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Abstract

Background: Selective serotonin reuptake inhibitor (SSRI) antidepressants prevent

serotonin (5-HT) uptake by the serotonin transporter (SERT). Since blood platelets express

SERT, SSRIs may modify platelet function and the risk of cardiovascular disease. However,

the beneficial or adverse effects of SSRIs on arterial thrombosis are poorly characterised

and detailed in vitro experimental data is limited. The SSRI citalopram is a racemate, the

(S)-isomer being the more potent SERT inhibitor. Although citalopram has been shown to

inhibit platelets in vitro, it is unclear whether this is mediated via SERT blockade.

Aim: To determine if citalopram inhibits platelet function via SERT blockade, or through a

novel mechanism of action.

Findings: 5-HT uptake into platelets was blocked by both citalopram isomers at

concentrations that had no apparent effect on platelet function. Despite the (S)-citalopram

isomer being the more potent SERT inhibitor, (R)-citalopram was equally potent at

inhibiting other platelet functions. These findings strongly suggest that inhibition of

platelet function by citalopram in vitro is not mediated by blocking SERT. Subsequent

experiments identified two putative mechanisms for citalopram-mediated platelet

inhibition: 1) citalopram did not inhibit calcium store release induced by the platelet

agonist U46619, despite blocking subsequent Rap1 activation. A credible target for this

inhibitory mechanism is the calcium and diacylglycerol guanine nucleotide exchange

factor-1 (CalDAG-GEFI): 2) citalopram suppressed early protein phosphorylation within

the GPVI pathway, resulting in the inhibition of subsequent platelet responses. Further

experiments show that other commonly used antidepressants also inhibit platelets. As

with citalopram, inhibition was only observed at concentrations above those required to

block SERT, suggesting that alternative inhibitory mechanism(s) are responsible.

Conclusions: Data presented in this thesis support two novel putative mechanisms of

citalopram-induced platelet inhibition. These findings demonstrate that citalopram

and other antidepressants inhibit platelets independently of their ability to block SERT-

dependent 5-HT transport. The identification of these mechanisms provides a pharmaco-

logical approach to develop novel antiplatelet agents based on current antidepressants.
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Chapter 1

Introduction

1.1 An introduction to platelets

Blood platelets are small (approximately 1-3 µm) anucleate cells, derived from

megakaryocytes primarily within the bone marrow. Platelets have long been known to play

important roles in haemostasis and thrombosis, and have more recently been recognised

to influence inflammation, wound repair, and cancer metastasis (Smyth et al., 2009, Gay

and Felding-Habermann, 2011). Platelets predominantly regulate such processes through

their activation, which is initiated by the binding of various ligands to surface receptors.

Activated platelets undergo distinct morphological changes and adhere to either the lining

of blood vessels or other cells within the blood. Platelets undergoing activation also release

the contents of specialised granules, which stimulate adjacent platelets, other blood cells,

and the endothelium.

1.1.1 The role of platelets in haemostasis and thrombosis

Impaired platelet activation or production is commonly associated with spontaneous

and prolonged bleeding. This observation highlights the fundamental role of platelets to

haemostasis, a physiological process that preserves vascular integrity and prevents blood

loss upon blood vessel damage. Haemostasis is broadly separated into the early formation

of a platelet plug, followed by thrombin-mediated fibrin formation, which leads to a stable

clot. This section will first outline the steps required for platelet plug formation (Figure

1.1), before describing in more detail the roles of important ligands and receptors that

govern platelet activation (Figure 1.2). Blood coagulation will be discussed briefly but is

less relevant to the work of this thesis.

Upon vascular injury, extracellular matrix (ECM) proteins, including collagen, laminin,

fibronectin, and von Willebrand factor (vWF), are exposed to flowing blood. In the

arterial circulation, initial platelet interactions with the ECM are mediated by vWF, which

binds both collagen and the platelet glycoprotein (GP)Ib-IX-V complex. vWF-GPIb-IX-V

bonds do not support stable platelet adhesion and undergo rapid dissociation, resulting in

platelet translocation or “rolling” over the exposed ECM (Fredrickson et al., 1998). Platelet

activation through collagen binding to platelet glycoprotein VI (GPVI) then supports
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firm adhesion to the ECM, through aiding the conversion of a second collagen receptor,

integrin Æ2Ø1, to a high-affinity state (Saelman et al., 1994, Gibbins, 2004). Activated

platelets undertake a range of functional responses, mediated through secondary mes-

sengers, such as calcium (Ca2+). Stimulated platelets undergo rapid rearrangements in

their cytoskeleton, changing from quiescent disc-shaped cells to filopodia-protruding

spheres, which then extend sheet-like lamellipodia (Deranleau et al., 1982, Aslan et al.,

2012). These cytoskeletal changes mediate spreading over the damaged vasculature and

increase contact points with the ECM and other platelets. Activated platelets also play

an essential role in the initiation and propagation of blood coagulation by providing

a phosphatidylserine-rich surface for the tenase and prothrombinase complexes to as-

semble, leading to thrombin generation and fibrin formation (Heemskerk et al., 2002).

Activated platelets are able to cross-link through integrin ÆIIbØ3-fibrin(ogen)-ÆIIbØ3 in-

teractions, forming a platelet aggregate, which, with fibrin, covers the site of vascular

injury. Activated platelets release more than 300 proteins and small compounds into

the blood (Coppinger et al., 2004). Many of these proteins derive from alpha granules,

which store adhesive proteins, immune mediators, growth factors and proteins which

integrate into the plasma membrane upon granule release (Berman et al., 1986, Harrison

and Cramer, 1993). In contrast, platelet dense granules contain an important platelet

agonist, adenosine diphosphate (ADP), as well as adenosine triphosphate (ATP), Ca2+,

magnesium (Mg2+) and serotonin (5-HT). Overall, granule release potentiates platelet

activation through the release of secondary agonists and increasing the surface expression

of adhesion molecules.

Physiological platelet plug formation and the development of a blood clot (also referred

to as a thrombus) are coordinated and regulated processes, isolated to a site of vascular

injury. Uncontrolled and excessive platelet activation can produce thrombi that occlude

blood vessels, referred to as thrombosis. Vessel occlusion by thrombosis is a key feature

of atherosclerosis, a chronic inflammatory disease where fatty and fibrous lesions called

atheromas develop within the tunica intima of arteries (Geng and Libby, 2002). These

lesions are highly unstable and contain a collagen-rich fibrous cap. Atherogenesis narrows

the vascular lumen, increasing shear rates and the possibility of plaque rupture. Upon

plaque rupture, platelets adhere and aggregate to exposed collagen, further narrowing or

occluding the vessel lumen. Impaired blood flow downstream of narrowed or occluded

vessels causes tissue ischaemia and necrosis, which in the carotid or coronary arteries

manifests as ischaemic stroke or myocardial infarction, respectively. Understanding
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the mechanisms controlling platelet activation is therefore important for the continued

development of drugs that effectively target atherothrombosis (Chapter 1.1.6).

Blood flow

Dense granuleδ

α Alpha granule

GPVI

GPIb-IX-V

αIIbβ3

α2β1

vWFCollagen

Fibrin

δ α

Adhesion
(B)

Translocation
(A)

Fibrinogen

Extracellular matrix

Activation
(C)

Figure. 1.1 Platelet plug formation is an early and important step of haemostasis. Platelets adhere
to sub-endothelial extracellular matrix (ECM) proteins, exposed following endothelial breach or
denudation. (A) Initial interactions are mediated through platelet glycoprotein (GP)Ib-IX-V and
collagen-bound von Willebrand factor (vWF), exposed on the sub-endothelium. GPIb-IX-V-vWF
interactions have a rapid on-off rate, allowing platelets to translocate over the ECM. (B) Integrin
Æ2Ø1 and GPVI bind collagen, providing stable adhesion to the vascular wall. (C) ECM-receptor
interactions initiate intracellular signal transduction pathways that coordinate the release of alpha
(Æ) and dense (±) granules. Secondary platelet agonists from these granules recruit and potentiate
the activation of adjacent platelets. Activated platelets also cross-link and aggregate via ÆIIbØ3-
fibrin(ogen)-ÆIIbØ3 interactions. Platelet activation is essential to subsequent coagulation, where
a clotting factor activation cascade results in thrombin generation, which mediates the conversion
of fibrinogen to fibrin, stabilising the blood clot. This is an original image.

1.1.2 Platelet activation: ITAM-associated receptors

There are three glycoprotein receptors on human platelets that either contain or are

non-covalently attached to immunoreceptor tyrosine-based activation motifs (ITAMs)

(Boulaftali et al., 2014). These include GPVI, Fc ∞ receptor IIA (Fc∞RIIA), and the C-type

lectin-like receptor-2 (CLEC-2). The ITAM is a highly-conserved cytoplasmic domain
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(Tyrxx(Leu/Ile)x6-8Tyrxx(Leu/Ile), where x represents any amino acid) and plays an impor-

tant role in receptor-mediated intracellular signal transduction (Underhill and Goodridge,

2007). Phosphorylation of tyrosine residues within the ITAM allow the binding of Src

homology-2 (SH2)-containing tyrosine kinases, including spleen tyrosine kinase (Syk) and

ZAP-70, resulting in the downstream activation of phospholipase C∞2 (PLC∞2) (discussed

further in Chapter 5).

GPVI

GPVI is associated with the ITAM-containing Fc receptor ∞-chain (FcR∞-chain)

homodimer and mediates platelet activation upon binding to collagen or laminin (Gib-

bins et al., 1997, Inoue et al., 2006). Collagen-binding induces receptor clustering and

phosphorylation of the FcR∞-chain ITAM via the Src family kinases (SFKs) Fyn and Lyn

(Poulter et al., 2017, Ezumi et al., 1998). The phosphorylated ITAM recruits and activates

Syk, resulting in a downstream phosphorylation cascade which induces granule release

and PLC∞2-mediated increases in cytosolic calcium concentration ([Ca2+]cyt) (Gibbins,

2004). Although less studied, GPVI binding to laminin initiates integrin Æ6Ø1-dependent

lamellipodia formation and platelet spreading (Inoue et al., 2006, Mangin et al., 2003).

The structure, function, and signal transduction of GPVI are discussed further in Chapter 5.

Fc∞RIIA

Human platelets express Fc∞RIIA, a low-affinity receptor for the Fc region of immunoglob-

ulin (Ig) immune complexes (Qiao et al., 2015). Like the FcR∞-chain, Fc∞RIIA medi-

ates platelet activation through the binding of Syk to its phosphorylated ITAM (Yanaga

et al., 1995). Binding of antibody Fc regions in immune complexes to Fc∞RIIA allow

platelets to respond to infectious agents and mediate inflammatory processes. However,

auto-antibody binding can also activate the Fc∞RIIA receptor and contribute to several

immune-mediated thrombocytopenia and thrombosis syndromes, including heparin-

induced thrombocytopenia and thrombosis (Davoren and Aster, 2006).

CLEC-2

CLEC-2 is a hemi-ITAM receptor, containing a single TyrxxLeu sequence (Suzuki-Inoue

et al., 2006, Fuller et al., 2007). Its physiological ligand, podoplanin, mediates ITAM

phosphorylation and downstream PLC∞2 activation (Suzuki-Inoue et al., 2006, 2007). Im-

paired CLEC-2 function inhibits platelet aggregation and causes defective ferric-chloride-

induced thrombus formation (May et al., 2009, Haining et al., 2017). However, platelets
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from transgenic mice where the CLEC-2 hemi-ITAM tyrosine residue has been substituted

for alanine (p.(Tyr7Ala)) still aggregate and form occlusive thrombi in response to various

platelet agonists or mechanical injury, respectively (Haining et al., 2017). Such findings

suggest tyrosine phosphorylation of the CLEC-2 hemi-ITAM is not required for platelet

activation, although alternative mechanisms have yet to be identified.

1.1.3 Platelet activation: integrins

Integrins are heterodimeric (Æ and Ø) transmembrane glycoproteins that connect the

cytoskeleton to the ECM. Such connections are regulated through integrin transition from

a low-affinity to a high-affinity state that permits ligand binding. Platelets express several

integrins, includingÆIIbØ3,ÆVØ3,Æ2Ø1,Æ5Ø1 andÆ6Ø1 (Hynes, 2002), of whichÆIIbØ3 and

Æ2Ø1 play important roles in platelet aggregation and adhesion, respectively. In unstimu-

lated platelets, integrins are maintained in a low-affinity state, with the N-terminal domain

in a ‘closed’ confirmation. Platelet stimulation with various agonists initiates intracellular

signal transduction, which converts the integrin to a high-affinity ligand-binding state.

This process is often referred to as inside-out signalling (Nieswandt et al., 2009). Ligand-

bound integrins also initiate ‘outside-in’ intracellular signal transduction, which drives

the cytoskeletal rearrangements required for platelet spreading and subsequent blood

clot stabilisation (Durrant et al., 2017). Integrins are therefore important bidirectional

signalling receptors that play various important roles in platelet function.

ÆIIbØ3

IntegrinÆIIbØ3 (also known as GPIIb-IIIa) is the most abundant platelet receptor (º 80,000-

120,000 per platelet) (Wagner et al., 1996). Patients with Glanzmann thrombasthenia lack

functional ÆIIbØ3 and often present with a severe bleeding phenotype, demonstrating a

critical role for ÆIIbØ3 in haemostasis (Phillips and Agin, 1977a). Upon platelet activation,

ÆIIbØ3 switches to a high-affinity state and binds fibrinogen, fibrin, vWF or fibronectin

through their conserved Arg-Gly-Asp (RGD) motif (Pytela et al., 1986). Such interactions

allow activated platelets to formÆIIbØ3-fibrin(ogen)-ÆIIbØ3 cross-links, which are essential

for platelet aggregation.

Æ2Ø1

Upon transition to a high-affinity state, integrin Æ2Ø1 (also known as GPIa-IIa or VLA-2)

demonstrates increased binding to collagen (I, II, III, IV & VI), establishing stable adhesive

interactions with the ECM (Staatz et al., 1990, Saelman et al., 1994). Collagen-induced
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outside-in signalling through Æ2Ø1 is also thought to synergise platelet activation (Jarvis

et al., 2002, 2012), and adhesion to the Æ2Ø1-selective ligand GFOGER induces similar

tyrosine phosphorylation patterns to GPVI agonists (Moroi et al., 1989, Inoue et al., 2003).

1.1.4 Platelet activation: G protein-coupled receptors

G protein-coupled receptors (GPCRs) are the largest family of protein receptors, consist-

ing of an extracellular N-terminus, seven transmembrane domains, and an intracellular

C-terminus (Rosenbaum et al., 2009). Ligand-binding initiates a conformational change in

the GPCR intracellular domains, which are associated with heterotrimeric GÆØ∞ proteins.

Intracellular rearrangement of the GPCR mediates the exchange of guanosine diphosphate

(GDP) for the 10-fold more abundant guanosine triphosphate (GTP) (Traut, 1994) on the

G protein Æ subunit, which dissociates from the Ø and ∞ subunits. In platelets, activation

of GPCRs initiates several intracellular signalling cascades through GÆ and GØ∞ isotypes,

which play important roles in aggregation, adhesion, secretion, inside-out signalling, and

shape change (Offermanns, 2006).

P2Y receptors

Purinoceptors (also known as purinergic receptors) are a large family of receptors that

bind purine-based nucleosides and nucleotides (Abbracchio and Burnstock, 1994). P2Y

purinoceptors are GPCRs that selectively bind ATP, ADP and uridine triphosphate (UTP)

(von Kügelgen, 2006), with the platelet ADP receptors P2Y1 and P2Y12 coupled to either

GÆq or GÆ12/13, and GÆi, respectively (Hollopeter et al., 2001). P2Y1-mediated activa-

tion of GÆq increases [Ca2+]cyt and protein kinase C (PKC) activity through activation

of phospholipase CØ (Léon et al., 1999) (discussed further in Chapter 4.1.1). GÆ12/13

induces the Rho-mediated cytoskeletal reorganisations required for platelet shape change

(Klages et al., 1999). P2Y12-mediated activation of GÆi inhibits adenylate cyclase (AC),

reducing production of the negative regulator, cyclic adenosine monophosphate (cAMP)

(Hollopeter et al., 2001). Upon dissociation from GÆi, the Ø and ∞ subunits activate

phosphatidylinositol 3-kinase (PI3K), leading the downstream activation of PKC and pro-

tein kinase B (PKB) (Cantley, 2002). P2Y1 receptor activation causes rapid and transient

platelet aggregation, whereas P2Y12 is required for a sustained response (Jarvis et al., 2000).

Thromboxane receptors

The thromboxane receptor (TP) is a GÆq/GÆ12/13-coupled GPCR, which like P2Y1,

mediates increases in [Ca2+]cyt, PKC activation, and platelet shape change (Shenker et al.,
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1991, Offermanns et al., 1994). There are two TP splice variants, TPÆ and TPØ, although

TPÆ is the predominant isoform expressed in platelets (Habib et al., 1999). TP ligands

include several members of the prostanoid family of lipids, including thromboxane A2

(TxA2). Platelets synthesise TxA2 through the conversion of arachidonic acid to PGH2 to

TxA2 by cyclooxygenase-1 (COX-1) and TxA2 synthase, respectively. Activated platelets

upregulate TxA2 synthesis, which plays an important role in potentiating platelet acti-

vation through TP receptors (FitzGerald, 1991). Due to its half-life of approximately 30

seconds (Hamberg et al., 1975), a stable analogue of TxA2 (U46619) is commonly used to

investigate TP signalling in platelets.

Protease-activated receptors

Protease-activated receptors (PARs) also couple to GÆq/GÆ12/13 proteins, and

mediate similar signalling events to P2Y1 and TP receptors (Coughlin, 2000). PARs 1

and 4 are expressed in human platelets (Kahn et al., 1998, 1999) and share a distinctive

mechanism of thrombin-mediated activation, where partial N-terminal cleavage exposes

a secondary N-terminal sequence that interacts with the second extracellular loop to stim-

ulate intracellular GTP binding (Vu et al., 1991). PAR-specific agonists have demonstrated

that PAR1 is the high-affinity thrombin receptor, whereas higher thrombin concentrations

are required to activate PAR4 (Kahn et al., 1999).

Adrenergic receptors

The Æ2A adrenergic receptor is expressed on platelets (Kobilka et al., 1987), yet little is

known about its role or relevance in platelet function. The receptor putatively couples

to GÆz, a member of the GÆi family, which upon epinephrine binding inhibits cAMP

production (Yang et al., 2000). Unlike ADP, TxA2 or thrombin, platelet stimulation with

epinephrine only induces platelet aggregation in vitro upon co-administration with addi-

tional platelet agonists, such as ADP (Thompson et al., 1986, Steen et al., 1993).

Serotonin receptors

Fourteen 5-HT receptor subtypes have been identified, including thirteen GPCRs and

one ligand-gated ion channel (5-HT3) (McCorvy and Roth, 2015). Platelets express 5-

HT2A, which is coupled to GÆq (de Clerck et al., 1984). Stimulation of platelets with 5-HT

alone does not however induce platelet aggregation (Thompson et al., 1986, Lin et al.,

2014). 5-HT2A receptors act to augment platelet activation in response to sub-threshold

concentrations of other platelet agonists, such as ADP (Thompson et al., 1986, Lin et al.,
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2014, Adams et al., 2008). 5-HT3 receptors have also been putatively identified in platelets

(Stratz et al., 2008). However, the inability of SR 57227A (5-HT3 agonist) to counteract the

inhibitory effects of ondansetron (5-HT3 competitive antagonist) on collagen-induced

aggregation suggests the contribution of 5-HT3 towards platelet activation is minimal

(Liu et al., 2012). Indeed, the authors of this study attribute the antiplatelet effects of

ondansetron to attenuated inositol-1,4,5-trisphosphate (IP3) production and reduced

mitogen-activated protein kinase (MAPK) phosphorylation, as opposed to inhibition of

5-HT3. In addition to 5-HT receptors, platelets also store 5-HT within dense granules,

which is released upon activation and provides the only substantial source of blood 5-HT

for receptor stimulation (Hergovich et al., 2000, Maurer-Spurej et al., 2004).

1.1.5 Physiological platelet inhibition

Platelets become activated through numerous signalling pathways, often relying on

positive feedback loops and secondary mediators to potentiate their activation. Platelets

therefore also require stringent counterbalancing mechanisms to prevent spontaneous

or excessive activation. Such safeguards localise the thrombus and prevent it spreading

beyond the site of vascular injury.

The endothelium

Nitric oxide (NO) and prostacyclin (PGI2) are important endothelium-derived regulators

of platelet activation and thrombus formation. NO is synthesised from L-arginine by

nitric oxide synthases (NOS) and released continuously by the endothelium, but due to its

half-life of several milliseconds in the circulation (Liu et al., 1998), NO directly acts within

a localised environment. Spatial NO signalling limits platelet adhesion and activation to

sites of exposed ECM, where functional endothelial cells are lacking. NO diffuses across

the platelet plasma membrane and binds soluble guanylyl cyclase (sGC), increasing levels

of cyclic guanosine monophosphate (cGMP) (Katsuki et al., 1977). cGMP activates protein

kinase G (PKG). PKG and PKA phosphorylate several proteins, including the IP3 receptor

(Teryshnikova et al., 1998) and the vasodilator-stimulated phosphoprotein (VASP) (Aszódi

et al., 1999), preventing store-derived increases in Ca2+
cyt and cytoskeletal rearrange-

ments, respectively. Platelets have also controversially been reported to express NOS

isoforms and increase NO production upon activation, providing a putative mechanism

of autoregulation (Freedman et al., 1997).

PGI2 is another negative regulator of platelet activation, derived from endothelial

arachidonic acid (Moncada et al., 1977). Like most prostanoids, PGI2 has a short half-life



1.1 An introduction to platelets 9

of several seconds, and when released has no prolonged circulatory effects, binding in-

stead to GÆs-coupled IP receptors on nearby platelets. Contrary to GÆi, GÆs activates AC,

increasing cAMP levels which in turn activate PKA (Nambal et al., 1994, Neves et al., 2002).

Ectonucleotidases

Extracellular ATP and ADP can bind and activate the P2X Ca2+ channel (discussed further

in Chapter 4.1.1) and P2Y receptors respectively. Basal P2X and P2Y receptor stimulation is

prevented through hydrolysis of ATP and ADP to AMP by leukocyte- or endothelial-derived

ectonucleoside triphosphate diphosphohydrolase-1 and 5’-nucleotidase, retaining low

ATP and ADP plasma concentrations in the absence of platelet dense granule release

(Marcus et al., 1997, Kawashima et al., 2000).

ITIM-containing receptors

Unlike NO, PGI2, and ectonucleotidases, immunoreceptor tyrosine-based inhibition motif

(ITIM)-containing receptors selectively counteract the downstream effects of ITAM phos-

phorylation. As with the ITAM, the ITIM sequence (Ile/Val/LeuxTyrxxLeu/Val) undergoes

tyrosine phosphorylation, providing a docking site for phosphatases that contain SH2

domains. Important ITIM-binding phosphatases include Src homology region 2 domain-

containing phosphatase-1 (SHP-1), SHP-2, and phosphatidylinositol 3,4,5-trisphosphate

5-phosphatase-1 (SHIP-1) (Coxon et al., 2017). These phosphatases offset kinase-mediated

signal transduction initiated by the stimulation of ITAM-associated receptors (Chapter

1.1.2).

Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a cell surface glycoprotein,

and the first identified ITIM-containing receptor on platelets (Newman et al., 1990, Ohto

et al., 1985). PECAM-1 binds and signals through homophilic and heterophilic interac-

tions with adjacent platelets and endothelial cells (Sun et al., 1996). Receptor clustering

and platelet activation mediate phosphorylation of the PECAM-1 ITIM, leading to the

recruitment of SHP-1 and SHP-2 (Hua et al., 1998). Platelets from PECAM-1-deficient mice

display increased sensitivity to collagen stimulation and form larger thrombi ex vivo (Jones

et al., 2001, Patil et al., 2001). Thrombosis models in vivo also suggest a physiological role

for PECAM-1 in limiting thrombus size following vascular injury (Falati et al., 2006).

G6b is an ITIM-containing member of the Ig superfamily, whose expression is re-

stricted to platelets and megakaryocytes (Senis et al., 2007, Coxon et al., 2017). The

B isoform, (G6b-B) is a transmembrane receptor, containing both an ITIM and an Im-

munoreceptor tyrosine-based switch motif (ITSM, ThrxTyrxxVal/Ile), which mediates both
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inhibitory and activatory responses (Mazharian et al., 2012). G6b-B ITIM phosphorylation

recruits SHP-1 and SHP-2 and inhibits GPVI and CLEC-2 signalling through regulating

ITAM-mediated signal transduction (Mori et al., 2008, Coxon et al., 2012b). Mice lacking

G6b-B display macrothrombocytopenia, attributed to platelet pre-activation and clear-

ance from the blood, in addition to reduced platelet production (Mazharian et al., 2012).

Other ITIM-associated receptors identified in platelets include TREM-like transcript-1,

paired immunoglobulin-like receptor-B, and leukocyte-associated immunoglobulin-like

receptor-1 (Coxon et al., 2017).

1.1.6 Pharmacological platelet inhibition

Pathological platelet activation can result in thrombosis, which is central to arterial

occlusion and the development of acute cardiovascular pathologies, particularly ischaemic

stroke and myocardial infarction. Statistics published by the British Heart Foundation

state that cardiovascular diseases (CVDs) in 2015 were responsible for more than a quarter

of deaths in the U.K. (º160,000), with more than 7 million people estimated to be living

with CVD (British Heart Foundation, 2016). The annual healthcare cost of CVD in the U.K.

is estimated at 9 billion pounds, with the total economic cost valued closer to 19 billion

pounds (Wilkins et al., 2017). The discovery and development of drugs that reduce the

risk of CVD are therefore important, and drugs which target thrombosis by suppressing

platelet activation are routinely prescribed to high-risk patients (Antithrombotic Trialists

Collaboration, 2002). However, by impairing platelet activation, drugs that reduce the risk

of end stage thrombosis routinely disrupt physiological haemostasis, increasing the risk

of prolonged and spontaneous haemorrhage. Such side effects often limit the dosage of

antiplatelet medications and complicate surgical procedures (Harder et al., 2004). The

development of novel agents that prevent pathological thrombosis while preserving phys-

iological haemostasis is therefore the principal goal for future antiplatelet drug discovery.

Cyclooxygenase inhibitors

Although the antiplatelet effects of aspirin (also known as acetylsalicylic acid) were identi-

fied over 60 years ago (Craven, 1950, Miner and Hoffhines, 2007, Patrono and Rocca, 2009)

it remains the most commonly prescribed antiplatelet medication in England, with over 26

million items dispensed in 2016 (National Statistics, 2017). Chronic oral administration of

low-dose aspirin (50-100 mg day°1) is associated with a reduced risk of thrombotic events

(Patrono et al., 2005), but increases the risk of gastrointestinal (GI) bleeding (Sørensen

et al., 2000). Aspirin blocks prostaglandin synthesis through the irreversible acetylation
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of COX (Roth et al., 1975). In platelets, inhibition of COX-1 prevents the conversion of

arachidonic acid to PGH2, which impairs subsequent TxA2 synthesis, blocking a major

positive feedback loop for platelet activation (Hamberg et al., 1975). Due to the irreversible

inhibition of COX-1, aspirin’s antiplatelet effects persist throughout the platelet life span of

approximately 8-9 days (Roth and Majerus, 1975, Leeksma and Cohen, 1956). In contrast,

COX-1 inhibition by ibuprofen is reversible (Nishizawa and Wynalda, 1981, Parks et al.,

1981) and has little antiplatelet effect (Gladding et al., 2008). Aspirin also inhibits endothe-

lial COX-1, preventing the synthesis of inhibitory PGI2 (Jaffe and Weksler, 1979). However,

unlike anucleate platelets, protein turnover in endothelial cells restores prostaglandin

synthesis as plasma concentrations of aspirin decrease (Jaffe and Weksler, 1979).

