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Abstract
This paper elaborates on a new approach for solving
the generalized Dirichlet-to-Neumann map, in the large
time limit, for linear evolution PDEs formulated on
the half-line with time-periodic boundary conditions.
First, by employing the unified transform (also known
as the Fokas method) it can be shown that the solu-
tion becomes time-periodic for large 𝑡. Second, it is
shown that the coefficients of the Fourier series of the
unknown boundary values can be determined explicitly
in terms of the coefficients of the Fourier series of the
given boundary data in a very simple, algebraicway. This
approach is illustrated for second-order linear evolution
equations and also for linear evolution equations con-
taining spatial derivatives of arbitrary order. The sim-
ple and explicit determination of the unknown bound-
ary values is based on the “𝑄-equation”, which for the
linearized nonlinear Schrödinger equation is the linear
limit of the quadratic 𝑄-equation introduced by Lenells
and Fokas [Proc. R. Soc. A, 471, 2015]. Regarding the lat-
ter equation, it is also shown here that it provides a
very simple, algebraic way for rederiving the remark-
able results of Boutet de Monvel, Kotlyarov, and Shepel-
sky [Int. Math. Res. Not. issue 3, 2009] for the particular
boundary condition of a single exponential.
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1 INTRODUCTION

The unified transform, also known as the Fokas method, was introduced by the first author in
1997.1 It provides a novel approach for solving boundary value problems for linear and integrable
nonlinear partial differential equations (PDEs). For integrable PDEs the unified transform is the
proper generalization from initial to boundary value problems of the famous inverse scattering
transform (IST). Taking into consideration the seminal contributions ofHarvey Segur in the devel-
opment and applications of the IST, we hope that our paper fits well in this issue.
The unified transform has been employed by many authors for the investigation of evolution

PDEs in one space variable. For such equations, among the most important results obtained via
this method are the following: (i) Linear equations formulated on the half-line or a finite interval
have been analyzed byDeconinck, Fokas, Pelloni, and collaborators.2–17 (ii) Numerical techniques
for linear equations are developed in Refs. 18–22. (iii) Novel results in spectral theory are derived
in Refs. 23–25. (iv) Evolution PDEs defined on moving domains are analyzed in Refs. 26–28. (v)
Unexpected results in the area of null controllability are presented in Ref. 29 (vi) Integrable non-
linear evolution equations have been analyzed by many authors, see, for example, Refs. 30–38.
(vii) Nonlinear integrable equations with the so-called linearizable boundary conditions are inves-
tigated in Refs. 39–43. For this type of special boundary conditions, the unified transform yields
a solution, which is as effective as the solution of the corresponding initial value problem on the
line obtained via the IST. (viii) It is shown in Refs. 44, 45 that 𝑥-periodic initial conditions belong
to the linearizable class. Hence, remarkably, such problems can be solved as effectively as the
usual initial value problem on the full line. (ix) Himonas, Mantzavinos, and Fokas have initiated
a program of study for using the unified transform to derive results regarding the well-posedness
of arbitrary nonlinear evolution PDEs.46–51
It is well known that for the analysis of elliptic PDEs, one has to face the difficulty of analyz-

ing the Dirichlet-to-Neumann map. Actually, this problem also arises in the analysis of bound-
ary value problems for evolution PDEs. Consider, for example, the case of an evolution equation
involving spatial derivatives of order up to two, formulated on the half-line. Let 𝑔0 and 𝑔1 denote
the Dirichlet and Neumann boundary values at 𝑥 = 0, i.e.,

𝑔0(𝑡) = 𝑢(0, 𝑡), 𝑔1(𝑡) = 𝑢𝑥(0, 𝑡), 𝑡 > 0. (1)

For a well-posed problem, either 𝑔0 or 𝑔1 or a relationship between them is prescribed as a
boundary condition. This corresponds to a Dirichlet or Neumann or Robin boundary value prob-
lem, respectively. The generalized Dirichlet-to-Neumann map involves the determination of the
unknown boundary value in terms of the given initial and boundary conditions. A vital ingre-
dient of the Fokas method is the so-called global relation. For linear evolution equations, this
is a linear algebraic equation coupling appropriate integral transforms of all boundary values.
By utilizing the global relation it is possible to determine the generalized Dirichlet-to-Neumann
map for a linear evolution equation whose highest spatial derivative is of arbitrary order. How-
ever, for nonlinear integrable evolution equations the global relation is nonlinear. Thus, the
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generalized Dirichlet-to-Neumann map is characterized, in general, in terms of a nonlinear for-
malism. Despite this serious difficulty, substantial progress has been made via the usage of the
global relation: First, it was realized in Ref. 31 that, for linearizable boundary conditions, the
above nonlinear step can be bypassed, and that the generalized Dirichlet-to-Neumann map can
be solved explicitly. Second, for general boundary conditions, the following important results have
been obtained: (i) The Dirichlet-to-Neumann map for the nonlinear Schrödinger (NLS) equation
can be characterized via two different nonlinear formalisms. The first is based on the analysis of
the eigenfunctions of the 𝑡-part of the Lax pair evaluated at 𝑥 = 033; see also Refs. 52, 53. The sec-
ond is based on the Gelfand–Levitan–Marchenko formulation,34 which extends the pioneering
results of Ref. 54. (ii) Boutet de Monvel, Kotlyarov, and Shepelsky obtained a remarkable result,
involving the focusing NLS with a Dirichlet boundary condition, which for large 𝑡 becomes a sin-
gle exponential:

𝑔0(𝑡) − 𝛼e
𝑖𝜔𝑡 → 0 sufficiently fast as 𝑡 → ∞, with 𝛼 > 0, 𝜔 ∈ ℝ; (2)

the assumption of 𝛼 being positive can be taken without loss of generality, because the NLS is
invariant under the transformation 𝑢 ↦ 𝑢e𝑖𝜃, 𝜃 ∈ ℝ. It was shown in Ref. 55 that if 𝜔 ≥ 𝛼2 or
𝜔 ≤ −6𝛼2, there exists a solution of the focusing NLS which satisfies (2), and the corresponding
Neumann boundary value also asymptotes to a single exponential:

𝑔1(𝑡) ∼ 𝛾e
𝑖𝜔𝑡, 𝑡 → ∞, 𝛾 = ±𝛼

√
𝜔 − 𝛼2, 𝜔 ≥ 𝛼2, (3a)

𝛾 = 𝑖𝛼
√|𝜔| + 2𝛼2, 𝜔 ≤ −6𝛼2. (3b)

(iii) Rigorous well-posedness results for the Dirichlet-to-Neumann map for decaying Dirichlet
data are derived in Ref. 56. (iv) For vanishing initial data, if the Dirichlet boundary condition is
a sine wave, i.e., 𝑢(0, 𝑡) = 𝛼 sin 𝑡, 𝛼 ∈ ℝ, then the Neumann boundary function 𝑢𝑥(0, 𝑡) for the
NLS,34 and the Neumann boundary functions 𝑢𝑥(0, 𝑡) and 𝑢𝑥𝑥(0, 𝑡) for the modified Korteweg-
de Vries equation,57 can be computed up to and including terms of 𝑂(𝛼3) and, at least up to this
order, are asymptotically time-periodic for 𝑡 → ∞. A similar result has been obtained for the KdV
equation,58 where it is shown that when the Dirichlet condition is a sine wave, then the Neu-
mann boundary values are asymptotically time-periodic at least up to second order in perturba-
tion theory. This perturbative approach introduced in Ref. 34 involves heavy calculations, making
it virtually impossible to go further than terms of𝑂(𝛼3), but gives however a strong indication that
(asymptotically) time-periodicDirichlet boundary conditions lead to asymptotically time-periodic
Neumann boundary values.
It is known that, for integrable evolution equations formulated on the full line, the power of

the integrability formalism becomes evident in the asymptotic analysis for large 𝑡. This is also true
for boundary value problems analyzed via the Fokas method. Indeed, for boundary conditions,
which vanish for large 𝑡, the unified transform gives rise to a Riemann–Hilbert formulation with
explicit 𝑥 and 𝑡 dependence. Hence, it is possible to determine the structure of the solution with-
out determining the Dirichlet-to-Neumann map.59 As a result of the fact that this map remains
undetermined, certain constants in the relevant asymptotic formulas remain unknown.
Regarding the case of 𝑡-periodic boundary conditions, a new approach for the large 𝑡 asymptotic

analysis was introduced in Ref. 60 (see also Ref. 58). This approach is based on the investigation of
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a certain quadratic equation. We will refer to this equation, which can be obtained directly from
the Lax pair evaluated at 𝑥 = 0, as the 𝑄-equation. It was shown in Ref. 60 that for a Dirichlet
boundary condition, which asymptotes to a 𝑡-periodic function for large 𝑡 that can be expanded
in a power series of 𝜖, it is possible to obtain the Neumann boundary value via a series expansion
in 𝜖, which is explicitly determined in terms of the Dirichlet data.
In the present paper, it is shown that the 𝑄-approach is truly powerful:

(i) For the case of the linear version of the NLS, namely, for the equation

𝑖𝑢𝑡 + 𝑢𝑥𝑥 = 0, (4)

it was shown in Ref. 60 that, if the Dirichlet condition is asymptotically 𝑡-periodic, then
for large 𝑡 the Neumann boundary value is also 𝑡-periodic. Moreover, an explicit formula
was obtained in Ref. 60 relating the coefficients of the two Fourier series characterizing the
asymptotic Dirichlet and Neumann values. It is shown in Section 2 that the linear version of
the𝑄-formalismprovides amuch simplerway for computing asymptotically theDirichlet-to-
Neumannmap of Equation (4). Similar results are obtained in Section 2 for the heat equation,

𝑢𝑡 = 𝑢𝑥𝑥, (5)

and for the diffusion–convection equation,

𝑢𝑡 = 𝑢𝑥𝑥 + 𝛽𝑢𝑥, 𝛽 ≥ 0. (6)

(ii) For large 𝑡, this new approach provides, in a straightforward manner, the asymptotic form
of the generalized Dirichlet-to-Neumann map of linear evolution equations containing 𝑥-
derivatives of arbitrary order, with asymptotically time-periodic boundary data and with a
sufficiently decaying initial condition. We illustrate the general approach in Section 3 using
the example of the Stokes equation,

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0. (7)

The specific implementation of the new method to Equations (4)–(7) makes clear how this
method can be easily applied to any linear evolution equation with constant coefficients.

(iii) The determination of the large 𝑡-asymptotics of the Dirichlet-to-Neumann map of the
diffusion-convection equation (6), which contains the heat equation as a special case for
𝛽 = 0, is presented in Section 4 via the unified transform method. The derivation follows
similar steps to those used in Ref. 60. However, it presents a slight generalization of the anal-
ogous result of Ref. 60, because here we derive the large 𝑡 asymptotics of 𝑢𝑥(𝑥, 𝑡) as opposed
to 𝑢𝑥(0, 𝑡). Using almost identical steps it is possible to derive an expression for the large 𝑡
behavior of 𝑢(𝑥, 𝑡), which shows that 𝑢(𝑥, 𝑡) becomes 𝑡-periodic. By evaluating the expres-
sion for 𝑢𝑥(𝑥, 𝑡) derived in this way at 𝑥 = 0, we obtain explicitly the relationship between
the Fourier coefficients of the Dirichlet and the Neumann values. By comparing this deriva-
tion with the very simple procedure of the 𝑄-approach, the advantage of the latter becomes
evident. Analogous computations for the Stokes equation (7) can be found in Refs. 58, 61.
Similar results can be obtained for other linear equations with spatial derivatives of arbitrary
order.
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(iv) It is shown in Section 5 that the remarkable results of Ref. 55 follow immediately from the
analysis of the 𝑄-equation derived in Ref. 60. Taking into consideration the complexity of
the earlier derivations presented in Ref. 55 and in Ref. 60, this result supports further the
assertion that the 𝑄-approach provides indeed a direct and quite powerful computational
technique.

