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A novel theory for the origin of the westward drift
of the Earth’s magnetic field is proposed, based upon
the propagation of hydrodynamic Rossby waves in
the liquid outer core. These waves have the obscure
property that their crests always progress eastwards
— but for a certain subset, energy can nevertheless
be transmitted westwards. In fact, this subset
corresponds to sheet-like flow structures, extended in
both the axial and radial directions, which are likely
to be preferentially excited by convective upwellings
in the Earth’s rapidly-rotating outer core. To enable
their analysis, the quasi-geostrophic approximation is
employed, which assumes horizontal motions to be
independent of distance along the rotation axis,
yet accounts for variations in the container height
(i.e. the slope of the core-mantle boundary). By
projecting the momentum equation onto flows of a
quasi-geostrophic form, a general equation governing
their evolution is derived, which is then adapted
for the treatment of two initial value problems –
in both Cartesian and spherical geometries – which
demonstrate the preference for westward energy
propagation by the waves in question. The merits of
this mechanism as an explanation for westward drift
are discussed.
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1. Introduction2

Since its discovery over three centuries ago by Halley [1], the westward drift of the Earth’s3

magnetic field has remained an intriguing problem in geophysics. Why should it be that many4

features of the observable geomagnetic field have systematically tracked west throughout 4005

years of measurements? The first detailed analysis of this phenomenon was performed by Bullard6

et al. [2], to be followed by many others (see [3]) seeking to elucidate its behaviour through7

interrogation of both historical data and recent satellite measurements.8

The allure of westward drift can perhaps be put down to its ubiquity. Regardless of whether9

one looks at maps of declination at the Earth’s surface or radial field at the core-mantle10

boundary, westward drift arises as a robust feature of geomagnetic secular variation. The11

apparent indifference to both spatial scale [4] and epoch [5] suggests that the westward drift is an12

artefact of fundamental core dynamics, and therefore its explanation may open a window onto13

the Earth’s deep interior.14

Whilst the westward drift spans many temporal and spatial scales, it also appears to be15

geographically localised, with secular variation being limited to low-latitude (equatorial) regions16

[5–7], and dominated by the motion of intense flux spots with a tendency to pair north and south17

of the equator [8]. For unknown reasons, the Pacific hemisphere appears to have been relatively18

quiet in the modern era [9], with a weaker field magnitude and lack of any convincing secular19

variation patterns. The dominant contribution to westward drift – centred over the equator in the20

Atlantic hemisphere – was found by Finlay and Jackson [5] to be at a rate of 0.27◦ per year, or21

17km per year at the core-mantle boundary. It is worth noting, however, that these observations22

face an unfortunate constraint; owing to the interference of crustal magnetism, their resolution23

is limited to spherical harmonic degrees below 13 — meaning there is a dearth of information24

at all but the largest scales of magnetic field [10]. This is a cause for concern, especially since25

spectra of the observable secular variation show its power increasing with harmonic degree [4],26

suggesting its origin is to be found at the invisible small scales. Therefore, theoretical models of27

the small-scale dynamics may prove useful tools for explaining the westward drift.28

The liquid outer core, approximately occupying the spherical shell 1,231-3,485km from the29

Earth’s centre, is the cradle of our planet’s magnetic field. Its periphery – the core-mantle30

boundary – may be considered an impermeable, electrically insulating solid on the timescales of31

interest. Its internal boundary with the solid, conducting inner core will be neglected in this study,32

as it is thought the geodynamo operates chiefly outside of the tangent cylinder (an imaginary33

surface aligned with the rotation axis and circumscribing the inner core). The molten iron which34

makes up the outer core has a kinematic viscosity which is probably not dissimilar from that35

of water [11], and therefore may be taken as inviscid over the large lengthscales considered.36

The force balance is instead thought to be dominated by the effect of the rapid background37

rotation of the Earth at an angular velocity Ω of approximately 2π radians per day. It is well38

known that rapidly-rotating fluids have a tendency to evolve in a manner which is effectively39

two-dimensional, being independent of distance along the rotation axis [12,13], and therefore40

simplified models which presuppose this disposition are often employed in their study.41

Motion in the outer core is thought to be stirred by vigorous convection, with thermally42

or compositionally buoyant material pushing radially outwards from the hot inner core. The43

convection is strongly-forced, meaning the distribution of density anomaly within the core is44

likely to be chaotic and span a vast range of scales. This raises questions for both the geodynamo45

as a whole, and the westward drift; how does the organised dipolar field structure emerge from46

this stochastic forcing, and how can it also produce the systematic drift observed at large scales?47

At present, there exists two main schools of thought on the answer to this final question.48

Arguably the most popular model, due to Pais & Jault [14], invokes a large-scale eccentric gyre49

– or westward-directed jet – which advects the mean magnetic field. An alternative hypothesis50

