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Abstract 

Critical experiments and predictive models reveal that water rise through a cellulose foam is 

initially by capillary rise, followed by non-linear diffusion in the presence of trapping sites.  

Classical ideas on capillary rise are supported by observations that the Washburn law is obeyed 

up to the Jurin height.  However, water rise continues beyond the Jurin height, and this 

subsequent phase is diffusion-controlled according to the following evidence: the nature of the 

quantitative dependence of water rise upon time, the insensitivity of water rise to the direction 

of gravity, and the fact that the water front continues to rise in the foam after the water reservoir 

has been removed.  Water diffusion occurs through the cellulose fibre network, along with 

trapping/de-trapping at molecular sites.  The diffusion equations are solved numerically, and, 

upon comparing the predictions with the observed response, values are obtained for the 

diffusion constant and for the ratio of trap density to lattice density.  The diffusion model 

explains why the drying of a damp foam is a slow process:  the emptying of filled traps requires 

diffusion through an adjacent lattice of low water content.   

(keywords:  foams, diffusion, computed tomography) 

 1.  Introduction 

Rising damp is ubiquitous in porous materials ranging from bricks and concrete to fibre-

based materials such as wood, mineral wool insulation and cotton fabrics.  A quantitative 

understanding of the transport of water through porous media such as cellulose is needed in 
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several industries such as textile, fabric design, printing technology, food processing, timber 

construction and the paper industry.  In broad terms, the mechanism of liquid transport involves 

capillary rise and/or diffusion, but the precise details are lacking due to a paucity of appropriate 

experiments.  This is in part due to a lack of suitable experimental techniques:  only recently 

has it become possible to scan the distribution of water content through the thickness of these 

materials by micro Computed Tomography (CT), for example.  And, in part, it is only recently 

that predictive maps have been constructed to characterise the regimes of diffusion in the 

presence of traps, see for example Raina et al. (2017). The current study of water migration 

within a cellulose foam makes use of both these experimental and theoretical advances in order 

to elucidate the mechanics of this commonly observed, but imperfectly understood, 

phenomenon.  

Consider the simple experiment of placing the bottom surface of a dry cellulose foam 

into a reservoir of water.  Initially, water rises into the foam such that the height of the advancing 

wet front h scales with time t according to 1/2h t , then the dependence of h upon t changes to 

a new power law that is close to 1/4h t , see for example Siddique et al. (2009).  The initial 

phase is consistent with either a diffusion law, or capillary flow in accordance with the well-

known Washburn equation1.  The Washburn equation predicts 1/2h t  initially, followed by 

arrest of the liquid front at the so-called Jurin height.  The subsequent phase of liquid rise must 

involve a different mechanism in order to give the observed response of 1/4h t .  For example, 

Kim et al. (2017) assume that this second regime is associated with Darcy flow through a porous 

media such that the permeability varies with height. Ha et al. (2018) invoked the same 

assumption in order to obtain the observed response of 1/5h t . It is difficult to justify this 

                                                           
1 Also known as the Bell-Cameron-Lucas-Washburn (BCLW) equation, as explained by Reyssat et al. (2008). 
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assumption on physical grounds for a uniform, homogeneous foam, and an alternative 

explanation is advanced in the present study. 

1.1 Capillary rise 

Porous materials comprise a heterogeneous network of interconnected channels, giving 

a physical basis for idealising liquid flow in a porous media by flow in a capillary tube.  Upon 

neglecting inertial forces (Fries, 2008) and upon assuming a fixed contact angle between the 

liquid and the solid surfaces, liquid flow in a capillary tube can be derived using the Hagen-

Poiseuille flow law by considering the following thought-experiment.  A vertical capillary tube 

of uniform diameter d is brought into contact with liquid at its bottom end (see Fig. 1a).  Liquid 

enters the tube due to suction on the liquid side of the meniscus, and gives rise to a rising height

( )h t  of the liquid column as a function of time t.  Write   as the contact angle,  the liquid-

air surface tension,   the liquid viscosity,   the liquid density and g the acceleration due to 

gravity. Then, the net pressure drop along the tube is of magnitude (4 cos / )d gh    and 

drives Poiseuille flow such that   

       2

4 cos 32 hh
gh

d d
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  .    (1) 
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as first given by Washburn (1921).  Note that this is also the solution for Darcy flow (Darcy, 

1856) in a porous medium, upon taking the permeability  of the porous medium to be 

2 32d   in terms of a representative pore diameter d.  As 0t  , (2) simplifies to  

1/2 1/2( cos / 4 )h d t    ,    (3) 

whereas as t  , h(t) asymptotes to the limiting value 
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Jh h
gd
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
  ,     (4) 

which is known as the Jurin height (Jurin, 1717), Jh .  We note that (3) is the solution to (1) in 

the absence of gravity, g = 0, and consequently (3) is the solution for horizontal capillary flow; 

for such horizontal flow, the Jurin height is unbounded, and capillary rise continues with 

increasing time, as sketched in Fig. 1b.    