2 THE LARGE 𝒕 BEHAVIOR OF THE DIRICHLET-TO-NEUMANN
MAP FOR SECOND-ORDER LINEAR EVOLUTION EQUATIONSWITH
𝒕-PERIODIC BOUNDARY CONDITIONS

The derivation of the 𝑄-equation is based on the Lax pair formulation. In turn, this is related to
the first step of the Fokas method, namely, rewriting a given linear PDE in a divergence form.
This can be achieved in a variety of ways, including the use of the adjoint. Let 𝑢(𝑥, 𝑡) satisfy the
second-order evolution PDE

𝑢𝑡 = 𝐴2𝑢𝑥𝑥 + 𝐴1𝑢𝑥 + 𝐴0𝑢, (8)

where 𝐴0, 𝐴1, and 𝐴2 are complex constants. We assume that 𝑢(𝑥, 𝑡) is sufficiently smooth and
that both 𝑢(𝑥, 𝑡) and its 𝑥-derivatives decay sufficiently fast as 𝑥 → ∞ for each 𝑡 ≥ 0.
The formal adjoint can be obtained from Equation (8) by replacing 𝜕∕𝜕𝑡 and

𝜕∕𝜕𝑥 with −
𝜕∕𝜕𝑡

and −𝜕∕𝜕𝑥 , respectively. Hence,

𝑣𝑡 = −𝐴2𝑣𝑥𝑥 + 𝐴1𝑣𝑥 − 𝐴0𝑣. (9)

Multiplying Equations (8) and (9) by 𝑣 and 𝑢, respectively, and then adding the resulting equa-
tions, we find

(𝑢𝑣)𝑡 = [𝐴2(𝑣𝑢𝑥 − 𝑢𝑣𝑥) + 𝐴1𝑢𝑣]𝑥. (10)

Equation (8) admits a solution of the form

e𝑖𝑘𝑥−Ω(𝑘)𝑡, where Ω(𝑘) = 𝐴2𝑘2 − 𝑖𝐴1𝑘 − 𝐴0, 𝑘 ∈ ℂ. (11)

We assume that ReΩ(𝑘) ≥ 0 for 𝑘 real, so that the initial value problem iswell-posed.62 We observe
that, e−𝑖𝑘𝑥+Ω(𝑘)𝑡 is a solution of Equation (9). Replacing, in Equation (10), 𝑣 by this exponential,
we find the following one-parameter family of divergence forms:(

e−𝑖𝑘𝑥+Ω(𝑘)𝑡𝑢
)
𝑡
=

{
e−𝑖𝑘𝑥+Ω(𝑘)𝑡[𝐴2(𝑢𝑥 + 𝑖𝑘𝑢) + 𝐴1𝑢]

}
𝑥
, 𝑘 ∈ ℂ. (12)

This equation implies the existence of the function e−𝑖𝑘𝑥+Ω(𝑘)𝑡𝜇(𝑘, 𝑥, 𝑡), where(
e−𝑖𝑘𝑥+Ω(𝑘)𝑡𝜇

)
𝑥
= e−𝑖𝑘𝑥+Ω(𝑘)𝑡𝑢, (13a)

(
e−𝑖𝑘𝑥+Ω(𝑘)𝑡𝜇

)
𝑡
= e−𝑖𝑘𝑥+Ω(𝑘)𝑡[𝐴2(𝑢𝑥 + 𝑖𝑘𝑢) + 𝐴1𝑢]. (13b)
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Simplifying, we obtain the following Lax pair of Equation (8):

𝜇𝑥 − 𝑖𝑘𝜇 = 𝑢, (14a)

𝜇𝑡 + Ω(𝑘)𝜇 = 𝐴2(𝑢𝑥 + 𝑖𝑘𝑢) + 𝐴1𝑢. (14b)

2.1 The 𝑸-formulation

Suppose that Equation (8) is valid in a given domain𝐷. Equation (12) and Green’s Theorem imply
that

∫
𝜕𝐷

e−𝑖𝑘𝑥+Ω(𝑘)𝜏{𝑢d𝑥 + [𝐴2(𝑢𝑥 + 𝑖𝑘𝑢) + 𝐴1𝑢]d𝜏} = 0, 𝑘 ∈ ℂ, (15)

where 𝜕𝐷 denotes the boundary of 𝐷.
In the particular case that Equation (8) is formulated on the half-line,

𝐷 = {0 < 𝑥 < ∞, 0 < 𝜏 < 𝑡}, (16)

Equation (15) becomes the so-called Global Relation:

−∫
∞

0

e−𝑖𝑘𝑥𝑢(𝑥, 𝑡)d𝑥 = −e−Ω(𝑘)𝑡 ∫
∞

0

e−𝑖𝑘𝑥𝑢(𝑥, 0)d𝑥

+𝐴2 ∫
𝑡

0

e−Ω(𝑘)(𝑡−𝑠)𝑔1(𝑠)d𝑠 + (𝑖𝐴2𝑘 + 𝐴1)∫
𝑡

0

e−Ω(𝑘)(𝑡−𝑠)𝑔0(𝑠)d𝑠. (17)

Let 𝑄(𝑘, 𝑡) satisfy the 𝑡-dependent part of the associated Lax pair evaluated at 𝑥 = 0, i.e.,

𝑄𝑡(𝑘, 𝑡) + Ω(𝑘)𝑄(𝑘, 𝑡) = 𝐴2𝑔1(𝑡) + (𝑖𝐴2𝑘 + 𝐴1)𝑔0(𝑡), 𝑡 > 0, 𝑘 ∈ ℂ. (18)

Then,

𝑄(𝑘, 𝑡) = e−Ω(𝑘)𝑡𝑄(𝑘, 0) + 𝐴2 ∫
𝑡

0

e−Ω(𝑘)(𝑡−𝑠)𝑔1(𝑠)d𝑠 + (𝑖𝐴2𝑘 + 𝐴1)∫
𝑡

0

e−Ω(𝑘)(𝑡−𝑠)𝑔0(𝑠)d𝑠. (19)

Comparing this equation with the Global Relation (17), it follows that if we choose

𝑄(𝑘, 0) = −∫
∞

0

e−𝑖𝑘𝑥𝑢(𝑥, 0)d𝑥, Im𝑘 ≤ 0, (20)

then

−∫
∞

0

e−𝑖𝑘𝑥𝑢(𝑥, 𝑡)d𝑥 = 𝑄(𝑘, 𝑡). (21)
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For the integrals appearing on the right-hand side of Equation (19), we have 𝑡 − 𝑠 ≥ 0. Let us
assume that 𝑔0 and 𝑔1 are bounded functions. Thus, as 𝑡 → ∞, the second and third terms of the
right-hand side of Equation (19) are bounded and analytic in the domain

{𝑘 ∈ ℂ ∶ Re Ω(𝑘) > 0}. (22)

Moreover, 𝑄(𝑘, 0) is bounded and analytic for Im𝑘 ≤ 0. Thus, 𝑄(𝑘, 𝑡) is well defined in
{𝑘 ∈ ℂ ∶ Im 𝑘 ≤ 0,Re Ω(𝑘) > 0}. (23)

The unified transform yields a representation, which involves the curve 𝜕𝐷−, which is the bound-
ary of the domain 𝐷− defined by

𝐷− = {𝑘 ∈ ℂ ∶ Im 𝑘 < 0,Re Ω(𝑘) < 0}. (24)

We observe that the domain 𝐷− is the complement (in the lower half of the complex 𝑘-plane) of
the domain (23) of validity of 𝑄. However, Equation (21) implies that, actually, 𝑄(𝑘, 𝑡) has a much
larger domain of analyticity. Namely, this equation extends the domain of validity to Im𝑘 ≤ 0 (the
entire lower half of the complex 𝑘-plane including the real axis), which encompasses 𝐷−, i.e., 𝐷−
and its boundary. Thus, we will require that 𝑄(𝑘, 𝑡) is free of singularities in 𝐷−.
Let us assume that for large 𝑡 both 𝑔0 and 𝑔1 asymptote sufficiently fast toward smooth time-

periodic functions of the general form

𝑔0(𝑡) ∼

∞∑
𝑛=−∞

𝛼
(0)
𝑛 e

𝑖𝑛𝜔𝑡, 𝑔1(𝑡) ∼

∞∑
𝑛=−∞

𝛼
(1)
𝑛 e

𝑖𝑛𝜔𝑡, 𝑡 → ∞, (25)

where 𝛼(0)𝑛 , 𝛼
(1)
𝑛 ∈ ℂ, 𝑛 ∈ ℤ and 𝜔 > 0. We seek a solution 𝑄 of Equation (18) of the form

𝑄(𝑘, 𝑡) ∼

∞∑
𝑛=−∞

𝑞𝑛(𝑘)e
𝑖𝑛𝜔𝑡, 𝑡 → ∞. (26)

Substituting the above asymptotic expressions for 𝑔0, 𝑔1, and 𝑄 in Equation (18), we find

𝑞𝑛(𝑘) =
𝐴2𝛼

(1)
𝑛 + (𝑖𝐴2𝑘 + 𝐴1)𝛼

(0)
𝑛

Ω(𝑘) + 𝑖𝑛𝜔
, 𝑛 ∈ ℤ. (27)

Remarkably, the condition that 𝑞𝑛(𝑘) does not have poles for 𝑘 ∈ 𝐷−, clearly imposes a relation-
ship between𝛼(1)𝑛 and𝛼(0)𝑛 . Actually, if the denominator of Equation (27) becomes zero for some 𝑘’s
then, because 𝑖𝑛𝜔 is purely imaginary, those 𝑘’s should lie on the contour defined by ReΩ(𝑘) = 0.
Hence, any singularities of 𝑞𝑛(𝑘) in𝐷− occur in fact on its boundary 𝜕𝐷−. In other words, the con-
dition that the singularities of 𝑞𝑛(𝑘) on 𝜕𝐷− are removable, determines the Dirichlet-to-Neumann
map.

Remark 1. The assumption (25), i.e., that (asymptotically) 𝑡-periodic Dirichlet boundary condi-
tions lead to asymptotically 𝑡-periodic Neumann values, can be shown to hold for appropriate
initial-boundary value problems using the Fokas method and the method of steepest descent,
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see Section 4 for details. In particular, to avoid problems with the steepest descent arguments,
we have to make sure that the denominator involved, which for linear evolution PDEs is of the
formΩ(𝑘) + 𝑖𝑛𝜔, does not become zero on the steepest descent contour. The corresponding steep-
est descent contour is the contour that passes through a saddle point of Ω(𝑘) and on which the
imaginary part of Ω(𝑘) is constant. So, we can a priori consider appropriate 𝑡-periodic boundary
conditions to avoid problems with the steepest descent arguments.

In what follows we consider three particular examples.