[15–18], rests upon certain magnetohydrodynamic modes with an invariably westward phase51

velocity. Without remark upon the merits of either of the above models, a third possibility is here52
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put forward, underpinned by the hydrodynamic Rossby waves produced when a rapidly-rotating53

fluid is forced to deviate from two-dimensionality by the presence of the container walls (in this54

case, the core-mantle boundary). We introduce the quasi-geostrophic theory of these waves in §2,55

deriving their governing equation for a general container geometry, and dispersive properties in a56

canonical example. The waves are linked to westward drift in §3, supported by a simplistic initial57

value problem. A similar problem is approached in §4, only in a spherical geometry much more58

reminiscent of the Earth. The discussion of §5 appraises the value of Rossby waves as a possible59

source of the observed westward drift.60

2. Theory of Quasi-Geostrophic Rossby Waves61

Consider the Earth’s outer core to be an inviscid, incompressible fluid in a state of rapid bulk62

rotation at an angular velocityΩ =Ωez , where ez is the unit vector in the axial direction of either63

a Cartesian (x, y, z) or cylindrical polar (s, φ, z) co-ordinate system. In either case, a subscript64

⊥ denotes the component of a vector perpendicular to ez . In a reference frame rotating at Ω,65

the Eulerian fluid velocity is u(x, t). The core-mantle boundary is represented by symmetric,66

impermeable surfaces at z =±h(x⊥); for a spherical geometry of unit radius, one would have67

h=
√

1− s2.68

(a) Kinematics and the QG approximation69

In a bid to simplify the analysis, the so-called quasi-geostrophic approximation [19–21] is made. This70

is in deference to the fact that the rapid background rotation forces the fluid to seek steady states71

which are independent of the axial co-ordinate z (geostrophic). The presence of the boundaries at72

±h introduces small departures from geostrophy which cause these states to evolve on a timescale73

much longer than the rotation period; such motions might be called quasi-geostrophic, though74

the definition of the phrase is somewhat imprecise. Here, the term quasi-geostrophic (QG) is75

used in a strict sense: as a label for the assumption that the velocity components perpendicular76

to the rotation axis (u⊥) are independent of the axial co-ordinate, an approach which has seen77

much success in modelling of outer core convection [22–24]. This is despite the fact that the78

assumption is only strictly valid when the boundary slope is small, a condition clearly violated in79

the equatorial regions of the Earth’s spherical core [21,25]. Moreover, the approximation remains80

reasonable even in the presence of a background magnetic field [26].81

The velocity field u in this formulation is subject to three kinematic conditions:82

(i) Incompressibility,∇ · u= 0;83

(ii) Non-penetration at the upper and lower boundaries, (∇h∓ ez) · u|±h = 0;84

(iii) The QG approximation, u⊥ =u⊥(x⊥, t).85

It can be shown that a representation of the form86

u=∇χ×∇
( z
h

)
(2.1)87

fulfils these requirements, with the streamfunction χ(x⊥, t) neatly encapsulating the evolution of88

the vector field u(x, t) through a scalar function of just two spatial co-ordinates. Note that this89

form is a generalisation of that introduced by Schaeffer and Cardin [20], which itself improves90

upon the classical perturbation expansion approach (as discussed in [23]). Restricting solutions91

to the form (2.1) offers a drastic simplification of the analysis, whilst providing a useful tool with92

which to probe the physics of axially-elongated structures in the core of the Earth.93

(b) Dynamics and governing equation94

A governing equation for the streamfunction χ in this QG approach is now derived. In a reference95

frame rotating at the bulk angular velocity Ω, conservation of momentum for an inviscid,96
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Figure 1. Schematic of the control volume considered when deriving the governing equation for a QG flow.

incompressible fluid may be written97

∂u

∂t
+ u · ∇u+ 2Ω × u=−∇Π (2.2)98

for some modified pressure Π . In the limit of small Rossby number (U �ΩL for some99

characteristic velocity U and lengthscale L), the second term (advection) may be neglected in100

comparison to the third (Coriolis). The curl of (2.2) then yields the equation101

∂ω

∂t
= 2Ω · ∇u (2.3)102

for the evolution of the vorticity ω=∇× u. Evidently, steady solutions must be independent of103

distance along the rotation axis (i.e. geostrophic) — this is the Taylor-Proudman theorem [12,13].104

However, in order to satisfy non-penetration at z =±h, QG solutions must possess a weak z-105

dependence, and therefore can exhibit unsteadiness. To derive an equation for the evolution of106

a QG flow, one could simply substitute the representation (2.1) into the axial component of the107

vorticity equation (2.3), a procedure commonly employed in the literature (e.g. [21,22]). However,108

as pointed out in Labbé et al. [27], a more efficacious approach is to instead project the momentum109

equation (2.2) onto flows of the QG form (2.1), thereby obtaining a reduced model which better110

approximates the dynamics. This has been verified analytically in a full sphere by Maffei et al. [25],111

who found remarkably good agreement with the fully three-dimensional solutions of Zhang et112

al. [28].113

We therefore proceed by following the derivation of Labbé et al. [27], generalising their114

results in a sphere to a more arbitrary geometry. Consider a control volume V of fluid of115

constant horizontal cross section A, bounded at the top and bottom by the caps z =±h(x⊥). The116

boundaries of V andA are denoted ∂V and ∂A respectively (figure 1). After excluding advection,117

the momentum equation (2.2) is projected onto a QG trial function u′ =∇χ′ ×∇
(
z
h

