
in 0.3dB of std error, Figure 9d.

C. Estimation based on joint approaches

Finally, we include all the explained metrics as
input to the neural network to obtain a more accurate
estimate. The inputs to the neural network are Nv, Tv,
ACF(0)

0,xx, c0,1, c0,2, CW , and ACD.
The improvement is significant compared to previ-

ous cases: the SNRLIN estimation std error is 0.04 dB,
Figure 9e; while, the SNRNLI is improved to 0.20 dB,
Figure 9f.

D. Comparison of results

Table III summarizes the results of this paper. Both
approaches based on the estimation of phase noise
(Nv and Tv), and the second moment statistics (ACF,
c0,1, and c0,2) perform similarly. Both have a std error
of 0.08 dB for the linear SNR. The performance of
nonlinear SNR was 0.27 dB for the case of the method
based on the estimation of the phase noise, while is
was approximately 0.03 dB worse for the case of second
moment statistics.

In the case where both approaches are jointly con-
sidered to estimate the linear and nonlinear SNR,
the performance improves by 0.2 and 0.04 dB for the
nonlinear and the linear SNR, respectively.
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(a) True vs Estimated SNRLIN , NN inputs:
[Nv, Tv, CW , ACD]. Std error: 0.08 dB.

(b) True vs Estimated SNRNLI , NN inputs:
[Nv, Tv, CW , ACD]. Std error: 0.27 dB.

(c) True vs Estimated SNRLIN , NN inputs: [ACF(0)
0,xx,

c0,1, c0,2, CW , ACD]. Std error: 0.08 dB.
(d) True vs Estimated SNRNLI , NN inputs: [ACF(0)

0,xx,
c0,1, c0,2, CW , ACD]. Std error: 0.30 dB.

(e) True vs Estimated SNRLIN , NN inputs:
[Nv, Tv,ACF(0)

0,xx, c0,1, c0,2, CW , ACD]. Std error: 0.04 dB.
(f) True vs Estimated SNRNLI , NN inputs:

[Nv, Tv,ACF(0)
0,xx, c0,1, c0,2, CW , ACD]. Std error: 0.20 dB.

Fig. 9: Evolution of performance for the different cases
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Fig. 10: Evolution of SNR for 10 spans of the
considered set-ups, where NF = 4.5dB and

SNRTRx = 16dB.

TABLE III: Sumary of the results of this paper

Input Parameters SNRNLI std,% SNRLIN std,%
Nv, Tv, CW , ACD 0.27 (6.4%) 0.08 (1.8%)
c0,(1,2), ACF(0)

0,xx, CW , ACD 0.30 (7.1%) 0.08 (1.8%)
All metrics 0.20 (4.7%) 0.04 (0.9%)

V. CONCLUSION

In this paper, we tackle the problem of estimating
the linear and nonlinear SNR based on extracted fea-
tures of the received signal. We explained a theoretical
framework suitable for understanding nonlinearities
and especially nonlinear phase noise. We also covered
the extraction of the temporal description of the time-
varying ISI matrices. Using this framework, we dis-
cuss the limitations of our previous metric introduced
in [10], we note that the proposed technique is suitable
for high order modulation formats where the induced
nonlinear phase noise is significant. But it may not be
suitable for dealing with power-constant modulation
formats such as QPSK, or very long transmission dis-
tances because of the relative nonlinear contributions
of the different types of pulse collisions, leading to
more equal n and t components.

We proposed a novel nonlinear estimation technique
which does not rely on nonlinear phase noise. The
novel technique exploit the temporal properties of the
time-varying ISI matrices and the lack of correlation
of the Gaussian noise. The studied temporal proper-
ties are inherent to the nonlinearities of any modula-
tion format and transmission distance, although the
derivation of ACF comes from a XPM study, we also
validate its applicability for single channel transmis-
sions. By applying principal component analysis, we
extracted 2 features capable of explaining over 99% of
the variance.

The performance of the evaluated metric was in-
vestigated over 19800 realizations of optical fibre
transmission, covering different fibre types, number
of spans, numbers of WDM channels, launch powers,
amplifier noise figures, and transceiver SNR.

The considered features have a nonlinear relation-
ship with the target estimations, a small neural net-
work of 1-hidden layer and 7 nodes was trained. We
fed different subsets of the presented metrics into the
neural network to evaluate its performance.

The performance of the metric based on nonlinear
phase noise was 0.27 and 0.08 dB of std for the non-
linear and linear SNR, respectively. For the case of the
second-order moment statistics, the performance was
very similar: 0.30 and 0.08 dB, respectively. Finally,
when applying both techniques jointly, std error of
0.20 and 0.04 dB was obtained for the nonlinear and
the linear SNR, respectively. The performance and the
input features to the neural networks are summarized
in Table III.

We believe that the performance improvement ob-
served compared to our previous results [10], spe-
cially for the SNRLIN, is a result of the inclusion of
SNRTRx which reduces the range of SNRLIN observed
to approximately 9 dB to 17dB. Consequently, the
linear noise is a mayor contribution of noise in all the
simulated cases and its range of variation is smaller
than SNRNLI , which results in a smaller error on its
estimation.

We would like to emphasize that in this paper we are
measuring the inherent error of the estimator, for the
study of the accuracy of different techniques to sepa-
rate linear and nonlinear noise. We expect that the ex-
perimental verification of the proposed algorithms will
have a higher uncertainty, mainly dominated for the
uncertainty and noise from the experimental set-up,
resulting in higher estimation errors for both SNRLIN
and SNRNLI .

The considered future work includes the experimen-
tal verification of the proposed techniques, the explo-
ration of alternative machine learning techniques, the
study of the limitations of the proposed techniques,
and inclusion of different auto-covariance components
for the estimation of the linear and nonlinear SNR.
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