2.2 The linearized NLS equation

Let 𝑢(𝑥, 𝑡) solve the linearized version of the NLS, namely,

𝑖𝑢𝑡 + 𝑢𝑥𝑥 = 0. (28)

In this case, 𝐴2 = 𝑖, 𝐴1 = 𝐴0 = 0, and we assume that 𝛼
(0)
0
= 0 (see the remark at the end of Sec-

tion 2.1). Thus,

Ω(𝑘) = 𝑖𝑘2, 𝑞𝑛(𝑘) =
𝛼
(1)
𝑛 + 𝑖𝛼

(0)
𝑛 𝑘

𝑘2 + 𝑛𝜔
, 𝑛 ∈ ℤ. (29)

Denoting 𝑘 = 𝑘𝑅 + 𝑖𝑘𝐼 with 𝑘𝑅, 𝑘𝐼 ∈ ℝ, the domain𝐷− defined by Equation (24) takes the follow-
ing form:

𝐷− = {𝑘 ∈ ℂ ∶ 𝑘𝐼 < 0, 𝑘𝑅𝑘𝐼 > 0}, (30)

which is the third quadrant of the complex 𝑘-plane. The singularities of 𝑞𝑛(𝑘) occurring on 𝜕𝐷−
are given by

𝑘(𝑛) =

⎧⎪⎨⎪⎩
−𝑖

√
𝑛𝜔, 𝑛 ≥ 0,

−
√
−𝑛𝜔, 𝑛 < 0.

(31)

The condition that the above singularities are removable, implies the following relationship
between 𝛼(0)𝑛 and 𝛼(1)𝑛 :

𝛼
(1)
𝑛 = −𝑖𝛼

(0)
𝑛 𝑘(𝑛), 𝑛 ∈ ℤ, (32)

with 𝑘(𝑛) defined by Equation (31). This relationship was first given in Ref. 60.

2.3 The heat equation

Let 𝑢(𝑥, 𝑡) solve the heat equation, i.e.,

𝑢𝑡 = 𝑢𝑥𝑥. (33)
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In this case, 𝐴2 = 1, 𝐴1 = 𝐴0 = 0 and we assume that 𝛼
(0)
0
= 0. Thus,

Ω(𝑘) = 𝑘2, 𝑞𝑛(𝑘) =
𝛼
(1)
𝑛 + 𝑖𝛼

(0)
𝑛 𝑘

𝑘2 + 𝑖𝑛𝜔
, 𝑛 ∈ ℤ. (34)

The domain 𝐷−, defined by Equation (24), takes the following form (describing a wedge-shaped
domain in the lower half of the complex 𝑘-plane):

𝐷− =
{
𝑘 ∈ ℂ ∶ 𝑘𝐼 < 0, 𝑘

2
𝑅
< 𝑘2

𝐼

}
, (35)

where 𝑘 = 𝑘𝑅 + 𝑖𝑘𝐼 with 𝑘𝑅, 𝑘𝐼 ∈ ℝ. The condition that the singularities 𝑘(𝑛) of 𝑞𝑛(𝑘) occurring
on the boundary 𝜕𝐷−

𝑘(𝑛) =

⎧⎪⎨⎪⎩
√

𝑛𝜔

2
(1 − 𝑖), 𝑛 ≥ 0,√

−𝑛𝜔

2
(−1 − 𝑖), 𝑛 < 0,

(36)

are removable, implies the following relationship between 𝛼(0)𝑛 and 𝛼(1)𝑛 :

𝛼
(1)
𝑛 = −𝑖𝛼

(0)
𝑛 𝑘(𝑛), 𝑛 ∈ ℤ, (37)

with 𝑘(𝑛) defined by Equation (36).

2.4 The diffusion–convection equation

Let 𝑢(𝑥, 𝑡) solve the diffusion–convection equation:

𝑢𝑡 = 𝑢𝑥𝑥 + 𝛽𝑢𝑥, 𝛽 ≥ 0. (38)

In this case, 𝐴2 = 1, 𝐴1 = 𝛽, and 𝐴0 = 0 and we assume that 𝛼
(0)
0
= 0. Thus,

Ω(𝑘) = 𝑘2 − 𝑖𝛽𝑘, 𝑞𝑛(𝑘) =
𝛼
(1)
𝑛 + (𝑖𝑘 + 𝛽)𝛼

(0)
𝑛

𝑘2 − 𝑖𝛽𝑘 + 𝑖𝑛𝜔
, 𝑛 ∈ ℤ. (39)

The singularities of the denominator lie at

𝑘1,2(𝑛) =
𝑖𝛽 ±

√
−𝛽2 − 4𝑖𝑛𝜔

2

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

2

(
𝑖𝛽 ±

(
−

√
−𝛽2+

√
𝛽4+16𝑛2𝜔2

2
+ 𝑖

√
𝛽2+

√
𝛽4+16𝑛2𝜔2

2

))
, 𝑛 ≥ 0,

1

2

(
𝑖𝛽 ±

(√
−𝛽2+

√
𝛽4+16𝑛2𝜔2

2
+ 𝑖

√
𝛽2+

√
𝛽4+16𝑛2𝜔2

2

))
, 𝑛 < 0.

(40)
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For the diffusion–convection equation, the domain 𝐷− takes the form

𝐷− =
{
𝑘 ∈ ℂ ∶ 𝑘𝐼 < 0, 𝑘

2
𝑅
− 𝑘2

𝐼
+ 𝛽𝑘𝐼 < 0

}
, (41)

where 𝑘 = 𝑘𝑅 + 𝑖𝑘𝐼 with 𝑘𝑅, 𝑘𝐼 ∈ ℝ. It can be readily checked that the singularities that lie on 𝜕𝐷−
are given by the solutions with theminus sign of Equation (40), whichwe denote by 𝑘2(𝑛). Hence,
the condition that these singularities are removable, implies the following relation between 𝛼(0)𝑛
and 𝛼(1)𝑛 :

𝛼
(1)
𝑛 = −(𝑖𝑘2(𝑛) + 𝛽)𝛼

(0)
𝑛 , 𝑛 ∈ ℤ, (42)

with 𝑘2(𝑛) defined by the solutions with the minus sign given in Equation (40).

3 THE LARGE 𝒕 BEHAVIOR OF THE DIRICHLET-TO-NEUMANN
MAP FOR AN ARBITRARY LINEAR EVOLUTION EQUATIONWITH
𝒕-PERIODIC BOUNDARY CONDITIONS

Let 𝑢(𝑥, 𝑡) satisfy the following general evolution PDE on the half-line, which has spatial deriva-
tives of arbitrary order:

𝑢𝑡 + Ω(−𝑖𝜕𝑥)𝑢 = 0, (43)

where Ω(𝑘) is a polynomial of the complex variable 𝑘 of degree 𝑛 and ReΩ(𝑘) ≥ 0 for 𝑘 real. We
assume that 𝑢(𝑥, 𝑡) is sufficiently smooth, up to and including the boundary, and that both 𝑢(𝑥, 𝑡)
and its 𝑥-derivatives decay sufficiently fast as 𝑥 → ∞ for each 𝑡 ≥ 0.
A particular solution of Equation (43) is

e𝑖𝑘𝑥−Ω(𝑘)𝑡, 𝑘 ∈ ℂ. (44)

It is shown in Ref. 62 that Equation (43) can be written in the form

(
e−𝑖𝑘𝑥+Ω(𝑘)𝑡𝑢(𝑥, 𝑡)

)
𝑡
=

(
e−𝑖𝑘𝑥+Ω(𝑘)𝑡

𝑛−1∑
𝑗=0

𝑐𝑗(𝑘)𝜕
𝑗
𝑥𝑢(𝑥, 𝑡)

)
𝑥

, 𝑘 ∈ ℂ, (45)

where {𝑐𝑗(𝑘)}𝑛−10
can be calculated explicitly in terms of Ω(𝑘) as follows:

𝑛−1∑
𝑗=0

𝑐𝑗(𝑘)𝜕
𝑗
𝑥 = 𝑖

Ω(𝑘) − Ω(𝑙)

𝑘 − 𝑙

||||𝑙=−𝑖𝜕𝑥 . (46)

Hence, the associated Lax pair is

𝜇𝑥 − 𝑖𝑘𝜇 = 𝑢, (47a)
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𝜇𝑡 + Ω(𝑘)𝜇 =

𝑛−1∑
𝑗=0

𝑐𝑗(𝑘)𝜕
𝑗
𝑥𝑢(𝑥, 𝑡). (47b)

As before, letting 𝑄(𝑘, 𝑡) satisfy the 𝑡-dependent part of the associated Lax pair evaluated at
𝑥 = 0, we find

𝑄𝑡(𝑘, 𝑡) + Ω(𝑘)𝑄(𝑘, 𝑡) =

𝑛−1∑
𝑗=0

𝑐𝑗(𝑘)𝑔𝑗(𝑡), 𝑡 > 0, 𝑘 ∈ ℂ, (48)

where the 𝑔𝑗 ’s are defined by 𝑔𝑗(𝑡) ∶= 𝜕
𝑗
𝑥𝑢(0, 𝑡). Assuming the following expansions for large 𝑡,

𝑔𝑗(𝑡) ∼

∞∑
𝑛=−∞

𝛼
(𝑗)
𝑛 e

𝑖𝑛𝜔𝑡, 𝑗 = 0, 1, … , 𝑛 − 1, 𝑡 → ∞, (49)

and substituting the above expansions, along with Equation (26), into Equation (48), we find

𝑞𝑛(𝑘) =

∑𝑛−1

𝑗=0
𝑐𝑗(𝑘)𝛼

(𝑗)
𝑛

Ω(𝑘) + 𝑖𝑛𝜔
, 𝑛 ∈ ℤ. (50)

In the same way as in Section 2, we can show that the singularities of 𝑞𝑛(𝑘) on 𝜕𝐷− have to be
removable. Hence, this condition determines the Dirichlet-to-Neumann correspondence also for
the general linear evolution PDE (43). We illustrate the general approach using the example of
the Stokes equation.

3.1 The Stokes equation

Let 𝑢(𝑥, 𝑡) solve the Stokes equation, i.e.,

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0. (51)

In this case, Ω(𝑘) = −𝑖𝑘3 + 𝑖𝑘 and we assume that 𝑛𝜔 ≠ 2

3
√
3
, 𝑛 ∈ ℤ (see the remark at the end

of Section 2.1). Substituting this in Equation (46), we find

2∑
𝑗=0

𝑐𝑗(𝑘)𝜕
𝑗
𝑥 = −𝜕

2
𝑥 − 𝑖𝑘𝜕𝑥 + 𝑘

2 − 1, (52)

i.e., 𝑐2(𝑘) = −1, 𝑐1(𝑘) = −𝑖𝑘, and 𝑐0(𝑘) = 𝑘2 − 1. So 𝑞𝑛(𝑘) becomes

𝑞𝑛(𝑘) =
−𝛼

(2)
𝑛 − 𝑖𝑘𝛼

(1)
𝑛 + (𝑘2 − 1)𝛼

(0)
𝑛

𝑖(−𝑘3 + 𝑘 + 𝑛𝜔)
, 𝑛 ∈ ℤ. (53)
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F IGURE 1 The contour
𝑘𝐼(3𝑘

2
𝑅 − 𝑘

2
𝐼 − 1) = 0 appearing in the

analysis of the Stokes equation (51). This
contour, determined by Equation (54),
consists of three branches 𝜕𝐷1, 𝜕𝐷2, and
𝜕𝐷3. On each of these branches lies
precisely one root of −𝑘3 + 𝑘 + 𝑛𝜔 = 0,
as discussed in the text

For any root of 𝑖(−𝑘3 + 𝑘 + 𝑛𝜔) = 0, or equivalently of −𝑘3 + 𝑘 + 𝑛𝜔 = 0, because 𝑛𝜔 ∈ ℝ, we
have that Re(−𝑖𝑘3 + 𝑖𝑘) = 0, i.e.,