1.2 Diffusion 

An alternative mechanism for water seepage in a porous solid is diffusion.  The driving 

force is now the concentration C of the water in the porous solid, and the simplest diffusion law 

is the linear Fick’s law: 

    
2

2

C C
D

t x

 


 
,     (5) 

in terms of a diffusion constant D.   

Consider again the simple experiment of placing the bottom surface (x=0) of a dry 

cellulose foam into a reservoir of water, and treat the foam as a half-space over x > 0, where x 

is in the vertical direction.  Assume that ( 0, 0) 0C x t    is the initial concentration profile 

and enforce C = C0 at x = 0 for t > 0.  Then the solution of (5) is simply 0erfc
2

x
C C

Dt
  and 

this implies that C attains the value C = 0.157C0 at the location 2x Dt , for example.  Thus, 

the diffusion front migrates in the same manner as the initial stage of the Washburn equation, 

making it impossible to distinguish between the two mechanisms of water migration solely on 

the basis of the movement of the water front. However, for most practical purposes, the 

diffusive transport of water along a vertical foam column does not arrest at a Jurin height and 

this will serve as one of the methods to distinguish between the two regimes. To understand the 
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limitation (if any) placed by gravity on diffusive transport, recall that the chemical potential of 

water with a concentration C at a height h in the foam is given by  

 

  0 ln mRT C gh     ,    (6) 

where m  = 18 g mol-1 is the molar density of water, R the gas constant and T the absolute 

temperature while 0  is a reference potential and g the acceleration due to gravity. Then at 

equilibrium, the water concentration at a height h for a given concentration C0 at h = 0 is given 

by     

  
0

exp mghC

C RT

 
  

 
.     (7) 

Thus, at T = 300 K the concentration 0 0/ 0.37C C e C    at a height / ( )mh RT g  13 km. 

Of course, this analysis is unrealistic as the acceleration due to gravity and temperature are not 

constant over such a large height but it serves to illustrate the point that vertical transport by 

diffusion is essentially unhindered by gravity for any practical laboratory experiment. Thus, the 

existence of a Jurin height is strong evidence for capillary rise rather than for diffusion. 

The above diffusion theory neglects the presence of traps for the diffusing fluid. Now 

assume that traps exist: the total concentration of water is CTOT = CL + CT, where CL(x,t) and 

CT(x,t) are the lattice and trapped water concentrations, respectively (here we are using 

terminology of solid state diffusion with lattice water referring to water that is weakly adsorbed 

by the cellulose while trapped water is the strongly adsorbed water).  The diffusion equation 

(5) is modified to 

  
2
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L T L
L
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Here, 0 exp( / )LD D Q RT   is the lattice diffusion coefficient in terms of temperature T, 

universal gas constant R, lattice activation energy Q, and the diffusion pre-exponential factor 0D
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.  Introduce the trap and lattice occupancy fractions as L and T, respectively, such that 0 1L   

and 0 1T  .  Then, we can write the lattice and trap concentrations as CL = L NL and CT = T 

NT, respectively, where NL is the number of lattice sites per unit volume, and NT is the number 

of trap sites per unit volume.  For simplicity, assume that each lattice site and each trap site can 

accommodate only one water molecule, and define the trap density ratio as /T LN N N . 

Equation (8) can then be rewritten as  

  
2

2

L T L
LN D

t t x

    
 

  
.    (9) 

It remains to specify an evolution law for the trapped water.  Assuming local equilibrium 

between the lattice sites and trapped water due to the rapid jumping of water molecules back 

and forth between the neighbouring lattice and trap sites (Oriani, 1970; Raina et al., 2017) we 

have 

  
1 1

T L

T L

K 

 


 
,     (10) 

where the equilibrium constant K scales with the trap binding energy H according to 

  exp
H

K
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.     (11) 

Now, when 1K , (10) can be approximated by  
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and (9) can be re-expressed as  
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1
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The initial state of the foam is taken to be ( 0, 0) 0L x t    , and subsequently we enforce 

0( 0, 0) 0L Lx t     .  Raina et al. (2017) developed a number of analytical solutions to (13) 
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depending upon the values of  0, LKN K .  For example, when 0 1LKN K , they find that 

0erfc
2

L L

L

x

D t
  .  Upon defining the diffusion front by the location at which the lattice 

occupancy has risen to 0 0.157L L  , the diffusion front is at 2 Lx D t , in agreement with 

the location of the diffusion front absent any traps (recall the solution above to (5)).  However, 

we emphasise that the total concentration profile is different when traps are present: the traps 

have full occupancy 1T   when 0L
  (since 1K  ).  Thus, in the presence of traps, the 

diffusion front can migrate in the same manner as the early phase of the Washburn equation, 

but the concentration profile behind the front is different. 