P2Y12 receptor antagonists

Clopidogrel and ticlopidine are thienopyridine prodrugs, which upon hepatic metabolism

generate an active metabolite that irreversibly and covalently binds to P2Y12, blocking

the ADP binding site (Puri et al., 1992, Savi et al., 2000). Like aspirin, clopidogrel and

ticlopidine can be orally administered and are commonly prescribed alongside aspirin

as a dual antiplatelet therapy (Mehta et al., 2001). However, the slow onset of clopidogrel

and ticlopidine in vivo led to the development of prasugrel and ticagrelor. Prasugrel is

another thienopyridine prodrug, with a higher metabolic conversion rate and more con-

sistent metabolite levels than clopidogrel (Sugidachi et al., 2007). Ticagrelor is an orally

administered non-competitive cyclopentyltrizolopyrimidine-type direct P2Y12 inhibitor,

providing rapid and reversible platelet inhibition (Storey et al., 2007, van Giezen et al.,

2009). The ATP analogue cangrelor is an intravenously administered P2Y12 inhibitor,

whose short half-life of approximately 3.3 minutes leads to the restoration of platelet func-

tion 60-90 minutes after administration and has been approved for patients undergoing

percutaneous coronary intervention (Ferreiro et al., 2009, Akers et al., 2010).

Protease-activated receptor antagonists

Vorapaxar is the first and only PAR inhibitor approved for clinical use. Vorapaxar is an orally

administered, selective and potent PAR1 antagonist, used as an adjunctive antiplatelet

therapy for the treatment of acute coronary syndromes (Chackalamannil et al., 2005,

Tricoci et al., 2012). However, increased intracranial bleeding risks and severe bleeding

side effects have been reported (Tricoci et al., 2012). Atopaxar is another PAR-1 antagonist,

yet compared with vorapaxar has a slow onset of action, and short half-life (Leonardi et al.,

2010). Peptides mimetics of PAR intracellular loops 1 and 3, called pepducins, suppress
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G protein transduction and block PAR-mediated platelet activation (O’Callaghan et al.,

2012). The PAR1 pepducin PZ-128 has rapid, reversible and specific effects and is currently

under investigation as a novel antiplatelet agent (Gurbel et al., 2016). PAR-4 antagonists

are also in development, including BMS-986141, which has entered a phase II clinical trial

(Wong et al., 2017).

Integrin ÆIIbØ3 blockers

The monoclonal F(ab’)2 fragment abciximab can be administered for patients undergo-

ing percutaneous coronary intervention and irreversibly binds ÆIIbØ3, directly impairing

platelet aggregation (Coller et al., 1983). However, the major limitations of intravenous

administration and bleeding side effects limit the use of abciximab as an antiplatelet

medication (Gammie et al., 1998). Eptifibatide is a heptapeptide ÆIIbØ3 inhibitor that is

orally-available, yet has a short half-life, low efficacy, and increases the risk of bleeding

(Scarborough et al., 1999, Goa and Noble, 1999). As such, eptifibatide has not under-

gone further clinical investigation. The small molecule inhibitor, tirofiban is a clinically-

approved and selective ÆIIbØ3 antagonist. However, a rapid off rate, short half-life, and

increased risk of both bleeding and thrombocytopenia are current limitations associated

with its clinical use (Barrett et al., 1994, Bougie et al., 2002).

Phosphodiesterase inhibitors

Compounds that block platelet PDEs increase levels of inhibitory cAMP and cGMP. Dipyri-

damole is a long-established antiplatelet medication, which inhibits PDE5 and PDE3,

increases endothelial PGI2 synthesis, and potentiates the effects of NO (Elkeles et al.,

1968, Sakuma et al., 1990). Dipyridamole also inhibits platelet aggregation by block-

ing adenosine uptake into red blood cells (Gresele et al., 1986). However, dipyridamole

shows low therapeutic efficacy as an antithrombotic agent (Gibbs and Lip, 1998). The

quinolinone-derivative cilostazol specifically targets the PDE3 isoform and unlike many

antiplatelet medications does not significantly prolong bleeding time, suggesting it may

have minimal bleeding risk (Wilhite et al., 2003). However, clinical trials demonstrate

minor antithrombotic effects of cilostazol treatment (Reilly and Mohler, 2001).

In summary, various antiplatelet drugs have been developed which reduce the risk

of end stage pathological thrombosis. However, by suppressing platelet activation, all

of the aforementioned compounds can inherently disrupt haemostasis, which often

compromises vascular integrity.
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Figure. 1.2 Overview of platelet activation. Platelet activation is initiated by the binding of
extracellular ligands to surface receptors. Glycoprotein VI (GPVI), Fc ∞ receptor IIA (Fc∞RIIA)
and C-type lectin-like receptor 2 (CLEC-2) either contain or are associated with immunoreceptor
tyrosine-based activation motifs (ITAMs), which mediate downstream activation of phospholipase
C (PLC)∞2. In contrast, GÆq-coupled receptors activate downstream PLCØ. Both PLC isoforms
generate inositol-1,4,5-trisphosphate (IP3), which binds the IP3 receptor, causing increases in
[Ca2+]cyt through the release of intracellular Ca2+ stores. Ca2+ is an important secondary me-
diator for many platelet functional responses, including integrin ÆIIbØ3-mediated aggregation
and granule release. GÆ12/13-coupled receptors activate RhoA, resulting in the cytoskeletal rear-
rangements required for platelet shape change. GÆi-coupled receptors inhibit adenylate cyclase
(AC), preventing the formation of regulatory cyclic adenosine monophosphate (cAMP), which is
also inhibited by phosphodiesterase-3 (PDE3). GØ∞ subunits activate phosphoinositide 3-kinase
(PI3K), which phosphorylates positive regulators protein kinase B and (PKB) and protein kinase C
(PKC). Activated platelets also synthesise the platelet agonist thromboxane A2 (TxA2) through the
liberation of arachidonic acid. Physiological inhibitory signals counterbalance platelet activation
and prevent spontaneous platelet stimulation. Immunoreceptor tyrosine-based inhibitory motif
(ITIM)-containing receptors, including platelet endothelial cell adhesion molecule-1 (PECAM-1)
and G6b-B, offset the stimulatory effects of ITAM-associated receptors. GÆs-coupled prostanoid IP
receptors activate AC, increasing cAMP levels. Nitric oxide (NO) activates soluble guanylyl cyclase
(sGC), increasing inhibitory cyclic guanosine monophosphate levels. cAMP and cGMP activate
negative platelet regulators protein kinase A (PKA) and protein kinase G (PKG), respectively. Recep-
tor agonists are mentioned within brackets. Clinically-prescribed antiplatelet drugs are shown in
red. Grey dashed lines indicate multiple intermediate steps. This is an original figure.
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1.2 The role and regulation of peripheral serotonin

Previous research has characterised in detail how the stimulation or suppression of

immunoglobin-type receptors (GPVI, CLEC-2), integrins (ÆIIbØ3) and GPCRs (P2Y1, P2Y12,

TPÆ, PAR1, PAR4) modulate platelet activation and affect haemostasis. Such studies have

led to the development of several antiplatelet drugs, which target and block the function

of receptors that contribute towards pathological platelet activation. However, compara-

tively few studies have investigated the importance of peripheral 5-HT and 5-HT receptors

in platelet functional responses. Indeed, the transport, storage and release of 5-HT from

platelets is often overlooked with regards to platelet activation.

1.2.1 Serotonin

Serotonin (5-hydroxytryptamine, 5-HT) was first identified in the gastric mucosa of rabbits

and therefore named enteramine (Ersparmer and Viallu, 1937). In 1948, Rapport and

colleagues extracted a vasoconstrictive amine from bovine serum, which was thus named

serotonin (Rapport et al., 1948a,b). Both compounds were subsequently identified as the

same chemical structure, 5-hydroxytryptamine (5-HT) (Erspamer and Asero, 1952). 5-HT

is synthesised from the essential amino acid L-tryptophan. The rate-limiting enzyme,

tryptophan hydroxylase (TPH, EC 1.14.16.4), catalyses the hydroxylation of L-tryptophan

to 5-hydroxy-L-tryptophan (5-HTP) in the presence of oxygen, iron (Fe2+), and tetrahy-

drobiopterin. 5-HTP is then converted to 5-HT by 5-HT decarboxylase (also known as

aromatic-L-amino acid decarboxylase, EC 4.1.1.28) (Bowsher and Henry, 1986). There

are two TPH isoforms, TPH1 and TPH2. TPH1 mediates peripheral 5-HT synthesis and is

predominantly expressed in the duodenum, pineal gland, thymus and spleen, whereas

TPH2 is largely expressed in the mesencephalic tegmentum, striatum and hippocampus

of the central nervous system (CNS) (Walther and Bader, 2003, Zhang et al., 2004, Sakowski

et al., 2006).

The majority of mammalian 5-HT is synthesised, stored and released from enterochro-

maffin cells in the intestinal mucosa (Barter and Everson Pearse, 1955). These cells release

5-HT basally into the interstitial space of the lamina propria, where binding to 5-HT

receptors on enteric neurons mediates several GI functions, including secretion, vasodila-

tion, pain perception, nausea, and peristalsis (Gershon, 2004, Mawe and Hoffman, 2013).

Following its secretion, 5-HT is either transported back into the gut epithelia and the

enterochromaffin cells, or enters the circulation via the portal venous system, where it
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is transported into platelets by the serotonin transporter (SERT) (Hergovich et al., 2000,

Carneiro et al., 2008, Erspamer and Testini, 1959). Cytosolic 5-HT is carried across platelet

dense granule membranes by a vesicular monoamine transporter (VMAT), driven by an

ATPase-generated proton gradient (Fishkes and Rudnick, 1982). 5-HT is metabolised to

5-hydroxylindole acetic acid by monoamine oxidases (MAOs) A and B. Both MAO-A and

MAO-B are expressed in neurons, whereas platelets only express the B isoform. 5-HT

within circulation is passed through the liver via the portal vein, which upon metabolism

is excreted within urine (Jonnakuty and Gragnoli, 2008).

Virtually all circulating 5-HT is stored within platelet dense granules, which act as a

sink, maintaining plasma concentrations below 1 nM (Brenner et al., 2007). Upon acti-

vation and degranulation, platelets release 5-HT into the blood, where it binds platelet

5-HT2A receptors and potentiates platelet activation (Thompson et al., 1986, Lin et al.,

2014). Of note, haemostasis is impaired in TPH1-deficient mice, despite normal aggrega-

tion in response to collagen, U46619 (a TxA2 analogue), or thrombin (Walther et al., 2003).

5-HT has also been shown to accelerate the conversion of fibrinogen to fibrin in whole

blood (Milne and Cohn, 1957). These observations suggest that 5-HT is more likely to

modulate haemostasis through mechanisms distinct from platelet aggregation, such as

coagulation and vasoconstriction.

5-HT also modulates the activity of other cell types within the cardiovascular system.

For example, 5-HT1-like and 5-HT2 receptor stimulation on smooth muscle cells induces

vasoconstriction (Rapport et al., 1948a, Kaumann et al., 1993), whereas 5-HT1B receptors

on endothelial cells mediate the synthesis and release of the endothelium-derived relaxing

factor, NO (Cocks and Angus, 1983, Elhusseiny and Hamel, 2001). Platelet-derived 5-HT

binding to 5-HT2B receptors on fibroblasts induces ECM synthesis, which can contribute

to pathological tissue fibrosis (Dees et al., 2011). 5-HT also upregulates inflammation by

stimulating neutrophils and lymphocytes (Mössner and Lesch, 1998, Duerschmied et al.,

2013) (discussed further in Chapter 7). For the reasons described above, the sequestration

and coordinated release of 5-HT by platelets is an important feature of cardiovascular

physiology.

1.2.2 The serotonin transporter

The serotonin transporter (SERT, also known as 5-HTT) is a Na+/Cl°-dependent monoamine

transporter and the principal mediator of 5-HT uptake into cells (Blakely et al., 1991).

SERT (SLC6A4) belongs to the neurotransmitter sodium symporter family, which includes

the dopamine and norepinephrine transporters (DAT and NET, respectively) (Chen et al.,
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2004). DAT can also transport 5-HT and may act as a compensation mechanism for dys-

functional SERT (Zhou et al., 2002). An ‘alternating access model’ for 5-HT uptake by SERT

was first proposed in 1966 (Jardetzky, 1966). The model suggests that transmembrane ion

gradients induce the alternate exposure of the 5-HT binding site to intra- and extracellular

environments. Simultaneous binding of 5-HT, Na+, and Cl° on the extracellular side in-

duces a conformational change in SERT, exposing the binding site to the cytoplasm. 5-HT,

Na+, and Cl° then dissociate, allowing K+ to bind SERT, initiating a second conformational

change which exposes the binding site to the extracellular environment. K+ subsequently

dissociates, completing the cycle (Rudnick, 2006).

Until recently, the structure of SERT had largely been predicted through crystal-

lographic experiments on the bacterial orthologue LeuT (Yamashita et al., 2005) and

Drosophila DAT (Penmatsa et al., 2013, 2015). This was due to previously unsuccess-

ful crystallography studies on human SERT as a result of protein instability following

membrane extraction. However, Coleman et al. (2016) recently identified several muta-

tions which increased thermal stability. Their crystallography data confirm that SERT is a

12-transmembrane domain transporter, with a large extracellular domain consisting of

extracellular loop regions 2, 4, and 6, with intracellular loops 1, 5 and the C-terminal helix

forming the majority of its cytoplasmic domain.

Neuronal SERT is predominantly expressed at pre-synaptic terminals within Raphe

nuclei of the brainstem (Qian et al., 1995, Lanzenberger et al., 2012), where it mediates

the reuptake of synaptic 5-HT, preventing continuous serotonergic signal transduction

(Iversen, 2005). In contrast, peripheral SERT is highly expressed on enterochromaffin and

epithelial cells of the gut (Wheatcroft et al., 2005, Gershon and Tack, 2007) and on platelets

(Lesch et al., 1993, Qian et al., 1995, Brenner et al., 2007). SERT expression has also been

suggested on lymphocytes (Faraj et al., 1994). However, its functional role and relevance

are believed to be minimal (Beikmann et al., 2013).

The majority of functional SERT is located within the plasma membrane (Carneiro and

Blakely, 2006), where is it thought to form homodimers and tetramers through sialylated N-

glycans (Kilic and Rudnick, 2000). 5-HT binding to receptors mediates SERT redistribution

to the plasma membrane, increasing 5-HT uptake (Carneiro and Blakely, 2006). 5-HT

is believed to self-regulate its own uptake in a biphasic manner, where SERT surface

expression initially increases with plasma 5-HT levels, but is then reduced at high 5-HT

concentrations (Brenner et al., 2007, Mercado and Kilic, 2010). PKG signalling in SERT-

transfected cell lines also increases SERT activity and trafficking to the plasma membrane

(Zhu et al., 2004). In platelets, the C-terminal of SERT directly interacts with integrinÆIIbØ3
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and SERT activity increases upon fibrinogen binding to ÆIIbØ3 (Carneiro et al., 2008). In

contrast, platelet SERT activity is downregulated by stimulation with phorbol 12-myristate

13-acetate (PMA), which activates PKC and relocates SERT to the cytoskeleton (Carneiro

and Blakely, 2006). Interactions with the adaptor protein Hic-5, are then thought to

mediate internalisation of the transporter (Carneiro and Blakely, 2006). The non-receptor

tyrosine kinase Src has also been shown to mediate SERT phosphorylation, the extent of

which positively correlates with transporter activity (Zarpellon et al., 2008). Despite such

findings, the detailed mechanisms underlying the expression, localisation and activity of

SERT remain largely unknown.

1.2.3 Pharmacological inhibition of the serotonin transporter

Owing to its diverse expression throughout the body, drugs that block SERT-mediated

5-HT uptake influence serotonergic signalling within the CNS, the gut and the blood.

There are three major clinically useful classes of SERT-inhibiting compound: tricyclic an-

tidepressants (TCAs), serotonin-norepinephrine reuptake inhibitors (SNRIs) and selective

serotonin reuptake inhibitors (SSRIs). Both TCAs and SNRIs will be discussed further in

Chapter 6.

Selective serotonin reuptake inhibitors

SSRIs lodge within the 5-HT binding site on SERT, directly blocking 5-HT uptake (Coleman

et al., 2016). Specifically, SSRIs bind SERT between transmembrane helices 1, 3, 6, 8, and

10, locking the transporter in an outward-open conformation (Coleman et al., 2016). SSRIs

selectively bind SERT at nanomolar concentrations, whereas micromolar concentrations

of SSRIs also bind DAT, NET, alpha-1 adrenergic receptors, muscarinic acetylcholine recep-

tor M1 and the histamine H1 receptor (Owens et al., 2001). The first clinically-approved

SSRI was Zimelidine in 1982, but has since been withdrawn (Caillé et al., 1983). Over the

following 35 years, seven SSRIs have been approved by the Food and Drug Administration

(FDA), including fluoxetine (Prozac®), citalopram (Celexa®), escitalopram (Lexapro®),

fluvoxamine (Luvox®), paroxetine (Paxil®), sertraline (Zoloft®), and vilazodone (Viibryd®).

Citalopram

In 2016, citalopram was the most commonly dispensed antidepressant and the 15th most

widely dispensed medication in England (National Statistics, 2017). Although other SSRIs,

including paroxetine, fluoxetine, and sertraline are more potent inhibitors of SERT, citalo-

pram shows greater SERT selectivity over DAT and NET (Owens et al., 2001). Citalopram is
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a 50:50 racemic (RS) combination of two enantiomeric isomers, (R)-citalopram and (S)-

citalopram, the latter of which is approximately 30-fold more potent for blocking neuronal

SERT (Owens et al., 2001). (S)-Citalopram is therefore predominantly responsible for the

clinical effects of racemic (RS)-citalopram, leading to its isolation and commercialisation

as escitalopram, a second-generation SSRI (Montgomery et al., 2001, Burke et al., 2002).

Compared to other SSRIs, (S)-citalopram shows the highest selectivity for binding SERT,

compared to DAT and NET (Owens et al., 2001).

Like all SSRIs, citalopram is orally administered and enters the portal circulation via

the GI tract. Circulating citalopram has a plasma half-life of approximately 33 hours

(Kragh-Sørensen et al., 1981), with around 50% bound to plasma proteins (Milne and

Goa, 1991). Citalopram is also highly lipophilic (log P = 3.6), resulting in a bioavailability

of approximately 80% (Madsen et al., 2003, Joffe et al., 1998). Both citalopram isomers

are metabolised to demethylcitalopram by hepatic cytochrome P (CYP) 450 enzymes

CYP2C19, CYP3A4 and CYP2D6 (Rochat et al., 1997, von Moltke et al., 1999), with an

additional N-demethylation by CYP2D6 to didesmethylcitalopram (Olesen and Linnet,

1999). The contribution of demethylcitalopram and didesmethylcitalopram to the phar-

macological effects of citalopram is negligible (Hyttel, 1977).

Blocking neuronal SERT with SSRIs

SSRIs are best known for their effects on serotonergic signalling within the CNS, and are

typically prescribed as antidepressants. By blocking SERT on presynaptic neurons, SSRIs

increase synaptic 5-HT concentrations, which augment and prolong serotonergic signal

transduction. This mechanism has been putatively associated with reducing symptoms

of depression and is commonly referred to as the monoamine hypothesis of depression

(Owens, 2004). Despite the clear clinical benefits for depressed patients taking SSRIs, the

monoamine hypothesis of depression does not explain how SSRIs can also be used as

effective treatments for anxiety or obsessive-compulsive disorder (Rocca et al., 1997,

Owens, 2004, Soomro et al., 2009). In addition, monoamine depletion through a tryptophan-

free diet does not induce depression in healthy subjects (Benkelfat et al., 1994), nor does

it worsen the symptoms of depressed patients (Delgado et al., 1994). Further studies are

therefore required to understand the exact mechanism underling the clinical benefits of

SSRIs, and to determine whether impaired serotonergic signalling is indeed the cause of

clinical depression (Anderson, 1998, Geddes et al., 2006).
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Blocking peripheral SERT with SSRIs

SSRIs prescribed as antidepressants to block neuronal SERT also inhibit peripheral SERT

in both the gut and circulating blood cells. Blocking SERT on endothelial and enterochro-

maffin cells of the GI tract increases 5-HT binding to enteric neurons, which can propagate

contractions associated with abdominal cramping and reduced peristaltic activity (Coates

et al., 2006, Gershon and Tack, 2007). Within the blood, prolonged SSRI treatment blocks

5-HT uptake into platelets, gradually depleting dense granule stores (Hergovich et al., 2000,

Maurer-Spurej et al., 2004, Bismuth-Evenzal et al., 2012). Both murine platelets deficient

in SERT and the platelets from human patients chronically dosed with SSRIs demonstrate

reduced aggregation responses to ADP, collagen or epinephrine, but not thrombin or

arachidonic acid (Hergovich et al., 2000, Maurer-Spurej et al., 2004, Flöck et al., 2010,

Carneiro et al., 2008, Bismuth-Evenzal et al., 2012). Sustained SSRI administration also

reduces 5-HT2A surface expression, preventing synergistic platelet activation by 5-HT and

ADP (Oliver et al., 2016). These studies suggest the antiplatelet effects associated with

chronic SSRI treatment are due to impaired platelet 5-HT2A receptor signalling, following

the release of dense granules devoid of 5-HT.

Blocking platelet SERT over two weeks with fluoxetine reduces plasma 5-HT concentra-

tions from 4.5 ± 2.5 nM to 1.3 ± 0.4 nM (Alvarez et al., 1999). SSRIs which target SERT may

consequently also modulate the function of vascular and immune cells that express 5-HT

receptors, particularly those which respond to 5-HT released from activated platelets. The

indirect effects of SSRIs on other such cell types is therefore an important consideration

to pathologies beyond thrombosis and is discussed further in Chapter 7.

1.2.4 SSRIs and cardiovascular disease

Sustained SSRI treatment depletes dense granule 5-HT stores, and reduces agonist-

induced platelet aggregation (Chapter 1.2.3). SSRIs prescribed as antidepressants may,

therefore, modulate haemostasis and reduce the risk of thrombosis. Long-term SSRI

treatment has been associated with a reduced risk of myocardial infarction (Sauer et al.,

2001, Schlienger et al., 2004, Kimmel et al., 2011) and an increased risk of intracranial or GI

haemorrhage (de Abajo et al., 1999, van Walraven et al., 2001, Dalton et al., 2003, Opatrny

et al., 2008, Dall et al., 2009, Hackam and Mrkobrada, 2012). GI bleeding induced by SSRIs

is thought to vary from 1/100 to 1/1,000 patients, with the highest risk in elderly patients

(de Abajo et al., 2006). These reported effects on haemostasis and thrombosis have led

some to suggest that SSRIs could be used to manage thrombotic disease (Galan et al.,

2009, Pizzi et al., 2011), particularly in depressed patients, which often present with a pro-
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thrombotic phenotype (Musselman et al., 2000, Serebruany et al., 2003). However, some

studies have associated SSRI treatment with an unexplained increased risk of myocardial

infarction (Tata et al., 2005, Blanchette et al., 2008), whilst others describe no association

between SSRI treatment and cardiovascular outcomes (MacDonald et al., 1996, Cohen

et al., 2000, Meier et al., 2001).

The conflicting findings described above suggest a more complicated association

between SSRIs and CVD (de Abajo, 2011). For example, many of these studies do not

acknowledge the role of depression as a risk factor for CVD (Hippisley-Cox et al., 1998,

Musselman et al., 1998). Both morbidity and mortality in patients with depression and

CVD are higher than in patients with CVD who are not depressed (Stewart et al., 2003).

Depression and its severity are therefore an often-overlooked confounding factor. Several

of these studies also fail to document patients undergoing conventional antiplatelet

therapy with agents such as aspirin or clopidogrel, which are likely to mask or exaggerate

the effects mediated by SSRIs. Various physiological mechanisms associating depression

with CVD have been suggested, which include not only hyperactive platelets (Musselman

et al., 2000, Serebruany et al., 2003), but also increased inflammation (Kop et al., 2002),

oxidative stress (Yager et al., 2010) and hyperactivity of the hypothalamic-pituitary-adrenal

axis (Jokinen and Nordström, 2009). Future studies investigating the effects of SSRI

treatment on cardiovascular outcomes should take such mechanisms into consideration,

and not merely focus on their putative antiplatelet effects.

1.2.5 The in vitro effects of SSRIs on platelets

Investigating the in vitro effects of SSRIs on platelets could provide mechanistic detail

into their complicated association with haemostasis and CVD. However, despite the

putative link between SSRIs, platelets and CVD, few studies show direct in vitro effects

of SSRIs on platelet activation. Among those that do, reduced platelet aggregation to

ADP or collagen was reported following pre-treatment with citalopram, fluoxetine or

sertraline (Galan et al., 2009, Tseng et al., 2010, 2013, Carneiro et al., 2008). However,

fluoxetine has also been shown to augment PAR-mediated platelet aggregation (Dilks

and Flaumenhaft, 2008) and potentiate ADP-induced calcium signalling (Harper et al.,

2009). Another study contradicts this, describing no effect of fluoxetine treatment on

ADP-induced or PAR-mediated aggregation (Bampalis et al., 2010). Notably, SSRI pre-

incubation times in these studies range from 2-10 minutes, suggesting effects may not be

due to the gradual depletion of intra-platelet 5-HT stores, as observed following long-term

SSRI administration (Hergovich et al., 2000, Maurer-Spurej et al., 2004, Oliver et al., 2016).
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Another important consideration is that platelet inhibition in these in vitro studies was

only observed at micromolar SSRI concentrations, despite citalopram (K i = 9.6 ± 0.5 nM),

fluoxetine (K i = 5.7 ± 0.6 nM) and sertraline (K i = 2.8 ± 0.8 nM) inhibiting SERT with

nanomolar potencies (Owens et al., 2001). SSRIs may, therefore, affect platelet function

through an alternative mechanism of action, which is independent of SERT-mediated

5-HT uptake. However, few studies have addressed the importance of functioning SERT

during platelet activation (Carneiro et al., 2008), and none have explored the concept of

SERT-independent platelet inhibition by SSRIs.

1.3 Aims, objectives and hypothesis

This thesis aims to identify the mechanisms responsible for in vitro platelet inhibition by

the SSRI citalopram. This goal will be met through the following objectives:

1. Characterising the inhibitory effects of citalopram on platelets.

2. Determining whether citalopram inhibits platelets through blocking SERT.

3. Identifying the molecular mechanisms by which citalopram influences platelet

activation.

4. Comparing the antiplatelet effects of citalopram to structurally distinct SERT-inhibiting

compounds.

Experiments will follow the guidelines of pharmacological methodology, using a range

of citalopram concentrations to determine its inhibitory potencies on various aspects of

platelet function. My hypothesis is that citalopram will inhibit platelet function through

a novel and unidentified mechanism of action that is distinct from its known effects on

SERT-mediated 5-HT uptake.
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Materials and methods

Reagent Source Catalogue number Diluent
(R)-citalopram oxalate Insight Biotechnology sc-219751 PBS

Citalopram hydrobromide Cambridge Bioscience C3477 PBS
Collagen III Sigma C4407 Acetic acid (10 mM)

CRP RWF* N/A Acetic acid (10 mM)
CRPXL RWF* N/A Acetic acid (10 mM)

Escitalopram oxalate Cambridge Bioscience E7209 PBS
Fibrinogen Sigma F4883 Saline

Fluoxetine hydrochloride Cambridge Bioscience F4780 DMSO
GFOGER RWF* N/A Acetic acid (10 mM)

GR144053 Tocris 1263 PBS
Horm collagen® Takeda 1130630 Acetic acid (10 mM)

Imipramine hydrochloride Alfa Aesar J63723 PBS
Ionomycin Sigma I0634 DMSO

Indomethacin Sigma I7378 DMSO
Milnacipran hydrochloride Stratech Scientific S3140 PBS

Platelet-activating factor Cayman Chemical 60900 DMSO
Paroxetine hydrochloride Sigma P9623 DMSO
Prostaglandin E1 (PGE1) Sigma P-5515 Ethanol
Sertraline hydrochloride Cambridge Bioscience S1971 DMSO

Thrombin Sigma T4648 Saline
U46619 Sigma D8174 DMSO

Table 2.1 Platelet agonists and antagonists used in this project. PGE1, Prostaglandin E1; PBS,
phosphate-buffered saline; CRP, collagen-related peptide (GCO-[GPO]10-GCOG, where O = hydrox-
yproline); CRPXL, cross-linked collagen-related peptide; GFOGER, GPC-[GPP]5-GFOGER-[GPP]5-GPC;
DMSO, dimethyl sulfoxide; N/A, not applicable. Horm collagen® was dissolved in 10 mM acetic acid,
containing 0.1% [w/v] fatty acid-free bovine serum albumin (Sigma, E8875). RWF* indicates reagents
supplied by the laboratory of Professor Richard Farndale, University of Cambridge.