𝑘𝐼
(
3𝑘2
𝑅
− 𝑘2

𝐼
− 1

)
= 0, (54)

where 𝑘 = 𝑘𝑅 + 𝑖𝑘𝐼 with 𝑘𝑅, 𝑘𝐼 ∈ ℝ. The contour 𝑘𝐼(3𝑘2𝑅 − 𝑘
2
𝐼
− 1) = 0 of the complex 𝑘-plane is

depicted in Figure 1. Hence, for each n, the three roots of−𝑘3 + 𝑘 + 𝑛𝜔 = 0 are positioned on the
depicted contour. We will show that for each n, precisely one root of this equation lies on each of
the branches 𝜕𝐷1, 𝜕𝐷2, and 𝜕𝐷3 of the contour. Indeed, there are two cases to distinguish:

∙ First case: When (𝑛𝜔)2 > 4∕27, then −𝑘3 + 𝑘 + 𝑛𝜔 = 0 has one real root and a pair of nonreal
complex conjugate roots. One of the complex roots will be in the upper half plane and, hence
it will lie on one of the hyperbolic branches of 𝜕𝐷1. Its complex conjugate will lie on the corre-
sponding hyperbolic branch in the lower half plane, so this root lies on either 𝜕𝐷2 or 𝜕𝐷3. Let us
denote the roots of −𝑘3 + 𝑘 + 𝑛𝜔 = 0 with 𝑘1(𝑛), 𝑘2(𝑛), and 𝑘3(𝑛). Because the Vieta formulas
tell us that 𝑘1(𝑛) + 𝑘2(𝑛) + 𝑘3(𝑛) = 0, we see that the real root must either be greater than 2∕√3
(when the second complex root lies on 𝜕𝐷2) and hence be positioned on 𝜕𝐷3, or be smaller than
−2∕√

3
(when the second complex root lies on 𝜕𝐷3) and hence lie on 𝜕𝐷2.

∙ Second case: When (𝑛𝜔)2 < 4∕27, then −𝑘3 + 𝑘 + 𝑛𝜔 = 0 has three real roots. The analysis of
the graph of 𝑓(𝑘) = −𝑘3 + 𝑘 + 𝑛𝜔, 𝑘 ∈ ℝ, shows that exactly one root is smaller than −1∕√

3

(and hence lies on 𝜕𝐷2), one root lies between−1∕√3 and 1∕√3 (on 𝜕𝐷1), and one root is greater
than 1∕√

3
(and thus lies on 𝜕𝐷3).
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As before, we require the singularities of 𝑞𝑛(𝑘) on 𝜕𝐷− to be removable, where for the Stokes
equation we have

𝐷− =
{
𝑘 ∈ ℂ ∶ 𝑘𝐼 < 0, 𝑘𝐼

(
3𝑘2
𝑅
− 𝑘2

𝐼
− 1

)
< 0

}
. (55)

We observe that 𝐷− = 𝐷2 ∪ 𝐷3, see Figure 1. Let us denote with 𝑘1(𝑛), 𝑘2(𝑛), and 𝑘3(𝑛) the zeros
of the denominator, which lie on the boundaries 𝜕𝐷1, 𝜕𝐷2, and 𝜕𝐷3, respectively. Thus, the sin-
gularities 𝑘2(𝑛) and 𝑘3(𝑛) are the ones that lie on 𝜕𝐷−. Because these two singularities should be
removable, we need the numerator of (53) to vanish for 𝑘 = 𝑘2(𝑛) and 𝑘 = 𝑘3(𝑛), so we arrive at
the following system for the coefficients 𝛼(0)𝑛 , 𝛼(1)𝑛 , and 𝛼(2)𝑛 :

− 𝛼
(2)
𝑛 − 𝑖𝑘2(𝑛)𝛼

(1)
𝑛 +

(
𝑘2
2
(𝑛) − 1

)
𝛼
(0)
𝑛 = 0, (56a)

− 𝛼
(2)
𝑛 − 𝑖𝑘3(𝑛)𝛼

(1)
𝑛 +

(
𝑘2
3
(𝑛) − 1

)
𝛼
(0)
𝑛 = 0. (56b)

Let us assume that we consider the Dirichlet boundary problem of the Stokes equation and,
hence, the coefficients 𝛼(0)𝑛 , 𝑛 ∈ ℤ, are given. We can then proceed to solve the above system for
the unknown Neumann coefficients 𝛼(1)𝑛 and 𝛼(2)𝑛 in terms of the Dirichlet coefficients 𝛼(0)𝑛 . From
Equation (56a) we get

−𝛼
(2)
𝑛 = 𝑖𝑘2(𝑛)𝛼

(1)
𝑛 −

(
𝑘2
2
(𝑛) − 1

)
𝛼
(0)
𝑛 . (57)

Substituting this expression into Equation (56b), we find the first set of Neumann coefficients 𝛼(1)𝑛
(in terms of the Dirichlet coefficients):

𝛼
(1)
𝑛 =

(
𝑘2
2
(𝑛) − 1

)
𝛼
(0)
𝑛 −

(
𝑘2
3
(𝑛) − 1

)
𝛼
(0)
𝑛

𝑖(𝑘2(𝑛) − 𝑘3(𝑛))
= −𝑖(𝑘2(𝑛) + 𝑘3(𝑛))𝛼

(0)
𝑛 = 𝑖𝑘1(𝑛)𝛼

(0)
𝑛 , 𝑛 ∈ ℤ, (58)

where we have used the Vieta formula 𝑘1(𝑛) + 𝑘2(𝑛) + 𝑘3(𝑛) = 0. From Equation (56b) we have

−𝛼
(2)
𝑛 = 𝑖𝑘3(𝑛)𝛼

(1)
𝑛 −

(
𝑘2
3
(𝑛) − 1

)
𝛼
(0)
𝑛 . (59)

Substituting the value of 𝛼(1)𝑛 from (58) into Equations (57) and (59) and adding the resulting equa-
tions, we find

−2𝛼
(2)
𝑛 =

(
2 − 𝑘2

2
(𝑛) − 𝑘2

3
(𝑛)

)
𝛼
(0)
𝑛 + 𝑖(𝑘2(𝑛) + 𝑘3(𝑛))

(
𝑖𝑘1(𝑛)𝛼

(0)
𝑛

)
=

(
2 − 𝑘2

2
(𝑛) − 𝑘2

3
(𝑛)

)
𝛼
(0)
𝑛 + (𝑘2(𝑛) + 𝑘3(𝑛))

2
𝛼
(0)
𝑛 , (60)

where we have again used that 𝑘1(𝑛) + 𝑘2(𝑛) + 𝑘3(𝑛) = 0. Hence, the second set of Neumann
coefficients 𝛼(2)𝑛 (in terms of the Dirichlet coefficients) is given by

𝛼
(2)
𝑛 = −[1 + 𝑘2(𝑛)𝑘3(𝑛)]𝛼

(0)
𝑛 , 𝑛 ∈ ℤ. (61)

Thus, we have determined the Dirichlet-to-Neumann map for the Stokes equation.
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4 THE UNIFIED TRANSFORM FOR THE LARGE 𝒕 ASYMPTOTICS
OF THE DIFFUSION–CONVECTION EQUATION

Proposition 1. Let 𝑢(𝑥, 𝑡) satisfy the following Dirichlet problem for the diffusion–convection equa-
tion (6) on the half-line:

𝑢𝑡 = 𝑢𝑥𝑥 + 𝛽𝑢𝑥, 𝛽 ≥ 0, 𝑥 > 0, 𝑡 > 0, (62a)

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ≥ 0, (62b)

𝑢(0, 𝑡) = 𝑔0(𝑡), 𝑡 ≥ 0, (62c)

where the initial and boundary data are compatible at the origin. The solution 𝑢(𝑥, 𝑡) of this prob-
lem is assumed to be sufficiently smooth (up to and including the boundary) and both 𝑢(𝑥, 𝑡) and
its 𝑥-derivatives are assumed to decay sufficiently fast to zero as 𝑥 → ∞ for each 𝑡 ≥ 0. The initial
condition 𝑢0(𝑥) is therefore taken to have sufficient smoothness, and both 𝑢0(𝑥) and its derivatives
are taken to decay sufficiently fast to zero as 𝑥 → ∞. We further suppose that the Dirichlet boundary
condition 𝑔0(𝑡) is bounded, sufficiently smooth, and for large 𝑡 asymptotes sufficiently fast toward a
periodic function

𝑔0(𝑡) −

∞∑′

𝑛=−∞

𝛼
(0)
𝑛 e

𝑖𝑛𝜔𝑡 → 0, 𝑡 → ∞, (63)

where 𝜔 > 0, the prime denotes that 𝛼(0)
0
= 0, and the Fourier coefficients 𝛼(0)𝑛 ∈ ℂ, 𝑛 ∈ ℤ, are such

that

∞∑′

𝑛=−∞

√|𝑛||𝛼(0)𝑛 | < ∞. (64)

Then:

(i) For each 𝑥 ≥ 0, 𝑢(𝑥, 𝑡) and 𝑢𝑥(𝑥, 𝑡) become time-periodic for large 𝑡.
(ii) The Neumann boundary function 𝑢𝑥(0, 𝑡) = 𝑔1(𝑡) for large 𝑡 takes the form

𝑔1(𝑡) ∼

∞∑′

𝑛=−∞

𝛼
(1)
𝑛 e

𝑖𝑛𝜔𝑡, 𝑡 → ∞, (65)

with

𝛼
(1)
𝑛 = −(𝑖𝑘2(𝑛) + 𝛽)𝛼

(0)
𝑛 , 𝑛 ∈ ℤ, (66)

where the 𝑘2(𝑛)’s, 𝑛 ∈ ℤ, denote the roots with the minus sign given in Equation (40).
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F IGURE 2 (A) The domains 𝐷+ and 𝐷− in the complex 𝑘-plane with their respective boundaries (𝜕𝐷+ and
𝜕𝐷−) for the diffusion–convection equation (62a). These boundaries are given by Re(𝑘2 − 𝑖𝛽𝑘) = 0, i.e., the
hyperbolas 𝑘2𝑅 − 𝑘

2
𝐼 + 𝛽𝑘𝐼 = 0. (B) The deformed contour 𝜕𝐷̃

+ which avoids the singularities 𝑘1(𝑛), 𝑛 ∈ ℤ∗, given
by Equation (90)

Proof. It is shown in Ref. 62 that the Fokas method yields the following representation for the
solution of Equation (62a):

𝑢(𝑥, 𝑡) =
1

2𝜋 ∫
+∞

−∞

e𝑖𝑘𝑥−(𝑘
2−𝑖𝛽𝑘)𝑡𝑢̂0(𝑘)d𝑘

−
1

2𝜋 ∫
𝜕𝐷+

e𝑖𝑘𝑥−(𝑘
2−𝑖𝛽𝑘)𝑡

[
𝑢̂0(𝑖𝛽 − 𝑘) + (2𝑖𝑘 + 𝛽)𝑔0(𝑘

2 − 𝑖𝛽𝑘, 𝑡)
]
d𝑘, (67)

where the contour 𝜕𝐷+ is depicted in Figure 2(A) and 𝑢̂0(𝑘) and 𝑔0(𝑘, 𝑡) are defined by

𝑢̂0(𝑘) ∶= ∫
+∞

0

e−𝑖𝑘𝑥𝑢0(𝑥)d𝑥, Im𝑘 ≤ 0, and 𝑔0(𝑘, 𝑡) ∶= ∫
𝑡

0

e𝑘𝑠𝑔0(𝑠)d𝑠, 𝑘 ∈ ℂ. (68)