The remainder of the paper is organized as follows.  First, we present reservoir-fed 

‘vertical tests’ in which the bottom face of a cellulose foam specimen is placed in contact with 

a water reservoir.  We confirm that two stages of water rise exist:  stage I up to a Jurin height, 

followed by stage II beyond the Jurin height.  Additional ‘horizontal tests’ are performed on 

specimens such that water flow is horizontal rather than vertical to confirm that the existence 

of a Jurin height in the vertical tests is due to the presence of gravity.  A central challenge in 

our study is to provide evidence that water rise in stage I vertical tests is by capillary flow while 

water rise in stage II (above the Jurin height) is due to diffusion.  Evidence is provided in the 

form of density profiles in interrupted tests, involving the use of micro computed tomography 

(CT).  Additional insight is obtained by performing a further series of tests:  upon interruption 

of a test, the lower portion of the specimen and water reservoir are removed and water rise 

within the remaining upper portion of the specimen is monitored.  The cut is positioned above 

the Jurin height, such that the ensuing response is a modification to the stage II behaviour; on 

restarting the test, the new initial state comprises a concentration profile of water over a finite 

height of foam above the cut.  These ‘post-cut’ tests reveal that water diffuses through the foam, 
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aided by deep traps2.  The above diffusion model for the case of deep traps is compared to the 

observed water rise in the post-cut tests and in stage II of the reservoir-fed tests.   

2.  Reservoir-fed water rise experiment  

2.1  Materials 

Water rise tests were performed on a cellulose foam3 comprising a viscose cellulose 

matrix (dissolved cellulose of wood pulp) reinforced by cellulose fibres (Märtson, et al., 1999).  

Viscose, cellulose fibres, and sodium sulphate crystals were mixed mechanically and then 

heated to 90 – 95 oC such that the sodium sulphate melts and drains from the container leaving 

pore spaces in the foam (Coda, 2005).  The cellulose foam has a density f   kg m
-3

 and, 

upon assuming that the cellulose is of density S  1500 kg m
-3

, the relative density of the foam 

(in the dry state) is    0.03. 

Scanning Electron Microscope (SEM) images of the dry cellulose foam show two scales 

of porosity:  macropores with dimensions on the order of a few millimetres (see Fig. 2a) and 

micropores in the cell walls of the macropores, on a length scale on the order of a few microns 

(compare Figs. 2a and 2c).  In the images, the label RD defines the Rise Direction of the foam.   

2.2  Reservoir-fed test method 

Water front advancement in cellulose foam is tracked visually, see Fig. 2d.  The tests 

were performed using distilled water at room temperature (22 oC) such that the water-air surface 

tension is  = 72 × 10-3 N m-1, water density is   = 1000 kg m
-3

 and water viscosity is  = 0.9 

× 10-3 Pa s.  The time-dependent position of the wet front was recorded by a high-speed camera 

                                                           
2 This is analogous to the diffusion of hydrogen through a metallic alloy with the diffusion aided by the presence 

of hydrogen traps in the microstructure. 
3 Supplied by Suvic Products Ltd., 3 Brunel Rd, Totton, Southampton SO40 3WX.  http://www.suvic.co.uk/ 
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(frame rate in the range 25 – 100 s-1) in the initial stage I regime of water rise, and by a CMOS 

camera (frame rate in the range 0.5 – 2 min-1) in the subsequent stage II regime of water rise.   

Each experiment was initiated by bringing the bottom face of the foam into contact with 

a reservoir of distilled water.  The water level of the reservoir was maintained by the addition 

of water to the reservoir during each test.  Two types of test were designed: vertical reservoir-

fed tests V(RF) and horizontal reservoir-fed test H(RF) in order to explore the role of gravity, 

see Fig. 3.  All tests were performed such that the Rise Direction (RD) of the foam is transverse 

to the water flow direction. A series of preliminary tests revealed that the water rise dynamics 

has a negligible sensitivity to the rise direction of the foam in relation to the water-rise direction. 

Vertical Reservoir-Fed tests V(RF)  

In the Vertical Reservoir-Fed tests V(RF), dry foam samples of square cross-section w 

× w (w = 22 mm) and length 200 mm were employed, unless otherwise stated.  The water front 

height h(t) was measured from the water level of the reservoir, see Fig. 3a.  The foam specimens 

were located inside a transparent PMMA tube (of inner diameter 38 mm) such that the bottom 

edge of the tube was placed inside the liquid reservoir and the top of the tube was covered by a 

plastic film containing a central hole of diameter 1 mm to minimize the effect of water 

evaporation from the sample;  the PMMA tube is not included in the sketch Fig. 3a for the sake 

of clarity. 