Analyte
Column

temp (±C)

Flow rate

(mL min°1)
A B Min (A:B)

Serotonin 40 1 18.4 mM citric acid, Acetonitrile 0.00 (94:6)

(5-HT) 83.2 mM K2HPO4; 6.00 (94:6)

pH 6.6

Adenine 30 1.7 2.2 mM K2HPO4, Acetonitrile 0.00 (100:0)

nucleotides 47.8 mM KH2PO4; 1.50 (100:0)

(ATP/ADP) pH 5.45 1.51 (98.5:1.5)

2.70 (98.5:1.5)

4.20 (91:9)

5.70 (91:9)

5.80 (25:75)

6.80 (75:25)

6.81 (100:0)

Table 2.2 High-pressure liquid chromatography methods for mobile phases. 5-HT, 5-hydroxytryptamine; ATP,
adenosine triphosphate; ADP, adenosine diphosphate
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Reagent Source
Catalogue

number
Working

concentration
Application(s)

2-mercaptoethanol British Drug Houses 441432A 5% [v/v] Western blot; Rap1 pulldown
Acetylcholinesterase tracer Cayman Chemical 10005064 1x TxA2 synthesis

Acetic acid Sigma 33209 10 mM Adhesion
Adenosine diphosphate Sigma A2383 Various Nucleotide release
Adenosine triphosphate Sigma 1930 Various Nucleotide release

APC-annexin V Thermofisher Scientific BMS306APC 1:63 Flow cytometry
BODIPY-FL-GDP Fisher Scientific G22360 0.1 µM Rap1 activity

Bovine serum albumin GE Healthcare K41-001 0.1-5.0% [w/v] Adhesion; Western blot
Calcium chloride Fisher Scientific C/1280/53 10 mM Monitoring calcium

Citric acid Sigma C0759 28.55 mM Adhesion; 5-HT uptake
Dimethyl sulfoxide Sigma D5879 Various Various

Dextran-500 Sigma 31392 1% [w/v] Neutrophil preparation
EGTA Calbiochem 324626 1 mM; 5 mM Various

Ellman’s reagent Cayman Chemical 400050 1x TxA2 synthesis
ECL reagent GE Healthcare RPN2232 Various Western blot

Fura-2-acetoxymethyl ester TEFLabs 103 2.5 µM Monitoring calcium
Glutathione agarose beads Thermofisher Scientific 16120 50% [w/v] Rap1 pulldown

Glycerol Sigma G9012 2% [v/v]; 5% [v/v] Western blot; Rap1 pulldown
GPP10 RWF* N/A 10 µg mL°1 Adhesion

GST-RalGDS-RBD Thermofisher Scientific 16120 20 µg Rap1 pulldown
NP-40 Thermofisher Scientific N-6507 1% [v/v] Rap1 pulldown

Paraformaldehyde Alfa Aesar J61899 2% [v/v] Flow cytometry
Percoll® Sigma P1644 Various Neutrophil preparation

Phosphate buffered saline Oxoid BR0014G 1x Various
p-nitrophenyl phosphate Sigma P4744 3.53 mM Adhesion

Potassium phosphate dibasic Sigma BCBP7848V 83.2 mM 5-HT uptake
Precision Plus ProteinTM blue Bio-Rad Laboratories 1610374 5 µL Western blot

Precision Plus ProteinTM dual colour Bio-Rad Laboratories 1610373 5 µL Western blot
Serotonin hydrochloride Alfa Aesar B21263 1 µM 5-HT uptake

Sodium azide Sigma 71290 0.01% [w/v] Western blot
Sodium dodecyl sulfate Fisher Scientific S/5200/53 Various Western blot

Tris base Sigma T6066 Various Various
Trisodium citrate Sigma C8532 11 mM; 71.4 mM Phlebotomy; adhesion

Triton X-100 Sigma T9284 0.1% [v/v] Calcium; adhesion
Tween-20 Sigma P9416 0.1% [v/v] Western blot

TxB2 monoclonal antibody Cayman Chemical 10005065 1x TxA2 synthesis
TxB2 standards Cayman Chemical 10005066 Various TxA2 synthesis

Wright’s stain, modified Sigma WS16 N/A Neutrophil preparation
Table 2.3 Key reagents used in the project. TxA2, Thromboxane A2; APC, allophycocyanin; GDP, guanosine diphosphate; 5-
HT, 5-hydroxytryptamine; EGTA, ethylene glycol-bis(Ø-aminoethyl)-N,N,N’,N’-tetraacetic acid; ECL, Enhanced chemilumines-
cence; GPP10, GCP-[GPP]10-GCPG; GST-RalGDS-RBD, glutathione S-transferase-Ral guanine nucleotide dissociation stimulator-Rap-
binding domain; NP-40, nonyl phenoxypolyethoxylethanol; PAF, platelet-activating factor. RWF* indicates reagents supplied by the
laboratory of Professor Richard Farndale, University of Cambridge.
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Buffer Constituents pH Applications

Calcium-free Tyrode’s
137 mM NaCl, 11.9 mM NaHCO3,

0.4 mM NaH2PO4, 2.7 mM KCl,
1.1 mM MgCl2, 5.6 mM glucose

7.40
Platelet preparation;

neutrophil preparation

ELISA buffer
100 mM phosphate, 0.1% [w/v] BSA,

400 mM NaCl,1 mM EDTA,
0.01% [w/v] sodium azide

N/A
Thromboxane A2

synthesis

Citrate lysis buffer
3.53 mM p-nitrophenyl phosphate,

71.4 mM trisodium citrate,
28.55 mM citric acid, 0.1% [v/v] Triton X-100

5.40 Static adhesion

Phosphate buffer 2.2 mM K2HPO4, 47.8 mM KH2PO4 5.45
Dense granule
release (HPLC)

Lysis/binding/
wash buffer

25 mM Tris HCl, 150 mM NaCl, 5 mM MgCl2,
1% [v/v] NP-40, 5% [v/v] glycerol

7.20
Rap1-GTP
pulldown

Reaction buffer

20 mM Tris base, 150 mM NaCl, 5 mM MgCl2,
2 mM dithiothreitol, 10% [v/v] glycerol,

0.08% [v/v] NP-40, 1 µM Rap1B,
0.1 µM BODIPY-FL-GDP

7.50
Rap1B nucleotide

exchange

MOPS SDS
running buffer

50 mM MOPS, 50 mM Tris base,
0.1% [w/v] SDS, 1 mM EDTA,

0.25% [v/v] NuPAGE® antioxidant
7.70 Western blot

Tris-buffered
saline with

tween

20 mM Tris base, 137 mM NaCl,
0.1% [v/v] Tween-20

7.60 Western blot

Table 2.4 Buffers used in the project. ELISA, enzyme-linked immunosorbent assay; Rap1, Ras-
related protein-1; EDTA, Ethylenediaminetetraacetic acid; HPLC, high-pressure liquid chromatog-
raphy; MOPS, 3-(N-morpholino)propanesulfonic acid; SDS, sodium dodecyl sulfate; N/A, not
applicable
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Antibody Manufacturer
Catalogue

number

Working

concentration
Application

Src Cell Signalling Technology 2108S 1:1000 Western blot

SFKs (Tyr-416) Cell Signalling Technology 2101S 1:1000 Western blot

LAT Millipore 06-807 1:1000 Western blot

LAT (Tyr-200) Abcam Ab68139 1:1000 Western blot

PLC∞2 Santa Cruz sc-407 1:1000 Western blot

PLC∞2 (Tyr-1217) Cell Signalling Technology 3871P 1:1000 Western blot

Rap1 Thermo Scientific 16120 1:1000 Western blot

Phosphotyrosine

(4G10)
Millipore 05-321 1:1000 Western blot

Goat anti-mouse

(HRP-conjugated)
Dako P0447 1:5000 Western blot

Goat anti-rabbit

(HRP-conjugated)
Dako P0048 1:5000 Western blot

CD15

(FITC-conjugated)
eBioscience 11-0159-42 1:50 Flow cytometry

CD41a

(PE-conjugated)
eBioscience 12-0419-42 1:100 Flow cytometry

CD45

(PerCP-conjugated)
eBioscience 45-0459-42 1:100 Flow cytometry

CD11b

(APC-conjugated)
eBioscience 17-0113-42 1:100 Flow cytometry

IgG2a∑

(isotype control)
Biolegend 400202 5 µg mL°1 Flow cytometry

Fab SMJ* SMJ* 10 µg mL°1 Flow cytometry

HY-101 SMJ* SMJ* 5 µg mL°1 Flow cytometry

204-11 Fab SMJ* SMJ* 10 µg mL°1 Flow cytometry

F(ab)2

(Alexa-488–conjugated)
Jackson ImmunoResearch 115-546-072 50 µg mL°1 Flow cytometry

Table 2.5 Antibodies used in the project. SFKs, Src family kinases; LAT, linker of activated T cells;
PLC∞2, phospholipase C∞2; Rap1, Ras-related protein-1; Tyr, tyrosine residue; HRP, horseradish
peroxidase; CD, cluster of differentiation; FITC, fluorescein isothiocyanate; PE, phycoerythrin;
PerCP, peridinin chlorophyll protein complex; APC, Allophycocyanin. SMJ* indicates antibodies
supplied by the laboratory of Dr Stephanie Jung, University of Cambridge.
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2.1 Blood cell preparation

2.1.1 Phlebotomy

Fresh blood was obtained by venepuncture from healthy, drug-free, consenting human

donors. Blood donation was approved by the University of Cambridge Human Biology Re-

search Ethics Committee (Ref: HBREC.2015.18). Blood was drawn using a 21-gauge blood

collection set (Greiner Bio-One, Stonehouse, U.K.) into 60 mL syringes containing the

anticoagulant trisodium citrate (110 mM) in a 9:1 volume ratio (final citrate concentration

= 11 mM).

2.1.2 Preparation of washed platelets

Citrated whole blood (WB) was centrifuged (520 x g, 5 minutes), using a Mistral 3000

centrifuge (MSE, London, UK) to obtain platelet-rich plasma (PRP). PRP was centrifuged

further (150 x g, 5 minutes) to isolate and remove any residual red blood cells (RBCs).

PRP was treated with prostaglandin E1 (PGE1, final concentration = 1 µM), to prevent

subsequent platelet activation. Centrifugation (930 x g, 15 minutes) produced a platelet

pellet and plasma was discarded. The pellet was resuspended in a modified calcium-free

Tyrode’s buffer (CFT: 137 mM NaCl, 11.9 mM NaHCO3, 0.4 mM NaH2PO4, 2.7 mM KCl,

1.1 mM MgCl2, 5.6 mM glucose; pH 7.4) (Figure 2.1). Experiments were performed 1

hour after platelet resuspension, allowing the restoration of basal intracellular signalling

following PGE1 addition. Platelet counts were adjusted using a Z2 Coulter particle counter

(Beckman Coulter, High Wycombe, U.K.) with a 50 µm aperture, which recorded particles

with a diameter between 1.79-3.86 µm.
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Figure. 2.1 Preparation of washed platelets. Whole blood (WB) containing trisodium citrate (final
concentration 11 mM) was centrifuged (520 x g, 5 minutes) to obtain platelet-rich plasma (PRP).
PRP was centrifuged further (150 x g, 5 minutes) to isolate and remove residual red blood cells
(RBCs). Isolated PRP was treated with Prostaglandin E1 (PGE1), before further centrifugation (930 x
g, 15 minutes) to attain a platelet pellet. Platelet-poor plasma (PPP) was discarded and the platelet
pellet resuspended in a modified calcium-free Tyrode’s buffer (CFT).

2.1.3 Preparation of neutrophils

Per 15 mL tube, 10 mL of citrated WB was added to 5 mL of saline, containing dextran-

500 (final concentration 1% [w/v]). Tubes were mixed and left for 30 minutes to allow

dextran-accelerated RBC sedimentation, whilst retaining white blood cells within the PRP.

Pooled PRP samples (typically 12 mL) were aspirated with a pastette and layered over

a discontinuous density gradient of Percoll® (1.5 mL of 1.110 g mL°1, 1.5 mL of 1.088 g

mL°1). Percoll® densities were prepared by mixing Percoll® (1.130 g mL°1) with 1.5 M

NaCl (1.058 g mL°1), each made up to 3 mL with distilled water (Table 2.6). The following

equation was used to calculate the required volumes of Percoll®, NaCl and water:

V0 =V
Ω°0.1Ω10 °0.9

Ω0 °1

Where: V0 = volume of undiluted Percoll® required (mL); V = desired volume of final

working solution (mL); Ω = desired density of final working solution (g mL°1); Ω0 = density

of undiluted Percoll® (1.130 g mL°1); Ω10 = density of 1.5 M NaCl (1.058 g mL°1).

Desired density (g mL°1) Percoll®(mL) 1.5 M NaCl (mL) Water (mL)

1.110 2.405 0.300 0.295

1.088 1.897 0.300 0.803
Table 2.6 Volumes of undiluted Percoll®, NaCl and water required to make desired densities.
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Samples were centrifuged (600 x g, 20 minutes) to separate granulocytes from the

comparatively low density platelets, lymphocytes and monocytes. The isolated granu-

locyte band was aspirated, washed with phosphate-buffered saline (PBS), centrifuged

(300 x g, 5 minutes) and resuspended in CFT (Figure 2.2A). To confirm the composition

of the granulocyte-rich isolate, aliquots were fixed and stained with a modified Wright’s

stain and examined using light microscopy (Figure 2.2B). The cell concentration was

adjusted accordingly using a Z2 Coulter particle counter, with an aperture diameter of 50

µm. Events were recorded with a diameter between 8.00-16.00 µm.

Neutrophil preparations used to measure integrin ÆMØ2 activation (Chapter 2.2.9)

were further assessed for platelet and non-neutrophil leucocyte contamination, and cell

viability as follows. Neutrophils (100 µL, 1.00 x 106 mL°1) were incubated in the dark (5

minutes, 4±C) with fluorophore-conjugated antibodies for the active epitope of integrin

ÆM (CD11b) (Chapter 2.2.9), 3-fucosyl-N-acetyllactosamine (CD15) and either integrin

ÆIIb (CD41a), or leukocyte common antigen (CD45) (Table 2.5). CD41a and CD15 are exclu-

sively expressed on the surface of platelets/megakaryocytes and neutrophils, respectively,

whereas CD45 is expressed on all leucocytes. For each blood donor, a neutrophil sample

was diluted 1:10 in CFT containing 2 mM CaCl2 and 1:40 recombinant allophycocyanin

(APC)-conjugated annexin V, which binds the apoptotic surface marker, phosphatidylser-

ine. Samples were fixed with 2% [v/v] paraformaldehyde and the fluorescence intensity

(F.I.), forward scatter (FSC), and side scatter (SSC) quantified using an AccuriTM C6 flow

cytometer (BD Bioscience, Oxford, U.K.). 30,000 events were recorded per sample and

gated for neutrophils (CD15+/CD41a° or CD15+/CD45+), platelets (CD15°/CD41a+), and

non-neutrophil leukocytes (CD15°/CD45+) (Figure 2.2C-D). The percentage of annexin

V+ events within the neutrophil population was also quantified to assess cell viability

(Figure 2.2E) (Hodge et al., 1999).

In summary, CD15+/CD45+ or CD15+/CD41a° events (neutrophils) were 68.81 ±
2.08%, (N = 79 test samples, 6 blood donors, mean ± SEM), CD15°/CD41a+ events were

4.45 ± 0.48%, (N = 73 test samples, 6 blood donors, mean ± SEM) and CD15°/CD45+

events were 1.17 ± 0.31% (N = 6 test samples from separate blood donors, mean ± SEM)

(Figure 2.2F). The remainder of the sampled population (º25%) includes events with low

F.I., FSC and SSC, which were considered acellular debris. Annexin V+ events within the

neutrophil population were (10.00 ± 1.32%, N = 6 blood donors) (Figure 2.2F).
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Figure. 2.2 Preparation of neutrophils. (A) Schematic representation of the process of neutrophil
isolation. Whole blood (WB) was mixed with saline containing dextran-500 (final concentration
1% [w/v]). Tubes were left for 30 minutes to allow red blood cell (RBC) sedimentation, while
retaining white blood cells within Platelet-rich plasma (PRP). Pooled PRP samples (typically 12
mL) were aspirated and layered over a discontinuous density gradient of Percoll® (1.5 mL of 1.100
g mL°1, 1.5 mL of 1.088 g mL°1). Samples were centrifuged (600 x g, 20 minutes) to separate
granulocytes based on their density. Granulocytes were aspirated, washed with PBS, centrifuged
(300 x g, 5 minutes) and resuspended in CFT. (B) Aliquots from the granulocyte-rich band were
fixed and stained with a modified Wright’s Stain and examined using light microscopy (optical
lens 10x, objective lens 100x). (C-F) Flow cytometry was used to assess the purity and viability of
samples used for integrin ÆMØ2 experiments. Fluorescence-based gates (red lines) determined the
proportion of (C) platelets (CD15°/CD41a+), and (D) non-neutrophil leukocytes (CD15°/CD45+)
and (C-D) neutrophils (CD15+/CD41a° or CD15+/CD45+, respectively). (E) Annexin V+ events
within neutrophil populations were also quantified to determine cell viability. In (F), neutrophil
populations are collectively referred to as CD15+.
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2.2 Experiments

2.2.1 Serotonin uptake

Platelet serotonin transporter (SERT) activity was quantified by monitoring the reduction

in extracellular serotonin (5-HT) concentration. Following 5-HT addition to WP (2.00 x

108 mL°1), aliquots of WP were removed at various intervals (typically 5 minutes), and

subsequent 5-HT uptake minimised by adding 5 mM ethylene glycol-bis(Ø-aminoethyl)-

N,N,N’,N’-tetraacetic acid (EGTA) and 16.6 µM indomethacin (final concentrations).

Samples were then immediately centrifuged (8,000 x g, 1 minute) using a Micro

Centaur (MSE, London, UK), and the supernatants frozen (-20±C).

Supernatant 5-HT concentrations were quantified using high-pressure liquid chro-

matography (HPLC). A Waters 2795 separations module (Waters, Hertfordshire, U.K.)

fitted with a reversed phase C18 column (Kinetex®: 250 x 4.6 mm, 5 µm beads, 100 Å pore

size) (Product code 00G-4601-E0, Phenomenex, Cheshire, U.K.) was used to separate the

5-HT using an isocratic method (mobile phase: 94% [v/v] phosphate buffer (18.4 mM

citric acid, 83.2 mM K2HPO4; pH 6.6) and 6% [v/v] acetonitrile; column temperature =

40±C; flow rate = 1 mL min°1 (Table 2.2). A Waters 2487 Dual ∏ Absorbance Detector set to

276 nm was used to detect 5-HT, which appeared as a peak with a retention time of 4.2

minutes, (Figure 2.3A). Chromatograms were analysed using N2000 Chromatography Data

System (Tianjin University, China). The area under the curve (AUC) of 5-HT standards

dissolved in CFT were measured on each experimental day to determine supernatant

concentrations of 5-HT (Figure 2.3B).

The 5-HT concentration decreases following its addition to WP (Figure 2.3C) and

follows a first order pattern (Figure 2.3D). The natural log of 5-HT concentrations (µM)

were fitted over time (minutes) using the LINEST function in Microsoft Excel, with the

sum of squared residuals minimised using least squares to estimate a single rate constant

for uptake (ku) (Figure 2.3D). Rate constants were derived using the following equation:

Ct =C0e°ku t

Where: Ct = [5-HT] (µM) at time t (min); t = time from addition of 5-HT (min); C0

= [5-HT] (µM) when t = 0; ku = rate constant for 5-HT uptake (min°1). Rate constants

represent the probability of 5-HT uptake per unit time and therefore directly measure

levels of active SERT.
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During method development, the rate and extent of supernatant 5-HT decline were

recorded with several 5-HT concentrations (0.5, 1 & 2 µM) (Figure 2.3D).Complete uptake

of 0.5 & 1 µM 5-HT was achieved over 1 hour. Experiments in the results (Chapter 3.3.1)

were therefore performed using 1 µM 5-HT.

A B

C D

Ku = 3.12 (hr-1) 

Figure. 2.3 Monitoring serotonin uptake into platelets. (A) Example high-pressure liquid chro-
matography (HPLC) chromatograms from serotonin (5-HT) standards. 5-HT (0, 0.3, 0.6 & 1 µM)
was added to calcium-free Tyrode’s (CFT) and the area under the curve (AUC) quantified for the
peak at retention time 4.2 minutes. Deviations in voltage intensity between 2 and 3 minutes were
undefined but did not affect 5-HT quantification. (B) Standard curves were created, using the
AUC from chromatograms of 5-HT standards. (C) Example chromatogram traces, demonstrating
the time-dependent reduction in platelet supernatant concentrations of 1 µM 5-HT following its
exogenous addition to washed platelet (WP) samples. (D) Decreases in exogenous supernatant
5-HT (0.5, 1 & 2 µM) demonstrate the uptake of 5-HT into platelets over 60 minutes. An example
rate constant (ku) for 5-HT uptake is shown and represents the level of SERT activity following the
addition of 0.5 µM 5-HT. Concentrations of 5-HT below the assay sensitivity of º 0.1 µM (black
dashed line, grey area) were not included in the fitting of rate constants.
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2.2.2 Turbidimetric platelet aggregometry

Platelet aggregation was measured using turbidimetric aggregometry (Born, 1962, Jarvis

et al., 2000), with two Aggregation Remote Analyzer Modules (AggRAM) and HemoRAM

software (v1.2) (Helena Biosciences, Newcastle, U.K.). AggRAM modules recorded changes

in optical density (OD) prior to and following the addition of platelet agonists. As platelets

aggregate, the translucent WP suspension clarifies, reducing the OD. The extent of aggre-

gation for each sample was calibrated using unactivated WP (high OD, 0% aggregation)

and a platelet-free CFT (low OD, 100% aggregation). WP (247.5 µL, 2.00 x 108 mL°1) were

aliquoted into glass cuvettes, containing magnetic stir bars and placed into AggRAM

modules (37±C, 1,000 rpm). 2.5 µL agonist was added and aggregation recorded at 37±C

with a stirring speed of 1,000 rpm. After agonist addition, aggregation was recorded for at

least 6 minutes and the maximum extent and rate of aggregation during this period were

subsequently determined (Figure 2.4).

Figure. 2.4 Example aggregation trace. Aggregation was recorded for 6 minutes, following the
addition of a platelet agonist. The maximum extent of aggregation (Max. Aggregation) and the
maximum rate of aggregation (Max. Aggregation Rate) were recorded in every experiment. Max.
Aggregation was typically used to describe platelet aggregation. The brief increase in optical
density immediately after agonist addition is associated with platelet shape change.
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2.2.3 Thromboxane A2 synthesis

A Cayman TxB2 Express ELISA kit (Cambridge Bioscience, Cambridge, U.K., product code:

10004023) was used to indirectly measure thromboxane A2 (TxA2) synthesis by quantifying

concentrations of its stable metabolite, TxB2. This assay is based on the competitive bind-

ing of TxB2 in the platelet supernatant and a TxB2-acetylcholinesterase conjugate (TxB2

tracer) to anti-TxB2 monoclonal antibodies that are bound to goat polyclonal anti-mouse

IgG, which coats wells of a 96 well plate. Unbound supernatant/tracer TxB2 is removed by

washing the wells, before the addition of Ellman’s Reagent, which contains Acetylcholine

and 5,5’-dithio-bis-(2-Nitrobenzoic Acid). Hydrolysis of acetylcholine by the remain-

ing antibody-bound TxB2 tracer produces thiocholine, which reacts non-enzymatically

with 5,5’-dithio-bis-(2-Nitrobenzoic Acid) to produce 5-thio-2-Nitrobenzoic Acid, which

optimally absorbs light between 405-412 nm. The absorption intensity is therefore pro-

portional to the amount of TxB2 tracer bound to wells, which can be used to calculate the

amount of TxB2 within the platelet supernatant.

WP (247.5 µL, 2.00 x 108 mL°1) were activated as for aggregometry (Chapter 2.2.2),

with 5 mM EGTA and 16.6 µM indomethacin added 6 minutes after agonist addition, to

minimise subsequent TxB2 generation. Samples were immediately centrifuged (8,000 x g,

2 minutes), and the supernatants frozen (-80±C). Samples were later thawed and diluted

1:40 or 1:200 in ELISA buffer (100 mM phosphate, 0.1% [w/v] bovine serum albumin (BSA),

400 mM NaCl, 1 mM EDTA, 0.01% [w/v] sodium azide) and 50 µL added to wells of the

polyclonal goat anti-mouse IgG-coated plate. 50 µL of TxB2 standards were aliquoted

to determine the relationship between absorbance and TxB2 concentration. 50 µL of

acetylcholinesterase tracer and 50 µL of anti-TxB2 monoclonal antibody were added to

each well and incubated for 2 hours at RT on an optical shaker. Wells were washed 4

times with wash buffer and incubated with 200 µL Ellman’s reagent under dark conditions.

Absorbance at 405 nm was checked periodically using a SunriseTM plate reader (Tecan,

Reading, U.K.) until the absorbance of wells containing no supernatant TxB2 were in the

range of 0.3-1.5 absorbance units. Absorbance values for TxB2 standards were fitted to

a four-parameter logistic (4PL) model (Chapter 2.3), and the inverse function used to

determine TxB2 concentrations (Figure: 2.5). Samples were excluded from analysis if the

calculated TxB2 concentration fell outside the assay sensitivity range (1.6-1,000 pg mL°1).
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Figure. 2.5 Competitive enzyme-linked immunosorbent assay to measure thromboxane B2.
Absorbance values for thromboxane B2 (TxB2) standards were fitted to a four-parameter logistic
(4PL) model. Absorbance values from diluted (1:200) supernatants of either unstimulated (blue) or
collagen-stimulated (1µg mL°1, red) washed platelets were used to determine TxB2 concentrations,
using the 4PL fit generated from standards. Platelet samples were excluded from analysis if the
calculated TxB2 value fell outside the assay sensitivity range (grey shaded area within black dashed
box).

2.2.4 Static adhesion

The adhesion of platelets or neutrophils to diverse ligands under static conditions was

quantified by indirectly measuring levels of cell-derived acid phosphatase (EC 3.1.3.2)

(Jarvis et al., 2012, Bellavite et al., 1994). Lysing adherent cells releases acid phosphatase,

which, under appropriate conditions converts p-nitrophenyl phosphate (pNPP) to p-

nitrophenol. Increasing the pH inhibits acid phosphatase and catalyses the change of

p-nitrophenol to p-nitrophenolate, which absorbs light at 405 nm. The absorbance is

therefore proportional to the levels of acid phosphatase and the extent of cell adhesion.

