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Abstract— A city’s transportation network is made up of
subsystems, often under separate management, linked together
through the choices made by users. This paper introduces
a transport model which combines a discrete choice model
of users, with a resource allocation model of a subsystems.
This combined model gives a direct economic interpretation
of tradeoffs in the system. For example, it tells us how much
of a rideshare price is attributable to the cost of running the
platform and how much is profit-making. The model can also
be used to predict knock-on effects in the style of Braess’s
paradox, where an improvement in one part of the network
might induce problems in other parts because of selfish choices
made by users and by subsystems.

I. INTRODUCTION

Selfish routing is a classical mathematical model of how
self-interested users might route traffic through a congested
network. It was introduced by Wardrop [1] as a model for
assigning road traffic, for the purpose of computing the
cost-effectiveness of road improvement schemes. Wardrop’s
model is still in widespread use in highway agencies for
exactly this purpose, implemented directly in software pack-
ages such as SATURN [2] and PTV Visum [3], and indirectly
in every agent-based traffic simulator that incorporates user
choice.

Urban planning today is facing the challenges of ‘Mo-
bility as a Service’ (MaaS). This term refers loosely to a
collection of new technologies such as autonomous vehicles
and electric scooters; to new platforms such as Uber and
Zipcar and CitiBike; to the shift away from personally-owned
cars; and to integrated multi-modal ticketing including apps
such as Whim. Urban transport planning has typically been
organized into a highways agency, a bus agency, etc., but now
there is a need to reorient away from per-mode management
and towards “How well can people get where they want to,
over whatever mode they choose?”, bearing in mind also
environmental and health targets.

To model the MaaS world, we can add an extra class
of decision maker to Wardrop’s formulation. He described
two classes: individual drivers within the model who choose
their routes selfishly; and a network planner outwith the
model who wants the best overall average benefit across all
drivers. We propose three classes: individual users within the
model who choose their routes/modes selfishly; a subsystem

*This work is supported by a grant from the Toyota Mobility Foundation.
It has benefitted from discussions with Sid Banerjee of Cornell, and Neil
Walton of Manchester University.

1Damon Wischik is with the Computer Science and Technology depart-
ment at the University of Cambridge, and with the Alan Turing Institute in
London

operator within the model who manages a mode or plat-
form selfishly; and a network planner outwith the model as
before. Some subsystems are privately run companies, such
as Uber, in which case it is inherently reasonable to treat
them as maximizing their own profits. Some subsystems are
notionally under control of a single authority, such as London
streets and London buses, but are typically run as separate
agencies with their own targets and procedures.

The key contribution of this paper is to reformulate
discrete choice modelling so as to integrate it with models
of optimal resource allocation. In descriptive statistics, a
standard model for user choice is logistic regression. In
econometrics, a standard model is that each choice has an
associated utility that is random, and users pick the choice
with the highest utility; for a well-chosen random distribution
this is equivalent to logistic regression. This paper introduces
a novel model in which users choose a level of resource
consumption in order to maximize their utility.

The combined model of discrete route choice and con-
strained resource allocation can then be used to analyse MaaS
problems. For example, in a rideshare model, it explains
how the rideshare operator’s objective “find the cheapest
flow of empty vehicles that will rebalance the network” is
externalized as prices charged to users, affecting their mode
choice. Another example: it can help a network planner
to anticipate the effects of interventions. For example, if
I close a lane here, what will the knock-on effects be
throughout the city, taking into account the choices made
by individual drivers and also the induced changes in the
rideshare network?

Outline. Section III gives an example of a Braess-style
paradox, which illustrates the problem of unintended knock-
on effects. Section VII shows how our combined discrete
choice + resource allocation model can give answers.

Sections IV–VI build up the model. We first see the core
technique for converting an individual user’s choice into
a utility optimization. We next apply the technique to the
problem of mode choice in rideshare, and then to the problem
of estimating demand given aggregated data.

The goal of MaaS modelling at the policy level is to design
mechanisms in the form of information flows and incentives:
for example, how can I design a tax system so that rideshare
operators are incentivised to route around pollution hotspots?
Sections VII and VIII conclude by discussing the tools we
need to build, to help cities manage rideshare platforms and
other MaaS scenarios.

A note on terminology: this paper uses the term ‘rideshare’
broadly to refer to e-hail platforms like Uber and Lyft,



C1

C2
C3

yA

yB

Fig. 1: A multipath resource allocation problem, with two
multipath flows that use three resources. The flow (yA, yB)
is admissible if and only if yA ≤ C1 +min(C2, C3), yB ≤
C2+C3, and 2yA+ yB ≤ 2C1+C2+C3. How should flow
rates be allocated subject to these constraints?

whereas some of the literature uses it only for car pooling.