Horizontal Reservoir-Fed tests H(RF)  

The geometry of the specimen in the Horizontal Reservoir-Fed test H(RF) is given in 

Fig. 3b: the specimens had a cross-section w × w (w = 22 mm) and a length of 400 mm in the 

water-rise, X-direction.  The left-hand portion of the specimen was placed in the water reservoir 

while the weight of the right-hand portion was supported (not shown in sketch Fig. 3b).  In the 

H(RF) test the measurement of wet-front migration began when the wet front reached the step 



Page 10  
 

in geometry (i.e. at X = 0) along the trajectory shown in Fig. 3b; the time required for the wet 

front to reach X = 0 and the trajectory length between this location and the reservoir were added 

to the measured time and wet front length, respectively. 

2.3 Reservoir-fed test results 

The measured wet front height h versus time t for the reservoir-fed experiments are 

shown in Fig. 4a. The V(RF) tests reveal two stages of water rise:  stage I in support of the 

classical Washburn law (2), such that 
1/2h t  for the initial 10 seconds followed by a slower 

rate of rise (for 24Jh h  mm).  In contrast, the H(RF) tests reveal that, in the absence of 

gravity, the rate of water rise throughout the test follows the same power law, 
1/2h t , as that 

observed in the initial phase of stage I of the V(RF) test.  This is again consistent with the 

prediction (2) of the Washburn law absent gravity, 0g  . Thus, we argue that Jh =24 mm in 

the vertical test is the Jurin height for capillary rise. 

Now consider stage II of water rise (that is, beyond the Jurin height) for the V(RF) tests. 

We note in passing that the dependence of h(t) over the full range of time t in stage II of water 

rise does not support a single power law fit. Initially, soon after the Jurin height has been 

achieved we find that 
1/5h t  as suggested by Ha et al. (2018) whereas the data over the full 

span of the stage II can be fitted by the relation of the form 
1/4h t , although it has no obvious 

physical basis; recall the study by Siddique et al. (2009) and by Kim et al. (2017). It is 

instructive to assume that the second regime of water-rise initiates when the Jurin height is 

attained.  Accordingly, rescale  h t  to  h t   where Jh h h    and Jt t t   , where Jt  is the 

time to attain the point of inflection on the  h t  curve, that is, the time to attain the Jurin height 

Jh .  The replot  h t   of the data is shown in Fig. 4b for the V(RF) tests: we note that 
1/2h t 

, indicative of either diffusion or capillary flow.  Now, if stage II is also due to capillary flow, 
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then we would anticipate the existence of a second Jurin height associated with finer capillaries 

than in Stage I.  In order to explore whether a second Jurin height exists in stage II, a test was 

continued for about 6 days using a specimen of length 400 mm; no second Jurin height was 

observed (see Fig. 4a).  It proved impractical to continue the experiments for a longer period 

due to the effects of water evaporation.  An alternative strategy was adopted to distinguish 

between diffusion and capillary rise:  we measured the density profile within the foam in a post-

cut V(RF) test in order to distinguish between water rise by capillary flow and by diffusion. 

2.4 Density profile 

The spatial distribution of foam density was measured by micro computed tomography 

(CT) after interruption of a series of nominally identical vertical reservoir-fed test V(RF).  

Checks were made on the accuracy of the CT measurements by performing additional 

destructive tests whereby the specimen was cut into transverse slices and the density of each 

slice was measured via its weight and volume.  The computed tomography x-ray scans were 

performed using a 50 kV x-ray source, a 1s exposure time and a spatial resolution of 36 m per 

voxel unit:  this is the highest achievable resolution as dictated by the dimension of the foam 

specimens and the performance of the CT machine4. 

Each scan of the V(RF) foam samples takes about one hour, and, in order to prevent 

migration of water along the foam specimen during the measurement, the foam samples were 

frozen at the desired instant during the V(RF) test, and maintained in the frozen state during the 

CT scan.  The procedure was as follows.  When the wet front attained the desired position in 

the vertical reservoir-fed V(RF) test, the foam sample was quickly removed from the water 

reservoir and immersed in liquid nitrogen.  In order to avoid infiltration of the foam by liquid 

nitrogen, the foam was sheathed in a thin film of low density polyethylene (LDPE) immediately 

                                                           
4 Nikon X-TEK (XT H 225ST) machine. Post-processing analysis of the reconstructed CT 

images was performed using VGStudio MAX 2.2 software. 
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prior to immersion.  The foam was maintained in the frozen state during the CT scan by 

suspending it above a bath of liquid nitrogen during the CT scans: the temperature of the foam 

was maintained below – 70 oC by this arrangement. In order for the foam samples to fit into the 

CT machine (and maximise resolution), the samples were cut into 45 mm lengths after being 

frozen. The foam density profile was measured in slices of thickness 1mm (along the height of 

the foam column) by the post-processing CT software following the calibration of the CT scan 

results against the density of the distilled water, i.e. 1000 kg m-3.  The average foam density at 

each slice is calculated via the rule of mixtures by measuring the volume fraction and mean 

density value of the foam and water from a calibrated density histogram of each slice.    