Immulon-2HB 96 flat-bottom well plates (Thermo Fisher Scientific, Loughborough,

U.K.) were incubated overnight at 4±C with 100 µL of either BSA, GPP10, Horm® collagen,

collagen III, collagen-related peptide (CRP), fibrinogen, GFOGER, or thrombin (10 µg

mL°1 in saline or 0.01 M acetic acid) (Tables 2.3 & 2.1). The excess ligand was discarded,

and wells blocked with 175 µL BSA (5% [w/v] in CFT) for 1 hour. Wells were then washed

three times with BSA (0.1% [w/v] in CFT). 50 µL of either WP (1.25 × 108 mL°1) or isolated

neutrophils (4.00 × 106 mL°1) were added to wells and left for 1 hour at RT. Samples were

discarded, and the wells washed as before, followed by the addition of 150 µL of citrate

lysis buffer (3.53 mM pNPP, 71.4 mM trisodium citrate, 28.55 mM citric acid, 0.1% [v/v]

Triton X-100; pH 5.4) to each well. After 1 hour, 100 µL of 2 M NaOH was added to each
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well and absorbance measured at 405 nm, using either an ELx808 (Biotek, Swindon, U.K.)

or a SunriseTM (Tecan, Reading, U.K.) plate reader.

2.2.5 Cell cytotoxicity

A Pierce LDH Cytotoxicity Assay Kit (Thermo Fisher Scientific, Loughborough, U.K., prod-

uct code: 88953) was used to measure lactate dehydrogenase (LDH, EC 1.1.1.27) released

from platelets or neutrophils as a result of cell lysis or damage induced by high drug

concentrations. LDH is a cytosolic enzyme, and its detection in the supernatant of cellular

suspensions is commonly used to assess membrane integrity and cell cytotoxicity. LDH

catalyses the conversion of lactate to pyruvate, reducing nicotinamide adenine dinu-

cleotide (NAD)+ to NADH. Diaphorase (EC 1.6.99.1) uses NADH to reduce a tetrazolium

salt to a red formazan product, which absorbs light at 490 nm.

250 µL of either WP (2.00 x 108 mL°1) or isolated neutrophils (1.00 x 106 mL°1) were

placed within AggRAM modules (1,000 rpm, 10 minutes, 37±C). For positive controls, 10

µL of 10 x Lysis Buffer (proprietary, Thermo Fisher, product code: 1862876) was added to

induce cytolysis. Supernatants were isolated following centrifugation (8,000 x g, 1 minute)

using a Micro Centaur (MSE, London, UK) and 50 µL aliquoted into wells of an Immulon-

2HB 96-well flat-bottom plate. For negative controls, 50 µL CFT alone was added to wells.

50 µL of reaction mixture (proprietary, Thermo Fisher, product code: 1862887) was added

to each well for 30 minutes. 50 µL of a STOP solution (proprietary, Thermo Fisher, product

code: 1862880) was added, and background absorbance at 680 nm subtracted from the

absorbance at 490 nm. Measurements were taken using a SunriseTM plate reader (Tecan,

Reading, U.K.).
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Figure. 2.6 Example data, showing how lactate dehydrogenase (LDH) levels were measured from
the supernatants of washed platelets (WPs). In this example, platelets were treated with increasing
concentrations of dimethyl sulfoxide (DMSO), which did not increase LDH levels up to concen-
trations of 10% [v/v]. Lysed platelets (diamonds) or calcium-free Tyrode’s (CFT, triangles) were
used as positive and negative controls, respectively. Three blood donors were used on separate
occasions, which are represented as different colours. The highest DMSO concentration used
during this project (0.4% [v/v]) is depicted by the vertical black line and did not cause LDH release.
These data show that the concentrations of DMSO used in Chapter 6 did not cause cytotoxicity.

2.2.6 Monitoring cytosolic calcium concentration

Fluctuations in the concentration of cytosolic calcium ([Ca2+]cyt) were monitored using

the ratiometric Ca2+ indicator, Fura-2. Excitation of Fura-2 at 340 and 380 nm excites Ca2+-

bound and Ca2+-free Fura-2, respectively. Excited Fura-2 has a peak emission of 500 nm.

PRP or isolated neutrophils were loaded with Fura-2 by incubation with acetoxymethyl

ester (final concentration 2.5 µM, 30 minutes, 37±C). The acetoxymethyl (AM) ester groups

of Fura-2AM allow membrane permeability before subsequent cleavage by intracellular

esterases, trapping Fura-2 within the cytoplasm. In the case of PRP, WP preparation

(2.00 x 108 mL°1) was then continued (Chapter 2.1.2). Fura-2-loaded neutrophils were

centrifuged (300 x g, 5 minutes) and resuspended in fresh CFT to 1.00 x 106 mL°1. Fura-2

fluorescence was measured using a Cairn Optoscan Spectrophotometer (Cairn Research,

Faversham, U.K.). 1.2 mL samples were aliquoted into cuvettes containing magnetic stir

bars and placed into the chamber (stirring conditions, 37±C). Light from the high-intensity

arc lamp was passed through a monochromator to provide excitation wavelengths of

340 and 380 nm and the emission of light at 500 nm was selected using a filter slider.

Fluorescence was recorded using Acquisition Engine 1.1.7 (Cairn Research, Faversham,
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U.K.). Extracellular Ca2+ was chelated 30 seconds after recording began by adding EGTA

(10 mM), before the addition of agonist at 60 seconds.

On each experimental day, the F.I. of Fura-2 in the presence of high and low [Ca2+]

was used to calibrate and quantify changes in [Ca2+]cyt during experiments. 1.2 mL of

cell suspension was incubated with Ca2+ (1 mM) and lysed with Triton X-100 (0.1% [v/v]),

causing Ca2+ saturation of Fura-2 (F380mi n , Rmax ). The addition of EGTA (10 mM) chelated

Ca2+, resulting in Ca2+-free Fura-2 (F380max , Rmi n). The protons liberated by EGTA were

quenched with 20 mM Tris base (Figure 2.7). The following calculation, initially described

by Grynkiewicz et al. (1985) was then used to determine [Ca2+]cyt in experimental samples:

[Ca2+]cyt = Kd (
F380max

F380mi n
)(

R °Rmi n

Rmax °R
)

Where: [Ca2+]cyt = concentration of cytosolic calcium (nM); K d = dissociation constant of

Fura-2 (224 nM at 37±C); F380max = maximum fluorescence at 380 nm; F380mi n =

minimum fluorescence at 380 nm; R = ratio of 340/380 nm; Rmax = R under Ca2+-

saturating conditions; Rmi n = R under Ca2+-free conditions (Figure 2.7).

Figure. 2.7 Representative fluorescence (F) traces used to calibrate cytosolic calcium concentra-
tions ([Ca2+]cyt). The signal produced by Fura-2 excitation at 340 (Ca2+-bound) and 380 (Ca2+-free)
nm was monitored over time and used to calculate the fluorescence ratio (R, 340/380 nm). Ca2+

was added prior to cell lysis with Triton X-100, allowing full Ca2+ saturation of Fura-2 (F380mi n ,
Rmax ). EGTA was added to chelate Ca2+ and the subsequent free protons quenched with Tris base
(TRIS), resulting in no Ca2+-bound Fura-2 (F380max , Rmi n).
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2.2.7 SDS PAGE and Western blot analysis

Cell lysates used for quantifying Rap1-GTP (Chapter 2.2.8) and protein tyrosine phospho-

rylation were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis

(SDS PAGE), transferred to polyvinylidene fluoride (PVDF) membranes and detected with

specific antibodies (Table 2.5).

250 µL WP (2.00 x 108 mL°1) or neutrophils (1.00 x 106 mL°1) were either stimulated

in aggregometers (1,000 rpm, 37±C) or under non-stirring conditions at RT, respectively.

Platelet samples were pre-incubated with the integrin ÆIIbØ3 antagonist GR 144053 (2

µM) to prevent aggregation. Following stimulation, samples assessed for protein tyrosine

phosphorylation were diluted 5:1 in Laemmli sample buffer (final concentrations: 25

mM Tris HCl, 0.4% [v/v] glycerol, 0.8% [w/v] SDS, 1% [v/v] mercaptoethanol, 0.01% [w/v]

brilliant blue). Total Rap1 and Rap1-GTP pulldown samples were prepared as described

in Chapter 2.2.8. Samples were heated for 10 minutes at approximately 100±C. 20 µL of

protein sample lysates were assigned and added to lanes of a 4-12% pre-cast NuPAGE®

Bis-Tris gel (Invitrogen, Paisley, U.K.). 5 µL of Precision Plus ProteinTM dual colour or

all blue standards (Bio-Rad Laboratories, Hertfordshire, U.K.) were typically added to

lanes 1 and 10, respectively. Gels were run at 200 volts for 1-1.5 hours in 1 x NuPAGE®

MOPS SDS running buffer (50 mM MOPS, 50 mM Tris base, 0.1% [w/v] SDS, 1 mM EDTA,

0.25% [v/v] NuPAGE® antioxidant, pH 7.7). The gel and a PVDF membrane (Millipore,

Watford, U.K.) were sandwiched between filter papers, assembled into a transfer cassette

and immersed in transfer buffer (25 mM Tris base, 192 mM glycine, 0.5% [w/v] SDS,

17% [v/v] methanol). Transfers were completed (20 volts, overnight, 4±C) and transfer

efficiency tested by staining gels with Coomassie stain (10% [v/v] glacial acetic acid, 45%

[v/v] distilled water, 45% [v/v] methanol, 0.25% [w/v] brilliant blue), which confirmed

complete protein post-transfer in all cases. Non-specific antibody binding minimised by

incubating membranes with blocking buffer (10% [w/v] BSA, 20 mM Tris base, 137 mM

NaCl, 0.1 % [v/v] Tween-20, pH 7.6) for 1 hour at RT. Membranes were agitated for 2 hours

in BSA (5% [w/v], 0.01% [w/v] sodium azide, in Tris-buffered saline with Tween (TBS-

T)), containing various primary antibodies (Tables 2.4 & 2.5). Membranes were washed

3 x 15 minutes in TBS-T, before 1 hour incubation with horseradish peroxidase (HRP)-

conjugated secondary antibodies (Table 2.5). Membranes were washed as before, treated

with enhanced chemiluminescence (ECL) reagent and exposed under dark conditions to

hyperfilm® (GE Healthcare, Buckinghamshire, U.K.), allowing the detection of protein

bands. X-ray films were developed using a medical film processor (Fuji, Bedford, U.K.).
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Different film exposure times were used for each blot and those generating the greatest

contrast between bands were selected for subsequent quantification. Membranes were

agitated in Coomassie stain for approximately 30 minutes, to confirm similar protein

concentrations between samples.

Developed X-ray films were scanned using a Xerox WorkCentre 7855 photocopier

(Settings: greyscale; default for brightness, sharpness and saturation; 100% zoom; 600 dpi)

to generate JPEG image files. Unprocessed image files were opened into ImageJ (v1.50)

and no adjustments (e.g., brightness, sharpness or saturation) were made. Protein bands

were quantified as follows: identical areas (height (100) x width (150) = 15,000 pixels) were

drawn around each protein band and the density of all pixels (scale 0 – 255 each) summed.

The integrated density of each area was therefore quantified on a scale from 0 (totally

black) to 3,825,000 (totally white). Values are presented as % black. Background density

levels were determined (º 45-48% black), representing no protein signal.

2.2.8 Rap1-GTP pulldown

An active Rap1 Pull-Down and Detection Kit (Thermofisher Scientific, Loughborough,

U.K., product number: 16120) was used to isolate activated Rap1 (Rap1-GTP). Platelet

lysates were incubated with a glutathione S-transferase (GST)-tagged Ral guanine nu-

cleotide dissociation stimulator Ras-binding domain (RalGDS-RBD) fusion protein, which

binds both glutathione and Rap1-GTP via GST and RBD, respectively. Glutathione was

attached to cross-linked agarose, preventing the passage of GST-RalGDS-RBD and associ-

ated Rap1-GTP through membrane-incorporated spin cups (Figure 2.8).

250 µL of either WP (2.00 x 108 mL°1) or neutrophils (1.00 x 106 mL°1) were stimulated

as for aggregometry for 1 minute. Reactions were terminated with 1:1 Lysis/binding/wash

buffer (LBW: 25 mM Tris HCl, 150 mM NaCl, 5 mM MgCl2, 1% [v/v] NP-40, 5% [v/v]

glycerol, pH 7.2). Lysates were put on ice for 5 minutes, followed by centrifugation (8,000

x g, 1 minute) using a Micro Centaur (MSE, London, UK). For total Rap1 quantification,

20 µL of each sample lysate was aliquoted into 1:1 Laemmli buffer (final concentrations:

62.5 mM Tris HCl, 1% [v/v] glycerol, 2% [w/v] SDS, 2.5% [v/v] mercaptoethanol, 0.025%

[w/v] brilliant blue). For some samples, lysates were incubated with 10 mM EGTA and

0.1 mM guanosine 5’-O-[gamma-thio]triphosphate (GTP∞S) (30 minutes, 30±C), a non-

hydrolysable analogue of GTP which can be used as an optional positive control (Figure A.2

in Appendix A). For Rap1-GTP quantification, the remaining 480 µL sample was aliquoted

into spin cups, containing 100 µL of 50% glutathione-agarose beads and 20 µg of GST-

RalGDS-RBD. Samples were briefly vortexed and incubated with gentle rocking (1 hour,
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4±C). Samples were centrifuged (8,000 x g, 1 minute) using a Micro Centaur (MSE, London,

UK) and washed 3 times with 400 µL LBW, before the addition of 50 µL Laemmli buffer.

Samples were centrifuged (8,000 x g, 2 minutes) into tubes using a Micro Centaur (MSE,

London, UK). Total Rap1 and Rap1-GTP samples underwent SDS PAGE and Western blot

analysis (Chapter 2.2.7). Samples were probed with a Rap1 primary antibody (Table 2.5).

Other proteins

Rap1-GDP

Rap1-GTP

Glutathione-agarose
GST-RalGDS-RBD

8,000 x g 
1 min

8,000 x g 
2 min

Laemmli
buffer

Figure. 2.8 Schematic illustration of the Rap1-GTP pulldown assay. Lysates were incubated with a
glutathione S-transferase (GST)-tagged Ral guanine nucleotide dissociation stimulator Ras-binding
domain (RalGDS-RBD) fusion protein, which indirectly links Rap1-GTP with glutathione-agarose
beads. Proteins not linked to glutathione-agarose beads were passed through a membrane filter
by centrifugation (8,000 x g, 1 minute), and the supernatant discarded. The addition of Laemmli
sample buffer breaks GST-glutathione links, allowing Rap1-GTP to pass through the membrane
filter upon centrifugation (8,000 x g, 2 minutes). This is an original image.

2.2.9 Neutrophil integrin ÆMØ2 activation

Neutrophil integrin ÆMØ2 (Mac-1, CD11b/CD18) activation was measured using an allo-

phycocyanin (APC)-conjugated monoclonal antibody, which binds the activated epitope

of integrin ÆM (CD11b) (Table 2.5). Neutrophils (100 µL, 1.00 x 106 mL°1) were incubated

with the active CD11b antibody in the absence of light (5 minutes, 4±C). Various combina-

tions of CD15, CD41a and CD45 antibodies were co-incubated to assess sample purity

(Chapter 2.1.3). Samples were fixed with 2% [v/v] paraformaldehyde and the F.I., FSC

and SSC of 30,000 sampled events quantified using an AccuriTM C6 flow cytometer (BD

Bioscience, Oxford, U.K.).
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2.2.10 Rap1B nucleotide exchange activity

The rate and extent of Rap1B nucleotide exchange was measured using a fluorescence-

based in vitro enzyme assay (Lozano et al., 2016, Ren et al., 2016). This assay uses the

fluorophore BODIPY-FL, which exhibits similar spectral characteristics to fluorescein

isothiocyanate (FITC) and is attached to either the 2’ or 3’ position of the guanosine

diphosphate (GDP) ribose ring (BODIPY-FL-GDP). The F.I. of BODIPY-FL-GDP increases

upon binding to Rap1. In this assay, the exchange of BODIPY-FL-GDP for non-fluorescent

GDP on Rap1B was monitored by measuring increases in sample F.I. over time (Figure

2.9B). The addition of calcium and diacylglycerol guanine nucleotide exchange factor-1

(CalDAG-GEFI) increases the rate of nucleotide exchange and BODIPY-FL-GDP binding

to Rap1, therefore increasing F.I. (Figure 2.9B).

100 µL of reaction buffer (20 mM Tris base, 150 mM NaCl, 5 mM MgCl2, 2 mM dithio-

threitol, 10% [v/v] glycerol, 0.08% [v/v] NP-40, 1 µM Rap1B, 0.1 µM BODIPY-FL-GDP,

pH 7.5) was aliquoted into wells of a Nunc F96 well, black, flat-bottomed plate and the

baseline F.I. recorded (Ex 485 nm, Em 520 nm) for 3 minutes with a Fluostar Optima

plate reader (BMG Labtech, Aylesbury, U.K.). Measurements were halted for 105 seconds,

allowing the addition of CalDAG-GEFI (0.3 µM) and recording resumed for 20 minutes.

The average F.I. prior to CalDAG-GEFI addition was subtracted from the final F.I. after 20

minutes (¢F.I.) and used to quantify CalDAG-GEFI-mediated Rap1B nucleotide exchange.

Recombinant Rap1B and CalDAG-GEFI were generous donations from Professor

Wolfgang Bergmeier and Aaron Cook, from the University of North Carolina. Aaron

Cook cloned Rap1B and CalDAG-GEFI from human genes into a protein expression

vector p15LIC2 6xHis, which was purified in E. coli. Catalytically active and inactive

CalDAG-GEFI protein variants were provided, which all contained a C-terminal trun-

cation p.(Ala552_Leu609del), which "removed disordered regions to improve stability

during the purification process, while leaving all the functional domains intact"

(personal communication from Aaron Cook). Rap1B also contained a C-terminal trun-

cation (p.(Lys168_Leu184del)) for the same reason. Catalytically inactive CalDAG-GEFI

variants contained either an additional deletion (p.(Arg387_Pro404del)), or a glycine-

tryptophan substitution at position 248 (p.(Gly248Trp)) (Lozano et al., 2016, Canault et al.,

2014). CalDAG-GEFI variants p.(Arg387_Pro404del) and p.(Gly248Trp) did not increase

the rate of Rap1B nucleotide exchange when compared to samples lacking CalDAG-GEFI

(Figure 2.9B) and were thus used as negative controls. Protein sequences for both CalDAG-

GEFI and Rap1B variants are shown in Figure B.1 of Appendix B.
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Figure. 2.9 Monitoring Rap1B nucleotide exchange. (A) Domain structure of the calcium and
diacylglycerol guanine nucleotide exchange factor-1 (CalDAG-GEFI) (Westbury et al., 2017). Ar-
rows demonstrate the locations of a glycine-tryptophan substitution at residue 248 (p.(Gly248Trp))
within the cell division cycle 25 (CDC25) domain, and an 18 residue deletion (p.(Arg387_Pro404del))
between the CDC25 and EF hand domains. CalDAG-GEFI variants all contained a C-terminal dele-
tion (p.(Ala552_Leu609del)), represented by the red outlined box. (B) A BODIPY-FL fluorescence-
based assay was used to monitor the nucleotide exchange activity of Rap1B in the presence or
absence of CalDAG-GEFI. Fluorescence intensity (F.I.) traces demonstrate the intrinsic dissociation
of non-fluorescent guanosine diphosphate (GDP) from Rap1B and the subsequent binding of
BODIPY-FL-GDP in the absence of CalDAG-GEFI (blue line), which gradually increases sample
fluorescence. Catalytically active (black line) or inactive (red line is p.(Arg387_Pro404del); green
line is p.(Gly248Trp)) CalDAG-GEFI was added to wells containing Rap1B and BODIPY-FL-GDP
during the period indicated by the white segment enclosed by black dashed lines. CalDAG-GEFI
variants and Rap1B were provided by Professor Wolfgang Bergmeier and Aaron Cook, from the
University of North Carolina.
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2.2.11 Glycoprotein VI antibody binding

The binding of antibodies to dimeric or total (dimeric and monomeric) platelet glycopro-

tein VI (GPVI) was quantified using the GPVI-specific antibodies, 204-11 Fab and HY-101,

respectively (Table 2.5). WP (2.50 x 107 mL°1) were incubated for 10 minutes with either

HY-101 (5 µg mL°1) or 204-11 Fab (10 µg mL°1). Murine IgG1 (5 µg mL°1) or Fab (10 µg

mL°1) were used as corresponding isotype controls, respectively (Table 2.5). Alexa488-

conjugated anti-mouse F(ab)2 (5 µg mL°1) was subsequently added and incubated for

10 minutes. Samples were diluted 1:8 in CFT and the F.I. measured using an AccuriTM C6

flow cytometer (BD Bioscience, Oxford, U.K.).

2.2.12 Dense granule release

Supernatant concentrations of adenosine triphosphate (ATP) and adenosine diphosphate

(ADP) were used to measure platelet dense granule release. WP (247.5 µL, 2.00 x 108

mL°1) were activated as for aggregometry for 6 minutes (Chapter 2.2.2). 5 mM EGTA and

16.6 µM indomethacin were added 6 minutes after the addition of agonist, to minimise

further nucleotide release. Samples were immediately centrifuged (8,000 x g, 1 minute)

using a Micro Centaur (MSE, London, UK), the supernatants collected and frozen (-20±C).

HPLC was used to quantify supernatant concentrations of ATP and ADP. Nucleotides

were separated using a gradient method on a reversed phase C18 column with polar

end-capping to tolerate a 100% aqueous phase (SynergiTM Hydro-RP: 250 x 4.6 mm, 4

µm beads, 80 Å pore size) (Product code 00G-4375-E0, Phenomenex, Cheshire, U.K.).

Two mobile phases were used, a phosphate buffer (2.2 mM K2HPO4, 47.8 mM KH2PO4;

pH 5.45) and acetonitrile. Nucleotides were separated over 6 minutes at 30±C, with a

constant flow rate of 1.7 mL min°1. Details of the mobile phase method are in Table

2.2. Peaks for ATP and ADP were detected at 254 nm, with retention times of 3.4 and

4.5 minutes, respectively (Figure: 2.10A). Chromatograms were analysed using N2000

Chromatography Data System (Tianjin University, China). For each experimental day, ATP

and ADP concentrations were determined using the AUC from peaks of known standards,

which were used to construct linear standard curves (Figure: 2.10B). The limit of detection

for ATP and ADP in the platelet supernatant was approximately 0.1 µM.
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Figure. 2.10 Measuring platelet dense granule release. (A) Exogenous concentrations of adenosine
triphosphate (ATP) and adenosine diphosphate (ADP) (0, 1, 3 µM) were added to calcium-free
Tyrode’s (CFT) and the area under the curve (AUC) of peaks at retention times 3.4 and 4.5 recorded.
(B) Standard curves describing the relationship between AUC and nucleotide concentration were
created for each experimental day, to determine ATP and ADP concentrations in platelet super-
natants. (C) Example chromatograms for the supernatant of stimulated (red line) and unstimulated
(black line) platelets. Undefined peaks between 1.2 and 2.2 minutes were not a consequence of
platelet activation and did not disrupt the quantification of ATP or ADP.
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2.3 Statistics and analysis

Concentration-response curves were modelled using a four-parameter logistic (4PL)

equation (DeLean et al., 1978, Jarvis et al., 2000):

RPRED = Mi n °M ax

1+ ( [A]
10°p A50

)nH
+M ax

Where: RPRED = predicted response (dependent variable); [A] = agent concentration

(independent variable); Mi n = response when [A] = 0; M ax = response when [A] = 1;

p A50 = -log [A] when RPRED = (M ax + Mi n)/2; nH = Hill coefficient. When A is an

inhibitor, the p A50 is the pIC50.

Parameter values were estimated by fitting the data to the 4PL model using the Solver

Tool in Microsoft Excel to minimise the sum of the squares of the residuals (Figure 2.3A).

For 5-HT uptake experiments (Chapter 3.2.1) and neutrophil adhesion to fibrinogen

(Chapter 4.2.7), a naïve pooled approach (Mould and Upton, 2012) was adopted using

GraphPad Prism 7.03 (CA, U.S.A.). In this approach, data from separate experiments

was grouped and averaged as if it were from one experiment, which was then used to

determine the four parameters and model plot fits (Figure 2.3B). For all other experiments,

summary parameters were derived using a ’two-stage’ approach (Steimer et al., 1984,

Mould and Upton, 2012), in which parameter estimates were obtained for each individual

experiment (usually per blood donor). These were then averaged and used to model

the final fit shown in figures. Average data point values were printed over model fits, ±

the standard error of the mean (SEM) (Figure 2.3B). Average pIC50 or pEC50 values were

used to describe the concentration-dependent loss or gain in response, respectively. This

approach was chosen over describing IC50 or EC50 values, as biological response data

typically suit a log-normal distribution (Hancock et al., 1988). Likewise, the geometric

mean of Hill coefficients (nH) was chosen over the arithmetic mean. R 3.3.2 (The R

Foundation for Statistical Computing, Vienna, Austria) was used to generate figures and

conduct analysis of variance (ANOVA).
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B

Donor Min Max pIC50 nH

#001 88.38 0.00 4.47 2.48

#007 81.27 0.00 4.71 2.94

#009 86.93 0.00 4.47 2.17

#052 87.65 0.00 4.11 7.98

#074 85.77 0.00 4.36 10.34

#084 85.17 0.00 4.47 5.18

Average 0.00 85.87 4.43 4.35

SEM 0.00 1.04 0.08 1.37

Two-stage approach
[Drug] (µM) 5 10 20 50 100 200

Average 84.50 86.50 68.83 30.33 3.00 -1.50

SEM 3.25 1.74 7.85 11.51 1.65 0.34

Average
Parameter

Min Max pIC50 nH

0.00 86.27 4.43 2.55

Naïve pooled approach

Max = 0.00 
Min = 86.93
pIC50 = 4.47
nH = 2.16

A

Figure. 2.11 Modelling concentration-response curves. (A) Description of the four-parameter logis-
tic (4PL) model. The four parameters: M ax, Mi n, p A50 and nH were used to model concentration-
response curves. In this example, a pIC50 value was used, due to the loss in response with increased
drug concentration. Parameter values were optimised by minimising the sum of the squared resid-
uals (red lines are residuals). (B) Example data from 6 blood donors demonstrates how results
were analysed using either the naïve pooled approach or the two-stage approach. In this thesis, the
two-stage approach was typically adopted, where parameter values from individual experiments
were averaged and used to model the final plot fit. Average data points (± SEM) were printed over
the fit.





Chapter 3

Citalopram inhibits platelets through a

SERT-independent mechanism

3.1 Background

Citalopram is a selective serotonin reuptake inhibitor (SSRI) that suppresses platelet

activation in vitro (Carneiro et al., 2008, Tseng et al., 2010, 2013). Citalopram’s antiplatelet

effects in vitro may be mediated through blocking the platelet serotonin transporter

(SERT), preventing the uptake of serotonin (5-HT). Blocking platelet SERT in vivo with

prolonged SSRI treatment gradually depletes dense granule stores of 5-HT, impairing 5-HT-

enhanced platelet activation (Hergovich et al., 2000). However, citalopram incubations of

only 3-10 minutes have been reported to inhibit platelet functions in vitro (Carneiro et al.,

2008, Tseng et al., 2010, 2013). Furthermore, micromolar concentrations of citalopram

were used in these studies, which are approximately three orders of magnitude greater

than the nanomolar concentrations (K i = 9.6 ± 0.5 nM) required to block SERT (Owens

et al., 2001). These observations suggest that the in vitro antiplatelet effects of citalopram

may not be a direct consequence of SERT inhibition.