)
, which by118

construction satisfies χ′
∣∣
∂A = 0, then integrated over V :119

˚
V
u′ · u̇ dV + 2Ω

˚
V
u′ · (ez × u) dV =−

˚
V
u′ · ∇Π dV, (2.4)120

with a dot over a quantity denoting a time derivative. Using the divergence theorem, the right121

hand side is equal to122 ˚
V
Π∇ · u′ dV −

‹
∂V

Πu′ · dS = 0 (2.5)123

since the choice of χ′ guarantees streamlines of u′ cannot pass through ∂V . The contribution from124

the Coriolis term simplifies to125

2Ω

˚
V
u′ · (ez × u) dV = 2Ω

˚
V

(
ez ×∇χ

h2

)
· ∇χ′ dV. (2.6)126
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The integration from z =−h to z = h can be completed, thereby projecting the equations onto the
horizontal plane A:

2Ω

˚
V
u′ · (ez × u) dV = 4Ω

¨
A

(
ez ×∇χ

h

)
· ∇χ′ dA (2.7)

= 4Ω

˛
∂A

χ′
(
ez ×∇χ

h

)
· n ds− 4Ω

¨
A
χ′∇ ·

(
ez ×∇χ

h

)
dA

(2.8)

= 4Ω ·
¨
A
χ′
(
∇ 1
h ×∇χ

)
dA. (2.9)

This requires use of the two-dimensional version of the divergence theorem,127 ¨
A
∇ · v dA=

˛
∂A
v · n ds (2.10)128

(where n is the in-plane unit outward normal to ∂A), then the fact that χ′
∣∣
∂A = 0. A very similar

procedure may be applied to the inertial term,˚
V
u′ · u̇ dV =

˚
V

(
∇χ̇
h2 + z2∇ 1

h ×
(
∇χ̇×∇ 1

h

))
· ∇χ′ dV (2.11)

= 2

¨
A

(
∇χ̇
h + h3

3 ∇
1
h ×

(
∇χ̇×∇ 1

h

))
· ∇χ′ dA (2.12)

=−2

¨
A
χ′∇ ·

(
∇χ̇+ 1

3∇h× (∇χ̇×∇h)

h

)
dA, (2.13)

so equation (2.4) can be rewritten129

¨
A
χ′
[
∇ ·

(
∇χ̇+ 1

3∇h× (∇χ̇×∇h)

h

)
+ 2Ω ·

(
∇χ×∇ 1

h

)]
dA= 0. (2.14)130

Since this must be satisfied for all possible choices of the trial function χ′, the streamfunction χ131

must obey the governing equation132

∇ ·

(
∇χ̇+ 1

3∇h× (∇χ̇×∇h)

h

)
+ 2Ω ·

(
∇χ×∇ 1

h

)
= 0. (2.15)133

Note that the second term inside the divergence is the sole difference between this equation and134

the axial vorticity formulation (i.e. plugging (2.1) into the z-component of (2.3)); for moderate135

values of∇h, however, this difference becomes significant.136

(c) QG Rossby waves137

The governing equation (2.15) can support oscillatory solutions known as QG Rossby waves, in138

analogy to their atmospheric counterparts [15,29], discussed in detail by Vallis [30], for example.139

The theory of QG Rossby waves in the Earth’s interior mirrors this classical analysis — to extract140

their archetypal form, select Cartesian co-ordinates (x, y, z) and a linear height profile h(y) =141

H + h′y for positive constants H and h′, the domain height and slope respectively. This aims to142

capture the slope of the core-mantle boundary at zero order, with the x-axis oriented east and the143

y-axis radially inwards. Furthermore, the slope is for the moment assumed small (in comparison144

to the aspect ratio of the QG structures), so (2.15) may be written in the linearised form145

∂

∂t
∇2χ≈ 2Ωh′

H

∂χ

∂x
. (2.16)146

Note that an equivalent equation could also stem from the axial vorticity formulation, or147

indeed a perturbation expansion approach [31]. Seek travelling wave solutions of the form148

χ(x, y, t)∝ exp{i (k⊥ · x⊥ −$(k⊥)t)} with frequency $ and wavevector k⊥ = [kx, ky, 0]T =149
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Figure 2. Velocity diagram for QG Rossby waves when h=H + h′y for small h′. Phase velocity cp is related to group

velocity cg for a given choice of k⊥. The rotation axis is out of the page, and the labelled directions orient the figure within

the Earth’s outer core.