II. RELATED WORK

Wardrop’s equilibrium assignment model has led to many
strands of work. For this paper, the two most relevant are
discrete choice modelling and network resource allocation.

Ever since McFadden’s work on discrete choice and ran-
dom utility modelling, including an analysis of whether Bay
Area residents would use BART, discrete choice models have
been widespread in the transportation literature and planning
industry. Most studies that involves passenger choice use this
framework. For recent examples, see [4], [5]. This paper
starts with random utility modelling, and reformulates it as
a resource allocation problem.

Multipath resource allocation have attracted much study
in communication networks. Generalized cut constraints as
illustrated in Figure 1 were studied in [7]. A distributed
model for rate allocation was introduced in [8], which sets
up an overall system optimization problem “maximize the
utility of all flows minus a congestion loss function at each
resource”, and describe a distributed algorithm for solving
it. Algorithms for distributed resource allocation based on
[8] are now used for multipath Internet congestion control
[10]. Generalized cut constraints describe what rebalancing
of flows is permissible, and an analysis of the system
optimization problem can show what knock-on rebalancing
of flows will actually occur if, for example, one of the
capacities is altered [9]. This present paper also describes
a system optimization problem for resource allocation, but
based on a discrete choice model for utility rather than a
utility model for rate control.

Recent work proposes that socially optimal flows in a
multimodal transport network might be achieved simply by
building an app that suggests socially appropriate routes,
rather than accommodating free user choice [6].

There is a growing literature on rideshare and carpool
modelling, e.g. [11], generally emphasizing the matching
mechanism between passengers and drivers, and how a
rideshare operator might design this optimally. This paper
differs in that it distinguishes between the network planner

and the rideshare operator, treating them both simultaneously
as decision makers, and presenting a joint optimization
model that combines passenger choice with rideshare op-
timization.

In transport modelling, planners typically use the “four
step model”. The first two steps are forecasting demand, the
third step is forecasting mode choice, and the fourth step is
assigning it to routes using Wardrop’s equilibrium model.
There is a powerful and flexible model which combines
the first three steps, based on statistical physics [12]. In
this model, we consider a population of users who are
assigned randomly to origins and destinations; then we look
for the most likely configuration conditional on observed
data. This corresponds to maximizing the entropy of the user
distribution subject to constraints. For example, let Tij be the
number going from i to j; and suppose the constraints are
(i) the total demand from node i is Oi, (ii) the total demand
for node j is Dj , (iii) the total travel budget

∑
ij Tijcij is

capped. Then the entropy-maximizing distribution is Tij =
αiβjOiDje

−βcij . The model in this paper yields similar
demand matrices, but arising from a Wardrop-style discrete
choice problem combined with resource allocation, rather
than from statistical physics. This means that (i) it integrates
the fourth step of the four-step model, and (ii) it lends itself
directly to pricing calculations based on the tradeoff between
transport supply and demand.

III. A BRAESS-STYLE PARADOX

Consider the following model for a transport system with
bus and rideshare, shown in Figure 2. There is a fixed
demand dij ≥ 0 on the route from node i to j, which can
be served by either bus or rideshare. The edges in the graph
denote complete routes from origin to destination, so there
is no need to consider multihop paths. The cost of a bus ride
is cij > 0, and the cost of rideshare is µirij where µi is
the surge multiplier at i and rij > 0 is the underlying cost
for driving a vehicle between those nodes. Let αijdij be the
volume of users who choose rideshare from i to j, leaving
(1− αij)dij to take the bus.

User model. Users make their decision based only on
price: αij = 1 if µirij < cij , and αij = 0 if µirij > cij . In
the case µirij = cij , users are indifferent, and we consider
αij to be under the control of the rideshare operator—it
might exert this control by jittering its price just under or
just over cij .

Subsystem model. The rideshare operator sets the surge
prices µs. In addition to the vehicles carrying passengers, it
rebalances its fleet by running empty vehicles from i to j at
rate βij ≥ 0. The total flow must form a circulation, i.e.∑

i

(
αijdij + βij

)
=

∑
k

(
αjkdjk + βjk

)
∀j.