3.1.1 Citalopram’s stereochemistry

Citalopram is a 50:50 racemic (RS) mixture of two stereoisomers, (R)- and (S)-citalopram

(Figure 3.1, Chapter 1.2.3). (S)-Citalopram (K i = 2.5 ± 0.4 nM) is approximately 30-

fold more potent than (R)-citalopram (K i = 67.0 ± 8.0 nM) at inhibiting SERT-mediated

5-HT uptake (Owens et al., 2001), which equates to a eudysmic ratio of approximately

30. Previous in vitro studies have only investigated the effects of racemic (RS)- or (S)-

citalopram on platelets (Atar et al., 2007, Carneiro et al., 2008, Tseng et al., 2010, 2013),

with no attention given to the individual (R)-isomer. If citalopram suppresses in vitro

platelet activation through blocking SERT, then any inhibitory effects will predominantly

be mediated by (S)-citalopram. Similarly, (R)-citalopram, which has a lower affinity for

binding and blocking SERT should be approximately 30-fold less potent at inhibiting

platelet functions.
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(R)-citalopram

Ki = 67 ± 8 nM Ki = 9.6 ± 0.5 nM 

(RS)-citalopram (S)-citalopram

Ki = 2.5 ± 0.4 nM 

Figure. 3.1 Chemical structures of citalopram and its stereoisomers. Racemic (RS)-citalopram
consists of a 50:50 mixture of (R) and (S) stereoisomers. (RS)-citalopram has one stereocentre,
to which a 4-fluorophenyl group and an N,N-dimethyl-3-aminopropyl group are attached. The
geometric differences between (R)-citalopram and (S)-citalopram isomers account for their dis-
crepancy in both binding the serotonin transporter (SERT) and inhibiting SERT-mediated serotonin
(5-HT) uptake. K i values for 5-HT uptake (mean ± SEM) are from previously published data (Owens
et al., 2001), derived from competition-binding assays between citalopram and radiolabelled 5-HT
on human neurons of the frontal and parietal cortex. Chemical structures were constructed using
BIOVIA Draw 2016 version 5.1.0.22 (Dassault Systèmes, Vélizy-Villacoublay, France).

3.1.2 Aims

Experiments performed within this chapter aim to:

1. Characterise the effects of citalopram on platelet functional responses in vitro.

2. Determine whether citalopram’s effects are mediated through its known mechanism

of action, i.e. inhibition of SERT.

To achieve these aims, the inhibitory potencies of (RS)-, (R)- and (S)-citalopram were

compared for both platelet 5-HT uptake and several platelet functional responses,

including aggregation, thromboxane A2 (TxA2) synthesis and adhesion. By using the same

protocol for platelet preparation, direct comparisons can be made between inhibition of

SERT and inhibition of platelet functional responses. Quantifying the time-dependent

reduction in supernatant 5-HT (Chapter 2.2.1) also produced rate constants for 5-HT

uptake, which are a more suitable index for SERT activity than previously published data

on the competitive binding of citalopram and 5-HT (Owens et al., 2001).
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3.2 Results

3.2.1 Citalopram blocks 5-HT uptake into platelets

Pre-incubating platelets with (RS)-citalopram (100 nM) prevented the uptake of 5-HT (1

µM) from the supernatant into platelets (Figure 3.2A). Rate constants for platelet 5-HT

uptake (ku) were obtained following pre-incubation for approximately 5 minutes with a

range of (RS)-, (R)- and (S)-citalopram concentrations (Figure 3.2B). Owing to logistical

constraints, it was not possible to collect data for all conditions on each experimental day

to generate concentration-response curves. Therefore, a naïve pooled approach (Figure

2.11) was used to analyse data. In total, 76 rate constants from 11 blood donors were

obtained on 14 separate occasions across a range of citalopram concentrations. Data from

one blood donor (comprising of 4 rate constants) were excluded from the analysis as a

hyper-functional outlier, lying more than 3 standard deviations beyond the basal range.

The mean ± SEM basal rate constant for 5-HT uptake (no citalopram) was 4.60 ± 0.24 hr°1.

(RS)-, (R)- and (S)-citalopram blocked 5-HT uptake at nanomolar concentrations (Figure

3.2C) (N = 4-6 values per data point, n = 13 donors). The citalopram isomers had different

inhibitory potencies: (S)-citalopram (pIC50 = 8.60 ± 0.13) was approximately 17-fold more

potent than (R)-citalopram (pIC50 = 7.36 ± 0.19) and (RS)-citalopram (pIC50 = 8.33 ± 0.11)

was approximately 1.8-fold less potent than (S)-citalopram. These results suggest that

platelet 5-HT uptake inhibition by (RS)-citalopram is predominantly mediated by the

(S)-citalopram isomer.
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Figure. 3.2 Citalopram blocks 5-HT uptake into platelets. (A) Example high-pressure liquid chro-
matography (HPLC) chromatograms of platelet supernatants, isolated 30 minutes after the addition
of 1 µM serotonin (5-HT). Before the addition of 5-HT, platelets were either untreated (black line)
or pre-incubated with 100 nM (RS)-citalopram (red line) for approximately 5 minutes. (B) Example
kinetic profiles, showing the reduction in supernatant 5-HT over time. Uptake was blocked by
increasing concentrations of (RS)-, (R)- and (S)-citalopram (black, red and blue lines, respectively).
Kinetic profiles were used to determine rate constants of uptake (ku). (C) The inhibitory effect
of (RS)-, (R)- and (S)-citalopram (0, 1, 3, 10, 30, 100 & 1,000 nM) on the rate constant of uptake
were fitted to the four-parameter logistic (4PL) model using the naïve pooled approach (N = 4-6
replicates per data point, n = 13 separate blood donors).
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3.2.2 Citalopram inhibits platelet aggregation

Previous results confirm (S)-citalopram is the more potent inhibitor of platelet 5-HT

uptake (Chapter 3.2.1). The inhibitory potencies of (RS)-, (R)- and (S)-citalopram were

also tested on several platelet functional responses and later compared with inhibitory

potencies for 5-HT uptake, to determine if any effects were mediated through SERT

blockade.

Preliminary experiments show (RS)-citalopram (100 µM) inhibited collagen-induced

platelet aggregation (Figure 3.3). Inhibition was observed following short (RS)-citalopram

pre-incubation times (30, 60 seconds) or in conjunction with the addition of collagen (0

seconds). Subsequent experiments were designed to quantify and compare the inhibitory

potencies (i.e., the pIC50 values) of (RS)-, (R)- and (S)-citalopram on collagen- and U46619-

induced platelet aggregation. Agonist concentration-response curves were obtained at 0,

20, 50 & 100 µM citalopram for collagen, and 0, 50, 100 & 200 µM citalopram for U46619.

Unless otherwise stated, collagen refers to Horm® collagen. Treatment conditions were

randomised, with citalopram simultaneously added to all washed platelet samples in

advance of the first measurements. Therefore, some samples were incubated for longer

periods of time, up to 3 hours. Collagen and U46619 experiments were conducted on

the same donors (N = 7), but on separate occasions. Collagen- and U46619-induced

aggregation were inhibited by (RS)-, (R)- and (S)-citalopram in a concentration-dependent

manner (Figure 3.4). Responses to a fixed concentration of collagen (1 µg mL°1) or U46619

(0.2 µM), which induced near-maximal aggregation under control conditions, were fitted

to the four-parameter logistic (4PL) model with the M ax parameter constrained to zero

(Figure 3.4C). pIC50 values are shown in Table 3.1 and Figure 3.8. U46619 data from one

experimental day was excluded, as the 4PL model failed to converge on a meaningful

solution. 3-way ANOVA (Effect 1 (fixed) = citalopram {(RS), (R), (S)}; Effect 2 (fixed) =

agonist {collagen, U46619}; Effect 3 (random) = donor {N = 7 (collagen), N = 6 (U46619)})

indicated no difference in inhibitory potency between (RS)-, (R)- and (S)-citalopram (P =

0.57, F = 0.57, df = 2, 27. H0: µRS=µR=µS; H1: µRS 6=µR 6=µS).
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A B

(RS)-citalopram
(100 µM)

Figure. 3.3 Instantaneous platelet inhibition by citalopram. (A) Representative aggregation
traces for either untreated platelets, or platelets pre-incubated with 100 µM (RS)-citalopram for
either 30 or 60 seconds before stimulation with collagen (1 µg mL°1). 0 seconds represents co-
administration of both (RS)-citalopram (100 µM) and collagen (1 µg mL°1). (B) Following collagen
addition, the maximum extent of aggregation over 6 minutes (Max. Aggregation) was quantified (N
= 4 blood donors).
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Figure. 3.4 Citalopram inhibits platelet aggregation. (A) Representative aggregation traces,
illustrating concentration-dependent inhibition of collagen-induced or U46619-induced platelet
aggregation by (RS)-, (R)- and (S)-citalopram (black, red and blue lines, respectively). (B) Collagen
and U46619 agonist-response curves, reporting the maximum extent of aggregation (Max. Aggre-
gation) of platelets pre-incubated with (RS)-, (R)- and (S)-citalopram (0, 20, 50, 100 & 200 µM). (C)
Effects of (RS)-, (R)- and (S)-citalopram on Max. Aggregation induced by a fixed concentration of
either collagen (1 µg mL°1) or U46619 (0.2 µM) were fitted according to the four-parameter logistic
(4PL) model (collagen: N = 7 blood donors, U46619: N = 6 blood donors).
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3.2.3 Citalopram inhibits thromboxane A2 synthesis

TxA2 synthesis was indirectly measured by quantifying the generation of its stable

metabolite, TxB2. Platelets were pre-incubated with various (RS)-, (R)- and (S)-citalopram

concentrations (0, 5, 10, 20, 50, 100 & 200 µM) for approximately 5 minutes before stim-

ulation with 1 µg mL°1 collagen. pIC50 values are shown in Table 3.1 and Figure 3.8.

(RS)-, (R)- and (S)-citalopram all inhibited TxB2 generation at micromolar concentrations

(Figure 3.5). 2-way ANOVA (Effect 1 (fixed) = citalopram {(RS), (R), (S)}; Effect 2 (random) =

donor {N = 6}) indicated no difference in the pIC50 values of the three citalopram prepa-

rations (P = 0.60, F = 0.54, df = 2, 10. H0: µRS=µR=µS; H1: µRS 6= µR 6= µS). Aggregometry

data obtained from these experiments provided independent replicates for inhibition of

collagen-induced aggregation, which match previous results in Chapter 3.4: pIC50(RS) =

4.43 ± 0.08; pIC50(R) = 4.48 ± 0.07; pIC50(S) = 4.33 ± 0.06.
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Figure. 3.5 Thromboxane A2 (TxA2) synthesis was measured by quantifying supernatant levels
of its stable metabolite, TxB2. Platelets were stimulated with collagen (1 µg mL°1) for 6 minutes
under aggregometry conditions (37±C, 1,000 rpm) and supernatants isolated. Full concentration-
response curves were obtained from platelets pre-incubated for approximately 5 minutes with
(RS)-, (R)- or (S)-citalopram (0, 5, 10, 20, 50, 100 & 200 µM) (N = 6 blood donors).
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3.2.4 Citalopram inhibits static platelet adhesion

The effect of (RS)-, (R)- and (S)-citalopram on platelet adhesion to different adhesive

ligands was determined under static conditions. Full concentration-response curves were

obtained using 0, 10, 30, 50, 100, 200 & 300 µM citalopram for six adhesive ligands: Horm®

collagen; collagen III; collagen-related peptide (CRP); fibrinogen; GFOGER (a peptide

sequence, which is a integrin Æ2Ø1-selective ligand, (Knight et al., 2000)) and thrombin.

For negative controls, adhesion to bovine serum albumin (BSA) and GPP10 peptides

(Smethurst et al., 2006) was also measured (Figure 3.6). Due to logistical constraints,

all conditions could not be measured in a single blood donor. Hence, in seven donors

(RS)-citalopram was tested, in two donors (R)- and (S)-citalopram were tested, and in two

donors (RS)-, (R)- and (S)-citalopram were tested.

(RS)-, (R)- and (S)-citalopram inhibited platelet adhesion to every ligand tested.

Inhibition was observed at micromolar concentrations (Figure 3.6). Concentration-

response curves were fitted to the 4PL model and the pIC50 values recorded (Table 3.1

& Figure 3.8). 3-way ANOVA (Effect 1 (fixed) = citalopram {(RS), (R), (S)}; Effect 2 (fixed)

= ligand {Horm® collagen, collagen III, CRP, fibrinogen, GFOGER, thrombin}; Effect 3

(random) = donor {N = 8-9 (RS) and N = 4 (R), (S)}) suggested there was a slight difference

in inhibitory potency between (RS)-, (R)- and (S)-citalopram (P = 0.058).
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Figure. 3.6 Static adhesion of platelets to Horm® collagen, collagen III, collagen-related peptide
(CRP), fibrinogen, GFOGER and thrombin was determined by measuring absorbance at 405 nm,
which is proportional to acid phosphatase levels of the adherent cell population. Bovine serum
albumin (BSA) and GPP10 were used as negative controls. Full concentration-response curves
were obtained from platelets pre-incubated for approximately 5 minutes with (RS)-, (R)- or (S)-
citalopram (0, 10, 30, 50, 100, 200 & 300 µM). For each ligand, (R) and (S): N = 4 blood donors, (RS):
N = 8-9 blood donors.
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3.2.5 Micromolar citalopram concentrations do not cause cytotoxicity

(RS)-, (R)- and (S)-citalopram inhibited every platelet function tested with similar

potencies and at micromolar concentrations. An experiment was therefore designed

to determine whether the citalopram concentrations used in these experiments were

mediating their effects through cell cytotoxicity. Platelets were pre-incubated for 10 min-

utes with (RS)-citalopram (0, 10, 20, 50, 100 & 200 µM), before quantifying the levels of

supernatant lactate dehydrogenase (LDH). (RS)-citalopram did not cause LDH release at

any concentration tested (Figure 3.7).
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Figure. 3.7 Cell cytotoxicity was measured by quantifying supernatant levels of lactate dehydroge-
nase (LDH). Platelets were pre-incubated for 10 minutes with (RS)-citalopram (0, 10, 20, 50, 100
& 200 µM). Calcium-free Tyrode’s (CFT) and lysed platelets were used as negative and positive
controls, respectively (N = 5 blood donors). Absorbance (Abs490 – Abs680) was used to indirectly
measure levels of LDH.



60 Citalopram inhibits platelets through a SERT-independent mechanism

Experiment

Aggregation
(Collagen)

TxB2 generation
(Collagen)

Adhesion
(Collagen)

5-HT uptake

pIC50
(mean ± SEM)

Figure. 3.8 Summary figure, demonstrating the differing inhibitory potencies (pIC50 values, mean
± SEM) between 5-HT uptake by (RS)-, (R)- and (S)-citalopram (Figure 3.2) and platelet aggregation
(Figure 3.4), thromboxane B2 (TxB2) generation (Figure 3.5) and adhesion to Horm® collagen
(Figure 3.6). Unobserved error bars lie within the symbols. The agonist used to induce a functional
response is mentioned in brackets underneath each experiment.
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pIC50
mean ± SEM

(N)

Function Agonist/ligand (RS) (R) (S) Eudysmic ratio

5-HT uptake 5-HT 8.33 ± 0.11
(13)

7.36 ± 0.19
(13)

8.60 ± 0.13
(13)

17.37

Aggregation Horm® collagen 4.31 ± 0.21
(7)

4.29 ± 0.36
(7)

4.25 ± 0.21
(7)

0.91

U46619 4.15 ± 0.27
(6)

4.12 ± 0.22
(6)

4.20 ± 0.29
(6)

1.20

TxB2 generation Horm® collagen 4.77 ± 0.08
(6)

4.68 ± 0.04
(6)

4.70 ± 0.09
(6)

1.05

Static adhesion Horm® collagen 3.76 ± 0.02
(9)

3.77 ± 0.05
(4)

3.72 ± 0.01
(4)

0.89

Collagen III 3.87 ± 0.04
(9)

3.93 ± 0.06
(4)

3.84 ± 0.02
(4)

0.81

CRP 3.78 ± 0.04
(8)

3.81 ± 0.05
(4)

3.74 ± 0.01
(4)

0.85

GFOGER 3.97 ± 0.03
(9)

4.02 ± 0.05
(4)

3.95 ± 0.03
(4)

0.85

Fibrinogen 4.00 ± 0.07
(9)

3.92 ± 0.04
(4)

3.92 ± 0.05
(4)

1.00

Thrombin 4.20 ± 0.05
(9)

4.23 ± 0.07
(4)

4.10 ± 0.06
(4)

0.63

Table 3.1 Summary pIC50 values (mean ± SEM (N)) for (RS)-, (R)- and (S)-citalopram on platelet
aggregation, thromboxane B2 (TxB2) generation, static adhesion and 5-HT uptake. To calculate the
eudysmic ratio of citalopram isomers, pIC50 values were converted to IC50 values and the molar
concentration of (R)-citalopram divided by the molar concentration of (S)-citalopram.
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3.3 Discussion

3.3.1 Overview

The aims of this chapter were to characterise the effects of citalopram on in vitro platelet

functional responses, and determine if these effects are mediated through inhibition

of SERT. Results presented in this chapter demonstrate that in vitro inhibition of SERT-

mediated 5-HT uptake by citalopram does not correlate with inhibition of other platelet

functional responses. Citalopram had a eudysmic (R)/(S) potency ratio of approximately

17 for blocking SERT-mediated 5-HT uptake, whereas the (S)- and (R)-citalopram iso-

mers inhibited platelet aggregation, TxA2 synthesis and adhesion with similar potencies

(Table 3.1 and Figure 3.8). Furthermore, nanomolar concentrations of (RS)-, (R)- and

(S)-citalopram inhibited 5-HT uptake, but did not affect other platelet functions, which

were only inhibited at micromolar concentrations. Based on the evidence presented in

this chapter, it is concluded that in vitro platelet inhibition by citalopram is not depen-

dent on the inhibition of SERT and that other mechanisms must be identified to explain

citalopram’s antiplatelet effects.

3.3.2 Allosteric inhibition of serotonin uptake by citalopram

Citalopram has previously been described as an allosteric serotonin reuptake inhibitor

(Zhong et al., 2012). A complex mechanism of action has been proposed, involving both a

distinct primary binding site and an alternative allosteric binding site on SERT. It has been

suggested that binding of either (R)- or (S)-citalopram to the allosteric site has differential

effects on the affinity of the compounds at the primary binding site (Sánchez, 2006).

This proposal provides a mechanistic explanation for the more rapid onset of action of

(S)-citalopram in animal models of depression (Montgomery et al., 2001), and greater

potency in clinical trials (Moore et al., 2005). However, both (R)- and (S)-citalopram slow

the dissociation of [3H]-(S)-citalopram from SERT at concentrations ranging between

1-200 µM (Plenge et al., 2007, Jacobsen et al., 2014). Such levels are well in excess of

plasma concentrations of citalopram (120-600 nM), of which about 50-80% is bound to

plasma proteins (Milne and Goa, 1991, Parker and Brown, 2000). Therefore, clinical plasma

concentrations of either (RS)-citalopram or (S)-citalopram that block 5-HT uptake will

have neither the proposed allosteric effect on SERT, nor the antiplatelet effects reported in

this and other chapters (discussed further in Chapter 7). By contrast, results in this chapter

are consistent with a simple mechanism of action, in which both (R)- and (S)-isomers
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bind to a single primary site on SERT, but with differing affinities. Hill coefficients of unity

support this hypothesis, suggesting that non-cooperative binding of citalopram to SERT

inhibits 5-HT uptake.

3.3.3 SERT-independent platelet inhibition

The low (R) and high (S) isomer inhibitory potencies of (RS)-citalopram for 5-HT uptake

provided a previously untested approach to evaluate the importance of functional SERT

during platelet activation. Results in this chapter are the first to demonstrate the inhibitory

effects of (R)-citalopram on platelets, and confirm the differing inhibitory potencies

between citalopram isomers for 5-HT uptake into platelets (Figure 3.2). However, there

was no difference in the inhibitory potencies of (R)-citalopram and (S)-citalopram for

either platelet aggregation, TxA2 synthesis or adhesion. Furthermore, 5-HT uptake was

blocked by both isomers at nanomolar concentrations, whereas there was little if any

functional platelet inhibition. The onset of (RS)-citalopram-induced inhibition of platelet

aggregation was also instantaneous (Figure 3.3), contrary to patients taking daily doses

of paroxetine, where platelet inhibition was only observed after 7-14 days (Hergovich

et al., 2000). These findings suggest that unlike the effects observed with long-term ex

vivo studies, citalopram-mediated platelet inhibition in vitro cannot be explained by the

gradual depletion of 5-HT stores following SERT blockade.

Previous studies have reported antiplatelet effects of (RS)-citalopram in vitro, following

incubation times of 3-10 minutes (Carneiro et al., 2008, Tseng et al., 2010, 2013). The

authors from these studies suggest that citalopram binding to SERT suppresses platelet

activation through a mechanism distinct from gradual 5-HT store depletion. In this

putative mechanism, SERT blockade prior to platelet activation prevents the rapid uptake

of 5-HT released from dense granules. Such increases in cytoplasmic 5-HT have been

associated with augmenting platelet aggregation and alpha granule release through the

covalent attachment of 5-HT to small GTPases, a process referred to as serotonylation

(Walther et al., 2003). By binding SERT and blocking rapid 5-HT uptake, citalopram could,

therefore, suppress in vitro platelet activation through impaired serotonylation. However,

serotonylation does not explain how in this chapter, citalopram only inhibited platelet

functions beyond the nanomolar concentrations required to inhibit SERT-mediated 5-HT

uptake. On the contrary, results from this chapter conclude that in vitro platelet inhibition

by citalopram is mediated through an unidentified SERT-independent mechanism.

(RS)-citalopram has previously been reported to specifically inhibit several collagen-

induced platelet functional responses, including aggregation, granule release and TxA2
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synthesis (Tseng et al., 2010). Results in this chapter show citalopram also inhibits both

U46619-induced aggregation and adhesion to the Æ2Ø1-selective ligand, GFOGER. These

observations suggest that citalopram inhibits a mutual factor, downstream of multiple

platelet receptors. Inhibitory effects of (RS)-citalopram on platelet-rich plasma (PRP)

support this hypothesis, citing impaired phosphoinositide 3-kinase (PI3K) activation,

following stimulation of the P2Y12 receptor (Tseng et al., 2013). Chapters 4 and 5 of this

thesis investigate the effects of citalopram on intracellular signal transduction pathways,

subsequent to the stimulation of major platelet receptors.

It is important to note that with the exception of platelet aggregation, all the experi-

ments performed in this chapter and several in upcoming chapters measure the platelet

response to agonists at a single fixed time point. Further studies that make numerous

recordings over a given period of time could provide more detailed information regard-

ing the effects of citalopram on the kinetics of platelet activation. For example, live cell

imaging of platelets undergoing activation could determine the effects of citalopram on

filopodia and lamellipodia formation.

This chapter concludes that in vitro platelet inhibition by citalopram is not due to its

conventional mechanism of blocking SERT-mediated 5-HT uptake.



Chapter 4

The effects of citalopram on calcium

signalling

4.1 Background

Citalopram inhibits several platelet functions, including aggregation, thromboxane A2

(TxA2) synthesis and adhesion (Chapter 3). These functions are all mediated by increasing

the cytosolic concentration of calcium ([Ca2+]cyt). This chapter examines the effects

of citalopram on the [Ca2+]cyt, Ca2+-dependent signalling processes and downstream

cellular functions.

4.1.1 Calcium homeostasis

Ca2+ is an important second messenger in various cells, and many platelet agonists

induce increases in [Ca2+]cyt. Elevated [Ca2+]cyt is vital to platelet activation, mediating

cytoskeletal reorganisation, granule release, integrin ÆIIbØ3 activation and TxA2 synthesis

(Varga-Szabo et al., 2009, Bergmeier and Stefanini, 2009). [Ca2+]cyt increases in platelets

are mediated through three distinct mechanisms: 1) The intracellular release of Ca2+

from the dense tubular system (DTS) or acidic stores, 2) extracellular Ca2+ entry across

the plasma membrane following Ca2+ release from the DTS, known as store-operated

calcium entry (SOCE), and 3) store-independent Ca2+ entry across the plasma membrane

(non-SOCE) (Figure 4.1).

Intracellular Ca2+ release, SOCE and some forms of non-SOCE are initiated by agonists

that bind cell surface receptors, activating downstream phospholipase C (PLC). There

are two PLC isoforms that predominantly mediate platelet activation: PLC∞2, which

is activated via tyrosine phosphorylation signalling pathways, including glycoprotein

VI (GPVI), and PLCØ, which is activated via GÆq-coupled receptors, such as the TxA2

receptor (Varga-Szabo et al., 2009). Both PLC isoforms hydrolyse membrane-associated

phosphatidylinositol-4,5-bisphosphate (PIP2) to inositol-1,4,5-trisphosphate (IP3) and

1,2-diacylglycerol (DAG). IP3 and DAG increase [Ca2+]cyt through two distinct pathways.

IP3 binds to IP3 receptors, which are tetrameric ligand-gated Ca2+ channels, present on

the platelet DTS. On binding IP3, the IP3 receptor channel opens, allowing Ca2+ efflux
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from DTS stores into the cytosol (O’Rourke et al., 1985). Ca2+ release from the DTS causes

Ca2+ dissociation from the intraluminal EF domains of stromal interaction molecule-1

(STIM1) (Grosse et al., 2007). STIM1 subsequently mediates a conformational change in

the calcium-release activated calcium modulator-1 (CRACM1/Orai1) pore subunits of the

CRAC channel, permitting SOCE (Zhang et al., 2005, Navarro-Borelly et al., 2008).

Acidic compartments within lysosomes and dense granules provide an additional

source of intracellular Ca2+ (López et al., 2006, Rosado, 2011). Thrombin or collagen-

related-peptide (CRP) increase levels of nicotinic acid adenine dinucleotide phosphate

(NAADP), which mediates Ca2+ release through putative binding to two-pore channel 2

(TPC2) on dense granules (Coxon et al., 2012a, Ambrosio et al., 2015). However, compara-

tive to the DTS, acidic store release is small and its underlying mechanism undetermined.

Non-SOCE is principally mediated by DAG and extracellular adenosine triphosphate

(ATP), which bind and open either the transient receptor potential cation channel, sub-

family C, member 6 (TRPC6) or the purinergic receptor ligand-gated ion channel 1 (P2X1),

respectively (MacKenzie et al., 1996, Hassock et al., 2002).

In unstimulated platelets, Ca2+ entry into the cytosol across plasma and store

membranes is counteracted by plasma membrane calcium ATPases (PMCAs) and

sarcoplasmic/endoplasmic reticulum calcium ATPases (SERCAs), respectively (Redondo

et al., 2005), maintaining a basal [Ca2+]cyt between 40-80 nM (Vicari et al., 1994). Basal

[Ca2+]cyt are thought to be restored following agonist-induced Ca2+ signalling by the

plasma membrane-bound Na+/Ca2+ exchanger-3 (NCX3) (Roberts et al., 2012).

To summarise, agonist-induced Ca2+ store release and Ca2+ entry are mediated through

various cell surface receptors and intracellular signal transduction pathways (Figure 4.1).

The resulting increase in [Ca2+]cyt is essential for platelet activation.

4.1.2 Rap1 and its regulation

[Ca2+]cyt regulates Ras-related protein 1 (Rap1), a small GTPase. The two Rap1 isoforms,

Rap1A (º125,000 per platelet) and Rap1B (º300,000 per platelet), are the most abundant

small GTPases in platelets (Burkhart et al., 2012, 2014), and are also found in other cells,

including leukocytes and endothelial cells (Wittchen et al., 2005, Fujita et al., 2005).

Rap1 exists in three interchangeable forms: inactive unbound Rap1, inactive guanosine

diphosphate (GDP)-bound Rap1 and active guanosine triphosphate (GTP)-bound Rap1.

Intrinsic GDP/GTP dissociation from Rap1 typically results in the subsequent binding of

the 10-fold more abundant GTP (Traut, 1994, Stefanini and Bergmeier, 2016). However, in

resting platelets, GDP/GTP dissociation from Rap1 is a slow process and Rap1 hydrolysis
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of GTP to GDP is upregulated by the Ras GTPase-activating protein-3 (RASA-3, also known

as GAPIII). This results in the majority of Rap1 in resting platelets existing in the inactive

GDP-bound state (Stefanini et al., 2015).