We observe that the term e𝑖𝑘𝑥−(𝑘
2−𝑖𝛽𝑘)𝑡, appearing in Equation (67), is bounded and analytic when

both Re(𝑘2 − 𝑖𝛽𝑘) ≥ 0 and Re(𝑖𝑘) ≤ 0, i.e., when 𝑘2
𝑅
− 𝑘2

𝐼
+ 𝛽𝑘𝐼 ≥ 0 and 𝑘𝐼 ≥ 0, where 𝑘 = 𝑘𝑅 +

𝑖𝑘𝐼 with 𝑘𝑅, 𝑘𝐼 ∈ ℝ. Also, from the definition of 𝑢̂0, Equation (68), we have

𝑢̂0(𝑖𝛽 − 𝑘) = ∫
+∞

0

e(𝛽+𝑖𝑘)𝑥𝑢0(𝑥)d𝑥 = 𝑂

(
1

𝛽 + 𝑖𝑘

)
, as 𝑘 → ∞ with 𝑘𝐼 ≥ 𝛽. (69)

This expression is bounded and analytic for 𝑘𝐼 ≥ 𝛽. Hence, in the part of the second integral of
Equation (67) which involves 𝑢̂0(𝑖𝛽 − 𝑘), we can deform the contour 𝜕𝐷+ to (−∞ + 𝑖𝛽, +∞ + 𝑖𝛽),
i.e., to the horizontal line in the complex 𝑘-plane passing through 𝑖𝛽. Performing this deformation
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in Equation (67) and using the definition of 𝑔0 from Equation (68), we find

𝑢(𝑥, 𝑡) =
1

2𝜋 ∫
+∞

−∞

e𝑖𝑘𝑥−(𝑘
2−𝑖𝛽𝑘)𝑡𝑢̂0(𝑘)d𝑘 −

1

2𝜋 ∫
+∞+𝑖𝛽

−∞+𝑖𝛽

e𝑖𝑘𝑥−(𝑘
2−𝑖𝛽𝑘)𝑡𝑢̂0(𝑖𝛽 − 𝑘)d𝑘

−
1

2𝜋 ∫
𝜕𝐷+

(2𝑖𝑘 + 𝛽)e𝑖𝑘𝑥−(𝑘
2−𝑖𝛽𝑘)𝑡

(
∫

𝑡

0

e(𝑘
2−𝑖𝛽𝑘)𝑠𝑔0(𝑠)d𝑠

)
d𝑘. (70)

Because we are interested in finding the Neumann boundary value in terms of the Dirichlet
boundary condition, we differentiate both sides of Equation (70) with respect to 𝑥 and we find

𝑢𝑥(𝑥, 𝑡) =
1

2𝜋 ∫
+∞

−∞

𝑖𝑘e𝑖𝑘𝑥−(𝑘
2−𝑖𝛽𝑘)𝑡𝑢̂0(𝑘)d𝑘 −

1

2𝜋 ∫
+∞+𝑖𝛽

−∞+𝑖𝛽

𝑖𝑘e𝑖𝑘𝑥−(𝑘
2−𝑖𝛽𝑘)𝑡𝑢̂0(𝑖𝛽 − 𝑘)d𝑘

−
1

2𝜋

𝜕

𝜕𝑥 ∫
𝜕𝐷+

(2𝑖𝑘 + 𝛽)e𝑖𝑘𝑥−(𝑘
2−𝑖𝛽𝑘)𝑡

(
∫

𝑡

0

e(𝑘
2−𝑖𝛽𝑘)𝑠𝑔0(𝑠)d𝑠

)
d𝑘. (71)

Inwhat follows, wewill analyze separately the terms of Equation (71). Let us begin by analyzing
the first two integrals appearing in Equation (71). Replacing 𝑘 with−𝑘 + 𝑖𝛽 in the second of these
integrals, and using the definition of 𝑢̂0 from Equation (68), the sum of these integrals takes the
form

1

2𝜋 ∫
+∞

−∞

𝑖𝑘e𝑖𝑘𝑥−(𝑘
2−𝑖𝛽𝑘)𝑡𝑢̂0(𝑘)d𝑘 +

1

2𝜋 ∫
+∞

−∞

(𝑖𝑘 + 𝛽)e−(𝑖𝑘+𝛽)𝑥−(𝑘
2−𝑖𝛽𝑘)𝑡𝑢̂0(𝑘) d𝑘

=
1

2𝜋 ∫
+∞

−∞

𝑖𝑘
(
e𝑖𝑘𝑥 + e−(𝑖𝑘+𝛽)𝑥

)
e−(𝑘

2−𝑖𝛽𝑘)𝑡 ∫
+∞

0

e−𝑖𝑘𝑦𝑢0(𝑦)d𝑦 d𝑘

+
1

2𝜋 ∫
+∞

−∞

𝛽e−(𝑖𝑘+𝛽)𝑥−(𝑘
2−𝑖𝛽𝑘)𝑡 ∫

+∞

0

e−𝑖𝑘𝑦𝑢0(𝑦)d𝑦 d𝑘

=
1

2𝜋 ∫
+∞

−∞

𝑖𝑘
(
e𝑖𝑘𝑥 + e−(𝑖𝑘+𝛽)𝑥

)
e−(𝑘

2−𝑖𝛽𝑘)𝑡

(
1

𝑖𝑘
𝑢0(0) + ∫

+∞

0

e−𝑖𝑘𝑦

𝑖𝑘
𝑢̇0(𝑦)d𝑦

)
d𝑘

+
1

2𝜋 ∫
+∞

−∞

𝛽e−(𝑖𝑘+𝛽)𝑥−(𝑘
2−𝑖𝛽𝑘)𝑡 ∫

+∞

0

e−𝑖𝑘𝑦𝑢0(𝑦)d𝑦 d𝑘. (72)

In the third step of the above computation we integrated by parts, so that in the next step we
can now change the order of integration and obtain well-defined 𝑘-integrals. Changing the order
of integration in Equation (72) and completing the squares in the exponents, we find that Equa-
tion (72) can be written as

𝑢0(0)

2𝜋 ∫
+∞

−∞

e
−
(√

𝑡𝑘+
𝛽𝑡+𝑥

2𝑖
√
𝑡

)2
−
(𝛽𝑡+𝑥)2

4𝑡 + e
−
(√

𝑡𝑘+
𝛽𝑡−𝑥

2𝑖
√
𝑡

)2
−
(𝛽𝑡+𝑥)2

4𝑡 d𝑘

+
1

2𝜋 ∫
+∞

0
∫

+∞

−∞

e
−
(𝛽𝑡+𝑥−𝑦)2

4𝑡

[
e
−
(√

𝑡𝑘+
𝛽𝑡+𝑥−𝑦

2𝑖
√
𝑡

)2
𝑢̇0(𝑦) + e

−
(√

𝑡𝑘+
𝛽𝑡−𝑥−𝑦

2𝑖
√
𝑡

)2
−
𝑥𝑦

𝑡 (𝑢̇0(𝑦) + 𝛽𝑢0(𝑦))

]
d𝑘 d𝑦. (73)
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Using the following complex variant of the Gaussian integral:

∫
+∞

−∞

e−𝑝(𝑘+𝑐)
2
d𝑘 =

√
𝜋

𝑝
, 𝑝, 𝑐 ∈ ℂ with Re(𝑝) > 0, (74)

we find that Equation (73) is equal to

1

2
√
𝜋𝑡

{
2e
−
(𝛽𝑡+𝑥)2

4𝑡 𝑢0(0) + ∫
+∞

0

e
−
(𝛽𝑡+𝑥−𝑦)2

4𝑡

[
𝑢̇0(𝑦) + e

−
𝑥𝑦

𝑡 (𝑢̇0(𝑦) + 𝛽𝑢0(𝑦))

]
d𝑦

}
. (75)

The above expression vanishes as 𝑡 → ∞, by also taking into account that 𝑢0(𝑦) and 𝑢̇0(𝑦) are
assumed to have sufficient decay as 𝑦 → ∞, see the assumptions below (62). Thus, for 𝑡 → ∞ the
𝑥-derivative of 𝑢, given by Equation (71), reduces to

𝑢𝑥(𝑥, 𝑡) = 𝑈(𝑥, 𝑡) + 𝑂(𝑡
−1∕2), (76)

where

𝑈(𝑥, 𝑡) = −
1

2𝜋

𝜕

𝜕𝑥 ∫
𝜕𝐷+

(2𝑖𝑘 + 𝛽)e𝑖𝑘𝑥−(𝑘
2−𝑖𝛽𝑘)𝑡

(
∫

𝑡

0

e(𝑘
2−𝑖𝛽𝑘)𝑠𝑔0(𝑠)d𝑠

)
d𝑘

= −
1

2𝜋 ∫
𝜕𝐷+

(−2𝑘2 + 𝑖𝛽𝑘)e𝑖𝑘𝑥−(𝑘
2−𝑖𝛽𝑘)𝑡

(
∫

𝑡

0

e(𝑘
2−𝑖𝛽𝑘)𝑠𝑔0(𝑠)d𝑠

)
d𝑘, for 𝑥 > 0, (77)

where we can differentiate under the integral sign by Leibniz’s rule, because we assume that 𝑔0
is bounded and we consider strictly positive 𝑥. In what follows, to avoid convergence issues, we
assume that 𝑥 > 0 and only at the end of this section we will take the limit 𝑥 → 0+ to arrive at the
Neumann boundary value. Assuming that in the large time limit 𝑔0(𝑡) tends to a periodic function
sufficiently fast,

𝑔0(𝑡) −

∞∑′

𝑛=−∞

𝛼
(0)
𝑛 e

𝑖𝑛𝜔𝑡 → 0, 𝑡 → ∞, (78)

where 𝜔 > 0 and the prime denotes that 𝛼(0)
0
= 0, we find

𝑈(𝑥, 𝑡) ∼ −
1

2𝜋 ∫
𝜕𝐷+

(−2𝑘2 + 𝑖𝛽𝑘)e𝑖𝑘𝑥
⎛⎜⎜⎝∫

𝑡

0

e−(𝑘
2−𝑖𝛽𝑘)(𝑡−𝑠)

∞∑′

𝑛=−∞

𝛼
(0)
𝑛 e

𝑖𝑛𝜔𝑠d𝑠

⎞⎟⎟⎠d𝑘, 𝑡 → ∞. (79)

Let us rigorously justify the above formula. From Equation (78) we have that for any 𝜖 > 0, there
exists a 𝑇(𝜖) > 0, such that

||||||𝑔0(𝑡) −
∞∑′

𝑛=−∞

𝛼
(0)
𝑛 e

𝑖𝑛𝜔𝑡

|||||| ≤ 𝜖, for all 𝑡 > 𝑇(𝜖). (80)
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Let us now define the following:

(i) the uniform norm

Δ𝑔 ∶=

||||||
||||||𝑔0(𝑡) −

∞∑′

𝑛=−∞

𝛼
(0)
𝑛 e

𝑖𝑛𝜔𝑡

||||||
||||||∞; (81)

(ii) the integral

𝐼0 ∶= ∫
Γ𝐷

| − 2𝑘2 + 𝑖𝛽𝑘|e−𝑘𝐼𝑥|d𝑘|, where 𝑘 = 𝑘𝑅 + 𝑖𝑘𝐼 with 𝑘𝑅, 𝑘𝐼 ∈ ℝ; (82)

and
(iii) the contour in the complex 𝑘-plane, for 𝛽 > 0,

Γ𝐷 ∶=

⎧⎪⎨⎪⎩
𝑘𝐼 = 𝑘𝑅 +

𝛽

2
, 𝑘𝑅 ≥ 0,

𝑘𝐼 = −𝑘𝑅 +
𝛽

2
, 𝑘𝑅 ≤ 0. (83)

For future use, we note that Re(𝑘2 − 𝑖𝛽𝑘) = 𝛽2

4
for 𝑘 ∈ Γ𝐷 .

