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An agent-based model clarifies the
importance of functional and
developmental integration in shaping brain
evolution
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Abstract

Background: Vertebrate brain structure is characterised not only by relative consistency in scaling between
components, but also by many examples of divergence from these general trends.. Alternative hypotheses explain
these patterns by emphasising either ‘external” processes, such as coordinated or divergent selection, or ‘internal’
processes, like developmental coupling among brain regions. Although these hypotheses are not mutually
exclusive, there is little agreement over their relative importance across time or how that importance may vary
across evolutionary contexts.

Results: We introduce an agent-based model to simulate brain evolution in a ‘bare-bones’ system and examine
dependencies between variables shaping brain evolution. We show that ‘concerted’ patterns of brain evolution do
not, in themselves, provide evidence for developmental coupling, despite these terms often being treated as
synonymous in the literature. Instead, concerted evolution can reflect either functional or developmental
integration. Our model further allows us to clarify conditions under which such developmental coupling, or
uncoupling, is potentially adaptive, revealing support for the maintenance of both mechanisms in neural evolution.
Critically, we illustrate how the probability of deviation from concerted evolution depends on the cost/benefit ratio
of neural tissue, which increases when overall brain size is itself under constraint.

Conclusions: We conclude that both developmentally coupled and uncoupled brain architectures can provide
adaptive mechanisms, depending on the distribution of selection across brain structures, life history and costs of
neural tissue. However, when constraints also act on overall brain size, heterogeneity in selection across brain
structures will favour region specific, or mosaic, evolution. Regardless, the respective advantages of developmentally
coupled and uncoupled brain architectures mean that both may persist in fluctuating environments. This implies
that developmental coupling is unlikely to be a persistent constraint, but could evolve as an adaptive outcome to
selection to maintain functional integration.
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Background

How are macro-evolutionary patterns in vertebrate brain
structure best characterised, and what processes drive
those patterns? Answering such questions requires un-
derstanding how developmental mechanisms or archi-
tectural constraints, as well as selection acting on neural
traits, together shape and support behavioural and cog-
nitive evolution. Debates over these conflicting pressures
on variation have dominated vertebrate evolutionary
neurobiology for decades, with no unified theoretical
framework in sight.

At the heart of this debate are two views of vertebrate
brain evolution which, at their most polarised, make
seemingly opposing predictions while both appearing
logically sound and empirically supported. Under one
hypothesis, brain components are developmentally
coupled such that the size of each component is largely
determined by common developmental mechanisms,
such as the schedule, timing and duration of neurogen-
esis [1-3]. This would lead to the majority of brain
structures evolving in a ‘concerted’ manner, with the size
of separate components being closely predicted by over-
all brain size [1-4]. Initially, this coupling was discussed
as a potential evolutionary constraint, associated with
‘spandrels’ whereby late developing brain regions such as
the neocortex, may have expanded disproportionately as
a by-product of architectural constraints, before later be-
ing co-opted functionally [2]. Proponents of this hypoth-
esis now largely argue that developmental coupling is a
mechanism that evolves in response to selection favour-
ing conservative scaling, and is, as such, a potential
adaptive mechanism rather than a constraint per se [1,
3]. However, the view that concertedness in itself indi-
cates developmental constraint remains widespread in
the literature (e.g. [4—12]).

A contrasting hypothesis instead argues that vari-
ation in brain components is largely developmen-
tally independent of both other brain structures,
and of total brain size, allowing them to respond to
targeted selection pressures in a ‘mosaic’ way [13—
17]. Mosaic evolution is often discussed as facilitat-
ing neural adaptations, reflected in non-allometric
changes in brain structure, but it also invokes stabi-
lising selection to otherwise maintain scaling rela-
tionships ~ between  co-evolving,  functionally
interdependent brain components [14, 18]. In es-
sence, the mosaic model favours ‘external’ explana-
tions that emphasise the role of both divergent and
coordinated selection in driving both independent
phenotypic evolution and co-variation of brain
structures, while ‘concerted’ theorists stress ‘in-
ternal’ mechanisms which emphasise the role of de-
velopmental coupling as a route to maintaining
scaling relationships [19].
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Perhaps confusingly, both hypotheses have at times
been supported by analyses of the same volumetric data
(e.g. [2, 14, 20]). Proponents of the ‘concerted’ view of
brain evolution pointed to consistent allometric scaling
between brain components and total brain size as evi-
dence of strong developmental integration across brain
structures [1, 2, 4]. Proponents of the ‘mosaic’ model in-
stead pointed towards co-evolution between brain com-
ponents that is independent of total brain size, and
evidence for ‘grade shifts’ that indicate deviations in scal-
ing between taxonomic groups, as evidence that brain
components are caught between distinct selection pres-
sures, and constrained from functional interdependence
[14]. Distinctions between these hypotheses have be-
come more nuanced, with the concerted hypothesis in-
corporating periodic restructuring of the brain,
accommodating some mosaic change [3, 21]. But, re-
gardless, universally satisfactory tests of the generality of
these hypotheses have proven elusive, there is frequent
confusion in the literature between the distinction be-
tween patterns and mechanisms of brain evolution, and
little data exists on when one mechanism may be
favoured over another.

There are two key reasons for this deadlock. First, pro-
ponents of concerted and mosaic models are engaged in
a ‘relative significance debate’ [22]. Both sides agree that
brain evolution exhibits features associated with both
concerted and mosaic evolution, but disagree on which
pattern dominates across evolutionary time, and why
(see for example, [1], p. 299). Relative significance makes
hypothesis testing difficult. Neither hypothesis is subject
to critical tests, as both accommodate—and even ex-
pect—different degrees of departure from the ‘norm’. Al-
ternative views of brain evolution therefore run the risk
of being too indeterminate for definitive testing.

Second, tests of these hypotheses are underdetermined
by available evidence. Although proponents of both
mechanisms can point to support from developmental
data (reviewed in [18, 23])—showing, for example, how
concerted patterns of brain evolution can be produced
by changes in the regulation of neural progenitor cell
proliferation [24—27], or how changes in the allocation,
rate or duration of cell division among the cell popula-
tions that lead to specific regions can produce mosaic
changes in brain structure [28—31]—these data are nat-
urally less readily available than volumetric data, and
therefore, tests of generalisation are limited. As such,
empirical support for concerted or mosaic evolution is
most often drawn from comparative analyses of volu-
metric brain data. These data reflect the outcome of the
interaction between competing adaptive and constrain-
ing factors and do not, in themselves, provide evidence
of the developmental mechanisms involved [32, 33]. This
is a critical point, as ‘concertedness’ has frequently
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become a byword for developmental constraint (e.g. [4—
12, 34]), potentially biasing the interpretation and pres-
entation of many studies. However, the mosaic brain hy-
pothesis  also  predicts  co-variation  between
interdependent brain regions. If the brain is viewed as a
network of interdependent networks, these functional
constraints could produce consistent scaling relation-
ships across brain components — i.e. concerted evolu-
tion — without invoking developmental coupling [18].
As inferred through classic evolutionary theory [35],
merely recognising a concerted pattern is insufficient
evidence to assess alternative mechanisms, or to support
the predominance of either hypothesis.