During platelet activation, increases in [Ca2+]cyt activate the calcium- and diacylglycerol-

regulated guanine nucleotide exchange factor 1 (CalDAG-GEFI, also known as RASGRP2)

(Figure 4.1). CalDAG-GEFI binds Ca2+ through a pair of EF domains within its C-terminal

(Figure 2.9), inducing a conformational change which is essential to its activity (Vicari

et al., 1994, Kawasaki et al., 1998). The C1 domain of CalDAG-GEFI has a very weak affin-

ity (K d = 2.89 ± 0.24 µM) for binding DAG analogues, and thus DAG is not believed to

mediate CalDAG-GEFI activation (Czikora et al., 2016). Activated CalDAG-GEFI cataly-

ses GDP dissociation from Rap1, enhancing the rate of Rap1 association with the more

abundant GTP (Lienhard, 1973, Bos et al., 2007). This increases the amount of Rap1-GTP,

despite the GTPase enhancing the activity of RASA-3. Rap1-GTP associates with the Rap1-

GTP–interacting adaptor molecule (RIAM), forming a Rap1-RIAM-talin complex, which

relocates talin to the plasma membrane (Lee et al., 2009). Relocalisation of Rap1-RIAM-

talin to the plasma membrane allows talin to outcompete the Æ integrin subunit tail for

binding to the Ø integrin subunit tail. Separation of the Æ and Ø integrin tails induces a

conformational change in the integrin complex, increasing extracellular ligand-binding

affinity (Moser et al., 2009). Murine platelets lacking Rap1B show reduced binding and

spreading on immobilised fibrinogen, indicating impaired inside-out signalling through

integrin ÆIIbØ3. This deficiency also suppresses platelet aggregation, prolongs tail bleed-

ing times and reduces arterial thrombus formation (Chrzanowska-Wodnicka et al., 2005).

Blocking Rap1 activation is associated with reduced granule secretion and impaired clot

retraction (Stefanini et al., 2012). CalDAG-GEFI deficient mice have a similar platelet

phenotype to Rap1 knockout models, with defects in aggregation, ÆIIbØ3 activation, and

thrombus formation under flow (Crittenden et al., 2004, Bernardi et al., 2006). Despite pro-

longed tail bleeding times, CalDAG-GEFI knockout mice do not present with spontaneous

haemorrhage or undergo collagen-induced thrombosis (Crittenden et al., 2004). Recent

studies identified patients with CalDAG-GEFI mutations, which result in either loss of

protein function or expression (Canault et al., 2014, Kato et al., 2016, Lozano et al., 2016,

Bermejo et al., 2017, Sevivas et al., 2017, Westbury et al., 2017). These patients present

with bleeding diathesis, as well as reduced Rap1 activation, integrin ÆIIbØ3 activation,

platelet aggregation and in vitro thrombus formation, despite typical agonist-induced

increases in [Ca2+]cyt. Taken together, the studies described above demonstrate that both

CalDAG-GEFI and Rap1 are key orchestrators of Ca2+-mediated platelet activation.
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4.1.3 Calcium signalling in neutrophils

CalDAG-GEFI, Rap1 and PLCØ are also expressed in neutrophils, which exhibit similar

activation pathways to platelets (M’Rabet et al., 1998, Crittenden et al., 2004, Bergmeier

et al., 2007). Platelet-activating factor (PAF) activates the neutrophil PLCØ isoform

downstream of the PAF receptor (PAF-R), causing increases in the [Ca2+]cyt, CalDAG-

GEFI-dependent Rap1-GTP formation and the transition of integrins to a high-affinity

binding state (M’Rabet et al., 1998, Bergmeier et al., 2007). High-affinity integrin ÆMØ2

(Macrophage-1 antigen (Mac-1), CD11b/18) binds endothelial intracellular adhesion

molecules (ICAM)-1/2, contributing towards neutrophil adhesion and crawling in search

of sites for extravasation (Halai et al., 2014). High-affinity ÆMØ2 also binds and adheres to

fibrinogen, which plays an important role in innate antimicrobial responses (Flick et al.,

2004, Bergmeier et al., 2007). Neutrophils from humans with loss-of-function CalDAG-

GEFI mutations and from CalDAG-GEFI knockout mice display normal increases in

[Ca2+]cyt in response to agonists, despite impaired Rap1 activation, diminished

adhesion or binding to blood vessels or fibrinogen, respectively, and reduced extravasation

into inflammatory sites (Bergmeier et al., 2007, Lozano et al., 2016, Sevivas et al., 2017).

Taken together, these studies demonstrate that as with platelets, increasing the [Ca2+]cyt

in neutrophils mediates the conversion of integrins to a high-affinity binding state. This

integrin transition promotes cell adhesion and is largely driven by increasing the levels of

active, GTP-bound Rap1, via the Ca2+-dependent CalDAG-GEFI.

4.1.4 Aims

Experiments in this chapter aim to:

1. Investigate the effects of racemic (RS) citalopram on Ca2+ signalling during platelet

and neutrophil activation by measuring agonist-induced increases in [Ca2+]cyt

derived from intracellular stores and subsequent Rap1 activation.
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Figure. 4.1 Calcium signalling in platelets and neutrophils. Increases in cytosolic calcium
concentration ([Ca2+]cyt) are initially mediated through the binding of extracellular ligands to
surface receptors. Glycoprotein VI (GPVI), is associated with the Fc receptor ∞-chain (FcR∞-chain),
which upon stimulation with either collagen or cross-linked collagen-related peptide (CRPXL)
mediates downstream activation of phospholipase C (PLC)∞2. The GÆq-coupled thromboxane
A2 (TxA2) receptor (TPÆ) is activated by either TxA2, or its synthetic analogue U46619. The GÆq-
coupled platelet-activating factor receptor (PAF-R) is activated by PAF. Ligand-binding to TPÆ or
PAF-R results in downstream activation of PLCØ. Both PLC isoforms hydrolyse phosphoinositide-
4,5-bisphosphate (PIP2) into inositol-1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DAG).
IP3 binds IP3 receptors (IP3R) on the platelet dense tubular system (DTS) or the neutrophil
endoplasmic reticulum (ER), causing the release of intracellular Ca2+ stores into the cytosol.
Store depletion mediates store-operated Ca2+ entry (SOCE) through interactions between stromal
interaction molecule 1 (STIM1) and the calcium-release activated calcium modulator 1
(CRACM1/Orai1) pore subunits. SOCE and non-SOCE via P2X1 and the transient receptor potential
cation channel, subfamily C, member 6 (TRPC6) are highlighted in red. This is due to the lack of
extracellular Ca2+ in forthcoming experiments, where platelets and neutrophils were suspended
in calcium-free Tyrode’s (CFT). Increases in [Ca2+]cyt activate the calcium- and diacylglycerol-
regulated guanine nucleotide exchange factor 1 (CalDAG-GEFI), increasing Rap1-GTP
formation. Rap1-GTP is also upregulated by P2Y12 stimulation, which activates phosphoinositide
3-kinase (PI3K), inhibiting Ras GTPase-activating protein 3 (RASA-3). Rap1-GTP complexes with
Rap1-GTP–interacting adaptor molecule (RIAM) and talin, activating integrins ÆIIbØ3 or ÆMØ2 on
platelets and neutrophils, respectively. Increases in [Ca2+]cyt also indirectly mediate platelet shape
change through RhoA. Ca2+ is removed from the cytosol by sarcoplasmic/endoplasmic reticulum
calcium ATPases (SERCAs) and plasma membrane calcium ATPases (PMCAs) on the DTS/ER and
plasma membrane, respectively. Receptor agonists are mentioned within brackets. Grey dashed
lines indicate intermediate steps. This is an original image.
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4.2 Results

4.2.1 Citalopram inhibits CRPXL-induced, but not U46619-induced

calcium release from intracellular stores

Ca2+ is a common and well-recognised secondary mediator of intracellular signalling, and

increasing the [Ca2+]cyt in platelets is a key to their activation.

Preliminary experiments (N = 1 blood donor) identified concentrations of either the

GPVI agonist, cross-linked collagen-related peptide (CRPXL, 0.5 µg ml°1), or the TxA2

mimetic, U46619 (0.2 µM) that induce near-maximal increases in [Ca2+]cyt (Figure 4.2).

Agonist-induced changes in [Ca2+]cyt were then monitored in platelets pre-treated for

approximately 5 minutes with a range of citalopram concentrations (0, 10, 20, 50, 100 &

200 µM) (Figure 4.3B,D). CRPXL (0.5 µg ml°1) and U46619 (0.2 µM) induced a maximum

increase in [Ca2+]cyt of 199 ± 14 nM and 183 ± 16 nM, respectively (N = 7 blood donors).

CRPXL-induced increases in [Ca2+]cyt were abolished by citalopram pre-treatment (Figure

4.3A-B): pIC50 = 4.34 ± 0.09 (N = 7 blood donors). By contrast, citalopram had no effect on

U46619-induced increases in [Ca2+]cyt at concentrations up to 200 µM (Figure 4.3C-D) (N

= 7 blood donors). On one separate occasion, U46619-induced aggregation was measured

in the same preparation of Fura-2-loaded platelets that were used for Ca2+ measurements.

Control platelets responded normally to 0.2 µM U46619 (Figure 4.3E). In platelets treated

with citalopram (200 µM), aggregation was abolished, but the increase in [Ca2+]cyt was

unaffected. These data suggest that citalopram inhibits U46619-mediated platelet aggre-

gation downstream of Ca2+ release from intracellular stores. Of note, although aggregation

was inhibited, evidence of shape change remained. This observation was also made in

previous experiments (Figures 3.3 & 3.4).
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Figure. 4.2 Calcium (Ca2+) release from intracellular stores was monitored in Fura-2-loaded
platelets. Preliminary experiments (N = 1 blood donor) identified concentrations of (A-B) cross-
linked collagen-related peptide (CRPXL) (0.5 µg ml°1) or (C-D) U46619 (0.2 µM) which induce
near-maximal increases in [Ca2+]cyt. After the addition of agonist, the [Ca2+]cyt was recorded for
3 minutes. The maximum increase in [Ca2+]cyt following agonist addition (Max. ¢[Ca2+]cyt) was
used to generate concentration-response curves, using the four-parameter logistic (4PL) model (N
= 1 blood donor). R2 represents the coefficient of determination.
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Figure. 4.3 Calcium (Ca2+) release from intracellular stores in either untreated, or citalopram-
treated platelets. Example traces are shown for both (A) cross-linked collagen-related peptide
(CRPXL)-stimulated (0.5µg ml°1) and (C) U46619-stimulated (0.2µM) platelets, either untreated or
pre-treated with citalopram (100µM) for approximately 5 minutes. After the addition of agonist, the
[Ca2+]cyt in platelets pre-incubated with citalopram (0, 10, 20, 50, 100 & 200 µM) was recorded for
3 minutes. (B,D) The maximum increase in [Ca2+]cyt following agonist addition (Max. ¢[Ca2+]cyt)
was used to generate concentration-response curves, using the four-parameter logistic (4PL)
model (N = 7 blood donors). (E) In a separate experiment, using platelets from the same blood
donor on the same experimental day, [Ca2+]cyt and aggregation were separately recorded following
pre-incubation with or without citalopram (200 µM) and stimulation with U46619 (0.2 µM) (N = 1
blood donor).
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4.2.2 Citalopram inhibits ionomycin-induced platelet aggregation

Further experiments were performed to confirm that citalopram could inhibit platelet

aggregation downstream of Ca2+ store release, using the Ca2+ ionophore, ionomycin.

Preliminary experiments (N = 1 blood donor) identified the concentration of ionomycin

(0.5 µM) that induced near-maximal platelet aggregation (Figure 4.4A-B). Platelets were

then pre-treated with citalopram (0, 50, 100 & 200 µM) for approximately 5 minutes,

before stimulation with ionomycin (0.5 µM). Ionomycin-induced platelet aggregation was

inhibited by citalopram in a concentration-dependent manner (Figure 4.4C-D): pIC50 =

3.98 ± 0.09 (N = 4 blood donors). This supports the previous hypothesis that citalopram

can inhibit platelet aggregation downstream of intracellular Ca2+ store release.
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Figure. 4.4 Ionomycin-induced platelet aggregation. (A-B) Preliminary experiments (N = 1 blood
donor) identified the concentration of ionomycin (0.5 µM) which induced near-maximal platelet
aggregation. R2 represents the coefficient of determination. (C) Example traces for ionomycin-
induced aggregation in platelets pre-incubated with citalopram (ionomycin = 0.5 µM, citalopram
= 0, 50, 100 & 200 µM) for approximately 5 minutes. Arrowheads indicate time points of ionomycin
addition. The maximum extent of aggregation (Max. Aggregation) of platelets pre-incubated with
a range of citalopram concentrations (0, 50, 100 & 200 µM) was used to generate concentration-
response curves, using the four-parameter logistic (4PL) model, with the Max parameter
constrained to zero (N = 4 blood donors).
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4.2.3 Citalopram inhibits Rap1 activation in platelets

Rapid Rap1 activation is dependent on increasing the [Ca2+]cyt and mediates downstream

platelet aggregation. Platelets were pre-treated with citalopram (0 or 200 µM) for approx-

imately 5 minutes, and either unstimulated or stimulated with CRPXL (0.5 µg mL°1) or

U46619 (0.2 µM). Levels of activated Rap1 were then isolated using a Rap1-GTP pulldown

assay and subsequently quantified by Western blot (Figure 4.6). Densitometry data was

analysed using a bespoke multiple linear regression model which incorporated the back-

ground density of X-ray film, levels of Rap1-GTP in unstimulated platelets, the effect of

CRPXL and U46619 on Rap1-GTP levels, the effect of citalopram on Rap1-GTP levels in

platelets stimulated with CRPXL or U46619 and random differences between donors (N =

4). Data were modelled as follows:

PREDi =Ø0+Ø1x1+Ø2x2+Ø3x3+Ø4x4+Ø5x5+Ø6x6+Ø7x7+Ø8x8+(°Ø6°Ø7°Ø8)x9+≤i

Where: PRED i = predicted density; Ø0 = background density of X-ray film; Ø1 = density

of unstimulated platelets; Ø2 = CRPXL-induced effect above unstimulated platelets; Ø3 =

citalopram effect on CRPXL-stimulated platelets; Ø4 = U46619-induced effect above un-

stimulated platelets; Ø5 = citalopram effect on U46619-stimulated platelets; Ø6 = difference

between background density and donor 1; Ø7 = difference between background density

and donor 2; Ø8 = difference between background density and donor 3; (-Ø6 -Ø7 -Ø8) =

difference between background density and donor 4; x1 = 0 for background, 1 for platelet

samples; x2 = 1 for CRPXL, otherwise 0; x3 = 1 for CRPXL and citalopram, otherwise 0; x4 =

1 for U46619, otherwise 0; x5 = 1 for U46619 and citalopram, otherwise 0; x6 = 1 for donor

1, otherwise 0; x7 = 1 for donor 2, otherwise 0; x8 = 1 for donor 3, otherwise 0; x9 = 1 for

donor 4, otherwise 0; ≤i = residual error (PRED i – dependent variablei).

The primary hypothesis (H0: citalopram has no effect; H1: citalopram does have an

effect) was evaluated using an F-test by comparing the full model (9 parameters) with

the partial model (7 parameters), where Ø3 = Ø5 = 0. Results from this analysis strongly

suggest that citalopram altered both CRPXL- and U46619-induced levels of Rap1-GTP

(P = 7.48 x 10°9, F = 83.40). These findings show that following U46619 stimulation, Rap1

activation is blocked by concentrations of citalopram that have no effect on Ca2+ release

from intracellular stores.
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4.2.4 Citalopram does not affect calcium release from neutrophil stores

Ca2+ signalling is highly homologous between platelets and neutrophils, both of which

utilise Ca2+-dependent Rap1 activation in response to exogenous agonists. Therefore, PAF-

induced increases in [Ca2+]cyt were measured in isolated neutrophils following citalopram

treatment. Neutrophils were pre-incubated with citalopram (0, 10, 20, 50, 100, 200 &

500 µM) for approximately 5 minutes, before stimulation with PAF (1 µM). Citalopram

pre-incubation did not affect PAF-induced increases in [Ca2+]cyt (N = 6 blood donors)

(Figure 4.5).
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Figure. 4.5 Calcium (Ca2+) store release was monitored in Fura-2-loaded neutrophils, stimulated
with 1 µM platelet-activating factor (PAF). (A) Example traces demonstrate PAF-induced increases
in [Ca2+]cyt. (B) Neutrophils were pre-incubated for approximately 5 minutes with citalopram (0,
10, 20, 50, 100, 200 & 500 µM) prior to the addition of PAF. The maximum increase in [Ca2+]cyt

following PAF addition (Max. ¢[Ca2+]cyt) was used to produce a concentration-response curve,
despite the four-parameter logistic (4PL) model failing to converge on a meaningful solution (N =
6 blood donors).
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4.2.5 Citalopram inhibits Rap1 activation in neutrophils

Experiments were designed to determine if citalopram inhibits neutrophils downstream

of Ca2+ store release, as observed in platelets stimulated with U46619. Therefore, the

effects of citalopram (200 µM) on PAF-induced (1 µM) Rap1 activation were measured

in neutrophils (Figure 4.7). Similar to previous results with platelets (Chapter 4.2.3),

densitometry data was analysed using a bespoke multiple linear regression model which

incorporated the background density of X-ray film, levels of Rap1-GTP in unstimulated

neutrophils, the effect of citalopram on Rap1-GTP levels in unstimulated neutrophils,

the effect of PAF on Rap1-GTP levels, the effect of citalopram on Rap1-GTP levels in

PAF-stimulated neutrophils and random differences between donors (N = 4). Data were

modelled as follows:

PREDi =Ø0 +Ø1x1 +Ø2x2 +Ø3x3 +Ø4x4 +Ø5x5 +Ø6x6 +Ø7x7 + (°Ø5 °Ø6 °Ø7)x8 +≤i

Where: PRED i = predicted density; Ø0 = background density of X-ray film; Ø1 = density

of unstimulated neutrophils; Ø2 = citalopram effect on unstimulated neutrophils; Ø3 =

PAF-induced effect; Ø4 = citalopram effect on PAF-stimulated neutrophils; Ø5 = difference

between background and donor 1; Ø6 = difference between background and donor 2;

Ø7 = difference between background and donor 3; (-Ø5 -Ø6 -Ø7) = difference between

background and donor 4; x1 = 0 for background, 1 for neutrophil samples; x2 = 1 for

citalopram and no PAF, otherwise 0; x3 = 1 for PAF and no citalopram, otherwise 0; x4 = 1

for PAF and citalopram, otherwise 0; x5 = 1 for donor 1, otherwise 0; x6 = 1 for donor 2,

otherwise 0; x7 = 1 for donor 3, otherwise 0; x8 = 1 for donor 4, otherwise 0; ≤i = residual

error (PRED i – dependent variablei).

The primary hypothesis (H0: citalopram has no effect; H1: citalopram does have an

effect) was evaluated using an F-test by comparing the full model (8 parameters) with the

partial model (6 parameters), where Ø2 = Ø4 = 0. Results from this analysis strongly suggest

that citalopram altered Rap1-GTP levels in neutrophils stimulated with PAF (P = 5.88 x

10°6, F = 38.65). These results demonstrate that as with platelets, citalopram also blocks

Rap1 activation in neutrophils, despite typical Ca2+ release from intracellular stores.
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Figure. 4.6 Citalopram inhibits Rap1 activation in platelets. Platelets were pre-treated with (+) or
without (-) citalopram (200 µM) for approximately 5 minutes, before stimulation for 1 minute with
either CRPXL (0.5 µg mL°1) or U46619 (0.2 µM). Rap1-GTP was isolated from unstimulated and
stimulated platelets and quantified using densitometry. Total Rap1 levels were also measured (N =
4 blood donors). Uncropped images for each donor are shown in Figure A.1 of Appendix A.
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Figure. 4.7 Citalopram inhibits Rap1 activation in neutrophils. Neutrophils were pre-incubated
with (+) or without (-) citalopram (200 µM) for approximately 5 minutes, followed by either no
stimulation (-) or stimulation (+) with 1 µM platelet-activating factor (PAF) for 1 minute. Rap1-GTP
was isolated and quantified using densitometry (N = 4 blood donors). Uncropped images for each
donor are shown in Figure A.2 of Appendix A.
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4.2.6 Citalopram inhibits integrin ÆMØ2 activation in neutrophils

Rap1-GTP plays an important role in the subsequent transition of Ø integrins to an active,

high-affinity binding state. Therefore, the effects of citalopram on integrin ÆMØ2 activa-

tion were investigated in PAF-stimulated neutrophils. Neutrophils were pre-incubated

with citalopram (0, 5, 10, 20, 50, 100, 200 & 500 µM) for approximately 5 minutes, fol-

lowed by PAF stimulation (1 µM). The binding of a allophycocyanin (APC)-conjugated

antibody to the active epitope of integrin ÆM (CD11b) was measured in the neutrophil

(CD15+/CD41a° or CD15+/CD45+) population (Figure 2.2C-D). Representative histograms,

(Figure 4.8A) demonstrate that citalopram inhibited PAF-induced integrin ÆMØ2 activa-

tion. Citalopram inhibited the median fluorescence intensity (F.I.) in a concentration-

dependent manner (Figure 4.8B): pIC50 = 4.02 ± 0.15 (N = 6 blood donors). Of note, high

concentrations of citalopram reduced integrinÆMØ2 activation below that of unstimulated

cells.
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Figure. 4.8 IntegrinÆMØ2 activation on neutrophils stimulated with platelet-activating factor (PAF).
(A) Representative histograms, measuring allophycocyanin (APC)-conjugated antibody binding
to the active epitope of ÆM (CD11b) in unstimulated (PAF = 0 µM) or PAF-stimulated neutrophils
(citalopram = 0, 100 µM, PAF = 1 µM). (B) A range of citalopram concentrations (0, 5, 10, 20, 50, 100,
200 & 500 µM) were used to create concentration-response curves (N = 6 blood donors). Dashed
line (mean) and grey area (± SEM) indicate ÆMØ2 activation in unstimulated neutrophils.
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4.2.7 Citalopram inhibits neutrophil adhesion to fibrinogen

Experiments were designed to determine if impaired integrin ÆMØ2 activation by

citalopram translated to a reduction in agonist-induced cell adhesion. Therefore, the

adhesion of PAF-stimulated neutrophils to fibrinogen was investigated under static

conditions, as described in Chapter 2.2.4. Citalopram inhibited neutrophil adhesion

in a concentration-dependent manner, over a range of PAF concentrations (citalopram

= 0, 10, 20, 50, 100, 200 & 500 µM, PAF = 0, 1, 10, 100, 1,000 & 10,000 nM). Agonist-

response curves were generated (Figure 4.9A), and the absorbance values at a fixed PAF

concentration (1 µM) used to fit the 4PL model (Figure 4.9B): pIC50 = 3.88 ± 0.04; (N = 6-10

blood donors).
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Figure. 4.9 Static adhesion of platelet-activating factor (PAF)-stimulated neutrophils to fibrinogen.
(A) The adhesion of neutrophils pre-incubated with citalopram (0, 10, 20 , 50, 100, 200 & 500 µM)
prior to PAF stimulation (0, 1, 10, 100, 1,000, & 10,000 nM) was used to create agonist-response
curves. Citalopram concentrations 10 & 20 µM showed comparable absorbance to untreated
neutrophils and were omitted for presentational purposes. (B) Neutrophil adhesion at a fixed
PAF concentration (1 µM) was used to fit the four-parameter logistic (4PL) model (N = 6-10 blood
donors).
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4.2.8 Citalopram is not cytotoxic to neutrophils

The membrane integrity of neutrophils was assessed to check if impaired functional

responses by citalopram were a result of cell cytotoxicity. Neutrophils (1.00 × 106 mL°1)

were incubated with citalopram for 10 minutes before measuring supernatant levels of

lactate dehydrogenase (LDH). Calcium-free Tyrode’s (CFT) and lysed neutrophils were

used as negative and positive controls, respectively. Concentrations of citalopram used in

previously described experiments (0, 10, 20, 50, 100, 200 & 500 µM) had no effect on LDH

release (Figure 4.10) (N = 5 blood donors).
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Figure. 4.10 Citalopram is not cytotoxic to neutrophils. Lactate dehydrogenase (LDH) release
from neutrophils incubated for 10 minutes with various citalopram concentrations (0, 10, 20,
50, 100, 200 & 500 µM). Calcium-free Tyrode’s (CFT) or lysed neutrophils were used as negative
and positive controls, respectively (N = 5 blood donors). Non-visible error bars lie within the
translucent symbols. Abs represents absorbance.



4.2 Results 81

4.2.9 Citalopram inhibits the nucleotide exchange rate of Rap1B

Experiments conducted with both platelets and neutrophils suggest that citalopram

inhibits Rap1 activation, despite having no effect on agonist-induced Ca2+ release from

intracellular stores. Experiments were therefore designed to determine if citalopram

suppresses the CalDAG-GEFI-mediated nucleotide exchange of Rap1B, which occurs

downstream of Ca2+ store release. A BODIPY-FL fluorescence-based assay (Chapter 2.2.10)

was used to determine if citalopram directly inhibits either CalDAG-GEFI or Rap1 activity.

Citalopram inhibited the rate of CalDAG-GEFI-induced BODIPY-FL-GDP exchange onto

Rap1B in a concentration-dependent manner (0, 1, 10, 100 & 1,000 µM). Peak increases in

F.I. (¢F.I.) were fitted to the 4PL model, with the M ax parameter constrained to the basal

¢F.I. when no CalDAG-GEFI was added (Figure 4.11). The pIC50 value was 3.67 ± 0.32 (N =

4 experiments).

[Citalopram] (µM)

Fi
na

l Δ
 F

.I.
 (A

.U
.)

[m
ea

n 
±

S
E

M
, N

 =
 4

]

100 101 102 103 1040

A B

Figure. 4.11 A BODIPY-FL fluorescence-based assay was used to monitor the nucleotide
exchange activity of Rap1B. (A) Example fluorescence traces, where CalDAG-GEFI was
pre-incubated with citalopram (0, 100 & 1000 µM) for approximately 5 minutes before its
addition to wells (white segment, black dashed lines) containing BODIPY-FL-GDP and Rap1B.
Blue trace indicates fluorescence in the absence of CalDAG-GEFI. (B) Following CalDAG-GEFI
pre-incubations with citalopram (0, 1, 10, 100 & 1000 µM), increases in fluorescence intensity
(¢F.I.) were recorded and the ¢F.I. 20 minutes after the addition of CalDAG-GEFI (Final ¢F.I.) used
to create concentration-response curves. Blue dashed line (mean), and blue area (± SEM) show
Final ¢F.I. in the absence of CalDAG-GEFI, which was used to constrain the M ax parameter of the
four-parameter logistic (4PL) model (N = 4 experiments).



82 The effects of citalopram on calcium signalling

4.3 Discussion

4.3.1 Overview

Results produced in this chapter have identified a putative, novel mechanism of platelet

inhibition by citalopram. Citalopram inhibited Ca2+-dependent Rap1 activation in U46619-

stimulated platelets, despite having no effect on u46619-induced Ca2+ release from in-

tracellular stores. These findings suggest that citalopram inhibits the guanine nucleotide

exchange factor CalDAG-GEFI, which upregulates Rap1 activation in the presence of Ca2+.

Similar results were observed with PAF-stimulated neutrophils, which also express both

Rap1 and CalDAG-GEFI, supporting the hypothesis that citalopram inhibits CalDAG-GEFI.

Finally, pre-incubation of citalopram with CalDAG-GEFI reduced CalDAG-GEFI-mediated

Rap1B nucleotide exchange.

Taken together, results from this chapter suggest two distinct, agonist-specific

mechanisms of platelet inhibition by citalopram. 1) Inhibition of CRPXL-induced platelet

activation upstream of Ca2+ release from intracellular stores. 2) Inhibition of U46619-

induced platelet activation downstream of Ca2+ store release. This second mechanism is

likely mediated through either inhibition of CalDAG-GEFI or direct blockade of Rap1-GTP

formation. The mechanism underlying platelet inhibition by citalopram prior to Ca2+

store release will be investigated in Chapter 5.