k⊥[cosα, sinα, 0]T , where α is the angle between the wavevector and the x-axis and k⊥ = |k⊥|.150

This yields the dispersion relationship for QG Rossby waves,151

$=
2Ωh′

Hk⊥
cosα. (2.17)152

Writing ek⊥ for the unit vector in the direction of k⊥ and eα for the unit vector in the direction153

of increasing α (figure 2), the phase velocity corresponding to (2.17) can be expressed as154

cp =
$

k⊥
ek⊥ =

2Ωh′

Hk2⊥
cosα ek⊥ . (2.18)155

Note that the component of phase velocity in the x-direction is always positive, meaning wave156

crests invariably progress eastwards. However, the same is not true for the wave energy, which157

instead propagates at the group velocity, given by the gradient in k⊥-space of the frequency,158

cg =
∂$

∂k⊥
ek⊥ +

1

k⊥

∂$

∂α
eα =−2Ωh′

Hk2⊥

(
cosα ek⊥ + sinα eα

)
. (2.19)159

The relationship between the phase and group velocities is best understood diagrammatically;160

figure 2 is a velocity diagram relating the two, similar to the plots of Duba & McKenzie [32]. The161

magnitude of cg is independent of α, so on the velocity diagram the vector cg is the diameter of162

a circle of radius Ωh′/Hk2⊥. Furthermore, (cp + cg) · cp = 0, so cp is a chord of the same circle163

terminating at the base of cg . Since cp is always in the positive x direction, the circle must lie to164

the right of the origin as shown.165

Using figure 2, it is possible to probe the effect of varying the wavevector orientation α for a166

given k⊥ (i.e. a specified horizontal length scale). Consider only positive frequencies (−π2 <α≤167

π
2 ), for which figure 2 makes sense. The phase velocity vector cp is constrained to move along the168

dashed circle, whereas the group velocity vector cg starts where cp finishes and is necessarily a169

diameter of the same circle. Although the phase velocity always has a positive x-component, the170

group velocity shows no such preference. In fact, the x-component of cg is negative (westward)171

for |α|< π
4 and positive (eastward) for |α|> π

4 . When α= 0, cp and cg are exactly opposite, so172

an observer following a wave group moving westward would see wave crests heading in the173

opposite direction at twice the speed of the group. When α= π
2 the group velocity remains finite174

(and due east) despite the fact the waves have no phase velocity. Waves with α= π
4 propagate175

directly outwards and waves with α=−π4 inwards.176

The dependence of wave velocity on k⊥ is comparatively trivial; waves with longer177

wavelengths (smaller k⊥) travel faster. As |cg| ∼ k−2⊥ , the waves are highly dispersive.178
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3. QG Rossby waves and the westward drift179

A possible explanation for the westward drift of the Earth’s magnetic field at the core-mantle180

boundary based upon this classical theory of hydrodynamic QG Rossby waves is now offered.181

Suppose, not unreasonably, that the fluid outer core is stirred by gravitating buoyant anomalies,182

which constitute localised disturbances to the system in the form of convective upwellings or183

plumes. Consider one such disturbance introduced at a location outside of the tangent cylinder184

(i.e. not directly north or south of the solid inner core). The disturbance will in general be185

three-dimensional, but the velocity field it instigates will rapidly become elongated along the186

rotation axis through the action of inertial waves [33], and therefore quasi-geostrophic after a187

short transient period. It is thus useful to consider a thought experiment posed as an initial value188

problem in which a localised QG velocity field is specified as an initial condition, and the flow189

allowed to evolve as an assemblage of QG Rossby waves, operating on a timescale much longer190

than the rotation period.191

A generic initial condition will excite a broad spectrum of waves – that is to say, many different192

choices of wavevector k⊥ – which will all spread from the source according to their individual193

dispersive properties. A disturbance of characteristic size ` will have a spectrum peaked194

around a wavevector magnitude k⊥ of order `−1, but will in general excite wavevectors of all195

possible orientations α. Therefore, consider the dependence of the group velocity on wavevector196

orientation by referring back to figure 2. For wavevectors with α≈±π2 , corresponding to197

structures elongated in the east-west direction, the group velocity is east; for wavevectors with198

α≈ 0, i.e. structures elongated in the radial direction, the group velocity is west. QG Rossby waves199

therefore disperse in a manner which segregates different spatial structures from an arbitrary200

initial disturbance, with east-west extended features heading east and radially extended features201

west.202

However, it is unreasonable to assume the excitation of these waves in the core of the203