2.5 Results and discussion for the foam density measurement of V(RF) tests  

Representative CT images of the cellulose foam after the V(RF) test in Fig. 5a shows 

the distribution of water at the mid-plane section of the foam.  The density distribution of the 

foam during the V(RF) tests, at selected times, is shown in Fig. 5b.  We make the following 

deductions: (i) within stage I of water rise, the foam density attains a steady state profile, and 

(ii) within stage II of water rise, the foam density profile spreads along the foam with increasing 

time.  Now compare the measured profile with the predictions of the Washburn theory of 

capillary rise, and of diffusion theory.  The Washburn prediction of density for an array of 

identical capillary tubes gives a uniform density profile in stage I of water rise, as sketched in 

Fig. 6a; this is qualitatively different from that observed in Fig. 5b.  One approach is to interpret 

the non-uniform density profile, as observed in our tests, as evidence that the foam 

microstructure behaves as an ensemble of capillary tubes of varying diameter, as sketched in 

Fig. 6b.  But, the evolving density profile in stage II of the V(RF) tests (Fig. 5b) suggests 

diffusional flow, and we proceed to provide further evidence for this via a series of additional 

experiments.  
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3. Post-cut liquid rise experiments 

Capillary rise requires the existence of a fluid reservoir to feed the capillaries. If such a 

reservoir were removed, then capillary rise would arrest immediately. This motivates a second 

set of experiments, such that the liquid reservoir is removed by making a cut in the foam column 

near the Jurin height and then by removing the wet foam below the cut height. This critical 

experiment is detailed here.  Two types of test were performed: the vertical post-cut test V(PC) 

and the horizontal post-cut test H(PC).  

 

The vertical post-cut V(PC) test 

The vertical post-cut V(PC) test setup is sketched in Fig. 7a; it was performed as follows.  First, 

a V(RF) test was conducted until the wet front length h had extended to a selected distance 

 Ch t  at a time tC beyond the Jurin height, Jh .  The specimen was then removed from the water 

reservoir and the sample was cut across its cross-section at a height 
Ch  into two pieces, such 

that 
Ch  is intermediate between  Ch t  and the Jurin height 

Jh . The wet length of the specimen 

above the cut is  C C Cl h t h  , and provides a source of water migration along the remaining 

dry portion of the specimen beyond the height  Ch t .  The test was resumed such that the 

rescaled wet front height ˆ
Ch h h   was measured as a function of time ˆ

Ct t t  .  

 

The horizontal post-cut V(PC) test 

The horizontal post-cut specimen H(PC) is shown in Fig. 7b.  The preparation of the specimen 

is identical to that for the V(PC) test;  the only difference is that, after the specimen has been 

cut at the height 
Ch , the upper portion is rotated to the horizontal direction and the wet front 

length ˆ
Ch h h   was measured as a function of rescaled time ˆ

Ct t t  . 
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3.1  Results and discussion for the post-cut tests  

Typical  h t  responses from the V(PC) and H(PC) post-cut tests are plotted on Fig. 8, 

for the choice hC = hJ = 24 mm and lC = 44 mm.  In addition, the responses for the reservoir-

fed tests V(RF) and H(RF) are included on the plot.  A number of deductions can be made, as 

follows. 

(i) The direction of gravity (relative to the axis of the specimen) does not affect the rate 

of water migration in the V(PC) and H(PC) tests.  This is consistent with the 

predictions of diffusion theory, or alternatively, with the early stages of capillary 

flow. 

(ii) The post-cut  h t  > hC response in the V(PC) and H(PC) tests is identical to that in 

stage II of the vertical reservoir-fed test V(RF).  This is suggestive of diffusional 

flow. 

(iii) Arrest of the wet front is observed for both the V(PC) and H(PC) tests at t = tK = 3 

× 104 s:  this appears as a knee in the plot of Fig. 8.  The dependence of the wet front 

height (at the knee) upon hC and lC is summarised in Table 1.  Arrest of the diffusion 

front in the post-cut V(PC) and H(PC) tests is suggestive of water transport by 

diffusion in the presence of deep traps.   

 

Additional insight into the transport mechanism in stage II is obtained by measurement of 

density profiles of frozen specimens by CT scans (using the same method as that described for 

the reservoir-fed tests).  Representative density profiles are shown in Fig. 9 for the vertical post-

cut test V(PC), for the choice hC = hJ = 24 mm and lC = 24 mm.  Profiles are shown immediately 

after making the cut ( ˆ 0t  ), at an intermediate time ˆ 800t  s, and at the knee ( 4ˆ ˆ 10Kt t  s).  