4.3.2 Citalopram’s effects on intracellular calcium levels

Citalopram inhibited CRPXL-induced Ca2+ release from intracellular stores (pIC50 =

4.33 ± 0.09) (Figure 4.3A-B). Such findings are likely to account for how, as shown in

Chapter 3, citalopram inhibited collagen-induced platelet aggregation (pIC50 = 4.31 ±

0.21), thromboxane A2 synthesis (pIC50 = 4.77 ± 0.08) and adhesion (pIC50 = 3.76 ± 0.02),

as these processes are dependent on increasing the [Ca2+]cyt.

By contrast, citalopram did not affect U46619-induced Ca2+ store release, even at

concentrations which inhibit platelet aggregation (Figure 4.3C-E). This suggests that

unlike CRPXL-stimulated platelets, the inhibitory effects of citalopram on U46619-induced

platelet aggregation reside downstream of Ca2+ release from intracellular stores. This

hypothesis is supported by the observation that citalopram can also inhibit aggregation

following Ca2+ store release by the ionophore, ionomycin (Figure 4.4). Contrary to CR-

PXL, which induces PLC∞2-mediated increases in [Ca2+]cyt via GPVI signal transduction,

U46619 induces PLCØ-mediated increases in [Ca2+]cyt through binding to GÆq-coupled
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TPÆ receptors. Ca2+ store release was also preserved in PAF-stimulated neutrophils, which

likewise mediate activation through GÆq. Comparing the effects of citalopram on [Ca2+]cyt

increases by stimulating other GÆq-coupled receptors, such as protease-activated recep-

tors (PARs) or P2Y1 could establish if GÆq-mediated Ca2+ store release is unaffected by

citalopram.

4.3.3 Citalopram’s effects on Rap1 activation

Despite normal Ca2+ store release, platelets pre-treated with citalopram (200 µM) did

not aggregate in response to U46619 (Figure 4.3C-E). Activated Rap1 mediates platelet

aggregation downstream of increases in [Ca2+]cyt by aiding the transition of integrin

ÆIIbØ3 to a high-affinity binding state (Lee et al., 2009, Moser et al., 2009, Chrzanowska-

Wodnicka et al., 2005). Citalopram blocked Rap1 activation in platelets stimulated with

CRPXL (Figure 4.6). This was expected, as rapid Rap1 activation is dependent on increases

in [Ca2+]cyt, which were inhibited in CRPXL-stimulated platelets that were pre-treated

with citalopram (Figure 4.3). However, in U46619-stimulated platelets, concentrations

of citalopram which do not inhibit Ca2+ store release did block Rap1 activation (Figure

4.6). This finding suggests that citalopram inhibits CalDAG-GEFI, a guanine nucleotide

exchange factor that upregulates Rap1 activation downstream of increases in [Ca2+]cyt

(Chapter 4.1.2). This hypothesis is supported by the fact that despite abolished aggregation

in response to U46619, platelet shape change is preserved in both citalopram-treated

platelets (Figures 3.4 & 4.3E), and platelets from CalDAG-GEFI knockout mice (Crittenden

et al., 2004). These early cytoskeletal reorganisations are instead believed to be mediated

by the Ca2+-dependent small GTPase, Rho (Kimura et al., 1996, Klages et al., 1999).

To test the hypothesis that citalopram inhibits CalDAG-GEFI, Ca2+ store release and

Rap1 activation were investigated in neutrophils, which also express Rap1 and CalDAG-

GEFI (M’Rabet et al., 1998, Crittenden et al., 2004). As with U46619-stimulated platelets,

citalopram had no effect on [Ca2+]cyt increases in neutrophils stimulated with PAF, which

like U46619 mediates [Ca2+]cyt increases through PLCØ. Citalopram did, however, inhibit

PAF-induced Rap1 activation, providing supportive evidence that citalopram inhibits

CalDAG-GEFI. In neutrophils, Rap1-GTP mediates the downstream transition of integrin

ÆMØ2 to an active, high-affinity state, allowing adhesion to endothelial adhesion molecules

and fibrinogen (Flick et al., 2004, Bergmeier et al., 2007, Halai et al., 2014). Citalopram

inhibited PAF-induced neutrophilÆMØ2 activation and adhesion to fibrinogen, suggesting

that citalopram also inhibits neutrophil functional responses. The effects of citalopram

and other SSRIs on neutrophil function will be discussed further in Chapter 7.4.1.
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4.3.4 Indirect inhibition of CalDAG-GEFI

Putative CalDAG-GEFI inhibition by citalopram could be mediated through either direct

interactions, or through binding and regulating other proteins. CalDAG-GEFI phosphory-

lation by protein kinase A (PKA) (Ser-116, Ser-117, Ser-586) prevents Rap1 activation in

platelets (Subramanian et al., 2013). However, CalDAG-GEFI phosphorylation by PKA at

these same amino acid residues increases Rap1 activation in neurons of the striatum (Na-

gai et al., 2016), suggesting a complex and potentially cell-specific form of CalDAG-GEFI

regulation. Levels of the PKA activator, cyclic adenosine monophosphate (cAMP) were un-

changed in both unstimulated and ADP-stimulated platelets that were pre-incubated with

or without 50 µM citalopram (Tseng et al., 2013). Although this suggests that citalopram

does not increase PKA activity, the unclear effects of PKA-mediated CALDAG-GEFI phos-

phorylation on Rap1 activation imply that such observations should be interpreted with

caution. Activated ERK1/2 also phosphorylate CalDAG-GEFI (Ser-391), which reduces

CalDAG-GEFI nucleotide exchange activity and Rap1 activation (Ren et al., 2016). ERK1/2

activation is downstream of Rap1 activation and provides a putative negative-feedback

loop to auto-regulate ERK1/2 signalling (Stefanini et al., 2009). However, citalopram

inhibits initial Rap1 activation, suggesting that downstream ERK1/2 are not activated

and are therefore unable to phosphorylate CalDAG-GEFI. Taken together, the studies

described above suggest that citalopram is unlikely to inhibit CalDAG-GEFI through an

indirect mechanism of action.

4.3.5 CalDAG-GEFI-independent mechanisms of Rap1 inhibition

In addition to CalDAG-GEFI, Rap1 activation is possible through inhibition of the GTPase

activating protein, RASA-3. ADP-binding to GÆi-coupled P2Y12 receptors activates PI3K,

which inhibits RASA-3 (Stefanini et al., 2015). RASA-3 inhibition reduces the intrinsic

GTPase activity of Rap1, causing a gradual increase in Rap1-GTP (Stefanini et al., 2009,

2012, 2015). In this chapter, Rap1 activity was recorded 1 minute after agonist addition.

Rap1 activation over this time frame is predominantly mediated through the activation

of CalDAG-GEFI as opposed to RASA-3 inhibition, which reportedly takes 5-10 minutes

(Franke et al., 1997, Crittenden et al., 2004, Stefanini et al., 2009, 2015). This observation

therefore strongly suggests that inhibition of U46619-induced aggregation by citalopram

is not through preserved RASA-3 activity.

Theoretically, citalopram could prevent Rap1 activation by sequestering GTP. However,

due to the high cytosolic concentrations of GTP (º300 µM) and its picomolar-nanomolar
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affinity for small G proteins (Traut, 1994, Bos et al., 2007), this hypothesis seems highly un-

likely. Furthermore, GTP is required for Rho-mediated platelet shape change (Klages et al.,

1999), which is preserved in citalopram-treated platelets stimulated with U46619 (Figures

3.4 & 4.3E). Alternatively, citalopram may directly bind Rap1, preventing GTP loading

irrespective of CalDAG-GEFI activity. Rap1B-deficient platelets undergo impaired but

not ablated aggregation in response to various platelet agonists (Chrzanowska-Wodnicka

et al., 2005). Determining if citalopram has any additional inhibitory effects in this mouse

model and in platelets lacking the Rap1A isoform could help determine if citalopram

inhibits U46619-mediated platelet aggregation through binding and inhibiting Rap1.

4.3.6 Direct inhibition of CalDAG-GEFI

To ascertain if citalopram directly inhibits CalDAG-GEFI, an in vitro CalDAG-GEFI

activity assay was performed. In this assay, recombinant Rap1B was co-incubated with

fluorophore-conjugated GDP (BODIPY-FL-GDP) (Lozano et al., 2016, Ren et al., 2016).

The F.I. of BODIPY-FL increases upon its association with Rap1B, increasing sample F.I.

(¢F.I.). The addition of recombinant CalDAG-GEFI catalyses the rate of Rap1B nucleotide

exchange, increasing BODIPY-FL-GDP binding to Rap1B and ¢F.I. (Figure 2.9B). This in

vitro enzyme assay removed the complex spatial and temporal dynamics of the intracel-

lular environment, as well as proteins that may bind to and affect CalDAG-GEFI or Rap1

activity, such as PKA and ERK1/2, or RASA-3, respectively. This reductionist approach

allowed the direct interactions between isolated citalopram, CalDAG-GEFI and Rap1B to

be investigated.

Citalopram reduced the extent of CalDAG-GEFI-mediated BODIPY-FL-GDP binding to

Rap1B over a 20 minute period (Figure 4.11). This suggests that citalopram impairs Rap1B

nucleotide exchange through either directly reducing CalDAG-GEFI activity or by blocking

BODIPY-FL-GDP binding to Rap1B. The inhibitory potency for citalopram in this in vitro

assay (pIC50 = 3.67 ± 0.32) does not match its effects on platelet function (U46619-induced

aggregation: pIC50 = 4.15 ± 0.27). Possible explanations for this discrepancy include the

acellular nature of the assay and the reaction buffer (Table 2.4), which differs from the

intracellular environment. The proteins used in this assay also contrast from those in

cellular experiments. Rap1B and CalDAG-GEFI contain C-terminal truncations (Figure B.1

in Appendix B). While anecdotal reports claim these truncations preserve protein activity

and functional domains, the tertiary structure and unidentified C-terminal interactions

with other proteins may be compromised. This assay also fails to identify if reduced

BODIPY-FL-GDP binding to Rap1B was a consequence of citalopram binding to CalDAG-
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GEFI, or to Rap1B itself. Additional experiments using isothermal titration calorimetry

(ITC) could identify the direct binding target of citalopram. ITC is a technique commonly

used to assess drug-protein interactions, providing information on enthalpy changes,

binding affinity constants and stoichiometry (Damian, 2013). Unlike the binding assay

conducted in this chapter, ITC also does not require conjugated fluorophores, which may

interfere with normal protein function.

In conclusion, results in this chapter demonstrate that despite typical U46619-induced

Ca2+ store release, citalopram blocked Rap1 activation in both platelets and neutrophils.

Citalopram also reduced the rate of CalDAG-GEFI-mediated nucleotide exchange onto

Rap1B. Taken together, these findings suggest citalopram either directly inhibits CalDAG-

GEFI, or blocks nucleotide binding to Rap1. Either of these mechanisms could account

for citalopram-mediated inhibition of both platelet and neutrophil functional responses.



Chapter 5

Citalopram inhibits glycoprotein VI-

mediated signalling

5.1 Background

In Chapter 3, citalopram was shown to inhibit several collagen-induced platelet functions,

including aggregation, thromboxane A2 (TxA2) synthesis and adhesion. Collagen initiates

platelet activation by binding either integrin Æ2Ø1 or the glycoprotein VI (GPVI) receptor,

which mediates downstream increases in cytosolic calcium concentration ([Ca2+]cyt). In

Chapter 4, it was shown that increases in [Ca2+]cyt induced by the GPVI-selective agonist,

cross-linked collagen-related peptide (CRPXL) were inhibited by citalopram (Figure 4.3).

This suggests that citalopram inhibits early signalling events in GPVI-mediated platelet

activation, prior to Ca2+ release from intracellular stores, resulting in the downstream

inhibition of platelet functional responses.

5.1.1 The GPVI receptor

GPVI is a 58 kDa transmembrane receptor, belonging to the immunoglobin (Ig)-like super-

family and is only expressed in megakaryocytes and platelets (Phillips and Agin, 1977b,

Lagrue-Lak-Hal et al., 2001, Jandrot-Perrus et al., 2000). The extracellular region of GPVI

consists of two Ig-like domains (D1D2) and a heavily glycosylated Ser/Thr-rich stalk re-

gion (Miura et al., 2000, Horii et al., 2006). A positively-charged residue (Arg-272) within

the transmembrane domain of GPVI mediates non-covalent linkage to the Fc receptor

∞-chain (FcR∞-chain) (Zheng et al., 2001, Bori-Sanz et al., 2003, Tsuji et al., 1997). FcR∞-

chain knockout mice do not express functional GPVI, and GPVI-FcR∞-chain complexes

are essential for GPVI-mediated signal transduction (Nieswandt et al., 2000, Tsuji et al.,

1997, Berlanga et al., 2002). The Src family kinases (SFKs) Fyn and Lyn constitutively

bind to the Pro-rich cytoplasmic domain of GPVI via their Src homology-3 (SH3) domains

(Suzuki-Inoue et al., 2002), priming the receptor for rapid signal transduction (Ezumi et al.,

1998, Suzuki-Inoue et al., 2002, Schmaier et al., 2009). A basic amino acid-rich region

proximal to the GPVI transmembrane domain binds calmodulin, which dissociates from

GPVI upon agonist-induced signal transduction and activates a disintegrin and metallo-
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proteinase domain-containing protein 10 (ADAM10) (Andrews et al., 2002, Gardiner et al.,

2004). ADAM10 mediates the proteolytic cleavage of a soluble GPVI ectodomain fragment,

causing irreversible inactivation of the receptor (Andrews et al., 2007, Qiao et al., 2010).

5.1.2 GPVI agonists

GPVI is the major collagen receptor involved in platelet activation (Nieswandt and Watson,

2003). X-ray crystallographic data suggest that the GPVI collagen-binding domain (CBD)

is a shallow groove on the surface of the D1 domain (Horii et al., 2006). GPVI binds Gly-

Pro-Hyp (GPO, where O = hydroxyproline) sequence repeats within the collagen triple

helix, although other binding motifs certainly play a role (Jarvis et al., 2008). A collagen-

related peptide (CRP), containing 10 GPO repeats initiates weak platelet aggregation

and has been described as a partial agonist (Asselin et al., 1999). However, cross-linking

CRP through cysteine residues at its N-terminus and C-terminus (CRPXL) produces a

potent platelet agonist, which initiates rapid platelet aggregation (Morton et al., 1995,

Knight et al., 1999). CRPXL- and collagen-stimulated platelets undergo a similar tyrosine

phosphorylation cascade (Chapter 5.1.4) (Asselin et al., 1997). However, unlike collagen,

CRPXL has no effect on GPVI-deficient platelets and does not bind the other collagen

receptor, integrin Æ2Ø1 (Morton et al., 1995, Knight et al., 1999), providing evidence that

CRPXL is a GPVI-selective platelet agonist.

5.1.3 GPVI dimers and higher-order clustering

GPVI CBDs form back-to-back dimers in crystals, with parallel putative collagen-binding

grooves that match the triple helices of fibrillar collagen (Horii et al., 2006). This structural

orientation could explain why dimeric (D1D2-Fc)2 GPVI has a higher collagen-binding

affinity than monomeric D1D2 domains (Miura et al., 2002). Dimer-specific antibod-

ies, such as 204-11 Fab, have demonstrated that dimeric GPVI (º29% of total GPVI) is

present on the surface of resting platelets, which may mediate initial collagen binding and

collagen-induced activation (Berlanga et al., 2007, Jung et al., 2012, 2009). Platelet activa-

tion in turn increases dimer formation (Jung et al., 2012, Loyau et al., 2012). Experiments

utilising super-resolution microscopy show collagen binding to dimeric GPVI coalesces the

receptor into higher-order clusters, which increases collagen avidity and may colocalise

intracellular proteins, initiating intracellular phosphorylation (Poulter et al., 2017).
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5.1.4 GPVI-mediated signal transduction

GPVI signal transduction involves the coordinated phosphorylation of several intracellular

proteins (Figure 5.1). GPVI itself has no intrinsic kinase activity and relies on SFKs to

initiate the phosphorylation cascade. The SFKs Fyn/Lyn are constitutively associated with

the GPVI-FcR∞-chain complex (Ezumi et al., 1998). GPVI-bound Lyn is phosphorylated

within its activation loop (Tyr-396), which is thought to prime GPVI for rapid agonist-

induced signal transduction (Schmaier et al., 2009). CD148 maintains the activity of

GPVI-associated SFKs by reversing Csk-mediated phosphorylation of the SFK C-terminal

(Senis et al., 2009, Ellison et al., 2010, Mori et al., 2012). Agonist-induced increases in

GPVI dimerisation and clustering initiate trans-autophosphorylation of the Fyn/Lyn ac-

tivation loop, and are thought to bring Fyn/Lyn within the vicinity of the intracellular

immunoreceptor tyrosine-based activation motif (ITAM) of the FcR∞-chain (Suzuki-Inoue

et al., 2002). Platelets deficient in both Fyn and Lyn demonstrate delayed and impaired

responses to CRPXL, which are blocked by the SFK inhibitor, PP1 (Quek et al., 1998),

suggesting other SFKs play an albeit small role in GPVI-mediated activation. Lyn/Fyn

phosphorylate tandem tyrosine residues within the FcR∞-chain ITAM, allowing spleen

tyrosine kinase (Syk) to bind the ITAM via its Src homology-2 (SH2) domains, which

induces Syk auto-phosphorylation (Gibbins et al., 1996, Ezumi et al., 1998). Syk phospho-

rylates the linker of activated T cells (LAT) (Zhang et al., 1998), which becomes phosphory-

lated at multiple sites and recruits phospholipase C∞2 (PLC∞2) and phosphatidylinositol

3-kinase (PI3K) within the proximity of their substrates via their SH2 domains (Gibbins

et al., 1998, Gross et al., 1999, Pasquet et al., 1999). PI3K converts phosphatidylinositol-

3,4-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-trisphosphate (PIP3) (Leevers et al.,

1999). PIP3 recruits additional PLC∞2 and Bruton’s tyrosine kinase (Btk) via their pleck-

strin homology (PH) domains, allowing Btk to phosphorylate PLC∞2 at several tyrosine

residues, including Tyr-1217 (Quek et al., 1998, Watanabe et al., 2001). Phosphorylated

PLC∞2 mediates the hydrolysis of residual PIP2 to inositol-1,4,5-trisphosphate (IP3) and

1,2-diacylglycerol (DAG) (Wilde and Watson, 2001). IP3 and DAG are key secondary

messengers of platelet activation, responsible for the downstream release of Ca2+ from

intracellular stores (Chapter 4.1.1 & Figure 4.1) and activation of protein kinase C (PKC),

respectively (Gibbins, 2004).

To summarise, the coordinated signal transduction described above is essential for

downstream platelet functional responses induced by GPVI stimulation, including granule

release and platelet aggregation.
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Figure. 5.1 Schematic summary of initial glycoprotein VI (GPVI)-mediated signalling during
platelet activation. The extracellular region of GPVI consists of two immunoglobin (Ig)-like
domains (D1D2) which bind collagen. GPVI binding to collagen mediates receptor clustering and
tyrosine (Tyr) phosphorylation of the intracellular immunoreceptor tyrosine-based activation
motif (ITAM) of the Fc receptor ∞ (FcR∞)-chain by the Src-family kinases Fyn and Lyn. CD148
maintains the activity of Fyn and Lyn by reversing Csk-mediated phosphorylation of the SFK C-
terminal through its protein tyrosine phosphatase (PTP) domain. ITAM phosphorylation permits
binding of spleen tyrosine kinase (Syk) through its Src homology-2 (SH2) domains, activating
Syk through auto-phosphorylation, which results in the phosphorylation of the linker of acti-
vated T cells (LAT). Phosphoinositide 3-kinase (PI3K) is then recruited to LAT and phosphory-
lates phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-trisphosphate
(PIP3). Bruton’s tyrosine kinase (Btk) and Phospholipase C∞2 (PLC∞2) are recruited to membrane-
associated PIP3 via their pleckstrin homology (PH) domains, allowing Btk to phosphorylate PLC∞2
at Tyr-1217, resulting in its activation. Activated PLC∞2 cleaves residual PIP2 to produce inositol-
1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DAG), which mediate downstream platelet activa-
tion through increasing the concentration of cytosolic calcium ([Ca2+]cyt) and activating protein
kinase C (PKC), respectively. This is an original image.

5.1.5 Aims

Experiments in this chapter aim to:

1. Describe the inhibitory effects of citalopram on GPVI-mediated signal transduction.

2. Identify where citalopram exerts its effects in the GPVI signalling pathway.

Experiments will measure CRPXL-induced phosphorylation of the FcR∞-chain, SFKs, LAT

and PLC∞2, as well as the binding of GPVI antibodies to the surface of resting platelets.
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5.2 Results

5.2.1 Citalopram inhibits CRPXL-induced platelet aggregation

Collagen activates platelets through binding either GPVI or integrin Æ2Ø1. The results

presented in Chapter 3 show citalopram inhibits collagen-induced functional responses.

In the case of GPVI, these effects are likely due to disrupted Ca2+ signalling, as shown

using the GPVI-selective agonist, CRPXL (Figure 4.3). The effects of citalopram on platelet

aggregation induced by CRPXL were therefore investigated to determine if citalopram

inhibits platelet activation induced by a GPVI-selective agonist.

Citalopram inhibited CRPXL-induced platelet aggregation in a concentration-dependent

manner (Figure 5.2). Figure 5.2B demonstrates the inhibitory effects of citalopram on

the maximum extent of aggregation over 6 minutes. Pre-incubating platelets with 20

µM or 50 µM citalopram caused concentration-dependent 2.16-fold and 2.50-fold right-

ward shifts in agonist-response curves, respectively. In contrast, high concentrations of

citalopram (100 µM) caused a 4.78-fold rightward shift in the agonist-response curve

(Figure 5.2B). Schild analysis for citalopram concentrations between 5-50 µM gave a

pA2 value of 4.84 and a slope of 1.104, and thus displayed characteristics of competitive

antagonism. However, incorporating higher concentrations of citalopram (100-200 µM)

increased the slope to 1.800 (Figure 5.2C). These data suggest that at concentrations up

to 50 µM, citalopram inhibits CRPXL-induced platelet aggregation through a seemingly

competitive mechanism, yet this inhibition becomes non-competitive at concentrations

exceeding 50 µM.
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Figure. 5.2 Citalopram inhibits CRPXL-induced platelet aggregation (A) Example aggregation
traces of platelets pre-incubated with citalopram (0, 20, 50, & 100 µM) for approximately 5 minutes,
before stimulation with a fixed concentration of cross-linked collagen-related peptide (CRPXL,
0.5 µg mL°1). Arrowheads indicate time points of CRPXL addition. (B) Agonist concentration-
response curves demonstrate how the maximum extent of platelet aggregation (Max. Aggregation)
to a range of CRPXL concentrations was inhibited by citalopram. Concentrations of citalopram
below 20 µM demonstrate similar responses to untreated platelets and were omitted from the
figure for presentational purposes. 5 µM and 200 µM citalopram were only tested in a single donor
and was therefore also omitted from the figure. (C) Schild analysis was carried out on a range of
citalopram concentrations (0, 1, 5, 10, 20, 50, 100, & 200 µM). Dashed grey lines indicate a slope of
1, which correlates to data expected from a competitive antagonist. DR represents the dose ratio
(N = 6 blood donors).



5.2 Results 93

5.2.2 Citalopram inhibits tyrosine phosphorylation of Src family

kinases, LAT and PLC∞2

GPVI signal transduction prior to Ca2+ store release and platelet aggregation is mediated

through a well-characterised tyrosine phosphorylation cascade (Chapter 5.1.4 & Figure

5.1). The effects of citalopram on CRPXL-induced protein phosphorylation were therefore

investigated, to identify where in the GPVI signalling cascade citalopram may mediate its

inhibitory effects.

In an initial unblinded experiment (Figure 5.3A) citalopram reduced whole cell lysate

tyrosine phosphorylation (N = 2 donors, (4G10)) in platelets stimulated with CRPXL (5

µg mL°1). Reduced tyrosine phosphorylation of the FcR∞-chain (kDa º 15) (Gibbins

et al., 1996) was also observed. Citalopram similarly reduced the site-specific tyrosine

phosphorylation of SFKs (Tyr-416), LAT (Tyr-200) and PLC∞2 (Tyr-1217) (N = 1 donor).

Protein samples from subsequent experiments were randomly loaded into wells in a

blinded fashion. For each donor, basal phosphorylation (CRPXL = 0) and CRPXL-induced

phosphorylation of citalopram-treated platelets (CRPXL = 5 µg mL°1; citalopram = 0, 1,

10, 20, 50, 100 & 200 µM) was quantified (Figure 5.3B). Uncropped images for Western

blots used for densitometric quantification can be found in Figure A.3 & A.4 of Appendix

A. Citalopram inhibited CRPXL-induced phosphorylation of PLC∞2, SFK and LAT in a

concentration-dependent manner (Figure 5.3B). Citalopram-induced responses were

fitted to the four-parameter logistic (4PL) model and the pIC50 values are as follows: (SFK

(Tyr-416) = 4.26 ± 0.02, N = 4; LAT (Tyr-200) = 3.76 ± 0.06, N = 5; PLC∞2 (Tyr-1217) = 4.40 ±

0.77, N = 5 blood donors). Due to an incomplete concentration-response curve, the M ax

parameter for LAT (Tyr-200) was constrained to basal phosphorylation (CRPXL = 0).

In unstimulated platelets (CRPXL = 0), no LAT (Tyr-200) or PLC∞2 (Tyr-1217) phospho-

rylation was observed, but was detectable with SFK (Tyr-416) (Figure 5.3). Citalopram did

not affect levels of Src (P = 0.64), LAT (P = 0.43) or PLC∞2 (P = 0.30) within protein lysates,

as determined by 1-way ANOVA (Effect 1 (fixed) = parameter {Max, Min}; H0: M ax = Mi n;

H1: M ax 6= Mi n). These data show that citalopram inhibits tyrosine phosphorylation of

the FcR∞-chain, as well as the phosphorylation of SFKs, LAT and PLC∞2, at amino acid

residues relating to their activity within the GPVI pathway.
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Figure. 5.3 Whole cell tyrosine phosphorylation (4G10) and site-specific phosphorylation of Src
family kinases (SFK), linker of activated T cells (LAT) and phospholipase C∞2 (PLC∞2). Platelets
were stimulated with 5 µg mL°1 cross-linked collagen-related peptide (CRPXL) for 6 minutes under
turbidimetric conditions, in the presence of the integrin ÆIIbØ3 inhibitor, GR144053 (2 µM). (A)
Images from a non-blinded pilot study demonstrate the concentration-effect of citalopram both on
whole cell tyrosine phosphorylation and the site-specific phosphorylation of SFKs (Tyr-416), LAT
(Tyr-200) and PLC∞2 (Tyr-1217). (B) Densitometric quantification for unstimulated (white squares
= 0 CRPXL) or stimulated platelets (black squares = 5 µg mL°1 CRPXL). Dashed lines (mean) and
the grey area (± SEM) indicate background signal of developed X-ray films. Lower panels represent
protein levels from the same samples used to assess phosphorylation (SFK (Tyr-416): N = 4 blood
donors, LAT (Tyr-200) and PLC∞2 (Tyr-1217): N = 5 blood donors). Uncropped blot images for each
donor can be found in Figure A.3 & A.4 of Appendix A.
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5.2.3 Citalopram inhibits the binding of glycoprotein VI antibodies

Citalopram inhibits early protein phosphorylation within the GPVI signalling pathway.

Such phosphorylation is likely initiated through clustering of the GPVI receptor upon

agonist binding. Pre-existing GPVI dimers on resting platelets are also thought to

mediate initial collagen binding and receptor clustering, which induces intracellular

protein phosphorylation (Berlanga et al., 2007, Jung et al., 2009, 2012, Poulter et al., 2017,

Loyau et al., 2012). The effects of citalopram on antibody binding to dimeric GPVI or

total GPVI were therefore measured, to determine if citalopram inhibits platelets through

reducing levels of dimeric GPVI, or total GPVI surface expression, respectively.