If patterns of phenotypic variation alone are unsuitable
for identifying the mechanisms that underpin allometric
scaling, what evidence could? As noted by previous au-
thors, ‘it is not the phenotypic correlation that matters,
so much as the genetic correlation’ [36]. Although brain
morphology can be highly plastic, responding to effects
of the physical or social environment, which may alter
the appearance of how brain structures scale within spe-
cies (e.g. [37, 38]), the majority of comparative studies
interrogating patterns of brain evolution implicitly as-
sume these effects are small relative to heritable vari-
ation. Quantitative, intra-specific genetic studies provide
a test of this assumption and of the relative strength of
genetic correlations between brain size and structure.
Several recent quantitative genetics studies have found
evidence of substantial genetic independence between
brain components [5, 8, 39], a central prediction of the
mosaic brain hypothesis (reviewed in [18]). However,
these studies typically concern standing genetic variation
within populations. The developmental coupling hypoth-
esis can accommodate this evidence if much of this gen-
etic variation is mildly deleterious and is maintained in
the population due to negative selection being weaker
than drift, for example. If this was the case, selection for
changes in brain structure or brain size may more fre-
quently act on de novo mutations that are distinct in
their developmental effects compared to standing gen-
etic variation, and which are generally purged from the
population during times of evolutionary stasis in brain
structure, perhaps because they have larger fitness ef-
fects. If this were the case, intra-specific studies might
not reflect the genetic architecture favoured by selection
over evolutionary timescales. Currently, we have insuffi-
cient evidence either way. At a comparative level, some
authors also argue that both concerted and mosaic pat-
terns are observed in their data, with pairs of structures
evolving in a coordinated, or concerted, manner, poten-
tially supported by direct mechanisms linking their de-
velopment, while others evolve independently [7, 40—
42]. This would invoke complex patterns of develop-
mental integration that occur after the major brain
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divisions are established [40], rather than the more glo-
bal developmental integration suggested by previous au-
thors, but the limited attempts to test this using
molecular data do not currently support this idea [43].
Hence, neither phenotypic data nor currently available
genetic data are sufficient to unite views on the relative
importance of developmental and functional coupling,
constraint and adaptive lability in the evolution of brain
structure.

When faced with relative significance and empirical
underdetermination, simple mathematical models can
help realise basic causal dynamics in a ‘bare-bones’ sys-
tem and are a way of examining the dependencies be-
tween variables that are thought to be important. We
can envision ‘bare-bones’ models as tools that serve to
make explicit the assumptions and reasoning involved in
otherwise linguistic arguments, sometimes revealing pre-
viously hidden assumptions [44, 45]. While they lack
empirical data, and must therefore be treated with care,
they can be critical for informing future empirical stud-
ies and aiding the interpretation of existing literature
[46]. This is particularly true for relevant significance de-
bates which lack a straightforward way to weigh the im-
portance of multiple mechanisms in different contexts
using empirical data. Here, a modelling approach can be
used to explore how key variables behave, which can
dovetail with existing experimental or comparative stud-
ies, or prompt new ones. This approach has recently
been applied to debates over the socio-ecological selec-
tion pressures shaping brain size [47-50], providing a
new approach to the field of evolutionary neurobiology.
Here, we introduce an agent-based model of brain struc-
ture that allows us to explore the interactions between
fitness and constraints derived from selection, develop-
ment and function (summarised in Additional file 1: Fig-
ure S1). In particular, our model allows us to formalise
several verbal arguments over the role of developmental
coupling in brain evolution; specifically, we ask:

1. Do functional dependencies produce concerted
patterns of evolution as well as developmental
coupling (e.g. [32, 33])?

2. Can both mechanisms be adaptive (e.g. [1])?

3. Do the costs of neural tissue select against
concertedness when selection acts on a specific
brain component (e.g. [51])?

4. Is developmental integration evolutionarily labile
(e.g. [52]), and do functional dependencies select for
developmental coupling (e.g. [32, 52])?

5. Does stabilising selection or constraint on brain size lead
to increased frequencies of mosaic evolution (e.g. [51])?

Our model allows us to explore these previously verbal
arguments and interpretations of volumetric data. We
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demonstrate that this ‘bare-bones’ model helps clarify
current debates surrounding the evolution of brain
structure by capturing the basic evolutionary dynamics
at play, and hope that it shifts these debates in a pro-
ductive theoretical and empirical direction.

Results

Do functional dependencies produce concerted patterns
of evolution as well as developmental coupling?

By varying the degree of both developmental coupling
(D) and functional interdependence (F), between brain
components, our model suggests that patterns of ‘con-
certed’ brain evolution, in which the size of brain com-
ponents is correlated, can be caused by both
developmental and functional coupling (Fig. 1, Add-
itional file 1: Figure S2—4). Unsurprisingly, the probabil-
ity of patterns of concerted evolution declines with
decreasing D (£=50.330, p<0.001; Fig. 1d). However,
there is a significant interaction between F and D (t=
28.730, p < 0.001) whereby, for a given value of D, where
D <1, the probability of concerted evolution increases
with higher values of F (Fig. 1la—d), demonstrating that
functional interdependence also promotes concerted-
ness. Even when components are completely develop-
mentally independent (D is set to 0), high values of F
can favour comparatively low levels of mosaicism
(Fig. 1c). Mutation size also has an effect on the out-
come, with more mosaic brains evolving with larger mu-
tation step sizes for a given D value (£=133.650, p<
0.001; compare Figure S2 and S3). These results illus-
trate that macro-evolutionary patterns of allometric scal-
ing consistent with concerted evolution are not, in
themselves, sufficient to distinguish between alternative
mechanistic models of brain evolution.
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Can both mechanisms be adaptive?

By competing alternative D values against one another,
we found that both D (¢=21.358, p<0.001) and F (¢ =
42.595, p <0.001) affect survival in a particular environ-
ment. At an intermediate benefit to cost ratio (B/C =
1.5), we found that the probability of success of a mo-
saic, low D value population increases when F is low,
while high values of F result in a higher probability of
success for the concerted, high D value population
(Fig. 2a—c; Additional file 1: Figure S6-S8). A ‘partially
mosaic’ population (D= 0.5) is very rarely favoured
(Fig. 2a—c; Additional file 1: Figure S6-S8). These com-
parisons indicate that variation in selection across com-
ponents alters the outcome of competition between
populations with different levels of developmental
coupling.

Do the costs of neural tissue select against concertedness
when selection acts on a specific brain component?