The observed density profile, and the presence of the knee in the  ˆ ˆh t  response supports an 
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interpretation of diffusion in the presence of deep traps as follows.  We infer from Fig. 9 that, 

at time ˆ 0t  , the lattice occupancy fraction L  varies almost linearly from a value of J

L  at the 

Jurin height to a value of zero at the wet front.  Take the traps to be deep such that K >>1 and 

refer to (12); then, the occupancy fraction of traps T  equals unity if 0L   and vanishes if 

0L  ,  as sketched in Fig. 10a.  Write   as the axial co-ordinate beyond the cut, and recall 

that the distance from the cut to the position of the wet front at ˆ 0t   is written as 
Cl .  Then, 

upon writing L
  as the lattice occupancy fraction at the cut (above the Jurin height), we have 

ˆ(0 , 0) (1 / )L C L Cl t l         and ˆ(0 , 0) 1T Cl t     , see Fig. 10a.   

Full numerical solutions are given below for the diffusion equation (13) in the presence of 

deep traps.  The qualitative nature of the solution is given now in order to show that it is 

consistent with the observations of the post-cut experiments as reported in Figs. 8 and 9.  In 

broad terms, lattice diffusion leads to propagation of the wet front, with T =1 behind the wet 

front.  This process continues until the lattice occupancy L  drops to a sufficiently low value 

that T  drops to below unity, and the traps begin to empty again.  De-trapping of the water 

molecules from the trap sites is sketched in Fig. 10b, and takes place at a very slow rate due to 

the fact that the de-trapped water must drain into a lattice for which 1LK  .  This explains 

the knee in the  ˆ ˆh t  response, recall Fig. 8.  The detailed numerical solution is now presented 

to support this view. 

4. Theory of water diffusion in a cellulose foam 

Lattice diffusion in stage II (beyond the Jurin height) is modelled by (13), with deep 

traps present, as sketched in the energy landscape of Fig. 11.  Recall that the regimes of solution 

of (13) depend upon the values of 
0

LK  and KN , as discussed in detail by Raina et al. (2017).  
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We shall show that our observations of water migration support the notion that 
0 1LK KN   

(termed regime IIIb in Raina et al. (2017)).  For example, the sharp wet front in the stage II 

reservoir-fed test indicates that diffusion occurs within regime III according to the classification 

of Raina et al. (2017)5.  Within this regime, the diffusion front length advances with time t 

according to 2 LD t  .  Recall the  h t   response as shown in Fig. 4b for the V(RF) tests is 

of the form 2 Lh D t   and we thereby obtain LD  = 3.8×10-7 m2 s-1.   

The value of the equilibrium constant K is obtained directly from the trap binding energy 

H through equation (11).  In principle, the trap binding energy between cellulose and liquid 

water can be calculated from the heat of absorption of liquid water by cellulose.  However, an 

examination of the relevant literature (see below) reveals that it is difficult to measure the heat 

of absorption of water by cellulose at zero moisture regain, as defined by the amount of moisture 

present in material before absorption commences.  Rees (1948) reviewed measurements of the 

heat of wetting and absorption of water by a range of celluloses and found that the extrapolated 

value for the heat of absorption at zero moisture regain is 21.3 kJ mol-1, based on the measured 

heat of wetting data with the minimum moisture regain of 0.3%, 0.9% and 1.2%.  A more 

precise measurement by Morrison and Dzieciuch (1959) gives the heat of absorption of liquid 

water by cellulose at zero moisture regain to be 31.76 kJ mol-1, based on measured heat of 

wetting data with the minimum moisture regain of 0.17%.  More recently, Portugal et al. (2010) 

has calculated a higher heat of sorption of liquid water by cellulose to be 35 kJ mol-1.  Here, we 

will take the heat of absorption of liquid water by cellulose to be 31.76 kJ mol-1, as suggested 

by Morrison and Dzieciuch (1959); the equilibrium constant K follows immediately from (11) 

                                                           
5 In the regime I diffusion, diffusion front length h advance with time t through 1 2h t ; however, the diffusion 

front is not sharp for regime I.  
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as K = 4.3 × 105.  It remains to state the trap density N  in order to solve the governing diffusion 

equation (13).  