Total revenue is
∑

i,j αijµirij , and total cost is
∑

i,j(αij +
βij)rij . The rideshare operator’s objective is to maximize
revenue minus cost, by choosing λ and β (and α when users
are indifferent).
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Fig. 2: A transport network with bus costs £c, rideshare base
costs £r, and total demand d, of which αd takes rideshare.
The bus cost c12 is reduced from £6 in (a) to £3 in (b), and
this single change has a knock-on effect on α throughout the
network.

It is straightforward to compute the user and subsystem
optimum using brute force. The rideshare operator will set
surge prices so that at each node i there is some node j∗

such that µirij∗ = cij∗ ; otherwise it could increase profit by
increasing µi. So the model can be solved by enumerating
all possible values for each surge multiplier, solving a linear
program to compute α and β, and picking the one that yields
the highest profit for the rideshare operator.

A paradox. Consider the four-node network shown in Fig-
ure 2(a). The optimal route assignment and surge multipliers
are as shown. Suppose that the bus fare c12 is reduced from
£6 to £3: the new solution is shown in Figure 2(b). One
might expect that reducing bus fares should have the effect
of increasing bus passenger numbers, but the net effect is in
fact the opposite: total bus passenger numbers are reduced
from 24 to 10. Rideshare profits are also reduced from £38
to £21.93.

Braess described a paradox of selfish routing, a simple
road network in which adding a new road has the effect of
worsening average travel times, even though total demand
is unchanged. His paradox is compelling because of sign
reversal. A healthy modelling skepticism should lead to
doubts about quantifying the price of anarchy (“maybe the
benefit of building a road will be a bit less than predicted
because of selfish routing; but all models are wrong, and at
least we’re doing some good”). But by demonstrating a sign
reversal, Braess’s example shows that even well-intentioned
interventions can have detrimental outcomes.

In our network in Figure 2 likewise, intervening to reduce

bus fares has the opposite effect to what one one would see
when considering the bus network in isolation. The issue
is that a small change in one part of the bus network has
an impact on the rideshare subsystem, and the rideshare
subsystem has a control mechanism (fleet rebalancing β)
that transmits this impact to the rest of the network. Braess’s
paradox showed us that selfish routing by individual users
can lead to sign reversal, so it’s no surprise that selfish control
by an agent with many more degrees of freedom can do the
same.

IV. DISCRETE CHOICE MODEL

We now introduce a building block: a discrete choice
model for a single user, which we’ll use in the next two
sections for building full system models.

Consider a user with a choice between two alternatives,
route 1 and route 2, each with its own cost. A standard
descriptive model is the logistic regression

P(choose 1) =
eκ−γ1p1+γ2p2

1 + eκ−γ1p1+γ2p2
(1)

where p1 and p2 are the prices on each of the routes and κ, γ1
and γ2 are parameters that can be fit from data. The exponent
could include a variety of factors, but for present purposes
we will be focusing on prices in a rideshare network, so we
treat all other factors as lumped together into κ.

Another standard formulation is the random utility model.
Let the utility of route i be a random variable,

Ui ∼ κi − γipi + Ei, Ei ∼ Gumbel() (2)

where Gumbel() refers to a Gumbel distribution with cumu-
lative distribution function F (x) = exp(−e−x), and suppose
that the user picks the route with the higher utility. This leads
again to (1), with κ = κ1 − κ2.

Now consider a user who has utilities given by (2), but
who is coerced into making a different choice: suppose the
user picks route argmaxi(Ui + θi), where θi are constants
describing the amount of coercion. Only the difference θ1 −
θ2 actually matters. Let α = α(θ1 − θ2) be the coerced
probability of choosing route 1. The expected utility will
also depend on the amount of coercion; it is

E
(
U11U1+θ1>U2+θ2 + U21U1+θ1<U2+θ2

)
.

After some algebra, and rewriting in terms of α, we find that
the expected utility is

α(κ1 − γ1p1) + (1− α)(κ2 − γ2p2) +H(α, 1− α)

where H is the entropy of a Bernoulli(α) random variable.
Call this u(α | p1, p2). The user’s choice can thus be written
as an optimization problem:

maximize u(α | p1, p2) over α ∈ [0, 1]

and the solution coincides exactly with (1).
Why think of coercion in this way, as tweaking the

thresholds for comparing random utilities? A simpler brute-
force coercion is to simply say “The system dictates that



the user take route 1 with probability α”. This leads to an
expected utility of

α(κ1 − γ1p1) + (1− α)(κ2 − γ2p2). (3)

However, this type of coercion is not consonant with the
notion of user choice expressed by (1) nor by (2)—there is
no obvious way to make (1) arise through maximizing (3).