In the preceding comparisons, the degree of mosaicism
is also associated with the B/C ratio (£=131.790, p <
0.001; Fig. 1d, Additional file 1: Figure S2), which inter-
acts with D (¢ = - 90.970, p < 0.001) such that the degree
of mosaicism tends to increase with B/C (Fig. 1d). We
next repeated the simulations described in (i) while
varying the B/C ratio associated with additional brain
tissue. The initial models were run with an average B/C
ratio of 1.5 (Fig. 1, Additional file 1: Figure S6-8 s row)
and were re-run with ratios of 2 and 0.5 (Fig. 3a—c, S6—
8, first and third rows), simulating low and high costs of
brain tissue. This revealed that relative tissue costs have
a major effect on the success of populations with differ-
ent D values (¢ =12.116, p <0.001). B/C interacts with D
(t=-13.885, p<0.001) such that, for a given combin-
ation of F and D, a high B/C (=2) consistently increases
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Fig. 1 Evolution of ‘mosaicism’ under alternative conditions. a-c Each plot depicts the ‘degree of mosaicism’ (y-axis, defined as the natural log of
the ratio between the largest brain component and the smallest brain component in each individual, averaged across the population) as a
function of developmental coupling D (x-axis) at the end of a 100-generation simulation run, compiled over 1000 simulation runs, for a
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population of 100 individuals with an identical D, under different environments, defined by their functional coupling F, with an average benefit to
cost ratio (B/C) of 1.5 and a mutation step size of 5%. Each data point is the outcome of one simulation run and the black bar indicates the mean
of these runs. d Summary of the effects of varying F and B/C on the degree of mosaicism when D is 0. See Additional file 1: Figure 52-54 for full

results varying B/C and F, iteration numbers and mutation step size
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Fig. 2 Selected examples of competition between evolving populations with different D values. a-c Each plot depicts the frequency of that D
value relative to the total population (y-axis) as a function of developmental coupling D (x-axis) at the end of a 100-generation simulation run,
compiled over 1000 simulation runs, under alternative environments defined by their functional coupling F, with an average benefit to cost ratio
(B/O) of 1.5 and a mutation step size of 5%. Populations are initialised such that there are 100 fully mosaic individuals (D= 0.0), 100 partially
mosaic individuals (D= 0.5) and 100 concerted individuals (D= 1.0). Each data point is the outcome of one simulation run and the black bar
indicates the mean of these runs. d-g Selected, representative, individual simulations showing the change in population frequencies over
generations for a 5% mutation size and B/C = 1.5. Colours indicate the D value, where yellow is D=0, where blue is D= 0.5 and where green is
D= 1. These show a general pattern of smooth progression from the starting state of equal populations to one D value winning out (d, f), with
only a minority of iterations showing signs of populations ‘swapping’ the lead (e, g). This consistency is expected under constant selection
regimes. See Additional file 1: Figure S6-S8 for full results varying B/C and F, iteration numbers and mutation step size, and Additional file 1:
Figure S9-11 for simulations in tailored environments that illustrate parameter effects
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the probability of success for the population with a high
D value (Fig. 3a—c, Additional file 1: Figure S6-S8). In
contrast, for a given combination of F and D, a moderate
B/C (=1.5) consistently increases the probability of suc-
cess for low D, mosaic models. However, when the B/C
ratio is low (=0.5), the non-linear nature of the inter-
action between C, F and D is revealed, such that con-
certedness again becomes successful, even at low F
values (Fig. 3d—f, Additional file 1: Figure S6-S8 third
rows). In these competition experiments, mutation size
had no effect on the outcome (¢ =0.740, p = 0.459; com-
pare Additional file 1: Figure S6 and S7). The non-linear
success of low D values can be explained if developmen-
tal coupling facilitates rapid decreases in all brain regions
when costs of brain tissue exceed the benefit, allowing a
quick escape from a costly phenotype, or when the fitness
of the whole system is dominated by a single component,
such that increases in total brain size approximate the fit-
ness benefit of increasing specific components.

To further illustrate these effects, we specified par-
ticular parameter comparisons that show how B/C
interacts with changes in selection regimes such that
the most successful D value switches based on chan-
ging the benefit-cost ratio (Fig. 4, Additional file 1:
Figure S10-S12 rows) or variation of selection across
components (Fig. 4, Additional file 1: Figure S10-S12
columns). In particular, we note that (i) simulations
can maintain multiple populations with different D
values where fitness is dominated by the contribu-
tion of one component (Fig. 4a); (ii) shifts in the
probability of a population of a mosaic, low D popu-
lation being successful are otherwise associated with
increased variation in the B value among compo-
nents (Fig. 4bii); and (iii) the relative success of a
mosaic, low D population increases when one or two
components provide a net benefit to size and other
component(s) provide a net cost (Fig. 4biii), while
populations with high D values are favoured when
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developmental coupling D (x-axis) at the end of a 100-generation simulation run, compiled over 1000 simulation runs, with a mutation step size
of 5%, and F=0 to exemplify the effects of varying the B/C from 0 to 2. Populations are initialised such that there are 100 fully mosaic individuals
(D=0.0), 100 partially mosaic individuals (D =0.5) and 100 concerted individuals (D = 1.0). Each data point is the outcome of one simulation run
and the black bar indicates the mean of these runs. d, e Each plot depicts the average relative frequencies of D=0 (yellow) and D=1 (green) at
the end of 1000 iterations of a 100-generation simulation, at three B/C ratios, across three F values representing low (d), moderate (e) and high (f)
functional coupling. See Additional file 1: Figure S6-S8 for full results varying B/C and F, iteration numbers and mutation step size, and
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all components provide either a net benefit or a net
cost (Fig. 4bi).

Is developmental integration evolutionarily labile, and do
functional dependencies select for developmental
coupling?

We examined whether populations with alternative D
values persist when the selection regime is temporally
variable (due to randomised, independent changes in B,
C and F). Under initial conditions, where offspring num-
ber was set to 1 and maximum age was set to 3, both
D=1 and D =0 populations persist over 150 generations
with roughly equal probabilities (Fig. 5a). Plotting the
frequency of D values from individual simulations shows
that the success of each population can fluctuate over
time (Fig. 5e—g), with multiple populations persisting, on
average, for 62 generations (Additional file 1: Figure
S13A). This is substantially more than is found in simu-
lations with fixed environments (Additional file 1: Figure

S5) and is also reflected in the high average generation
at extinction for each D value (D= 0, generation 91;
D= 0.5, generation 57; D= 1, generation 98; Add-
itional file 1: Figure S13). We subsequently varied max-
imum age and offspring number to explore how ‘slow’
(long lives, few offspring) or ‘fast’ (short lives, many off-
spring) life histories buffer the effects of environmental
heterogeneity. This revealed that the main effect cap-
tured in the model was that of offspring number inter-
acting with D (¢£=43,622, p<0.001), with higher
offspring numbers increasing the probability of success
of the concerted, high D value populations (Fig. 5a, ¢, d;
Additional file 1: Figure S14-S16 columns). Increasing
maximum lifespan had a significant but smaller effect in
the opposite direction (¢£=-4.349, p <0.001; Fig. 5a, b,
d; Additional file 1: Figure S14-S16 rows). Altering the
amplitude of fluctuations in the environment also has a
subtle effect on the probability of success of competing
populations with different D values (t=-8.986, p <
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0.001), with more extreme conditions slightly increasing
the success of concertedness (Additional file 1: Figure
S18). In these competition experiments, mutation size
again had no effect on the outcome (¢ =1.000, p = 1.000;
compare Additional file 1: Figure S14 and S15).

Does stabilising selection or constraint on brain size lead
to increased frequencies of mosaic evolution?