Earth is arbitrary. For motions continually stirred by vigorous convection, one might expect the204

proliferation of sinuous radial plumes, emanating from the inner core and being much longer205

than they are wide. Such structures commonly arise in numerical and experimental studies of206

core dynamics (e.g. [34,35]). Due to the constraint imposed by the rapid background rotation,207

such plumes would also be elongated in the axial direction, forming a series of radial sheets208

which are likely to be well-represented by the QG approximation [36]. In the context of our209

thought experiment, a radial sheet (extended in the y-direction) will possess much more energy210

in wavevectors pointing east-west (α≈ 0) than radially (α≈±π2 ). When the solution to such an211

initial value problem is evolved, the abundance of wavevectors with α≈ 0 will dominate the212

picture. Since the group velocity for these solutions is in the negative x direction, a radially-213

extended disturbance will preferentially transmit energy to the west, making this class of QG214

Rossby waves an intriguing candidate for the mechanism underlying westward drift.215

(a) Demonstration through a model problem216

To support the arguments made so far, consider a simplistic model problem which demonstrates217

the ability of QG Rossby waves to segregate different spatial structures. The canonical equation218

(2.16) is solved in a domain which is infinite in x and y, starting from some initial condition219

χ(x⊥, t= 0) = χinit(x⊥), by taking a two-dimensional spatial Fourier transform. Emphasis is220

placed upon the significance of the choice of initial condition, which is constrained to be of the221

form222

χinit = exp

{
−1

2

(
x2

`2x
+
y2

`2y

)}
. (3.1)223

Since contours of χ are equivalent to streamlines in the equatorial plane, this corresponds to a
columnar vortex of extent `x in the x-direction and `y in the y-direction. Using

√
`x`y as the

unit of length, the solution to the initial value problem may be written as the two-dimensional
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Figure 3. Solutions to the canonical QG Rossby wave equation (2.16) for a simple initial value problem starting from (3.1).

The height of the container is h=H + h′y. Contours of streamfunction χ are plotted at 2Ωh′t
H

= 15 for three different

choices of aspect ratio, and black contours are at quartiles of the initial condition. Lengths are in units of
√
`x`y .

dispersion integral

χ(x⊥, t) =
2

π

π/2ˆ

0

∞̂

0

k⊥ exp

{
−1

2
k2⊥

(
`2x cos2 α+ `2y sin2 α

)}

× cos

([
k⊥x−

2Ωh′t
Hk⊥

]
cosα

)
cos (k⊥y sinα) dk⊥dα, (3.2)

wherein k⊥ and α have the same interpretations as in the dispersion relation (2.17). This224

expression is evaluated numerically for three different choices of the initial condition’s aspect225

ratio `x/`y (figure 3). The central pane shows the case of an axisymmetric initial condition, which226

excites waves of all orientationsα equally and therefore shows no preferential direction for energy227

transport, although the partition of different spatial structures is visible. The left pane shows the228

case of a radially-extended initial condition, four times longer in the direction of the slope than it229

is wide; the bias towards westward-propagating waves is self-evident. For completeness, the right230

pane features an initial condition which is elongated in the east-west direction, which exhibits a231

strong preference for eastward propagation. It is worth remarking that the aspect ratio need not232

be extreme for this effect to be apparent; it is very clear-cut here even for a moderate value of 4:1.233

4. A model problem: westward-propagating waves in a sphere234

It has been established so far that, in the case of a gentle slope, the linearised equation (2.16)235

supports wave motions which partition different spatial structures — crucially, with flows236

elongated in the direction of the slope going west. However, it is not obvious that the same will237

necessarily hold true for a more complicated geometry with an appreciable slope, such as that238

presented by the core-mantle boundary. Therefore, consider an initial value problem similar to239

that of the previous section, but in an enclosed spherical geometry reminiscent of the Earth’s core.240

A full sphere – deficient of the solid inner core – is used in order to simplify the analysis. First,241

mode shapes and frequencies are derived in this geometry, following Maffei et al. [25], before the242

calculated modes are used to solve an illustrative initial value problem.243

Despite the spherical geometry, cylindrical polar coordinates (s, φ, z) – with s being the radial244

location, φ the azimuthal angle, and z the distance along the rotation axis – are adopted in order245
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to usefully apply the QG approximation. Taking lengths in units of outer core radii, the governing246

equation is then (2.15) with the axisymmetric height profile h(s) =
√

1− s2:247 [
∂

∂s

(
s

h

∂

∂s

)
+

1

hs

(
1 +

s2

3h2

)
∂2

∂φ2

]
∂χ

∂t
− 2Ωs

h3
∂χ

∂φ
= 0. (4.1)248

First, note that any solution satisfying ∂χ
∂t = ∂χ

∂φ = 0 will be a particular integral of this equation.249

This corresponds to the steady, strictly geostrophic motion of coaxial cylinders (u= uφ(s)eφ);250

hence, the axisymmetric component of any initial condition will not evolve, and one need only251

solve (4.1) for the non-axisymmetric portion of the flow. This can be done by seeking normal mode252

solutions of the form253

χ(s, φ, t) = R {χ̄(s) exp (i [mφ−$t])} (4.2)254

for some azimuthal wavenumber m and modal frequency $, with R {·} denoting the real part of255

