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ABSTRACT: Oxadiazolines are bench-stable diazo precursors, which are activated under UV radiation in the presence of
vinylboronic acids and aldehydes to enable a one-step three-component assembly of densely functionalized homoallylic
alcohols. Substitution on all positions of the homoallylic alcohol product were achieved with high functional group tolerance.
No catalyst or other additive was required to effect the reaction, which proceeds at 20 °C over 40 min. Imines and indoles were
also incorporated, giving access to homoallylic amines.

Substituted homoallylic alcohols are versatile and popular
synthetic building blocks for the synthesis of valuable

biologically active targets such as polyketides.1 Various routes
to these materials have been introduced over the years,2 many
of which employ allylboronates as a common intermediate due
to the mildness and versatility of their reactions with carbonyl
compounds.3 While significant progress has been made in the
preparation of densely functionalized allylboronic acids and
boronates,4 polysubstituted derivatives can be problematic
owing to their instability (Figure 1). Therefore, new
approaches for their preparation and the subsequent trans-
formation into homoallylic alcohols are attractive.5 Herein, we
report a three-component preparation of multiply substituted
homoallylic alcohols via in situ generated allylboronic acid
intermediates.

Pioneering research by Warkentin et al. disclosed that under
UV radiation around 300 nm, 1,3,4-oxadiazolines undergo a
photolysis process to give diazo compounds, many of which
were not easily accessible via conventional diazo precursors
such as hydrazones.6 Our recent work has revealed that these
reactive nonstabilized diazo compounds generated via this
pathway readily undergo C(sp2)−C(sp3) cross-coupling
reactions with arylboronic acids (Figure 2).7 We anticipated

that a similar strategy could be applied to vinylboronic acids to
generate highly substituted allylboronic acids in situ, and
subsequently to afford functionalized homoallylic alcohol by a
reaction with aldehydes.
To avoid potential buildup of hazardous quantities of diazo

compounds, we commenced the investigation by irradiating a
combination of oxadiazoline precursor (2) with styrylboronic
acid (in equilibrium with boroxine)8 and 4-chlorobenzalde-
hyde using a flow reactor fitted with a UV irradiation source.9

As solvent, we used cyclopentylmethyl ether (CPME) as a
greener alternative to tetrahydrofuran.10 Pleasingly, the first
reaction gave a 42% yield of the desired product (4a) with the
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Figure 1. Selected examples of homoallylic alcohol synthesis via
allylboronate intermediate.

Figure 2. Nonstabilized diazo compound generated via UV activation
of oxadiazoline, and their subsequent trap with boronic acid.
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lamp power of 9 W (Table 1, entry 1). An improved yield of
82% was obtained by increasing the power of the lamp to 28 W

(entry 2). Varying the ratio of starting materials does not lead
to any higher yield improvements (entry 3, 4). Different
solvents were examined such as 2-methyltetrahydrofuran or
dichloromethane, which gave poorer results (entry 5, 6).
Adjusting reaction time showed that 40 min irradiation time
was sufficient to complete the reaction (entry 7, 8). Increasing
the reaction temperature to 30 °C resulted in slight loss of
yield while cooling the reaction coil to 10 °C drastically
reduced the yield of product to 37% (entry 9, 10). It is also
worth noting that no trace of the other diastereoisomers were
observed throughout the optimization process, with diaster-
eoselectivity above 25:1 in all cases (for X-ray crystal structure
of the reaction product, see Supporting Information).
With the optimal conditions in hand, we moved on to

explore the scope of the method. A range of alkenyl boronic
acids were well tolerated (Scheme 1). Styrylboronic acids
represented by derivatives with different substitution of the
benzene ring, all gave good yields of the corresponding
homoallylic alcohols (4a−4f). It is worth noting that 4-
trifluoromethyl-styrylboronic acid offered little difference in
reactivity, providing 70% yield (4f). Alkylvinyl boronic acids
were tolerated under these conditions, producing the products
in acceptable yields (4g and 4h). Cyclopentenyl boronic acid
showed comparable reactivity, generating product 4i in 63%
yield. A gram-scale reaction was executed with chloromethyl-
vinylboronic acid, which afforded 1.03 g of the targeted
product with a consistent yield of 68%, thus demonstrating the
robustness of this method.

A variety of side chain substituents on the allylboronic acid
intermediates were accomplished through the installation of
the functionalized diazo compounds formed from various
oxadiazoline precursors. Several oxadiazolines were prepared
and examined (Scheme 2). Alkyl groups, including cyclopentyl
and highly hindered adamantly groups all afforded good yields
(4j and 4k). Small-ring groups such as cyclobutyl, oxetanyl and
azetidyl groups, were tolerated without reduction in yield (4l−
4n), demonstrating the mild nature of the reaction conditions.