Imposing upper and lower bounds on the total size of
the system has notable effects on the probability of mo-
saic and concerted evolution. Under these conditions,
we again see that patterns of ‘concerted’ brain evolution
can be caused by both developmental and functional
coupling (Fig. 6a—c; Additional file 1: Figure S20). Mo-
saicism is more likely under all scenarios where D<1
and F<1 (t=96.66, p <0.001; Fig. 6d; Additional file 1:
Figure S20). However, for a given D value, the degree of
mosaicism is less impacted by variation in B/C than was
observed in the boundless base model (Fig. 6d; Add-
itional file 1: Figure S21). This can be explained by the
dynamic nature of C when imposing upper and lower
bounds on brain size. Regardless of the starting value,
across iterations, B/C will tend to converge as brain size
approaches its limits, which tends to happen well within
the 100 generations of the simulations (Additional file 1:
Figure S13). As a result, in some simulations, D =1 pop-
ulations initially increase in frequency until the

population approaches the upper/lower boundary when
the increasingly upscaled C results in the D =0 popula-
tion rising in frequency and becoming dominant (Add-
itional file 1: Figure S22). In a competitive scenario, the
relative frequency at which brains with low D values are
favoured over brains with high D values also increases
across the majority of parameter combinations (t=
36.88, p < 0.001; Fig. 6f-k), with a high D population be-
ing favoured in the majority of runs when F=1, or for
F=0.5 when B/C is 0.5 or 2 (Additional file 1: Figure
§23). Similar patterns are found in simulations across
fluctuating environments with the frequency of D =0 in-
dividuals in the final populations increasing across all
runs (t = 24.59, p < 0.001; Fig. 6f-k).

Discussion

The results of our agent-based simulations have several
implications for studies using comparative volumetric
data to interrogate mechanistic hypotheses of how brains
evolve. First, they demonstrate that patterns of ‘con-
certed’ evolution (consistent allometric scaling of all
brain components across macro-evolutionary time)
should not be taken as evidence for developmental coup-
ling, as concertedness can also evolve due to multiple
mechanisms, including high functional interdependence
in the total absence of developmental coupling. Second,
depending on the context, both concerted and mosaic



Avin et al. BMC Biology (2021) 19:97

Page 8 of 18

Lifespan = 3, Lifespan = 9, Lifespan — 3,
offspring =1 offspring = 1 offspring = 3
A pring B pring C pring D
1.00 = aa— = e =
T°r ? ,/.
5. 075 Q 32557
g — £ o .
S S 2 Jia
S 050  — — — 2 Dhd
g — = "/
Lt — ‘ﬁ l’
0.25 Q1 ‘
g Lifespan =3
000 @ &= e — -—ac- £ Lifespan =9
0 0.5 1 0 0.5 1 0 0.5 1 0 3 6 9
Strength of D Strength of D Strength of D Offspring number
E F G H
300 - i = !
Iteration Iteration 38 Iteration 44 Iteration 90
[
N 250
7]
.5 200
2 150
a
£ 100
50
0 - 1 1 t
0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
Generation Generation Generation Generation
Fig. 5 Selected examples of competition between populations with different D values in a randomly varying environment. a-c Each plot depicts
the ratio of each population to the total population (y-axis) as a function of developmental coupling D (x-axis) at the end of a 150-generations,
compiled over 1000 simulation iterations; every 2 generations, the environment was replaced, using a uniform random distribution for cost [0.5,
5], max average benefit [0.51, 105] and F functional coupling [0, 1]. Populations are initialized such that there are 100 fully mosaic individuals (D =
0.0), 100 partially mosaic individuals (D=0.5) and 100 concerted individuals (D = 1.0). Simulations were performed varying two life history
conditions: maximum lifespan, or the number of generations an individual persists alive, and offspring number, which are produced once every
generation. Three combinations of lifespan and offspring are shown, for full comparisons see S13. d A summary of the ratio of concerted
individuals (D= 1) to mosaic individuals (D = 0) at the end of each iteration of the 150 generation simulation, showing the effects of maximum
lifespan and offspring number. e-h Selected, representative, individual simulations showing fluctuations in D value frequencies over generations.
Colours indicate the D value, or D value, where yellow is D=0, where blue is D= 0.5 and where green is D= 1. See Additional file 1: Figure S13-
S16 for full results varying B/C and F, iteration numbers and mutation step size, and Additional file 1: S17 for effects of increasing the size of
environmental fluctuations

evolution can be adaptive, and the most probable route
to adaptive brain evolution is strongly influenced by
whether the change in selection regime is skewed to-
wards one brain component or is evenly distributed
across the whole brain. Third, probabilities of concerted
or mosaic evolution are also dependent on what the
relative costs and benefits of increased investment in
brain tissue are. Fourth, our model shows that hetero-
geneity in selection regimes across time can result in
both mechanisms being maintained in a population. Fi-
nally, we demonstrate that when upper and lower
bounds are placed on brain size, the probability of mo-
saic evolution increases under most scenarios. Given
these results, pluralism is a reasonable settlement. How-
ever, our results suggest ways of going beyond the ap-
parent deadlock of empirical underdetermination and
relative significance, as discussed in the introduction. It
does this by opening and providing an initial exploration

of new questions: Under what conditions do develop-
mental coupling and uncoupling succeed? What causes
switches between mosaic and concerted modes of evolu-
tion? And how can we empirically distinguish them?
Our results further stress that mosaicism and concerted
evolution are not competing models of brain evolution,
but instead are reflections of evolutionary mechanisms
that are jointly responsible for adaptive patterns of
neural evolution.