a quantity. This turns (4.1) into an ordinary differential equation for the radial mode shape,256

d

ds

(
s

h

dχ̄

ds

)
+

[
2Ωms

$h3
− m2

hs

(
1 +

s2

3h2

)]
χ̄= 0, (4.3)257

which must be solved subject to boundary conditions at the origin (s= 0) and the equatorial258

boundary (s= 1). Regularity at the origin requires χ̄∼ sm as s→ 0, whereas non-penetration at259

the outer boundary requires260

us|s=1 = lim
s→1

(
1

hs

∂χ

∂φ

)
= 0. (4.4)261

Since χ is a streamfunction, its constant value at the outer boundary can be chosen, so is set at zero;262

more specifically, we must have χ̄(s→ 1)∼ h3 in order for us = 1
hs

∂χ
∂φ to be zero and uφ =− 1

h
∂φ
∂s263

to be finite at the outer boundary. The solution to the eigenvalue problem posed by (4.3) and these264

boundary conditions is given in Maffei et al. [25]; the mode shapes are of the form265

χ̄mn (s) = smh3P
(3/2,m)
n−1 (2s2 − 1) (4.5)266

and the corresponding frequencies are267

$mn =
m

n(2n+ 2m+ 1) +m/2 +m2/6
. (4.6)268

Here, n≥ 1 is the radial mode number, equal to the number of turning points of χ̄mn within the269

domain. The mode shapes are expressed in terms of Jacobi polynomials P (α,β)
ν (x) [37]. Note that,270

for all m≥ 1, the frequency $mn is positive, meaning all modes revolve in a prograde (eastward)271

sense; this is analogous to the observation that the phase velocity in the Cartesian problem (2.18)272

is always in the positive x-direction. Just as in that problem, this does not preclude the possibility273

that the energy from a localised disturbance can nevertheless propagate west, as demonstrated274

below.275

The general solution to (4.1) (setting aside the axisymmetric particular integral for a moment)276

can be written as an infinite sum of the above modes,277

χ(s, φ, t) = R

{ ∞∑
m=1

∞∑
n=1

Cmn χ̄
m
n (s)ei(mφ−$

m
n t)

}
(4.7)278

for some complex coefficients Cmn to be determined by the initial condition χinit(s, φ). In fact, it279

can be seen from the self-adjoint equation (4.3) that the radial mode shapes (4.5) are orthogonal280



10

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

with respect to the function s/h3, i.e.281

ˆ 1

0

s

h3
χ̄mn (s)χ̄mn′(s) ds= 0 for n 6= n′, (4.8)282

which enables the derivation of an expression for each modal coefficient as an integral over the283

equatorial plane,284

Cmn =

´ 1
0

s
h3 χ̄

m
n (s)

¸
χinit(s, φ)e−imφ dφds

π
´ 1
0

s
h3 [χ̄mn (s)]2 ds

. (4.9)285

All that remains is the axisymmetric portion of the flow, given simply by286

χax(s) =
1

2π

˛
χinit(s, φ) dφ. (4.10)287

This analysis allows the solution of an illustrative initial value problem, similar to that of section288

3, by using (4.9) to express the initial condition as a linear sum of modes and solving for the289

streamfunction at a later time by evaluating the sums in (4.7) truncated at finite m and n.290

(a) Choice of initial condition291

If the simple Cartesian cartoon discussed in section 3 is to be believed, the choice of initial292

condition, and therefore distribution of energy in k⊥-space (or equivalently, between modes),293

will have a profound effect on the direction of net energy propagation. In fact, those modes for294

which the frequency $mn in (4.6) is a decreasing function of m will be associated with westward295

propagation of energy; in the Cartesian case, cg,x is negative for ∂$/∂kx < 0, and analogously296

retrograde group velocity is seen in the sphere for ∂$mn /∂m< 0, i.e.297

m>
√

6n (1 + 2n). (4.11)298

For a westward drift to be observed in this model problem, the harmonic content of the299

initial condition must be biased towards modes which satisfy this inequality. For definiteness,300

discussion is restricted to the form of initial condition301

χinit(s, φ) = h3s exp

{
−1

2

(
(s− s0)2

`2s
+
s20φ

2

`2φ

)}
. (4.12)302

This is essentially a columnar Gaussian vortex, as for the model problem of section 3, with the303

pre-multiplying factor h3s ensuring the boundary conditions are satisfied at from the outset. It is304

broadly unimportant exactly what form the initial condition takes, however — it is the general305

distribution of energy between modes which will dictate the solution’s character.306

There are three controlling lengths in the initial condition (4.12); the radial and azimuthal307

extents of the vortex `s and `φ, and the radial location of the vortex centre s0. In search of a308

westward bias to energy propagation, the parameters `s = 0.1, `φ = 0.01 and s0 = 0.7 are selected,309

giving a slender radially-extended structure near the middle of the outer core region 0.35< s< 1310