Table 1. Optimization of the Three-Component Synthesis
of Multisubstituted Homoallylic Alcohola

entry solvent
lamp power

(W)
temp
(°C)

time
(min) yield (%)

1 CPME 9 20 40 42
2 CPME 28 20 40 82 (79)b

3c CPME 28 20 40 78
4d CPME 28 20 40 50
5 CH2Cl2

e 28 20 40 0
6 2-MeTHF 28 20 40 43
7 CPME 28 20 80 80
8 CPME 28 20 20 51
9 CPME 28 30 40 75
10 CPME 28 10 40 37

aReaction conditions: Styrylboronic acid (1.5 equiv, 0.075 M),
oxadiazoline (1.5 equiv, 0.075 M), aldehyde (1.0 equiv, 0.05 M).
NMR yield with 1,3,5-trimethoxybenzene as an internal standard.
bIsolated yield. cWith styrylboronic acid (2.0 equiv, 0.1 M) and
oxadiazoline (2.0 equiv, 0.1 M). dWith styrylboronic acid (1.0 equiv,
0.05 M) and oxadiazoline (1.0 equiv, 0.05 M). e20 mol % of DIPEA
was added to assist solubilizing the boronic acid.

Scheme 1. Preparation of Multisubstituted Homoallylic
Alcohols Using Various Vinyl Boronic Acids 1a

aReaction conditions: 1 (1.5 equiv), 2 (1.5 equiv), 3 (1.0 equiv), 0.05
M. Isolated yields.

Scheme 2. Preparation of Multisubstituted Homoallylic
Alcohols Using Various Oxadiazolines 2a

aReaction conditions: 1 (1.5 equiv), 2 (1.5 equiv), 3 (1.0 equiv), 0.05
M. Isolated yields.
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Of the remaining substrates, both sulfide and sulfone were
acceptable substrates (4o and 4p), as well as the cyclo-
hexyldioxolane compound (4q). Nitrogen containing func-
tional groups featuring the N-pyrimidinylpiperidyl motif (4r)
or N-boc piperidyl group (4s) were also incorporated
efficiently, generating the related homoallylic alcohol products
in 49% and 74% yields, respectively.
Next, we evaluated a diverse series of aldehydes as coupling

partners (Scheme 3). Among these substituted aromatic

aldehydes, such as bromide (4t), ester (4u) and nitrile (4v)
all proved tolerant to the reaction conditions. A particularly
notable example was the use of 2-trifluoromethyl benzalde-
hyde, bearing both a strong electron-withdrawing group and a
steric hindered substituent delivered a 55% of product 4w.
Reactive α,β-unsaturated aldehyde showed a similar result and
gave 54% yield of product 4x. Different reaction partners with
2-chloropyridyl aldehyde also generated the corresponding
homoallylic alcohol in good yields (4y and 4z). Aliphatic
aldehydes, although distinctively different electronically
compared to aromatic derivatives, all reacted effectively. The
examples included were benzoxyacetaldehyde and hexanal,
both of which occurred in high yields (4aa and 4ab).
While the broad range of substrates listed above have

demonstrated the versatility of the methodology, compounds
with strong 310 nm UV absorption bands could arguably affect
the activation of oxadiazoline precursors. To address this
problem, the reaction conditions were reassessed where we
found a two-step approach to be optimal (Scheme 4). The
reaction mixture containing vinylboronic acids was converted
to the homoallylic precursor in the first step, and then
subsequently reacted with the aldehydes coupling partner in a
separate flask. This new approach substantially increases the
diversity of the method. In addition to phenol substrate (4ac),
other examples include several heterocyclic substrates such as
thiophene (4ad), pyrimidine (4ae), pyrazine (4af), indazole

(4ag), isoxazole (4ah), and pyrazole (4ai), as well as
tetrahydroisoquinoline (4aj) and propargyl aldehyde (4ak).
Additionally, incorporation of imine substrates11 and

indoles12 further expand the reaction scope, producing
homoallylic amines as primary products (Scheme 5, 6a−6d).

In conclusion, we report a new synthetic method toward
polyfunctionalized homoallylic alcohols, with oxadiazolines as
robust and efficient diazo precursors. The methodology
utilized CPME as solvent and required no catalysts nor
additives. The procedure was straightforward and was
exemplified by a broad range of functional group tolerance
in all reaction partners.

Scheme 3. Preparation of Multisubstituted Homoallylic
Alcohols Using Various Aldehydes 3a

aReaction conditions: 1 (1.5 equiv), 2 (1.5 equiv), 3 (1.0 equiv), 0.05
M. Isolated yields.

Scheme 4. Preparation of Multisubstituted Homoallylic
Alcohols Using Various Aldehydes 3a

aReaction conditions: 1 (1.5 equiv), 2 (1.5 equiv), 0.075 M; then 3
(1.0 equiv), 0.05 M. Isolated yields.

Scheme 5. Preparation of Multisubstituted Homoallylic
Amines Using Various Imines and Indole 5a

aReaction conditions: 1 (1.5 equiv), 2 (1.5 equiv), 0.075 M; then 5
(1.0 equiv), 0.05 M. Isolated yields.
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