Concertedness is a phenotypic pattern devoid of
mechanistic information

Our simulations clearly show that concerted brain evolu-
tion can occur under any level of developmental coup-
ling, or D value (Fig. 1). This is consistent with classic
quantitative genetics frameworks, which show that cor-
related evolution does not depend on strong genetic cor-
relations among traits [35]. However, despite early
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Fig. 6. Mosaic and concerted evolution when brain size has upper and lower limits. a-c Evolution of ‘mosaicism’ under alternative conditions.
a-c Each plot depicts the ‘degree of mosaicism’ (y-axis, defined as the natural log of the ratio between the largest brain component and the
smallest brain component in each individual, averaged across the population) as a function of developmental coupling D (x-axis) under different
environments, defined by their functional coupling F, with an average benefit to cost ratio (B/C) of 1.5 and a mutation step size of 5%. d, e
Summary of the effects of varying F and D, and F and B/C, respectively, on the degree of mosaicism. f-h Selected examples of competition
between evolving populations with different D values. Each plot depicts the frequency of that D value relative to the total population (y-axis) as a
function of developmental coupling D (x-axis) under alternative environments defined by their functional coupling F, with a benefit to cost ratio
(B/O) of 1.5 Each data point is the outcome of one simulation run and the black bar indicates the mean of these runs. For comparison, grey bars
show the means from the same unbounded simulations in Fig. 2a—c. i~k Each plot depicts the average relative frequencies of D =0 (yellow) and
D=1 (green) at three B/C ratios, across three F values representing low (d), moderate (€) and high (f) functional coupling. For comparison, results
from the same unbounded simulations in Fig. 3d, e are shown in faded colours. See Additional file 1: Figure $20-S23 for further full results varying
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arguments that this is the case [32, 33, 36], the distinc-
tion between concerted, or correlated, evolution and de-
velopmental constraints is often neglected in the debates
surrounding the evolution of brain structure. In our
model, the probability of concertedness predictably in-
creases with D, but it also increases with F, even when D
is 0. Why do high F values result in concerted evolution?
If we assume that selection acts on specific brain com-
ponents, and excess brain tissue is generally expensive,
then selection to maintain functional relationships
should be expected and would result in co-evolution
among brain components. These formal results are con-
sistent with empirical data. For example, across mam-
mals, the major components of the visual processing
pathway, including the peripheral visual system, lateral
geniculate nucleus and visual cortex, tend to co-evolve
with one another, as predicted by their functional inte-
gration [53-55]. Similarly, major components of the ol-
factory pathway, including the olfactory bulbs and
olfactory cortex, also co-evolve [54, 56]. However, the
visual and olfactory pathways show no consistent pattern
of co-evolution between them [54]. Indeed, whether they
co-vary negatively, positively or not at all can be ex-
plained by how diet and activity pattern interact to shape
foraging behaviour [54]. In addition, major brain struc-
tures connected by long-range axons, such as the neo-
cortex and cerebellum, also tend to co-evolve
independently of total brain size, while also showing evi-
dence of temporally transient independent change [57-
60]. These examples illustrate the effects of functional
integration on co-evolution among brain components
which are consistent with our model outputs. Finally,
our model demonstrates an interaction between D and
F, which may suggest that a pattern of concertedness
driven by F could select for, or against, developmental
integration. Regardless, our results demonstrate that
concerted patterns of brain evolution provide no real
evidence either for or against the prevalence of develop-
mental coupling.

Both concerted and mosaic evolution can be adaptive,
depending on the costs and benefits of brain tissue, and
the complexity of the mutation landscape

Our simulations suggest that the cost of excess brain tis-
sue and the distribution of selection across networks of
brain components play critical roles in determining how
brains evolve. When the strength and direction of selec-
tion is skewed towards one brain component, the prob-
ability that a population with mosaic brains, or low D
values, will be successful is increased. However, when
the relative costs of neural tissue are either very low or
high, the balance can switch to favour high D values.
This likely reflects the ‘speed’ at which the two popula-
tions can respond to selection. With only one mutational
mechanism, it is potentially more likely for a develop-
mentally coupled brain to evolve towards a new ‘adap-
tive peak’ than it is for a mosaic brain. This is because
the mutational landscape for a mosaic brain is more
complex, and the probability of hitting the optimal mu-
tational path is reduced by a greater number of potential
mutational outcomes.

At face value, our simulations therefore support previ-
ous arguments that ‘... a coordinated enlargement of
many independent components of one functional system
without enlargement of the rest of the brain may be
more difficult, as its probability would be the vanishingly
small product of the probability of each component en-
larged individually’ (2, p. 1583). However, if the costs of
brain components are unequal, as may be expected if en-
ergetic consumption scales with neuron number [61]
and neuron density varies between components [62],
then this effect would be dampened according to the
distribution of costs and benefits across the whole sys-
tem. Hence, an uneven distribution of neural costs
would likely increase the probability of mosaicism. Evi-
dence that this effect occurs in nature may be provided
by recent data showing life history traits constrain spe-
cific brain regions independently of overall brain size
[63].
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In addition, when we impose an upper and lower
bound on brain size, to reflect scenarios where the total
size of the system is under constraint, for example due
to brain/body allometry, we further see the importance
of considering the costs of neural tissue. Here, the cost
of brain expansion increases as the system approaches
either boundary, such that the option to inflate brain
size as a whole becomes increasingly problematic. Under
these conditions, the probability of mosaicism increases
as it becomes more energetically conservative, and in
some parameter spaces, individuals may have to reallo-
cate energetic investment from one brain region to an-
other, potentially resulting in investment trade-offs. We
also note that, although we present the results of one
way in which costs may scale under brain size con-
straints, the results of alternative cost scaling relation-
ships can be clearly predicted from formula 2; with
altered settings for upper and lower bounds, the effects
would ‘kick in’ at earlier or later points, and with differ-
ent C exponents, the effects would ‘kick in’ with faster
or slower rates.

While accurately assessing the fitness costs and bene-
fits of brain tissue remains challenging, we suggest some
tentative predictions based on these interpretations.
First, we expect mosaicism to be less likely during transi-
tions to high-quality diets, as the cost of neural tissue
relative to the overall energy budget may be reduced.
Second, under sudden periods of energy resource limita-
tion, brains should shrink, at least initially, in a con-
certed manner, before approaching a lower bound for
some structures when mosaicism will kick in to adap-
tively restructure neural investment. Third, mosaicism
may be more likely when energy intake is relatively con-
stant, but selection favours changes in neural investment
which involve energetic trade-offs. This may be common
during periods of ecological change that are not associ-
ated with changes in body size (and by proxy energetic
intake), or in taxa that are size limited. It is tempting to
interpret some notable patterns of brain evolution in this
context. For example, within hominin evolution, human
brains are largely structured in a way that is consistent
with neural scaling across hominoids despite its massive
increase in size [64, 65]. Given that some authors have
argued brain expansion was facilitated by dietary shifts
[66—68], this could have provided the conditions for a
concerted pattern of brain expansion. In contrast, the
brain of the diminutive hominin H. floresiensis is likely
to have evolved under considerable size constraints and
other authors have suggested cognitive evolution in this
lineage was facilitated by a distinct pattern of change in
brain morphology, perhaps reflecting a response to se-
lection under size constraints [69]. Of course, further ex-
perimentation with amenable systems will be necessary
to test the predictions of our model.
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Partially mosaic brains and the maintenance of diversity
It may be surprising that partially mosaic individuals,
which are seemingly a compromise-state, generally have
low probability of success in our simulations. This can
again be explained by the ‘cost’ of mutation. In short,
partially mosaic individuals incur the highest cost of mu-
tational complexity. If the direction of mutation is ran-
dom, in a given generation, the partially mosaic brain
simply has lower odds of increasing its fitness because
mutations affecting the whole brain and region-specific
size may often be in conflict. The relative lack of genetic
variation simultaneously contributing to both whole
brain and region-specific size in natural populations [5,
8, 39] is in keeping with this conclusion. However, how
mutational effects interact during brain development re-
quires further investigation.

However, our simulations across temporally variable
selection regimes indicate that populations with alterna-
tive D values can co-persist within a single population
for many generations. This provides an alternative route
to mixed temporal patterns of concerted and mosaic
evolution within a single population. If we view D values
in our model as alternative genotypes, this implies that
genetic variation affecting specific components and gen-
etic variation affecting total brain size may both either
persist at low levels in natural populations or periodic-
ally arise de novo and spread through a population. Re-
gardless, this would enable selection to fluctuate
between favouring mosaic and concerted mechanisms,
permitting both adaptive restructuring and adaptive con-
servation of brain structure, without invoking genetic
mechanisms that partly link brain structure size
and whole brain size.