V. RIDESHARE PRICING

We now consider a joint model of user choice and resource
allocation, a relaxed version of the model in Section III. Let
demand d, public transit fare c, and rideshare base cost r be
as before.

User model. Users make their decision based only on
price: the fraction of users taking rideshare from i to j is

αij(pij) =
eκ̄ij−γpij+γ′cij

1 + eκ̄ij−γpij+γ′cij
. (4)

Subsystem model. The rideshare operator chooses rebal-
ancing rates β. The total cost of all vehicle movements is

R(α, β) =
∑
i,j

(dijαij + βij)rij

and the rebalancing rates solve

minimize R(α, β) over β ≥ 0

such that dα+ β is a circulation.

In addition, the rideshare operator sets a price pij on each
edge, so as to maximimize the total revenue(∑

i,j

αijdijpij

)
−R(α, β)

taking account of the impact of price on α and thence on β.
System optimization problem. Consider the following prob-

lem: maximize∑
i,j

{
dij

[
αij(κ̃ij − γmij) + (1− αij)(κ

′
ij − γ′cij)

+H
(
αij , 1− αij

)
− αij

1− αij

]
+ βij(mij − rij)

}
over αij ∈ [0, 1], βij ≥ 0, and mij ∈ R, such that dα + β
is a circulation.

It can be shown that any solution to the system problem
solves the user and subsystem models, and vice versa (with
κ̄ = κ−κ′). The proof is intricate but uninteresting and there
isn’t enough space here. Instead, to illuminate, consider a
single link:

1 2

c, p, r, α; demand d

r′; no demand

There must be a rebalancing flow of size dα from 2 to 1, so
the rideshare subsystem sets p to maximize

dαpp− dαp(r + r′).

In this equation we’re writing αp to emphasize that users
adapt to p by choosing α. The maximum is at αp+α′

p(p−r−
r′) = 0. By differentiating (4) we find α′

p = −γαp(1−αp).
Substituting this back in, the rideshare subsystem’s choice
of p solves

p = r + r′ +
1

γ(1− αp)
. (5)

Now, given p, we know from section IV that α maximizes

α(κ− γp) + (1− α)(κ′ − γ′c) +H(α, 1− α). (6)

When both the subsystem optimization and the user opti-
mization are jointly solved, then (5) is satisfied and (6) is
maximized simultaneously, thus α maximizes

α
(
κ− γ(r + r′)

)
+ (1− α)(κ′ − γ′c)

+H(α, 1− α)− α

1− α
.

This has the same form as the system optimization problem.
The proof of the general case follows this strategy of
endogenizing the prices, but starting from the Lagrangian
of the system optimization problem so that the circulation
constraints are accounted for via dual variables.

Interpretation. In the system optimization problem, m
plays the role of an ‘accounting cost’. If there’s an excess of
vehicles coming into i and a shortage at j then it’s beneficial
to send empty vehicles from i to j, and in a socialist world
passengers would pay less than rij to travel on that link.
This will be reflected by mij < rij .

The α/(1−α) term reflects profit-taking by the rideshare
operator. On links where α is close to 1, the term pushes
α lower than it would otherwise be. The rideshare operator
is extracting profit, and it does this by setting prices higher
than they need to be, which pushes some users away. In
links with α small, there is less opportunity to extract profit
because public transit is appealling.

In this version of the system problem we have allowed
prices to be varied freely per link. If the rideshare operator
is constrained to set prices according to a surge multiplier,
that constraint can simply be added to the system problem.

VI. VARIABLE DEMAND MODEL
In resource allocation problems it can be useful to treat

demand as arising endogenously—as a tradeoff between
users who want a resource versus the cost of that resource.
The discrete choice model from Section IV does a poor job
of this. It’s possible to add a ‘null option’, call it route 0,
and interpret it as “don’t take either route”; but this model
can only generate at most one trip per user. Informally, it’s
a binomial model and we’d prefer a Poisson.

Here is a version of the random utility framework that
accommodates variable demand. Suppose a user can make a
number of trips, and each trip can be on one of two routes.
Let u1 and u2 be constants reflecting the underlying utility
of each route, and let u0 be a constant corresponding to not
taking a trip. Suppose the user uses the following procedure
for deciding how many trips to take and on which routes:



1) Generate Ui ∼ ui +Gumbel()
2) If U0 is the largest then stop
3) Otherwise, take a trip on route i where Ui is the larger,

and gain utility Ui − U0 by doing so
4) Go back to step 1

Under this procedure, the expected number of trips on route
i is eui−u0 .