4.1 Trap density  

Consider again the measured foam density profiles in the vertical post-cut tests V(PC), 

for the case where the cut height Ch  equals the Jurin height Jh , recall Fig. 9.  The wet foam 

density at the location C Jh h , as measured immediately after making the cut ˆ 0t   and at the 

knee point 4ˆ ˆ 10kt t  s of the h  versus t  curve of Fig. 8, are now used to deduce the values of 

TN  and /J

L N  as follows.  The density of the wet foam at any location ˆ( , )t   is related to the 

total concentration of water 
TOT L L T TC N N    by 

                                                            w
0

A

L L T T

M
N N

N
      ,    (14)  

where Mw is the molar mass of water molecules, NA the Avogadro constant and 0  is the dry 

foam density.  Write J

L  as the lattice occupancy of water at the Jurin height at ˆ 0t  , and note 

that 1T  .  Then, (14) can be re-written as 

                                                            w
0

A

1
J

L
J T

M
N

N N


 

 
   

 
.    (15) 

Also, at 4ˆ ˆ 10kt t  s, it is assumed that 0L   and 1T   over the zone ˆ0 h  , and (14) 

reduces to 

                                                              w
0

A

ˆ(0, ) T
k

M N
t

N
   ,     (16)  

Upon taking 250J  kg m-3, 0 50   kg m-3 and ˆ(0, ) 85kt  kg m-3 as the relevant measured 

densities in Fig. 9, the pair of equations (15) and (16) can be solved to give 271.17 10TN   (m-

3) and / 4.71J

L N  .  
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Alternatively, the value of /J

L N  can be determined by mass conservations of water 

for the times ˆ 0t   and ˆ
K̂t t  as follows.  Consider the more general case where C Jh h  , as 

sketched in Fig. 10.  Assume that the lattice occupancy of the water at ˆ 0t   varies in a linear 

fashion over 0 Cl  , and write /J

L L L C Jl l     at  =0, where Jl  is the length of wet foam 

above the Jurin height, such that J C C Jl l h h   .  Also assume that, at ˆ
K̂t t , we have 0L   

and 1T   over the zone ˆ0 Kh  . Then, mass conservation dictates that  

      
2

ˆ2 ( )J

J K CL

C

l h l

N l

 
 .     (17) 

Calculated values of /J

L N  using (17) for selected post-cut tests are listed in Table. 1, giving 

an average value of / 4.1J

L N   from all of the tests listed in Table 1.  This average is somewhat 

below the value / 4.71J

L N   as deduced by the previous method, and since we are unable to 

state that one method is more accurate than the other, we adopt the pragmatic approach of taking 

the overall average to be / 4.4J

L N  .  We shall show subsequently via numerical calculations, 

see Fig. 12, that 0.1J

L   gives good agreement with measurements and thus we infer a value 

of 0.02N  . This implies that with 271.17 10TN   m-3, the lattice site density 2751.5 10LN  

m-3.  

5.  Numerical analysis of the post-cut (PC tests)  

We assume the following material parameters for the diffusion model as measured 

above: 
54.3 10K   , 271.17 10TN   m-3, 2751.5 10LN   m-3 ( 0.02N  ) and 73.8 10LD    

m2 s-1.  The PDE (13) is solved numerically by using the partial differential equation solver 

pdepe in MATLAB6. The pdepe solver has an automatic time-stepping routine to ensure 

                                                           
6 https://www.mathworks.com/ 
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temporal convergence. The simulations used a uniform mesh of mesh size e = 0.1 mm: a mesh 

sensitivity analysis confirm that this spatial resolution was sufficient for all cases considered.  

The initial conditions and boundary conditions are as follows.  Assume that the lattice 

occupancy fraction L  of water at ˆ 0t   varies linearly over 0 Cl  , and write L L    at 

=0.  The remainder of the foam is dry, such that L =0.  At ˆ 0t  , the water lattice occupancy 

is taken to be 0L   at the right-hand boundary     while the flux /L    vanishes at 

the left-hand boundary  = 0.   

The magnitude of the initial lattice occupancy fraction at the Jurin height J

L  is obtained 

by matching numerical predictions of  ˆ ˆh t  to the observed solution for the case Cl =22mm, see 

Fig. 12.  Acceptable agreement is obtained by assuming that 0.1J

L  .  Upon adopting this 

value for J

L , numerical predictions of the spatial distribution of foam density at selected times 

are compared with the measured profile in Fig. 9.  Good agreement is noted between predicted 

and measured profiles, in support of the diffusion model with deep traps. 

In order to obtain further support for the diffusion model with deep traps, it is instructive 

to compare the predictions of the numerical model with the measured distribution of water (at 

lattice sites and at traps) from the vertical reservoir-fed tests, recall Fig. 5.  Predictions of the 

density of the wet foam are in excellent agreement with the measured distributions by CT 

analysis.  

6. Conclusions 

The transport of water through a cellulose foam has been investigated through a series 

of critical experiments designed to reveal the operative mechanisms. These experiments 

strongly suggest two regimes of behaviour for the rise of water in a vertical foam under the 

influence of gravity. In stage I, the transport is driven by capillary forces but this mechanism 
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becomes non-operative above the so-called Jurin height which, in this case, is approximately 

24 mm. However, water in these vertical experiments continues to rise above the Jurin height, 

albeit at a slower rate, now driven by a diffusive flow mediated by trapping at deep traps (i.e. 

sites within the foam that have a high affinity for water). Transport of water in a horizontal 

foam (where gravity plays no role) is always dominated by the fast capillary mechanism. 