(though there is no inner core boundary in this calculation). The solution is expressed as a finite311

sum of modes (i.e. a truncated version of (4.7)) by evaluating the integrals (4.9) for the coefficients312

Cmn numerically. Due to the narrowness of the initial condition, more modes of high azimuthal313

wavenumber are required; the ranges m≤ 200 and n≤ 50 are used.314

(b) Westward bias to energy propagation in a sphere315

Figure 4 shows the solution to the initial value problem evaluated at Ωt= 2× 104 (t= 8.7yr).316

Streamlines in the equatorial plane are produced by plotting contours of χ, with the black317

contours corresponding to the initial value (4.12). Although this solution is many times more318

complicated than the Cartesian problem of figure 3, there remains a striking preference for wave319

propagation to the west of the initial disturbance. This is despite the fact that each individual320

eigenmode has an eastward phase velocity; it is the superposition of modes which creates the321
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Figure 4. Contours of χ (i.e. streamlines in the equatorial plane, viewed from the north) at Ωt= 2× 104 for an initial

value problem starting from a radially extended vortex (4.12) with `s = 0.1, `φ = 0.01, and s0 = 0.7. Solid black contours

are at quartiles of the initial condition, and the dashed black line shows the would-be location of the solid inner core.

visible westward bias. Wave motion appears to be confined to a circular band near the initial322

radial location s0, with little activity very close to the outer boundary or near the rotation axis.323

The dashed line is at s= 0.35, where the inner core would be if it were included in the model;324

thankfully, the vast majority of activity occurs outside of this region.325

The preference for westward propagation may be understood in exactly the same way as the326

Cartesian problem of section 3, but with the small slope assumption now relaxed. The majority of327

the energy from the radially-extended initial condition is contained in modes with large azimuthal328

wavenumbers, which conspire to produce a westward group velocity despite individually having329

eastward phase velocities. To demonstrate that the former prevails, consider the distribution of330

energy in the sphere as a function of longitude and time. Namely, the meridionally-averaged331

specific kinetic energy,332

〈
1
2u

2
〉

(φ, t) =

1ˆ

0

 ĥ

−h

1
2u

2 dz

 sds=

1ˆ

0

s

h

[
(∇χ)2 + 1

3 (∇χ×∇h)2
]

ds, (4.13)333
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Figure 5. Specific kinetic energy, averaged over meridional slices, as a function of longitude φ for the initial condition and

two later times Ωt= 2× 103 and Ωt= 2× 104. Plots are normalised to have the same maxima, though in actuality

contain equal areas.

is evaluated as a function of φ at a few choice times (figure 5). The energy, initially localised around334

φ= 0, is almost all at negative φwhenΩt= 2× 103, and is still sharply peaked as the waves have335

had little time to disperse. Come Ωt= 2× 104, which corresponds to figure 4, the energy is much336

more dispersed but retains its westward bias; of course, reflections and circumnavigations mean337

a little energy does end up to the east of the initial disturbance.338

5. Discussion339

The model problems above successfully demonstrate the possibility for westward transport of340

energy by hydrodynamic QG Rossby waves, but are intended as a proof-of-concept rather than341

an accurate representation of core dynamics. Clearly, the flow in the Earth’s outer core isn’t342

the solution to an initial value problem, but rather the result of continual convective stirring;343

the interplay between buoyancy and velocity fields will introduce complexity beyond the scope344

of this study (see [24]). However, the present theory demonstrates that westward propagation345

requires only the prevalence of radial plumes, which are likely to be robustly generated by the346

buoyant upwellings associated with strongly forced convection.347

Indeed, discussions of vigorously forced convection are intrinsically linked to the relevant348

smallest lengthscale in the core of the Earth, which is itself pertinent to dynamo action [38].349

The thickness of the radial plumes will have a strong bearing on the propagation speed of their350

associated wave packets, since the magnitude of the group velocity (2.19) is proportional to351

the square of the wavelength, meaning narrower structures propagate much slower. The most352

strongly-forced simulations to date (e.g. [34]) show structures more slender than those considered353

in the model problem of figure 4, and it is not unreasonable to suspect that the true lengthscale is354

even smaller. In fact, it is possible to infer this lengthscale under the assumption that QG Rossby355

waves are responsible for the westward drift. From the expression for group velocity (2.19), the356

speed of a wavepacket at a certain cylindrical radius s is given by357

|cg| ≈
2Ω

hk2⊥

∣∣∣∣dhds
∣∣∣∣= 2Ωs

(hk⊥)2
. (5.1)358
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For an azimuthally-propagating wavepacket, the angular velocity about the rotation axis is359

|cg| /s; equating this to the observed drift rate of the magnetic field D gives an expression for360