We can turn this trip-generating procedure into a resource
allocation problem, using a similar technique to Section IV.
Suppose the user is coerced into making different choices by
using Ui + θi for comparisons in steps 2 and 3, but that the
utilty gain is still Ui −U0. (Why is the utility gain Ui −U0

in step 3 rather than just Ui? So that if the user is coerced
into taking lots of trips, e.g. by making θ1 very large, then
there is an overall reduction in utility.)

Reparameterizing in terms of the total number of trips y
and the fraction αi made on route i, the expected utility is

y
[
α1(u1 − u0) + α2(u2 − u0) +H(α1, α2)

]
+ (1 + y) H

( 1

1 + y
,

y

1 + y

)
. (7)

We make no claim that this utility function is intrinsically
true. It’s simply a well-behaved function which is consonant
with the fixed-demand model from Section IV. For example,
the probabilty that a trip is on route 1 given that there is a
trip is eu1/(eu1+eu2), which fits with the logistic regression
model (1).

Estimating demand from data. Suppose we have measure-
ments of total traffic on certain links in a transport network.
A natural way to estimate the origin-destination matrix is to
maximize a net utility function made up of terms like (7),
subject to the constraint implied by the observed data.

The optimization problem “maximize total user utility
subject to link constraints” is very similar to the bandwidth
allocation problem studied in [8] in the context of com-
munications networks. There are simple, fast, distributed
algorithms for finding the optimum bandwidth allocation,
and we speculate that such algorithms can be adapted to
give fast algorithms for demand estimation.

A retail demand model. An interesting choice of utility
is ui = logWi − 2 log di, where Wi is the ‘attractiveness’
of destination i, for example the floorspace in a shopping
center, and di is the distance to it. If ui ≪ u0 for each i
then the utility-maximizing allocation is

αiy ≈ κ
Wi

d2i
(8)

which is a standard demand function in transport modelling
[12].

Suppose now that users are constrained by a limited
capacity transportation network. We can solve for the result-
ing allocation subject to the capacity constraint, using the
demand estimation method described above. If the network
were uncongested then the solution would still be (8). If

A B

Fig. 3: A toy network with bus and rideshare. Line thickness
indicates number of bus passengers using each street. When
fares are lowered on A → B, the effect is transmitted
throughout the rest of the network via the rideshare sub-
system, and bus passenger numbers can go up or down.

some roads are congested then some demands will be lower
than (8), and the dual variables for the congested roads will
measure the economic opportunity cost of congestion—the
amount of spending that is foregone because users can’t get
to the shops.

VII. SEEING KNOCK-ON EFFECTS

The tactical goal of MaaS modeling is to anticipate the
effects of interventions, bearing in mind that changes in one
part of the network have a knock-on effect via user choice
and via subsystem optimization.

Consider a transport system with bus and rideshare as
in Section V. We saw that the equilibrium outcome is the
solution to an optimization problem. We can use this to
compute knock-on effects as follows. Suppose for example
we want to examine the effect of changing the public
transport cost cAB on some route A → B.

1) Write out the Lagrangian.
2) Take total derivatives of all the variables and dual

variables with respect to cAB .
3) Solve the resulting system of equations.

This approach has been described before in the context of
communications networks [9]. Figure 3 illustrates how the
output might be shown to city planners.

All models are wrong. What’s the point of this Lagrangian-
based sensitivity analysis, when one could just run simula-
tions to test the impact of changes? The reason is parameter-
fitting. We posed the question “What’s the impact of changes
to the current state of affairs?”, and to test this in simulation
we’d need to tune the simulation parameters so as to repro-
duce the current state of affairs. This is intractable, for any
simulator sufficiently detailed to capture the richness of what



can be seen in big city datasets. It’s daft if not futile to spend
effort reproducing what’s already there in the data—yet this
is what a simulation-based approach requires.

The Lagrangian-based sensitivity analysis works differ-
ently. It starts with the data as is, and then it estimates deltas
to the present state of affairs using a model. It’s impossible
to go beyond the data and answer counterfactual questions
without a model, so we certainly need either a simulator or
a mathematical model. Lagrangian-based sensitivity analysis
is the best of both data and modelling worlds.

For helping with policy design, we should provide tools
that augment a dataset. All models are wrong, so any final
answer from a mathematical model which says “this policy
is better than that” is not to be trusted. But if the tool takes in
a dataset as rich as we can give it, and gives detailed output,
then the policy maker can explore in fine detail the likely
consequences of possible actions, paying closer attention
to places that are known trouble spots, disregarding places
where the data or model is sketchy.