Reconciling mosaic and concerted views

Our simulation results suggest a way of reconciling mo-
saic and concerted views of brain evolution. Develop-
mentally coupled brains evolve in scenarios involving
some combination of tissue costs being evenly distrib-
uted, and an extreme and variable fitness landscape,
while mosaic brains are the result of environmental sta-
bility coupled with differentiated selection among com-
ponents, and/or strong constraints on brain size. The
quick evolutionary response enabled by developmentally
coupled brain evolution makes it ideal for circumstances
where getting it ‘approximately correct’ quickly is advan-
tageous, while mosaic evolution is favoured when accur-
acy trumps speed. This is also tied to life history and
environmental heterogeneity. For example, large off-
spring number, which increases short-term competition,
favours the fast response provided by developmental
coupling, while lower competition allows mosaic popula-
tions to persist, find the optimum brain structure and
out-compete developmentally coupled individuals.



Avin et al. BMC Biology (2021) 19:97

The contrasting benefits of concerted and mosaic evo-
lution bring us back to the initial major division between
the two polarised hypotheses [1, 2, 13-15, 17] which
continues to be widely reflected in the literature (e.g. [4—
12]); where developmental coupling does occur, is it a
constraint, or has it evolved and is therefore evolvable?
Our simulations support developmental coupling as a
scenario-dependent adaptive mechanism, rather than a
constraint. First, our simulations show that the fate of
the two opposing mechanisms can vary through time. In
nature, this would be reflected in the formation and
breaking of genetic correlations between traits. Second,
the general absence of genetic correlations observed in
quantitative genetics studies is reconciled with concert-
edness via developmental coupling by invoking the im-
portance of de novo mutation, but our simulations
suggest that the probability that these mutations will
spread to fixation depends on the environmental con-
text. By showing that the distribution and size of costs
and benefits are critical in determining the outcome of
competing mechanisms, our model supports a view
whereby global selection regimes determine the con-
straints acting on brain evolution, not the developmental
program. Two key conclusions from this work are there-
fore (i) patterns of concertedness should not be equated
with developmental coupling and (ii) developmental
coupling should not be equated to developmental
constraint.

Conclusion

In sum, our agent-based simulations of alternative views
of brain evolution provide a number of informative pre-
dictions that should refresh our view of this long run-
ning debate. First, we show concertedness is an
outcome, not a mechanism, and on its own does not
provide evidence for developmental coupling or con-
straint. Second, we demonstrate that selection regime
and structural interdependencies are critical to the out-
come of competing mechanisms. Third, we argue that
developmentally coupled and uncoupled brain architec-
tures can both be adaptive, but we contest the assump-
tion that developmental coupling is necessarily a
persistent evolutionary constraint. Finally, our model
provides a way to integrate patterns of brain evolution,
life history and environmental heterogeneity. We of
course acknowledge that our model is a simplification of
a highly complex biological phenomenon. While the as-
sumptions we make in constructing the model are
intended to help us clearly explore previous verbal argu-
ments, several extensions are possible. These include the
addition of heterogeneous distributions of energetic
costs, costs of functional integration to mirror energetic
costs of long-range axons, and a degree of plasticity in
brain structure and size that would reflect the plasticity
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of neural systems in response to their social and physical
environment. Nevertheless, we hope the general ap-
proach taken can trigger greater formalisation of evolu-
tionary hypotheses in this field, and work that further
refines our computational models.

Methods

To explore the interplay between developmental and
functional coupling on the evolution of brain structure,
we devised a model that simulates the evolution of a
population of individuals in an environment, where fit-
ness is determined by the size and costs of brain
components.

Definitions

We employ terminology from the evolutionary neuro-
biology literature, but the debate could also be under-
stood in terms of principles derived from quantitative
genetics. ‘Concerted evolution’ is the result of correlated
evolution among all brain components, which can be
caused by two main processes. The first, referred to as
‘developmental coupling’, occurs through genetic corre-
lations that act through development, such that variation
at a particular locus affects the development of multiple,
or all, brain components. ‘Developmental de-coupling’
refers to the breakdown, or absence, of these genetic
correlations. The second, referred to as ‘functional coup-
ling’, instead occurs through correlated selection pres-
sures, which either arise due to components
contributing to shared behavioural or computational
functions, or the environment selecting on multiple as-
pects of brain structure (e.g. dark environments selecting
for increased olfactory processing and against visual pro-
cessing; in this case, the selection correlation is nega-
tive). Both correlated selection and genetic correlations
can lead to co-evolution between traits [35], and our
model is designed to explore this in the context of brain
evolution. However, we note it is likely applicable to
other anatomies.

Base model components

The model is characterised by three components: the
population of individuals, the environment and an evolu-
tionary algorithm. We provide a simplified description
of the model in Additional file 1: Figure S1.

Each individual is characterised by a number (N) of
brain components, each component having a specific size
(S;)), where i denotes the individual and j denotes the jth
of N components. For example, among individuals with
three brain components (N = 3), the brain of ‘Individual
A’ could have a first component of size S, ; =5, a second
component of size Sy » =7 and a third component of size
S4,3 =2, which we denote as Sy = (5, 7, 2). A second indi-
vidual, ‘Individual B’, might have component brain sizes
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of 3, 3 and 1, respectively, denoted Sg=(3, 3, 1). In this
case, the total size of Individual A’s brain would be 14,
while the size of Individual B’s brain would be 7. Our
model assumes that all brain components have the same
fitness cost per unit size (see below), so it is total brain
size that determines the evolutionary cost of an individ-
ual’s brain, while the size of individual components con-
tributes differently to fitness benefits. Whether evolution
is mosaic or concerted depends upon the factors influen-
cing changes in brain component sizes over time. The
sizes of brain components are allowed to vary, through
mutation, and this variation is influenced by develop-
mental coupling (D), which takes values between 0.0 (no
developmental coupling, i.e. a fully ‘mosaic’ brain) and
1.0 (complete developmental coupling, i.e. a brain struc-
ture fully determined by total brain size). D is analogous
to the strength of genetic correlations between compo-
nents. For example, a D of 0.5 would indicate that 50%
of the variation in each component is determined by
variation in total brain size, and 50% of the variation in
each brain component is independent of variation in
both total brain size and other components. When a
mutation event occurs, the program generates N + 1 ran-
dom mutation factors (1), for example between 0.5 and
1.5 for a 50% mutation step size, where there is one fac-
tor for the whole brain (1)) and one for each component
(m; to myy), each brain component is then scaled by these
mutation factors, with the variation in mutations affecting
particular brain components being flattened depending on
D’s value. For example, when D is 0, m, for the total brain
size mutation will be multiplied by 0 but other mutation fac-
tors will vary independently according to a scaling factor (1
— D, ie. unscaled when D is 0), whereas when D is 1 all mu-
tation factors for individual brain components will be multi-
plied by 0 and only the mutation factor for total brain size
will persist. Models with intermediate values of D fall be-
tween these extremes. This is determined according to the
following formula:

Sijinew) = [(D x mo) + ((1-D) x m;)]
X Si.jotdy; JE{1, s N } (1)

The Environment is characterised by three factors.
First, an environment is characterised by Functional
Coupling (F), between 0.0 (no functional links between
two brain components) and 1.0 (complete functional
interdependence between two brain components), which
determines how similar brain component benefits are to
each other (for F=1, all benefits are identical) — see
below for implementation details. Second, a set of bene-
fits (B)), one for each of the N brain components, which
represents the fitness contribution of each size unit an
individual gains from that particular brain component,
at a particular size. For example, in an environment with
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benefits B=(1, 2, 3), Individual A, from above, will have
total fitness contributions from brain component sizes of 5 x
1+7 x 2+2 x 3=25, while Individual B will have total fit-
ness benefits of 3 x 1+3 x 2+1 x 3=12. This is imple-
mented by varying B,,,,,, the highest possible benefit a unit
of size could give, with the benefit per component size B;
given as a random fraction (uniformly sampled from the
range 0 to 1) of this maximum benefit. Where F= 1, the
generated fraction is the same for all components; if F=0,
then the benefit per component is independent (ie. three
generated fractions), and for any intermediate value of F, the
benefit provided by each component is determined by con-
tributions from both the cross-brain fraction and the per-
component fractions, scaled so that the sum of fractions per
component never exceed 1. With higher F values, the indi-
vidual component benefits are constrained to be more simi-
lar. The average benefit per component is always half the
maximum benefit permitted, and the degree of functional
coupling (F) determines how correlated they are. Third, the
environment imposes a fitness cost (C) per size unit of the
brain, which is uniform for all brain components based on
the assumption that there is a linear ‘per neuron’ energetic
cost [61], and that units of ‘size’ in the model are analogous
to neuron number. More specifically, the units of ‘size’ in
the model are analogous to the ratio between the neuron
number of the current organism and the neuron number
for the common ancestor, with the common ancestor
starting with equal sized brain components, Sy = (1,1,1), in
all our simulations. Total fitness for an individual i with
brain component sizes S;; in an environment defined by

benefits B; and cost C is thus given by Z(S’?f x B;)-(C

j
X ZS‘? /). For example, if the environment described
j

above had a cost C =1, Individual A will experience a fit-
ness cost of 14, giving a total fitness of 25-14 =11, while
Individual B will experience a fitness cost of 7, giving a
total fitness of 5. To visualise the effects of varying C and
B,,.» we measure the ratio of the average B across com-
ponents (annotated B), to C.

The Evolutionary Process progresses through the fol-
lowing steps:

1. Determine the number of ‘offspring’ for each
individual in a population, and the age of all
individuals, measured in the number of generations
(these are identical across the population).

2. [Initialise an environment and a population of
individuals with identical, uniform brain component
sizes (S;; = 1).

3. For a given number of simulation steps
a. Generate offspring for all individuals
b. Mutate all offspring
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c. Increase the age of all individuals

d. Remove individuals whose age exceeds the
maximum age

e. Rank individuals according to their total fitness in
the environment (calculated as described above)

f. Remove the lowest ranking individuals until the
population size returns to the origin size (i.e.
population size is stable over time)

Given the above model parameters, we can examine
the effects of developmental coupling (D) and functional
coupling (F) on the evolution of brain component sizes.
We can also explore the evolution of brain structure in
populations of individuals with an intermediate value of
D (unless specified otherwise, we use D = 0.5), which are
neither fully concerted nor fully mosaic. We call these
‘partially mosaic’ individuals, where some of the muta-
tions affect total brain size, scaling each component
equally, and some affect each component independently,
as given by Eq. (1) above. We can then assess which
mechanism, for example, a fully mosaic brain (D =0), a
fully concerted brain (D =1) or a partially mosaic brain
(D=0.5), is most successful in different scenarios by
measuring the frequency of individuals in a population
with that D value, as a proportion of total population
size, after n generations. The model was initially imple-
mented with no upper ceiling on overall brain size, in
which case it most accurately simulates periods reflect-
ing directional increases/decreases in brain components,
and by extension brain size, which is a common but not
universal trend [70, 71]. This means that under static se-
lection regimes the base model can lead to continuous
directional changes in total brain size. We also allow the
environment to change randomly over the course of a
simulation to examine how temporal heterogeneity in
selection regimes affects the long-term success of alter-
native brain models.

Introducing constraints on total brain size

As described above, the initial model imposes no upper
or lower limit on total brain size. While this will reflect
periods of directional changes in the brain, or brain
component, size [70, 71], the close correlation between
brain and body size, which may evolve under contrasting
selection pressures [35], may impose limitations on how
brains respond to selection that is not captured in the
base model. However, these upper and lower boundaries
can be envisaged in terms of non-linear relationships be-
tween the size of brain components and their costs. As
brain size approaches an upper/lower ceiling, the relative
cost of increasing/decreasing each component is likely
increased, resulting in increased disparity of B/C ratios
for each component when selection is favouring in-
creases in particular brain regions. To compare how
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such boundaries may impact the probability of different
outcomes for D values, we implemented an extension to
the model in which C is scaled according to its distance
from the brain size of the common ancestor, with costs
becoming increasingly prohibitive near an upper or
lower boundary, set as 1.5 and 0.5 times the starting
combined size of all three components, respectively.
This scaling factor was implemented as:

2250, N Z;‘Sn/) @

228 22550,

where C is the environmental-determined base cost,
%,;S;, ; is the total size of all brain components for the
current individual and ¥;S,, ; is the total brain size of the
common ancestor. Under these conditions, the model
aims to examine situations where variation in total brain
size is under stabilising selection or some form of
constraint.

CiCx0.25><<

Comparing effects of parameter variation on probabilities
of mosaicism
Using the base model, we first conducted a series of sim-
ulations to explore four key questions identified in the
introduction:

1. 'What mechanisms can produce concerted
evolution? Here, we fixed C to equal 1 and fix B,
to be 1, 2 or 4, giving a range of average B/C
conditions, while varying D and F. We then ran
simulations to examine the degree of mosaicism
observed under high, moderate and low levels of F
and D.

2. Can both mechanisms be adaptive? Here, we repeat
the comparisons above, but in competitive
environments to examine the probability of
obtaining coordinated changes in brain components
under high, moderate and low levels of F.

3. Do the costs of neural tissue select against
concertedness when selection acts on specific brain
components? i.e. How does variation in fitness
contributions from different components affect the
way brains respond to selection? This can be
addressed in two ways: first, by varying F, which
determines how correlated B values of each
structure are, or by varying B,,,,,, to alter the B/C
ratio. Here, our aim was to test whether different
levels of variation in the fitness contribution of
additional brain tissue alter the probability of
obtaining a mosaic or concerted brain.