the dominant wavelength of the packet,361

λ≈ 2πh

√
D

2Ω
. (5.2)362

Using a drift rate of 0.27◦ per year [5] and a radial location of the wavepacket s∼ 2000km gives363

the estimate λ∼ 18km, a conceivable value for the prevalent scales in the Earth’s core, but one364

which should be treated with caution. Firstly, it is within touching distance of the Rhines length365 √
Uh/Ω (∼ 6km for U ∼ 1mm/s), at which the advection term in (2.2) becomes significant and366

mean flows may arise. Secondly, the aspect ratios of such structures would be improbably large367

for their coherence to be maintained over secular timescales. It seems more reasonable that in368

truth λ is greater, with additional factors – interactions with the buoyancy and magnetic fields,369

large values of boundary slope, or departures from quasi-geostrophy – acting to slow the wave370

groups down. Unfortunately, the machinery required to investigate these non-linear phenomena371

lies beyond our present scope.372

Nevertheless, it seems remiss that so far no consideration has been given to the magnetic field,373

despite the fact that the observed westward drift of its large scale features is the motivation for374

this study. It is therefore necessary to ask what could link hydrodynamic QG Rossby waves375

to the apparent motion of the spherical radial magnetic field Br at the core-mantle boundary.376

Since the drift is observed to be mainly in the equatorial regions [8], motion of the cylindrical377

radial field Bs, which will be approximately equal to Br at low latitudes, is discussed instead.378

To a first approximation, magnetic field lines may be thought of as material curves, pinned379

into the fluid at all points [29,39], so there are essentially two ways of modifying the radial380

magnetic field: advection and stretching of an existing Bs by a mean flow, or rotation of the381

other components (Bφ, Bz) by transverse gradients in radial velocity (∂φus, ∂zus respectively);382

both mechanisms are discussed in the context of westward drift by Finlay [40] and Aubert et383

al. [41]. Westward-propagating QG Rossby waves, which necessarily consist of radially-extended384

sheet-like structures, have small azimuthal velocities so are unlikely to advectBs strongly enough385

to account for the westward drift. The radial velocity is much greater, but has small derivatives386

in s and z so stretching of an existing Bs or shearing of Bz are both unlikely mechanisms. The387

best candidate for generation of Bs is therefore shearing of Bφ by azimuthal gradients in us,388

which are large for the slender radial jets. Furthermore, the azimuthal magnetic field is likely to389

be relatively strong within the core [42], and largest at mid- to low-latitudes – which could explain390

the equatorial bias to the observed drift, since a low-latitude Bφ swept out by a QG radial jet391

would produce a radial field anomaly at the core-mantle boundary in the vicinity of the equator.392

At first glance, this argument appears to suffer from the deficiency that the manipulation of393

Bs occurs on the small scale of the wavelength λ, whereas the observed drift occurs in magnetic394

field features hundreds of kilometres across. However, the observations themselves are hampered395

by a lack of spatial resolution, so small-scale features simply aren’t visible, even though they396

may in fact contain a significant portion of the energy [4]. The observations instead feature large,397

westward-moving patches [8] which one might compare to wave groups, with the small-scale398

details (wave crests and troughs) within each patch unavailable. It is therefore to be expected399

that, if the present theory were to explain the observations, large magnetic field features would400

appear to be advected at the group (rather than phase) velocity of QG Rossby wave packets.401

The feedback of the magnetic field on the dynamics through the action of the Lorentz force402

has been ignored in this study. Indeed, for highly simplified field configurations it has been403

shown that its inclusion introduces additional oscillations known as slow magnetic Rossby waves404

which themselves have been suggested as a possible source of magnetic field drift since their405

phase velocity is always westward [15–18]. However, these slow solutions coexist with others406

known as fast magnetic Rossby waves, which are little more than a weakly-modified version of the407

hydrodynamic solutions discussed at length above. The perturbation to the magnetic field does408
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not strongly influence the dynamics of these waves, and so they remain an equally viable source409

of westward drift, with the magnetic field approximating a passive tracer at leading order.410

Moreover, the fact that the dynamics of QG Rossby waves are independent of the magnetic411

field configuration and magnitude is a strength of the present theory. Slow magnetic Rossby412

modes have to date only been demonstrated for simple choices of background field [21,27],413

and it is therefore unclear whether such solutions are meaningful in a geophysical context.414

Conversely, the fast (i.e. hydrodynamic) solutions are likely to persist regardless of the magnetic415

field structure, meaning they are an almost unavoidable feature of QG flows in the Earth’s outer416

core. This robustness tallies with the observation of westward drift as a systematic component of417

the geomagnetic secular variation, and the fact that the waves operate on a scale much smaller418

than the observed field features may explain the broad scale-independence of the observed drift419

rate. These advantages, along with those discussed above, lend credibility to the theory presented420

here – that hydrodynamic QG Rossby waves with radially-extended structures may underpin the421

westward drift present in geomagnetic secular variation records.422
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