A challenging direction for future research is to find
ways in which a simulator can be used in lieu of a math-
ematical optimization model. Different cities face different
problems and have different control levers; and there are
more programmers who can implement a simulator than
mathematicians who can formulate an appropriate opti-
mization problem. Is it possible to use a simulator for a
similar calculation to the Lagrangian sensitivity analysis—
to estimate deltas, not values? There is a similar thrust at
the moment in Probabilistic Programming Languages, which
allow a programmer to specify a model by programming a
simulator, and then use a general-purpose software tool to
solve Bayesian inference problems.

VIII. INFERENCE CHALLENGES

The following problem was suggested to us by operators
for Transport for London. The challenge is not to model it—
it is embarrassingly easy to invent a model—but rather to
find evidence from scant data of whether or not the problem
actually occurs.

Mobility problem. Some streets in the city center become
congested. This is detected in real time in the central control
room (e.g. from closed-loop detectors at intersections that
monitor vehicles passing, or from traffic cameras, or from
bluetooth sensors that measure transit times). Highways
agency operators act to relieve congestion, by changing the
signal timing at upstream intersections. This causes delays
and some diversions, including to buses. Passengers learn
over time that buses are unreliable, so they switch to personal
cars. This worsens city center congestion.

Available data. The city can be expected to keep detailed
records of infrastructure, e.g. traffic flow rates or the presence
of queues at traffic intersections, though the measurement
types vary from city to city. Data on passenger decision
making is harder to come by: it’s reasonable to assume
that the city has an estimate of total passenger numbers per
hour, bus route, origin bus stop, and destination bus stop. It’s
not reasonable to assume we have access to data about the

journeys made by individually identifiable passengers: even
when such data is collected, privacy restrictions mean it can
only be used for direct line-of-business processing, rather
than speculative data science investigations.

MaaS challenge. This is a problem with two agencies—the
highways agency and the bus transit agency—linked together
by choices made by users. The challenge is to make it quick
and easy to assess possible interactions between the agencies,
given data that’s readily available. If such a preliminary
assessment raises concerns, it might be followed by careful
expensive model building including e.g. passenger surveys,
then simulating remedies.

There are actually two challenges for data inference.
The first is inferring what is happening, and the second
is inferring what might happen. For the first challenge,
a typical task is “Estimate the origin-destination demand
matrix, given aggregate measurements on certain links”, and
we have already in Section VI how to solve it. For the second
challenge, a typical task is “Estimate the γ parameters in the
discrete choice model (1), in order to model how users will
react when the price changes.”

We propose that a pragmatic approach for the second
challenge and for many related problems is to generate a
synthetic population of individuals consistent with available
aggregate data. In the MaaS problem with buses on congested
highways, take the daily passenger counts on each route /
origin / destination as marginal data, and generate a synthetic
population in which each individual has a trip diary that
spans days. This population can then be analysed using
whatever statistical analyses are appropriate, in this case a
discrete choice model to test whether ‘experienced more
traffic intervention episodes’ is correlated with ‘less likely
to take bus’. The procedure should be repeated for multiple
synthetic populations, to assess the robustness of the answer.
If there is a widely accepted probabilistic model for user
behaviour it should be used (i.e. the synthetic populations
should be drawn from a conditional probability distribution);
otherwise the synthetic populations might be generated ad-
versarially, to find maximum and minimum values of the
target statistic. We call this general approach reconstruction.

This approach, of generating synthetic populations of
individuals given marginal observations, is meant as a widely
applicable first step for many analyses. On one hand it seems
naive—“just invent the data you don’t have”. On the other
hand it seems like nothing more than existing practice, from
the classic origin-destination inference problem (generate a
population of users each of whom occupies a path in a
network, given marginal data about origins and destinations)
to much more recent work on passenger trip reconstruction
(generate a population of train passengers, given their tap-in
and tap-out data, [13]).

We believe it’s useful to give a label to this general
approach. We hope by doing so to draw attention to a
common data science pattern in mobility modelling. Within
this limited application domain, as opposed to multiple impu-
tation in statistics in general, it might be possible to develop a



suite of reconstruction methods that work together and that
can be offered to city planners as building blocks within
a MaaS modelling toolkit. The concrete task of efficiently
reconstructing the population, given marginal datasets and
target statistics, is likely to pose interesting algorithmic
questions.
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