4. Is developmental integration evolutionary labile? i.e.
in a fluctuating environment do strong
developmental constraints evolve and/or collapse?
In this comparison, we took a different approach.
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We introduced a starting population of brains with
a range of component sizes and D. We then
allowed C and B,,,,, to vary randomly every 2
generations to test what combination of factors
persist over time. Here, costs were sampled
uniformly in the range 0.5-5, and B, was
sampled uniformly in the range 1-10. As a result,
the average benefit (B) is in the range 0.5-5, which
is the same range as the cost, but the actual B/C
ratio will vary widely between generations. F was
also sampled uniformly in the range 0-1. We
subsequently explored how varying key life history
traits (numbers of offspring and maximum age)
might buffer the effects of random environmental
fluctuations.

5. How do constraints on brain size interact with the
probability of mosaicism? Finally, we subsequently
examined how imposing upper and lower bounds
on total brain size impact the probability of
obtaining a mosaic or concerted brain under each
of the conditions described above.

In all case, the simulations were run over 100 genera-
tions, with 1000 iterations, a fixed population size of 300
individuals, initiated with 100 individuals per D value. In
the main text, we present results of simulations with a
mutation step size of 5%, but runs using the base model
were also repeated with a larger mutation step size of
50% to examine how effects were influenced by mutation
size (full results are presented in the Supplementary In-
formation). To explore the early stages of the simula-
tions, we also present results from a subset of
simulations with 10 generations for these base compari-
sons. In experiments 2 and 3, simulations were run with
an initial population containing equal numbers of indi-
viduals with different D values (D=0, 0.5 or 1), which
were then evolved under different environment condi-
tions (determined by F and the ratio of benefits to cost).
In experiment 4, environmental conditions were ran-
domly varied every 2 generations for 150 generations.
When imposing the upper and lower bounds on brain
size, we repeated experiments 1-4, as described above,
with a mutation step size of 5%. The ‘success’ of a D
value was determined by the proportion of individuals in
a population with that D value at the end of the simula-
tion run. The full output of all models are summarised
in Additional file 1: Figure S2-S23. The frequency of D
values was compared using generalised linear models
and the glm() function in R [72] across batches of nine,
1000-iteration simulations where F, D and B,,,, and/or
C varied (experiments 1-3, see for example Add-
itional file 1: Figure S2,S6), or where F, D, maximum
lifespan and offspring number varied (experiment 4, see,
for example Additional file 1: Figure S14) (all
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experiments total n = 27,000 iterations). We estimated
the effects of all parameters and interactions where indi-
cated, with a Gaussian distribution when comparing ‘de-
grees of mosaicism’ (defined as the natural log of the
ratio between the largest brain component and the smal-
lest brain component in each individual, averaged across
the population) and a quasibinomial distribution when
comparing proportional frequencies.

The code files in which the model is implemented are
openly available for readers to implement additional param-
eter settings, or to extend the model, and can be accessed
from github.com/shaharavin/BrainEvolutionSimulator [73].
Biplots were made using PlotsOfData [74]. Many simula-
tions produce a bimodal distribution of frequencies, we
therefore display the mean of these iterations solely to illus-
trate the skew in the outcome.

Supplementary Information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512915-021-01024-1.

Additional file 1: Figures S1-523. Figure S1. A simplified, pictorial
depiction of the model. Pages 4-5. Figure S2. Evolution of ‘mosaicism’
under alternative conditions, full comparisons, run with 5% mutation size
and 100 generations (sister to Fig. 1). Page 6. Figure S3. Evolution of
‘mosaicism’ under alternative conditions, full comparisons, run with 50%
mutation size and 100 generations (extension of Fig. 1). Page 7. Figure
S4. Evolution of ‘mosaicism’ under alternative conditions, full
comparisons, run with 50% mutation size and 10 generations (extension
of Fig. 1). Page 8. Figure S5. Generation number at convergence during
simulations of competition between evolving populations with different
D values under alternative conditions (companion to Fig. 2). Page 9.
Figure S6. Competition between evolving populations with different D
values under alternative conditions, full comparisons, run with 5%
mutation size and 100 generations (sister to Fig. 2). Page 10. Figure S7.
Competition between evolving populations with different D values under
alternative conditions, full comparisons, run with 50% mutation size and
100 generations (extension of Figs. 2 and 3). Page 11. Figure S8.
Competition between evolving populations with different D values under
alternative conditions, full comparisons, run with 50% mutation size and
10 generations (extension of Figs. 2 and 3). Page 12. Figure S9.
Competition between evolving populations with different D values under
tailored environmental conditions, run with 5% mutation size, showing
the average size of each brain component and the frequency of
competing D values (extension of Figs. 2 and 3). Page 13. Figure S10.
Competition between evolving populations with different D values under
tailored environmental conditions, full comparisons, run with 5%
mutation size and 100 generations (extension of Figs. 2 and 3). Page 14.
Figure S11. Competition between evolving populations with different D
values under tailored environmental conditions, full comparisons, run
with 50% mutation size and 100 generations (extension of Figs. 2 and 3).
Page 15. Figure S12. Competition between evolving populations with
different D values under tailored environmental conditions, full
comparisons, run with 50% mutation size and 10 generations (extension
of Figs. 2 and 3). Page 16. Figure S13. Conditions at convergence of
simulations of competition between evolving populations with different
D values in a randomly varying environment, under different life history
conditions (companion to Fig. 2). Page 17. Figure S14. Competition
between evolving populations with different D values in a varying
environment, under different life history conditions, full comparisons, run
with 5% mutation size and 100 generations (sister to Fig. 4). Page 18.
Figure S15. Competition between evolving populations with different D
values in a varying environment, under different life history conditions,

full comparisons, run with 50% mutation size and 100 generations
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(extension of Fig. 4). Page 19. Figure S16. Competition between
evolving populations with different D values in a varying environment,
under different life history conditions, full comparisons, run with 50%
mutation size and 10 generations (extension of Fig. 4). Page 20. Figure
S17. Selected, representative, individual simulations showing fluctuations
in population frequencies over 100 generations for a 5% mutation size
(A-D) or a 50% mutation size (E-H) (extension of Fig. 4). Page 21. Figure
$18. Subtle effects of the size of environmental fluctuations on
competition between evolving populations with different D values in a
varying environment (extension of Figure S16). Page 22. Figure S19.
Relationship between population frequencies between partially mosaic
brains (D =0.5) and fully mosaic (D = 0), or concerted brains (D = 1) from
simulations in varying environmental conditions and a 5% mutation size
(A) or 50% mutation size (B) (extension of Fig. 4). Page 23. Figure S20.
Evolution of ‘mosaicism’ under alternative conditions with upper and
lower bounds on brain size, full comparisons, run with 5% mutation size
and 100 generations (extension of Fig. 6). Page 24. Figure S21.
Competition between evolving populations with different D values under
alternative conditions with upper and lower bounds with upper and
lower bounds on brain size, full comparisons, run with 5% mutation size
and 100 generations (extension of Fig. 6). Page 25. Figure S22. Selected,
representative, individual simulations showing fluctuations in population
frequencies over 50 generations for a 5% mutation size, with upper and
lower bounds with upper and lower bounds on brain size (extension of
Fig. 6). Page 26. Figure S23. Conditions at convergence of simulations of
competition between evolving populations with different D values in a
randomly varying environment, with upper and lower bounds on brain
size, under different life history conditions (extension of Fig. 6). Page 27.
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