For any 𝜖′ > 0, we choose

𝜖 =
𝜋𝛽2𝜖′

4𝐼0
(84)

and let 𝑇 ≡ 𝑇(𝜖) be the time involved in Equation (80). Denoting the right-hand side of Equa-
tion (79) as 𝑈̃(𝑥, 𝑡), and deforming the original contour 𝜕𝐷+ to the more convenient contour Γ𝐷 ,
we have

|𝑈(𝑥, 𝑡) − 𝑈̃(𝑥, 𝑡)| = 1

2𝜋

|||||||∫Γ𝐷 (−2𝑘
2 + 𝑖𝛽𝑘)e𝑖𝑘𝑥

⎡⎢⎢⎣∫
𝑡

0

e−(𝑘
2−𝑖𝛽𝑘)(𝑡−𝑠)

⎛⎜⎜⎝𝑔0(𝑠) −
∞∑′

𝑛=−∞

𝛼
(0)
𝑛 e

𝑖𝑛𝜔𝑠
⎞⎟⎟⎠d𝑠

⎤⎥⎥⎦d𝑘
|||||||

≤ 1

2𝜋

|||||||∫Γ𝐷 (−2𝑘
2 + 𝑖𝛽𝑘)e𝑖𝑘𝑥

⎡⎢⎢⎣∫
𝑇

0

e−(𝑘
2−𝑖𝛽𝑘)(𝑡−𝑠)

⎛⎜⎜⎝𝑔0(𝑠) −
∞∑′

𝑛=−∞

𝛼
(0)
𝑛 e

𝑖𝑛𝜔𝑠
⎞⎟⎟⎠d𝑠

⎤⎥⎥⎦d𝑘
|||||||

+
1

2𝜋

|||||||∫Γ𝐷 (−2𝑘
2 + 𝑖𝛽𝑘)e𝑖𝑘𝑥

⎡⎢⎢⎣∫
𝑡

𝑇

e−(𝑘
2−𝑖𝛽𝑘)(𝑡−𝑠)

⎛⎜⎜⎝𝑔0(𝑠) −
∞∑′

𝑛=−∞

𝛼
(0)
𝑛 e

𝑖𝑛𝜔𝑠
⎞⎟⎟⎠d𝑠

⎤⎥⎥⎦d𝑘
|||||||

≤ Δ𝑔

2𝜋 ∫
Γ𝐷

||−2𝑘2 + 𝑖𝛽𝑘||e−𝑘𝐼𝑥
[
∫

𝑇

0

e
−
𝛽2

4
(𝑡−𝑠)

d𝑠

]|d𝑘|
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+
𝜖

2𝜋 ∫
Γ𝐷

||−2𝑘2 + 𝑖𝛽𝑘||e−𝑘𝐼𝑥
[
∫

𝑡

𝑇

e
−
𝛽2

4
(𝑡−𝑠)

d𝑠

]|d𝑘|
=
2Δ𝑔 𝐼0

𝜋𝛽2

(
e
−
𝛽2

4
(𝑡−𝑇)

− e
−
𝛽2

4
𝑡
)
+
2𝜖𝐼0

𝜋𝛽2

(
1 − e

−
𝛽2

4
(𝑡−𝑇)

)
≤ 4𝜖𝐼0

𝜋𝛽2

= 𝜖′, for all 𝑡 > 𝑇′(𝜖′). (85)

Here we choose 𝑇′(𝜖′) > 𝑇(𝜖) large enough such that

Δ𝑔

(
e
−
𝛽2

4
(𝑡−𝑇)

− e
−
𝛽2

4
𝑡
)

≤ 𝜖, for all 𝑡 > 𝑇′(𝜖′). (86)

Thus, Equation (85) shows that

𝑈(𝑥, 𝑡) ∼ 𝑈̃(𝑥, 𝑡), 𝑡 → ∞, (87)

and therefore Equation (79) holds for 𝛽 > 0.
Note that Equation (79) can be justified in a similar way for 𝛽 = 0, i.e., the heat equation, but

in this case the convenient contour to which we deform 𝜕𝐷+ is taken to be

Γ′
𝐷
∶=

⎧⎪⎨⎪⎩
𝑘𝐼 =

√
𝑘2
𝑅
− 1, 𝑘𝑅 > 1,

𝑘𝐼 = 0, −1 ≤ 𝑘𝑅 ≤ 1,
𝑘𝐼 =

√
𝑘2
𝑅
− 1, 𝑘𝑅 < −1,

(88)

where 𝑘 = 𝑘𝑅 + 𝑖𝑘𝐼 with 𝑘𝑅, 𝑘𝐼 ∈ ℝ. For completeness, we note that for other equations (such as
the linearized NLS equation) more caution may be needed for the justification of Equation (79).
From Equation (79) we find

𝑈(𝑥, 𝑡) ∼ −
1

2𝜋 ∫
𝜕𝐷+

(−2𝑘2 + 𝑖𝛽𝑘)e𝑖𝑘𝑥
∞∑′

𝑛=−∞

𝛼
(0)
𝑛

(
∫

𝑡

0

e−(𝑘
2−𝑖𝛽𝑘)(𝑡−𝑠)+𝑖𝑛𝜔𝑠d𝑠

)
d𝑘

=
1

2𝜋 ∫
𝜕𝐷+

(−2𝑘2 + 𝑖𝛽𝑘)e𝑖𝑘𝑥
∞∑′

𝑛=−∞

𝛼
(0)
𝑛
e−(𝑘

2−𝑖𝛽𝑘)𝑡 − e𝑖𝑛𝜔𝑡

𝑘2 − 𝑖𝛽𝑘 + 𝑖𝑛𝜔
d𝑘, 𝑡 → ∞, (89)

where in the first linewewere able to interchange the order of integration and summation because
of the assumption in Equation (64).
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The singularities of the expression in Equation (89) lie at 𝑘 = 𝑘1,2(𝑛), 𝑛 ∈ ℤ∗, as defined in
Equation (40). We observe that the roots 𝑘1(𝑛) with the plus sign of (40), i.e.,

𝑘1(𝑛) =

⎧⎪⎪⎨⎪⎪⎩
1

2

(
−

√
−𝛽2+

√
𝛽4+16𝑛2𝜔2

2
+ 𝑖𝛽 + 𝑖

√
𝛽2+

√
𝛽4+16𝑛2𝜔2

2

)
, 𝑛 ≥ 0,

1

2

(√
−𝛽2+

√
𝛽4+16𝑛2𝜔2

2
+ 𝑖𝛽 + 𝑖

√
𝛽2+

√
𝛽4+16𝑛2𝜔2

2

)
, 𝑛 < 0,

(90)

lie on 𝜕𝐷+ for all 𝑛 ≠ 0. However, they are removable singularities, because the following limit
exists:

lim
𝑘→𝑘1(𝑛)

e−(𝑘
2−𝑖𝛽𝑘)𝑡 − e𝑖𝑛𝜔𝑡

𝑘2 − 𝑖𝛽𝑘 + 𝑖𝑛𝜔
= lim
𝑘→𝑘1(𝑛)

e−(𝑘
2−𝑖𝛽𝑘)𝑡−e𝑖𝑛𝜔𝑡

𝑘−𝑘1(𝑛)

𝑘2−𝑖𝛽𝑘+𝑖𝑛𝜔

𝑘−𝑘1(𝑛)

= −𝑡e𝑖𝑛𝜔𝑡. (91)

Thus, we can deform the contour 𝜕𝐷+ to 𝜕𝐷̃+, which passes below the singularities 𝑘 = 𝑘1(𝑛),
𝑛 ∈ ℤ∗, see Figure 2(B).
We split the integral appearing in Equation (89) into two terms, which we call 𝐼1(𝑥, 𝑡) and

𝐼2(𝑥, 𝑡), as follows:

𝑈(𝑥, 𝑡) ∼ 𝐼1(𝑥, 𝑡) + 𝐼2(𝑥, 𝑡)

= −
1

2𝜋

∞∑′

𝑛=−∞

𝛼
(0)
𝑛 e

𝑖𝑛𝜔𝑡 ∫
𝜕𝐷̃+

(−2𝑘2 + 𝑖𝛽𝑘)e𝑖𝑘𝑥

𝑘2 − 𝑖𝛽𝑘 + 𝑖𝑛𝜔
d𝑘

+
1

2𝜋 ∫
𝜕𝐷̃+

(−2𝑘2 + 𝑖𝛽𝑘)e𝑖𝑘𝑥
∞∑′

𝑛=−∞

𝛼
(0)
𝑛

e−(𝑘
2−𝑖𝛽𝑘)𝑡

𝑘2 − 𝑖𝛽𝑘 + 𝑖𝑛𝜔
d𝑘, 𝑡 → ∞. (92)

Note that we were able to interchange the order of integration and summation in the term 𝐼1(𝑥, 𝑡)

of Equation (92) because of the absolute convergence assumption on the Fourier coefficients 𝛼(0)𝑛 ,
see Equation (64).
We first focus on 𝐼2(𝑥, 𝑡) and show that it vanishes as 𝑡 → ∞. The term 𝐼2(𝑥, 𝑡) involves an

integral of the form

𝐼2(𝑥, 𝑡) = ∫
𝐶

𝑓(𝑘, 𝑥)e𝑡Φ(𝑘)d𝑘, (93)

where

𝑓(𝑘, 𝑥) =
1

2𝜋

∞∑′

𝑛=−∞

𝛼
(0)
𝑛

(−2𝑘2 + 𝑖𝛽𝑘)e𝑖𝑘𝑥

𝑘2 − 𝑖𝛽𝑘 + 𝑖𝑛𝜔
, Φ(𝑘) = −𝑘2 + 𝑖𝛽𝑘 and 𝐶 = 𝜕𝐷̃+. (94)

Its large 𝑡-asymptotics (for each given 𝑥) can be computed via the method of steepest descent.63
We deform the contour 𝜕𝐷̃+ to a new contour 𝐶′ on which Φ(𝑘) has a constant imaginary part
and which passes through the saddle point 𝑘0 = 𝑖

𝛽

2
ofΦ(𝑘). Thus, the contour 𝐶′ is the horizontal



FOKAS and VAN DERWEELE 21

line going through 𝑘0 = 𝑖
𝛽

2
. Observing that 𝑘0 = 𝑖

𝛽

2
is a simple saddle point of Φ, meaning that

Φ′(𝑘0) = 0 and Φ′′(𝑘0) ≠ 0, we find

Φ(𝑘) − Φ

(
𝑖
𝛽

2

)
∼

(
𝑘 − 𝑖

𝛽

2

)2
2!