Additional experiments measuring the water density (concentration) profiles within the foam at 

various stages of the transport as well as measurements where the water reservoir was 

eliminated confirmed the operation of these two distinct mechanisms. 

A model for the diffusive transport of water in the cellulose foam in the presence of the 

deep traps is also presented. Key parameters of the model including the density of the trapping 

sites, the trapping enthalpy and diffusion co-efficient are determined via independent 

measurements and comparisons of the numerical solution of the diffusion equations with 

observations. The water transport mechanisms, as well as the models presented, are expected 

to have application beyond cellulose foams. For example, rising damp in porous building 

materials is a problem of great practical interest, and application of the ideas of the current study 

(both experimental techniques and models) to such problems remain topics for future work. 
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Fig. 1. (a) Sketch of capillary rise in a vertical tube. (b) Sketch of the capillary rise height versus 

time in the presence of gravity as given by equation (2), in the absence of gravity via equation 

(3), and the observed behaviour. The equilibrium height in the vertical capillary tube, in the 

presence of gravity, is the Jurin height hJ. 
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Fig. 2 (a) SEM image of the dry cellulose foam showing macropores. (b) The cell walls of the 

macropores are made of micropores. (c) Magnified image of the micropores. (d) Optical image 

of the partially wet cellulose foam. The label RD defines the Rise Direction of the foam. 
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Fig. 3. (a) Test geometry for the Vertical Reservoir-Fed test V(RF): the water front height h(t) is 

measured from the water level of the reservoir. (b) Test geometry for the Horizontal Reservoir-

Fed test H(RF). The Rise Direction of the foam (RD) is in the Y-direction, as shown. 
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Fig. 4. (a) Measured wet front length h with time t for the vertical reservoir-fed test V(RF) and 

the horizontal reservoir-fed test H(RF). (b) The  h t  response is replotted as  h t   where 

Jh h h    and Jt t t   . 
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Fig. 5. (a) Representative 3D reconstructed computed tomography x-ray image of the partially 

wetted cellulose foam. (b) Measured foam density versus position X at selected times in the 

vertical reservoir-fed test V(RF). Numerical predictions are included (solid lines).  
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Fig. 6. (a) A sketch of the density profile as given by the Washburn prediction for an array of 

identical capillary tubes in stage I of water rise. (b) A sketch of the observed density profile in 

stage I of water rise in foam: a non-uniform distribution of  suggests the existence of a 

dispersion of capillary tube diameters.  The foam density at the Jurin height is J , and the 

density of the dry foam is 0 . 
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Fig. 7. (a) The vertical post-cut test V(PC) at ˆ 0t   and at ˆ 0t  . (b) The horizontal post-cut test 

H(PC) at ˆ 0t  . 
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Fig. 8. A comparison of  h t  for vertical and horizontal post-cut tests, V(PC) and H(PC), 

respectively, for the choice hC  = hJ  = 24 mm and lC = 22 mm. The measured  h t  responses 

from reservoir-fed tests V(RF) and H(RF) are taken from Fig. 4a for comparison purposes.   
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Fig. 9. The density profile ( )  , as measured by CT scans, for the V(PC) tests with hC  = hJ  = 

24 mm and lC = 24 mm. Measurements are reported at ˆ 0t  , ˆ 800t  s and at ˆ
K̂t t = 104 s. 

Numerical predictions are included.  
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Fig. 10. Inferred profiles of ( , )L T   in the vertical post-cut tests at (a) ˆ 0t   and ˆ
K̂t t .  
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Fig. 11. A sketch of the energy landscape for the kinetics of water diffusion through the lattice 

and at trap sites: The activation energy barrier for diffusion through the lattice is Q, and the 

trapping enthalpy is H. The quantities Et and Ed = Et – H are the trapping and de-trapping 

energy barriers, respectively, although Et plays no explicit role in the analysis used here assuming 

local equilibrium between the lattice and trapped water.  
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Fig. 12. Measured liquid rise ĥ  versus time t̂  for the post-cut tests, for the choice hC  = hJ  = 24 

mm and lC = 22 mm. Predictions by solving (13) are included for selected values of 
J

L .   
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Table 1. Chosen values of ( , )C Ch l  in the V(PC) tests, in relation to the Jurin height hJ  = 24 mm. 

Measured values of ˆ
Kh  and deduced values of /J

L N  from (17) are also given.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tests 
Ch  

(mm) 

Cl  

(mm) 

ˆ
Kh  

(mm) 

J

L

N


 

V(PC) hJ+22 22 44 4.00 

V(PC) hJ 22 70 4.36 

V(PC) hJ 22 74 4.72 

V(PC) hJ 44 130 3.91 

H(PC) hJ 44 119 3.41 