Φ′′
(
𝑖
𝛽

2

)
, as 𝑘 → 𝑖

𝛽

2
. (95)

It can easily be checked that 𝑓(𝑖 𝛽
2
, 𝑥) = 0 and 𝜕𝑘𝑓(𝑖

𝛽

2
, 𝑥) =

1

2𝜋

∞∑′

𝑛=−∞
𝛼
(0)
𝑛

−𝑖𝛽e−𝛽𝑥∕2

𝛽2∕4+𝑖𝑛𝜔
. Without loss

of generality, the latter expression can be assumed (for 𝛽 > 0) to converge to a nonzero value.
Even if the 𝛼(0)𝑛 ’s would happen to be such that 𝜕𝑘𝑓(𝑖

𝛽

2
, 𝑥) converges to zero, we could proceed to

compute higher order 𝑘-derivatives of 𝑓(𝑘, 𝑥) at 𝑘0 = 𝑖
𝛽

2
until one of them would be nonzero; in

this case we would get an even faster rate of decay in Equation (97) as 𝑡 → ∞. Hence, assuming
that 𝜕𝑘𝑓(𝑖

𝛽

2
, 𝑥) ≠ 0, we have

𝑓(𝑘, 𝑥) ∼

(
𝑘 − 𝑖

𝛽

2

)
𝜕𝑘𝑓

(
𝑖
𝛽

2
, 𝑥

)
, as 𝑘 → 𝑖

𝛽

2
. (96)

Using the formula given by eq. (6.4.9) of Ref. 63, we find

𝐼2(𝑥, 𝑡) ∼
𝑓0(𝑥)(𝑚!)

𝑏∕𝑚e𝑖𝑏𝜃

𝑚

e𝑡Φ(𝑘0)Γ(𝑏∕𝑚)

(𝑡|Φ(𝑚)(𝑘0)|)𝑏∕𝑚 , as 𝑡 → ∞, (97)

where in our case𝑚 = 2, 𝑏 = 2, 𝑘0 = 𝑖
𝛽

2
, and 𝑓0(𝑥) = 𝜕𝑘𝑓(𝑖

𝛽

2
, 𝑥). Substituting these values in the

above equation, we find for 𝛽 > 0:

𝐼2(𝑥, 𝑡) ∼
1

2𝜋

∞∑′

𝑛=−∞

𝛼
(0)
𝑛

−𝑖𝛽e
−
𝛽𝑥

2 e2𝑖𝜃

𝛽2

4
+ 𝑖𝑛𝜔

e
−
𝛽2

4
𝑡

2𝑡
→ 0, 𝑡 → ∞. (98)

Note that in the above analysis we have used the absolute convergence assumption on the Fourier
coefficients 𝛼(0)𝑛 , Equation (64), to assure convergence and to find the derivative of the infinite
sum. Also, note that for the special case 𝛽 = 0, which corresponds to the heat equation, we find
𝑚 = 2, 𝑏 = 3, 𝑘0 = 0, and 𝑓0(𝑥) =

1

2
𝜕2
𝑘
𝑓(0, 𝑥). Substituting these values in Equation (97), and not-

ing that Φ(0) = 0, we again find that 𝐼2(𝑥, 𝑡) vanishes as 𝑡 → ∞.
So, from (92) and (98) we have

𝑈(𝑥, 𝑡) ∼ −
1

2𝜋

∞∑′

𝑛=−∞

𝛼
(0)
𝑛 e

𝑖𝑛𝜔𝑡 ∫
𝜕𝐷̃+

(−2𝑘2 + 𝑖𝛽𝑘)e𝑖𝑘𝑥

𝑘2 − 𝑖𝛽𝑘 + 𝑖𝑛𝜔
d𝑘, as 𝑡 → ∞. (99)

Hence, recalling Equation (76), we observe that 𝑢𝑥(𝑥, 𝑡) is asymptotically 𝑡-periodic. In an
almost identical way, one can find an expression for the large 𝑡 behavior of Equation (70) and
show that 𝑢(𝑥, 𝑡) itself also becomes 𝑡-periodic for 𝑡 → ∞.
Let us consider the contour 𝐶′′ = 𝜕𝐷̃+

𝑅
∪ 𝐶𝑅, where 𝜕𝐷̃+𝑅 is the part of 𝜕𝐷̃

+, which is bounded
by a circle with centre at 𝑘 = 0 and radius 𝑅 (where 𝑅 → ∞ to include the singularities), and 𝐶𝑅



22 FOKAS and VAN DERWEELE

is the circular arc with radius 𝑅 connecting the right and left branches of 𝜕𝐷̃+
𝑅
. We observe that

∫
𝐶′′

(−2𝑘2 + 𝑖𝛽𝑘)e𝑖𝑘𝑥

𝑘2 − 𝑖𝛽𝑘 + 𝑖𝑛𝜔
d𝑘 = ∫

𝜕𝐷̃+
𝑅

(−2𝑘2 + 𝑖𝛽𝑘)e𝑖𝑘𝑥

𝑘2 − 𝑖𝛽𝑘 + 𝑖𝑛𝜔
d𝑘 + ∫

𝐶𝑅

(−2𝑘2 + 𝑖𝛽𝑘)e𝑖𝑘𝑥

𝑘2 − 𝑖𝛽𝑘 + 𝑖𝑛𝜔
d𝑘. (100)

By the Residue Theorem, we find that the above integral (over the closed contour 𝐶′′) equals

2𝜋𝑖 Res
𝑘=𝑘1(𝑛)

(−2𝑘2 + 𝑖𝛽𝑘)e𝑖𝑘𝑥

𝑘2 − 𝑖𝛽𝑘 + 𝑖𝑛𝜔
= 2𝜋𝑖 lim

𝑘→𝑘1(𝑛)

(−2𝑘2 + 𝑖𝛽𝑘)e𝑖𝑘𝑥

𝑘2−𝑖𝛽𝑘+𝑖𝑛𝜔

𝑘−𝑘1(𝑛)

= 2𝜋𝑖

(
−2𝑘2

1
(𝑛) + 𝑖𝛽𝑘1(𝑛)

)
e𝑖𝑘1(𝑛)𝑥

2𝑘1(𝑛) − 𝑖𝛽

= −2𝜋𝑖𝑘1(𝑛)e
𝑖𝑘1(𝑛)𝑥. (101)

We observe that the second integral of the right-hand side of Equation (100) tends to zero as 𝑅 →
∞, because 𝑥 > 0. Indeed, writing 𝑘 = 𝑘𝑅 + 𝑖𝑘𝐼 with 𝑘𝑅, 𝑘𝐼 ∈ ℝ, we find that|||||∫𝐶𝑅 (−2𝑘

2 + 𝑖𝛽𝑘)e𝑖𝑘𝑥

𝑘2 − 𝑖𝛽𝑘 + 𝑖𝑛𝜔
d𝑘

||||| ≤ 𝜋𝑅 sup𝑘∈𝐶𝑅

|𝑘| | − 2𝑘 + 𝑖𝛽|e−𝑘𝐼𝑥|𝑘2 − 𝑖𝛽𝑘 + 𝑖𝑛𝜔|
≤ 𝜋𝑅2 (2𝑅 + 𝛽)e

−
𝛽+

√
𝛽2+8𝑅2

4
𝑥

(𝑅 − |𝑘1(𝑛)|)(𝑅 − |𝑘2(𝑛)|) , (102)

tends to zero as 𝑅 → ∞. The expression (𝛽 +
√
𝛽2 + 8𝑅2)∕4 is the imaginary part of the points at

which 𝜕𝐷̃+
𝑅
and 𝐶𝑅 intersect and, hence, it is the value of 𝑘𝐼 , which maximizes e−𝑘𝐼𝑥 for 𝑘 ∈ 𝐶𝑅.

Hence, by taking 𝑅 → ∞ in Equation (100) and using Equations (99), (101), and (102), we find

𝑈(𝑥, 𝑡) ∼

∞∑′

𝑛=−∞

𝛼
(0)
𝑛 e

𝑖𝑛𝜔𝑡𝑖𝑘1(𝑛)e
𝑖𝑘1(𝑛)𝑥, 𝑡 → ∞, (103)

where the 𝑘1(𝑛)’s are given in Equation (90). Because our goal is to find the Neumann boundary
value, we take the limit 𝑥 → 0+ in Equation (103) and, taking into account Equation (76), we
arrive at the asymptotically periodic form of the Neumann boundary function (65) with Fourier
coefficients

𝛼
(1)
𝑛 = 𝑖𝑘1(𝑛)𝛼

(0)
𝑛 , 𝑛 ∈ ℤ, (104)

where we were able to swap the limit 𝑥 → 0+ with the summation using theWeierstrass criterion
for uniform convergence, under the assumption that

∞∑′

𝑛=−∞

|||𝑘1(𝑛)𝛼(0)𝑛 ||| < ∞, (105)
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which is equivalent to the assumption made in Equation (64):

∞∑′

𝑛=−∞

√|𝑛||||𝛼(0)𝑛 ||| < ∞. (106)

For the derivation of the desired form of the Dirichlet-to-Neumann correspondence (66), we use
the Vieta formula 𝑘1(𝑛) + 𝑘2(𝑛) = 𝑖𝛽, because 𝑘1(𝑛) and 𝑘2(𝑛) are the two roots of 𝑘2 − 𝑖𝛽𝑘 +
𝑖𝑛𝜔 = 0, and thus Equation (104) yields

𝛼
(1)
𝑛 = −(𝑖𝑘2(𝑛) + 𝛽)𝛼

(0)
𝑛 , 𝑛 ∈ ℤ. (107)

Note that the expression for 𝛼(1)𝑛 obtained here is the same as the one in Equation (42), as it
should be.

5 THE REMARKABLE RESULTS OF BOUTET DEMONVEL,
KOTLYAROV, AND SHEPELSKY REVISITED

Let us consider the following initial-boundary value problem for the NLS equation on the half-
line:

𝑖𝑢𝑡 + 𝑢𝑥𝑥 − 2𝜆|𝑢|2𝑢 = 0, 𝜆 = ±1, 𝑥 > 0, 𝑡 > 0, (108a)

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ≥ 0, (108b)

𝑢(0, 𝑡) = 𝑔0(𝑡), 𝑡 ≥ 0, (108c)

where the Dirichlet boundary condition 𝑔0(𝑡) approaches the periodic function 𝛼e𝑖𝜔𝑡 (𝛼 ∈ ℝ) suf-
ficiently fast as 𝑡 → ∞, and the initial condition 𝑢0(𝑥) decays sufficiently fast to zero as 𝑥 → ∞.
The solution 𝑢(𝑥, 𝑡) of the above problem is supposed to be sufficiently smooth (up to and includ-
ing the boundary) and both 𝑢(𝑥, 𝑡) and its 𝑥-derivatives are taken to decay rapidly enough as
𝑥 → ∞ for each 𝑡 ≥ 0.
Here we will show how the expressions (3) for 𝛾 obtained in Ref. 55, can be derived in a direct

manner via the 𝑄-equation approach. Namely, assuming that the Neumann boundary function
𝑢𝑥(0, 𝑡) = 𝑔1(𝑡) has the form 𝛾e𝑖𝜔𝑡 for large 𝑡, we will reproduce Equations (3) with only a slight
incompleteness in the range of 𝜔 values.
We begin by deriving the nonlinear version of Equation (18) for the case of the NLS equation.

The Lax pair of the NLS is given by (see, e.g., Ref. 60)

𝜓𝑥 + 𝑖𝑘𝜎3𝜓 = 𝑈𝜓, (109a)

𝜓𝑡 + 2𝑖𝑘
2𝜎3𝜓 = 𝑉𝜓, (109b)
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where 𝑘 ∈ ℂ is the spectral parameter, 𝜓(𝑘, 𝑥, 𝑡) is a 2 × 2-matrix-valued function, and the matri-
ces 𝑈, 𝑉, and 𝜎3 are defined by

𝑈 =

(
0 𝑢

𝜆𝑢 0

)
, 𝑉 =

(
−𝑖𝜆|𝑢|2 2𝑘𝑢 + 𝑖𝑢𝑥

2𝜆𝑘𝑢 − 𝑖𝜆𝑢𝑥 𝑖𝜆|𝑢|2
)
, 𝜎3 =

(
1 0

0 −1

)
.

Evaluating the 12 and 22 components of Equation (109b) at 𝑥 = 0, we find that 𝜓12(𝑘, 0, 𝑡) and
𝜓22(𝑘, 0, 𝑡) satisfy the following equations:

(𝜓12)𝑡 + 2𝑖𝑘
2𝜓12 = −𝑖𝜆|𝑔0|2𝜓12 + (2𝑘𝑔0 + 𝑖𝑔1)𝜓22, (110a)

(𝜓22)𝑡 − 2𝑖𝑘
2𝜓22 = 𝜆(2𝑘𝑔0 − 𝑖𝑔1)𝜓12 + 𝑖𝜆|𝑔0|2𝜓22. (110b)

Introducing the functions

Φ1(𝑘, 𝑡) = e
−2𝑖𝑘2𝑡𝜓12(𝑘, 0, 𝑡), (111a)

Φ2(𝑘, 𝑡) = e
−2𝑖𝑘2𝑡𝜓22(𝑘, 0, 𝑡), (111b)

the second column of the 𝑡-part of the Lax pair evaluated at 𝑥 = 0 becomes

(Φ1)𝑡 + 4𝑖𝑘
2Φ1 = −𝑖𝜆|𝑔0|2Φ1 + (2𝑘𝑔0 + 𝑖𝑔1)Φ2, (112a)

(Φ2)𝑡 = 𝜆(2𝑘𝑔0 − 𝑖𝑔1)Φ1 + 𝑖𝜆|𝑔0|2Φ2. (112b)

We define 𝑄(𝑘, 𝑡) by

𝑄(𝑘, 𝑡) ∶=
Φ1(𝑘, 𝑡)

Φ2(𝑘, 𝑡)
, (113)

where it is assumed that we stay away from the possible poles. Equations (112) can now be rewrit-
ten as

(𝑄Φ2)𝑡 + 4𝑖𝑘
2𝑄Φ2 = −𝑖𝜆|𝑔0|2𝑄Φ2 + (2𝑘𝑔0 + 𝑖𝑔1)Φ2, (114a)

(Φ2)𝑡 = 𝜆(2𝑘𝑔0 − 𝑖𝑔1)𝑄Φ2 + 𝑖𝜆|𝑔0|2Φ2. (114b)

Multiplying Equation (114b) by 𝑄 and substituting 𝑄(Φ2)𝑡 from Equation (114a), we find [for
Φ2(𝑘, 𝑡) ≠ 0] the 𝑄-equation
𝑄𝑡(𝑘, 𝑡) + 𝜆(2𝑘𝑔0(𝑡) − 𝑖𝑔1(𝑡))𝑄

2(𝑘, 𝑡) + (2𝑖𝜆|𝑔0(𝑡)|2 + 4𝑖𝑘2)𝑄(𝑘, 𝑡) − (2𝑘𝑔0(𝑡) + 𝑖𝑔1(𝑡)) = 0.
(115)



FOKAS and VAN DERWEELE 25

In the linear limit, i.e., when 𝑄(𝑘, 𝑡) = 𝜖𝑄1(−2𝑘, 𝑡) + 𝑂(𝜖2), 𝑔0(𝑡) = 𝜖𝑔01(𝑡) + 𝑂(𝜖2), and 𝑔1(𝑡) =
𝜖𝑔11(𝑡) + 𝑂(𝜖

2)with 𝜖 → 0, we observe that (after substituting 𝑘 by−𝑘∕2) the𝑂(𝜖) terms of Equa-
tion (115) give us Equation (18) for the particular case of the linearized NLS, with 𝑄 replaced by
𝑄1, 𝑔0 by 𝑔01, and 𝑔1 by 𝑔11.
We let 𝜆 = −1, i.e., we treat the focusing NLS, and we consider the physically significant case

of asymptotically periodic single-exponential boundary functions. For large 𝑡, we assume that 𝑄,
𝑔0, and 𝑔1 are of the following form:

𝑄(𝑘, 𝑡) ∼ 𝑞(𝑘)e𝑖𝜔𝑡, 𝑔0(𝑡) ∼ 𝛼e
𝑖𝜔𝑡, 𝑔1(𝑡) ∼ 𝛾e

𝑖𝜔𝑡, 𝜔 ∈ ℝ, 𝛼 > 0, 𝛾 ∈ ℂ, 𝑡 → ∞. (116)

After substituting these asymptotic expressions, Equations (114) in the large time limit become

𝑞(Φ2)𝑡 + 𝑖𝜔𝑞Φ2 + 4𝑖𝑘
2𝑞Φ2 = 𝑖𝛼

2𝑞Φ2 + (2𝛼𝑘 + 𝑖𝛾)Φ2, (117a)

(Φ2)𝑡 = −(2𝛼𝑘 − 𝑖𝛾)𝑞Φ2 − 𝑖𝛼
2Φ2. (117b)

We now distinguish the two cases below (assuming that we keep away from the possible zeros
of Φ2(𝑘, 𝑡)):

(a) If (Φ2(𝑘, 𝑡))𝑡 → 0 for large 𝑡, then the above equations give rise to the following relation:

𝑞(𝑘) =
−2𝑖𝛼𝑘 + 𝛾

4𝑘2 − 𝛼2 + 𝜔
=

𝛼2

2𝑖𝛼𝑘 + 𝛾
. (118)

The second equality implies

|𝛾|2 + 2𝑖𝛼𝑘(𝛾 − 𝛾) = 𝛼2(𝜔 − 𝛼2). (119)

Thus, in this case 𝛾 is real (provided that (Φ2(𝑘, 𝑡))𝑡 → 0, as 𝑡 → ∞, for at least one nonreal
value of 𝑘) and hence

𝛾 = ±𝛼
√
𝜔 − 𝛼2, 𝜔 ≥ 𝛼2, (120)

in accordance with Equation (3a).
(b) More generally, also for nonvanishing (Φ2(𝑘, 𝑡))𝑡, we arrive at Equation (115), which after the

substitution of the asymptotic expressions from Equation (116) becomes, for large 𝑡,

(2𝛼𝑘 − 𝑖𝛾)𝑞2(𝑘) − 𝑖(4𝑘2 − 2𝛼2 + 𝜔)𝑞(𝑘) + (2𝛼𝑘 + 𝑖𝛾) = 0. (121)

If 𝛾 is purely imaginary of the form 𝛾 = 𝑖Γ, where we will take Γ ≥ 0, and using the identity
𝛾 = −𝛾, we find that the 𝑄-equation (121) simplifies to

𝑞2(𝑘) − 𝑖
4𝑘2 − 2𝛼2 + 𝜔

2𝛼𝑘 − Γ
𝑞(𝑘) + 1 = 0. (122)
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At this point, it is important to observe that 𝑞(𝑘) is bounded at 𝑘 = Γ

2𝛼
, where 𝛼 > 0 and Γ ≥ 0.

This can be seen by substituting the asymptotic forms of 𝑔0(𝑡) and 𝑔1(𝑡) from Equation (116)
into the 𝑄-equation (115), because one then finds 𝑄( Γ

2𝛼
, 𝑡) = 𝑐 exp[𝑖(2𝛼2 − Γ2∕𝛼2)𝑡], 𝑐 ∈ ℝ,

when 𝑡 → ∞. So we have to require that 4𝑘2 − 2𝛼2 + 𝜔 = 0 when the denominator is zero,
i.e., when 𝑘 = Γ

2𝛼
. This can also be inferred from Equation (121), where for 𝛾 = 𝑖Γ and 𝑘 = Γ

2𝛼
(with Γ real and nonnegative) only the second term survives, which then necessarily must be
equal to zero.Under the assumption that 𝑞( Γ

2𝛼
) is nonzero, this implies that 4𝑘2 − 2𝛼2 + 𝜔 = 0

when 𝑘 = Γ

2𝛼
. Hence Γ = 𝛼

√
2𝛼2 − 𝜔, and thus we find

𝛾 = 𝑖𝛼
√
2𝛼2 − 𝜔, (123)

in agreement with Equation (3b). It may be noted that the inequality 𝜔 ≤ −6𝛼2 of Boutet de
Monvel, Kotlyarov, and Shepelsky is not reproduced, yet the present analysis provides an ele-
mentary and straightforward approach for determining the large 𝑡 behavior of the Dirichlet-
to-Neumann map in the case of periodic single-exponential boundary functions.

Boutet deMonvel et al.55 showed that the coefficient 𝛾 of the asymptotically periodic Neumann
boundary value is as presented in Equation (3), i.e., 𝛾 is either real or purely imaginary if 𝜔 is out-
side the range (−6𝛼2, 𝛼2). Inside the range 𝜔 ∈ (−6𝛼2, 𝛼2) the asymptotic form of the Neumann
boundary value is not of the simple form 𝛾e𝑖𝜔𝑡,64 so then Equation (116) would not be a valid sub-
stitution tomake.Hence, the above analysis concerning real and purely imaginary 𝛾 (but notmore
general complex values of 𝛾) covers all cases of interest for the focusing NLS with boundary data
that asymptote to periodic single exponentials.

6 CONCLUSIONS

The goal of thiswork is to elucidate the effectiveness of the use of the𝑄-formulation. For integrable
nonlinear evolution equations, the 𝑄-equation was introduced in Ref. 60 in connection with the
NLS. In the present paper we have established the following: (i) For linear evolution equations,
the analysis of the 𝑄-equation yields the large 𝑡 asymptotics form of the generalized Dirichlet-
to-Neumann map for 𝑡-periodic boundary conditions, in a very simple, algebraic way. (ii) For the
NLS, it reproduces the remarkable results of Ref. 55, again in a simple, algebraicmanner.We expect
our method to give useful results also for other integrable nonlinear PDEs, which are amenable
to the Fokas method.
For linear evolution equations, the 𝑄-equation is the 𝑡-part of the Lax pair evaluated at 𝑥 = 0.

It is interesting to note that when the unified transform was first introduced, it was implemented
via the Lax pair formulation. Later, it was realized that (in the linear case) it could be derived
in a straightforward manner, avoiding the Lax pair connection. Of course, the Lax pair approach
remains indispensable for the application of the unified transform to nonlinear integrable PDEs.
The results presented in this paper clearly show that, even for linear evolution equations, the
connection with the Lax pair is very useful. Indeed, in terms of simplicity, the𝑄-approach (which
is based entirely on the Lax pair formulation) provides the most unexpected results, so far, of the
Fokasmethod. The effectiveness of this new approach becomes apparent by comparing it with the
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lengthy derivation in Section 4 and earlier implementations of the unified transform in Refs. 55,
60.
Taking into consideration that the classical investigations of linear PDEs did not take into

account that linear PDEs admit a Lax pair formulation,65 it is not surprising that the 𝑄-approach
was missed in these previous investigations.
The 𝑄-approach is based on the assumption that the unknown boundary values become peri-

odic for large 𝑡. Although it is rather complicated to determine their precise asymptotic form, it
is often much simpler to show that they indeed become 𝑡-periodic as 𝑡 tends to infinity. Using
the general formulation of the Fokas method and the standard asymptotic technique of steep-
est descent, it can be shown in many instances that, if the given boundary conditions are 𝑡-
periodic, the unknown boundary values also become 𝑡-periodic as 𝑡 tends to infinity. Then, the
𝑄-approach provides a most effective way for computing explicitly the Fourier series coefficients
of the unknown periodic functions in terms of the Fourier series coefficients of the given bound-
ary conditions.
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