Pre-treatment for approximately 5 minutes with citalopram (200 µM) reduced the

fluorescence intensity (F.I.) of platelets labelled with either dimeric (204-11 Fab) or total

(HY-101) GPVI antibodies (Figure 5.4), which is indicative of reduced antibody binding.

The inhibitory effect of citalopram on 204-11 Fab or HY-101 binding was concentration-

dependent (citalopram = 0, 10, 20, 50, 100 & 200 µM). Median F.I. from platelet samples

were fitted to the 4PL model, with M ax constrained to the F.I. of the isotype control

(Figure 5.4). pIC50 values were: (204-11 Fab = 4.16 ± 0.03; HY-101 = 3.93 ± 0.07; (N = 6 blood

donors)). These data suggest citalopram either reduces both GPVI surface expression and

dimer formation on resting platelets, or blocks the binding of GPVI antibodies.
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Figure. 5.4 Binding of dimeric glycoprotein VI (GPVI) (204-11 Fab) or total GPVI (HY-101)
antibodies to unstimulated platelets. Control Fab or IgG2 were used as corresponding isotype
controls for (A-B) 204-11 Fab and (C-D) HY-101, respectively. Example histograms represent the
fluorescence intensity (F.I.) of platelets pre-incubated with either a GPVI-specific antibody (blue =
0 µM citalopram, red = 200 µM citalopram), or an isotype control (grey). Sample median F.I. was
used to generate concentration-response curves, fitted to the four-parameter logistic (4PL) model.
Dashed lines (mean) and grey space (± SEM) indicate F.I. of isotype controls, which were used to
constrain the M ax parameter of the 4PL model (N = 6 blood donors).
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5.2.4 Citalopram inhibition is reversible

Impaired antibody binding to GPVI could be a consequence of reduced GPVI surface

expression. For example, GPVI ectodomain cleavage or internalisation are irreversible

mechanisms that reduce GPVI surface expression and could account for impaired

antibody binding. An experiment was therefore designed to determine if platelet

inhibition by citalopram was due an irreversible mechanism of action. Platelets were

pre-incubated for approximately 5 minutes with citalopram, which was subsequently

removed by pelleting and resuspending platelets in fresh calcium-free Tyrode’s (CFT).

Platelets were then stimulated with collagen under aggregometry conditions.

Consistent with previous results (Figure 3.4), citalopram inhibited collagen-induced

platelet aggregation (citalopram = 100 µM, collagen = 0.05, 0.1, 0.2, 0.5, 1, 2, 5 & 10 µg

mL°1) 5.5A-B). Resuspension of platelets in fresh CFT partially restored collagen-induced

aggregation, which was comparable to resuspended platelets with no prior citalopram

treatment (Figure 5.5C-E). A second citalopram treatment (100 µM) to previously treated,

pelleted and resuspended platelets again inhibited collagen-induced aggregation. Agonist

concentration-response curves were fitted to the 4PL model and pEC50 values for the

five different treatments (Figure 5.5F) are: (untreated = 6.53 ± 0.09; citalopram-treated

= 5.19 ± 0.11; untreated resuspended = 5.93 ± 0.17; citalopram-treated resuspended =

5.90 ± 0.18; citalopram-treated, resuspended and citalopram-treated = 5.02 ± 0.08; (N

= 6 blood donors)). Analysis by 2-way ANOVA (Effect 1 (fixed) = treatment {1,2,3,4,5};

Effect 2 (random) = donor {N = 6}) strongly suggested a difference between the pEC50

values of the five treatments (P = 8.47 x 10°9, F = 35.28, df = 4, 20). A post-hoc Tukey test

strongly suggested that there was no difference between the pEC50 values of untreated

and citalopram-treated platelets following resuspension (P = 0.9998). These data show the

inhibitory effects of citalopram on collagen-induced platelet aggregation are reversible.
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5.3 Discussion

5.3.1 Overview

The experiments in this chapter aim to identify mechanisms of citalopram inhibition on

the GPVI signalling pathway. Citalopram inhibited CRPXL-induced platelet aggregation,

with Schild analysis suggesting citalopram shows characteristics of a competitive antag-

onist at concentrations up to 50 µM. Citalopram did, however, display characteristics

of a non-competitive antagonist at concentrations exceeding 50 µM. Citalopram also

inhibited the CRPXL-induced phosphorylation of SFKs, FcR∞-chain, LAT and PLC∞2. The

binding of GPVI antibodies to resting platelets was also reduced following citalopram

treatment, suggesting either a reduction in GPVI surface expression or disrupted antibody

binding. Finally, inhibition of collagen-induced aggregation by citalopram was reversible,

demonstrating that citalopram does not mediate its effects through reducing GPVI surface

expression. Based on these results, the data in this chapter suggest a putative mechanism

of platelet inhibition by citalopram, where direct and competitive interactions with the

GPVI receptor prevent agonist binding and disrupt downstream signal transduction.

5.3.2 Inhibition of early GPVI signal transduction

Previous results show that citalopram inhibited CRPXL-induced increases in [Ca2+]cyt

(Figure 4.3). The effects of citalopram on GPVI signalling events upstream of [Ca2+]cyt

increases were therefore investigated, including the phosphorylation of SFKs, LAT and

PLC∞2 at amino acid residues associated with signal transduction. Collagen binding to

its other receptor Æ2Ø1, induces integrin outside-in signalling, phosphorylating several

proteins that are also involved in GPVI signal transduction, including Syk and PLC∞2

(Inoue et al., 2003, Jarvis et al., 2004). Therefore, to discriminate between citalopram’s

effects on GPVI and Æ2Ø1 outside-in signalling, platelets were stimulated with the GPVI-

selective agonist, CRPXL.

Citalopram inhibited CRPXL-induced phosphorylation of SFKs (Tyr-416), LAT (Tyr-

200) and PLC∞2 (Tyr-1217) (Figure 5.3). Concentrations of citalopram at or above 100

µM abolished phosphorylation of SFKs and PLC∞2, despite residual LAT phosphoryla-

tion. Although functional LAT is required for optimal GPVI-mediated platelet activation,

other adaptor proteins, including Src homology 2 domain-containing leukocyte phos-

phoprotein of 76 kDa (SLP-76) are thought to be of greater importance for downstream

PLC∞2 phosphorylation and platelet aggregation (Judd et al., 2002). Citalopram may, there-
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fore, suppress the activity of other adaptor proteins, such as SLP-76, while only partially

impairing LAT phosphorylation.

Platelet lysates probed with 4G10 (which binds phosphorylated tyrosine residues)

suggest that citalopram also inhibits FcR∞-chain phosphorylation (kDa º 15) (Gibbins

et al., 1996). The SFKs Lyn/Fyn phosphorylate the FcR∞-chain ITAM, resulting in down-

stream LAT and PLC∞2 phosphorylation (Chapter 5.1.4). Citalopram may, therefore,

prevent Lyn/Fyn-mediated FcR∞-chain ITAM phosphorylation. The phospho-SFK (Tyr-

416) antibody used in this chapter (Table 2.5) cross-reacts with the activation loop of Lyn

(Tyr-396) and Fyn (Tyr-419), suggesting that citalopram reduces phosphorylation of the

Fyn/Lyn activation loop. Citalopram also reduced SFK (Tyr-416) phosphorylation below

basal (unstimulated) levels. In unstimulated platelets, the activation loop of GPVI-bound

Lyn is phosphorylated, which is thought to prime platelets for rapid signal transduction

upon receptor ligation and clustering (Schmaier et al., 2009). Citalopram could, therefore,

prevent receptor priming by impairing basal phosphorylation of the Lyn activation loop.

Lyn/Fyn activity is also controlled through C-terminal phosphorylation (Lyn = Tyr-507,

Fyn = Tyr-530) by C-terminal Src kinase (Csk). Phosphorylation by Csk blocks the active

site of Lyn/Fyn through interactions with their own SH2 domains, a process reversed by

the receptor-type tyrosine-protein phosphatase J (also known as CD148 or DEP-1) (Senis

et al., 2009, Ellison et al., 2010, Mori et al., 2012). Citalopram could theoretically prevent

ITAM phosphorylation through the C-terminal phosphorylation of Fyn/Lyn, mediated

by either upregulated Csk activity, or reduced CD148 activity. However, results from this

chapter suggest inhibition of the Fyn/Lyn activation loop is the primary cause for impaired

ITAM phosphorylation and downstream signal transduction.

5.3.3 The effects of citalopram on the GPVI receptor

Citalopram prevented early protein phosphorylation following CRPXL stimulation (Figure

5.3). Such phosphorylation is thought to be initiated by increased GPVI dimerisation and

clustering upon agonist stimulation (Poulter et al., 2017, Jung et al., 2012, Loyau et al., 2012).

GPVI dimers on unstimulated platelets provide high-affinity sites for collagen, priming

platelets for increased dimer formation and receptor clustering upon collagen-binding

(Jung et al., 2012, Poulter et al., 2017, Loyau et al., 2012). The binding of a dimeric GPVI

antibody (204-11 fab) was reduced in unstimulated platelets pre-treated with citalopram,

suggesting citalopram either reduced GPVI dimer levels or disrupted 204-11 Fab binding.

Of note, reduced binding was also observed with HY-101, an antibody which binds both
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monomeric and dimeric GPVI. These two findings suggest that citalopram either reduces

total GPVI surface expression or blocks the binding of GPVI antibodies.

GPVI expression on the platelet surface can be reduced through two irreversible mech-

anisms: 1) Proteolytic cleavage of its extracellular domain, often referred to as “shedding”

or 2) receptor internalisation (Rabie et al., 2007). GPVI shedding occurs within seconds of

collagen-induced platelet activation, liberating a GPVI ectodomain fragment and retaining

a º 10 kDa portion within the plasma membrane (Gardiner et al., 2007). Ectodomain

shedding is predominantly mediated by ADAM10 on the platelet surface, which is acti-

vated by calmodulin dissociation from GPVI (Andrews et al., 2002, Gardiner et al., 2007).

The mechanisms underlying GPVI Internalisation are largely unknown. Cyclic adenosine

monophosphate (cAMP) levels and GPVI signal transduction have separately been re-

ported to induce GPVI internalisation in vitro and in vivo, respectively (Rabie et al., 2007,

Takayama et al., 2008).

Experiments utilising platelet aggregometry were therefore conducted to test if citalo-

pram inhibited platelets through an irreversible mechanism of action. The supernatant of

platelets treated with citalopram was replaced with fresh CFT, with the assumption that

if citalopram irreversibly inhibits GPVI-mediated activation, then removing citalopram

from the supernatant would not restore responses to collagen. Removing citalopram

did, however, restore collagen-induced platelet aggregation (Figure 5.5), suggesting that

citalopram-induced inhibition of GPVI signalling is reversible and therefore unlikely to

be a consequence of GPVI cleavage or internalisation. PLC∞2 and LAT phosphorylation

was also not observed or impaired in either unstimulated or citalopram-treated CRPXL-

stimulated platelets, respectively (Figure 5.3), and functional PLC∞2 and LAT are required

for receptor shedding (Rabie et al., 2007). ADAM10-mediated cleavage of GPVI is also Ca2+-

dependent, and citalopram inhibits CRPXL-induced increases in [Ca2+]cyt (Figure 4.3).

These findings collectively suggest citalopram does not cause GPVI cleavage. Comparing

platelet and supernatant levels of the GPVI ectodomain following citalopram treatment

could reinforce this hypothesis (Gardiner et al., 2007).

5.3.4 Putative competitive binding of citalopram to GPVI

Despite its reversible effects, citalopram prevented the binding of GPVI antibodies, and

impaired platelet activation by GPVI agonists. This suggests a putative inhibitory mecha-

nism, whereby citalopram directly binds the GPVI receptor. This hypothesis is supported

both by previous experiments, where simultaneous co-incubation of platelets with both

citalopram and collagen prevented platelet aggregation (Figure 3.3), and from Schild
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analysis from this chapter, which suggests citalopram inhibition displays characteristics

of a competitive antagonist at concentrations up to 50 µM. Comparisons between this

seemingly competitive mechanism and the non-competitive effects observed above 50

µM will be discussed further in Chapter 7.3.1. Further experiments, involving competi-

tion binding assays or surface plasmon resonance could help identify direct interactions

between citalopram and GPVI.

Comparing the effects of citalopram between GPVI and a different receptor that shares

initial steps in platelet activation, could establish if inhibition is solely mediated through

binding GPVI. Fc ∞ receptor IIA (Fc∞RIIA)-mediated signal transduction, for example, is

highly homologous to that of GPVI. The intracellular region of Fc∞RIIA contains an ITAM

which is phosphorylated by Lyn/Fyn, mediating Syk auto-phosphorylation, downstream

PLC∞2 activation and Ca2+ release from intracellular stores (Shen et al., 1994, Qiao et al.,

2015). Therefore, if citalopram also inhibits Fc∞RIIA-mediated phosphorylation of SFKs,

the Fc∞RIIA ITAM and PLC∞2, then its effects are unlikely through binding GPVI, but

instead by suppressing the activity of downstream intracellular proteins that are important

for platelet activation. The effects of citalopram treatment on Fc∞RIIA stimulation are

however yet to be determined and could be investigated in future experiments. Similar

experiments could also be designed to assess the inhibitory effects of citalopram on

CLEC-2-mediated signal transduction.

In summary, the results presented in this chapter show that citalopram inhibits early

signalling events of GPVI-mediated platelet activation. Citalopram also prevented the

binding of GPVI antibodies, which was not a consequence of irreversible reductions in

GPVI surface expression. These findings, in conjunction with the rapid and seemingly

competitive nature of inhibition, suggest a putative mechanism in which citalopram binds

GPVI, preventing the subsequent binding of antibodies and agonists. Whether citalopram

inhibits GPVI signalling through direct binding to the receptor or by suppressing the

activity of an intracellular target is, however, yet to be determined.



Chapter 6

Platelet inhibition by various

antidepressants

6.1 Background

Data presented in earlier chapters demonstrates that the selective serotonin reuptake

inhibitor (SSRI) citalopram inhibits platelet functional responses through at least two

serotonin transporter (SERT)-independent mechanisms. In addition to citalopram, several

other SSRIs have been reported to inhibit platelets in vitro, as have some serotonin

and norepinephrine reuptake inhibitors (SNRIs) and tricyclic antidepressants (TCAs).

However, unlike citalopram, the effects that other antidepressants have on platelets are

inconsistent and a systemic investigation is required for comprehensive characterisation.

6.1.1 The effects of antidepressants on platelet function

In addition to citalopram, other SSRIs have been reported to mediate platelet function

in vitro. Pre-treating platelets with 50 µM fluoxetine, sertraline or paroxetine inhibited

platelet aggregation in response adenosine diphosphate (ADP) (Tseng et al., 2013).

Paradoxically, 5 µM fluoxetine augmented protease-activated receptor (PAR)-mediated

platelet aggregation (Dilks and Flaumenhaft, 2008), and 20 µM fluoxetine increased ADP-

and thrombin-induced calcium (Ca2+) release from intracellular stores (Harper et al.,

2009). Fluoxetine (10 µM) has also been reported to have no effect on platelet aggregation

initiated by PAR agonists, ADP or collagen (Bampalis et al., 2010). The varied agonists and

platelet preparations in these studies, which include washed platelets (Dilks and Flaumen-

haft, 2008, Harper et al., 2009), platelet-rich plasma (Tseng et al., 2013) and whole blood

(Bampalis et al., 2010), could partially account for such conflicting findings. Previous

experiments also use narrow or single antidepressant concentration ranges, making clear

comparisons between SSRIs difficult.

SNRIs are another class of antidepressant that bind SERT, but also show some selec-

tivity for the norepinephrine transporter (NET) (Owens et al., 1997, Bymaster et al., 2001,

Vaishnavi et al., 2004). Platelets pre-treated with 90 µM of the SRNI, venlafaxine show

reduced aggregation in response to ADP, epinephrine and arachidonic acid (Sarma and
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Horne, 2006). Such concentrations exceed those required to inhibit either SERT (K i =

102 ± 9 nM) or NET (K i = 1,644 ± 84 nM) (Owens et al., 1997). However, lower concen-

trations of venlafaxine (3.6-360 nM) which dose-dependently block SERT did not inhibit

platelet adhesion to either collagen or fibrinogen (Hallback et al., 2012). This suggests

that as with SSRIs, any in vitro antiplatelet effects mediated by SNRIs occur at micromolar

concentrations and are therefore likely to be independent of SERT inhibition.

TCAs such as imipramine and doxepin also bind and inhibit SERT at nanomolar

concentrations (Owens et al., 1997, Tatsumi et al., 1997). These TCAs are however not

selective for SERT, and bind to NET, 5-HT1A/2A receptors, histamine H1 receptors, Æ1/2

adrenergic receptors and muscarinic receptors with nanomolar affinities (Owens et al.,

1997, Vaishnavi et al., 2004). Doxepin has recently been shown to inhibit platelet activation

in vitro (Geue et al., 2017). Pre-treating platelets with 5 µM doxepin inhibited glycoprotein

VI (GPVI)-mediated inositol triphosphate (IP3) production, increases in cytosolic calcium

concentration ([Ca2+]cyt), granule release and platelet aggregation. This concentration of

doxepin is approximately two orders of magnitude higher than the concentration required

to bind SERT (K i = 68 ± 1 nM) (Tatsumi et al., 1997), suggesting effects were not mediated

through blocking the transporter. Indeed, the authors hypothesise a SERT-independent

mechanism, where doxepin binding to histamine H1 receptors impairs platelet activation

(discussed further in Chapter 7).

To summarise, in addition to citalopram, several antidepressants that block SERT

at nanomolar concentrations have previously been reported to inhibit platelets in vitro.

However, in all cases, inhibition was only observed at micromolar concentrations,

suggesting a SERT-independent mechanism of action. Although there are several reports

on the effects of SSRIs, TCAs and SNRIs on platelet function in vitro, there have been no

systematic studies, and experiments predominantly focus on platelet aggregation, with

little data available on other functions, such as [Ca2+]cyt or platelet granule release. The

micromolar concentrations required to inhibit platelets could also induce cytotoxicity, a

question not addressed in any of the aforementioned studies. Finally, the narrow or single

antidepressant concentration ranges that have been used provide no information on the

inhibitory potencies (e.g. pIC50 values) of these compounds. Such information could be

compared between antidepressants to determine the most potent antiplatelet agents.
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Citalopram
(CIT)

Fluoxetine
(FLU)

Paroxetine
(PAR)

Sertraline
(SER) 

Imipramine
(IMI)

Milnacipran
(MIL)

Figure. 6.1 Chemical structures of antidepressants used in this chapter. Citalopram, paroxetine,
sertraline and fluoxetine are selective serotonin reuptake inhibitors (SSRIs), imipramine is a
tricyclic antidepressant (TCA) and milnacipran is a serotonin and norepinephrine reuptake
inhibitor (SNRI). Chiral centres and stereoisomers of citalopram, sertraline, fluoxetine and
milnacipran are not depicted. The colour scheme used in compound abbreviations is used through-
out the chapter. Chemical structures were constructed using BIOVIA Draw 2016 version 5.1.0.22
(Dassault Systèmes, Vélizy-Villacoublay, France).

6.1.2 Aims

Experiments in this chapter aim to comprehensively characterise the in vitro effects of

commonly-prescribed antidepressants on platelets. This aim will be met by:

1. Using a wide range of antidepressant concentrations to determine and compare any

inhibitory potencies on platelet functional responses, including aggregation, dense

granule release and Ca2+ store release.

Six antidepressants were tested (Figure 6.1), including four SSRIs (citalopram; paroxetine;

sertraline; fluoxetine), a TCA (imipramine) and a SNRI (milnacipran).
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6.2 Results

6.2.1 Cell cytotoxicity

Supernatant levels of lactate dehydrogenase (LDH) were measured to test if micromolar

antidepressant concentrations induced cytotoxicity. Platelets were incubated for 10 min-

utes with either citalopram, paroxetine, sertraline, fluoxetine, imipramine or milnacipran

(2, 5, 10, 20, 50, 100 & 200 µM), before quantifying supernatant levels of LDH. Citalo-

pram, imipramine and milnacipran did not induce LDH release at any concentration

tested. However, paroxetine, sertraline and fluoxetine induced dose-dependent cytotoxic-

ity at concentrations above 50 µM (Figure 6.2). Therefore, concentrations of sertraline,

paroxetine and fluoxetine above 50 µM were not used in subsequent experiments.

6.2.2 Inhibition of platelet aggregation

Previous studies by others describe both inhibitory and potentiating effects of antide-

pressants on platelet aggregation (Chapter 6.1.1). These studies used various platelet

preparations and agonists, as well as a limited range of antidepressant concentrations.

Therefore, the effects of either citalopram, paroxetine, sertraline, fluoxetine, imipramine

or milnacipran on collagen-induced platelet aggregation were quantified using a range of

antidepressant concentrations. 1, 2, 5, 10, 20 & 50 µM were used for paroxetine, sertraline

and fluoxetine. Due to its non-cytotoxic effects (Figure 6.2), the above concentrations

were also used for imipramine, with an additional 100 µM treatment. An initial pilot

experiment determined that higher concentrations of milnacipran would be required for

inhibitory effects. As such, the milnacipran concentrations used in this experiment were

10, 20, 50, 100, 200 & 500 µM. Due to limited resources, and its previously determined

inhibitory potency (Figure 3.4, IC50 º 50 µM) the range of citalopram concentrations was

restricted to 5, 10, 20, 50, 100 & 200 µM. Platelets were pre-incubated with antidepressants

for approximately 5 minutes, before stimulation with collagen (1 µg mL°1).

Every antidepressant inhibited platelet aggregation in a concentration-dependent

manner, but with differing potencies (Figure 6.3). pIC50 values for the maximum extent

of aggregation over 6 minutes were: citalopram = 4.52 ± 0.09; paroxetine = 5.13 ± 0.11;

sertraline = 4.99 ± 0.03; fluoxetine = 5.13 ± 0.11; imipramine = 4.96 ± 0.05; milnacipran =

3.72 ± 0.09 (N = 5 blood donors). Data for citalopram obtained from these experiments

was comparable to previous results for inhibition of collagen-induced aggregation: pIC50

= 4.31 ± 0.21 (Table 3.1).
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Figure. 6.2 Lactate dehydrogenase (LDH) release from platelets into the supernatant was used
as a marker of cell cytotoxicity. Platelets were incubated for 10 minutes with either citalopram,
paroxetine, sertraline, fluoxetine, imipramine or milnacipran. Levels of supernatant LDH were
quantified by subtracting the absorbance at 680 nm from the absorbance at 490 nm. Lysed platelets
(white diamonds) were used as positive controls. Unobserved error bars (SEM) reside within data
points (N = 4 blood donors).
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Figure. 6.3 Platelet aggregation was monitored following pre-incubation for approximately 5
minutes with either citalopram, paroxetine, sertraline, fluoxetine, imipramine or milnacipran.
Platelet aggregation was induced by 1 µg mL°1 collagen, and the maximum extent of platelet
aggregation (Max. Aggregation) was recorded over 6 minutes. Concentration-response curves
were generated according to the four-parameter logistic (4PL) model, using various antidepressant
concentrations. pIC50 values were used to compare inhibitory potencies (N = 5 blood donors).
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6.2.3 Inhibition of platelet dense granule release

Dense granule release is an important feature of platelet activation, potentiating

aggregation through secondary mediators, such as ADP and 5-HT. Antidepressants may,

therefore, inhibit platelet aggregation by suppressing the release of platelet agonists from

dense granules. However, with the exception of citalopram, which dose-dependently

inhibited dense granule release at 5 and 50 µM (Tseng et al., 2010), the in vitro effects of

antidepressants on dense granule release remain largely undocumented. Collagen-induced

dense granule release was therefore quantified by measuring supernatant concentrations

of adenosine triphosphate (ATP) from samples previously processed for aggregometry

(Chapter 6.2.2). Every antidepressant inhibited ATP release into the supernatant in a

concentration-dependent manner, with varied potencies (Figure 6.4). pIC50 values were:

citalopram = 4.53 ± 0.06; paroxetine = 4.96 ± 0.12; sertraline = 5.04 ± 0.05; fluoxetine = 5.05

± 0.12; imipramine = 4.84 ± 0.09; milnacipran = 3.75 ± 0.09 (N = 5 blood donors).

6.2.4 Inhibition of platelet calcium signalling

Ca2+ is an important secondary messenger in platelet signalling during activation, and

increasing the [Ca2+]cyt mediates subsequent dense granule release and platelet

aggregation. Impaired Ca2+ signalling could, therefore, explain why antidepressants

inhibit platelet aggregation (Figure 6.3) and dense granule secretion (Figure 6.4). This

hypothesis is supported by previous results (Figure 4.3), where citalopram inhibited

cross-linked collagen-related peptide (CRPXL)-induced increases in [Ca2+]cyt. However, a

detailed account of the effects of other antidepressants on [Ca2+]cyt is lacking. Therefore,

CRPXL-induced (0.5 µg mL°1) Ca2+ store release was measured in platelets pre-treated for

approximately 5 minutes with antidepressants. A range of concentrations (5, 10, 20 & 50

µM) were used for paroxetine, sertraline and fluoxetine, with an additional 100 µM treat-

ment included for imipramine. Due to limited resources, concentrations for citalopram

(10, 20, 50, 100 & 200 µM) and milnacipran (100, 200, 500 & 1000 µM) were restricted.

Each antidepressant inhibited peak increases in [Ca2+]cyt induced by CRPXL.

Inhibition was concentration-dependent, but antidepressants inhibited responses with

differing potencies (Figure 6.5). pIC50 values were: citalopram = 4.21 ± 0.13; paroxetine

= 4.88 ± 0.08; sertraline = 5.08 ± 0.03; fluoxetine = 4.78 ± 0.06; imipramine = 4.74 ± 0.15;

milnacipran = 3.48 ± 0.17 (N = 4 blood donors). The Max parameter was constrained to

zero. Data for citalopram from these experiments was comparable to previous results for

inhibition of CRPXL-induced increases in [Ca2+]cyt: pIC50 = 4.34 ± 0.09 (Chapter 4.3).
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Figure. 6.4 Supernatant concentrations of adenosine triphosphate (ATP) were measured as a
marker of dense granule release, using high-pressure liquid chromatography (HPLC). Prior to stim-
ulation for 6 minutes with 1 µg mL°1 collagen, platelets were pre-incubated for approximately 5
minutes with either citalopram, paroxetine, sertraline, fluoxetine, imipramine or milnacipran. ATP
concentration-response curves were generated from the supernatants of platelets pre-treated with
various concentrations of each antidepressant. pIC50 values were used to compare the inhibitory
potencies (N = 5 blood donors).
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Figure. 6.5 The release of calcium (Ca2+) from intracellular stores was measured using the Ca2+

indicator, Fura-2. Platelets were pre-incubated for approximately 5 minutes with either citalopram,
paroxetine, sertraline, fluoxetine, imipramine or milnacipran. Cross-linked collagen-related pep-
tide (CRPXL, 0.5 µg mL°1) was added to increase the cytosolic concentration of Ca2+ ([Ca2+]cyt)
and the maximum [Ca2+]cyt was recorded over 3 minutes (¢[Ca2+]cyt). Various antidepressant
concentrations were used to generate concentration-response curves. Inhibitory potencies were
compared using pIC50 values (N = 4 blood donors).
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Figure. 6.6 Summary of platelet inhibition and SERT blockade by various antidepressants (A)
Summary results from the chapter, comparing pIC50 values (mean ± SEM) between antidepressants,
as well as between Max. Aggregation (Figure 6.3), adenosine triphosphate (ATP) release (Figure
6.4) and calcium release from intracellular stores (Figure 6.5). (B) Inhibitory pIC50 values for
antidepressants were compared against previously published pK i values for the binding of tritiated
5-HT ([3H] 5-HT) to SERT, which is used as a marker for 5-HT uptake (Owens et al., 1997, 2001,
Vaishnavi et al., 2004). The black, dashed line represents the fit for linear regression. (C) The line of
unity (red, dashed line) indicates where data should reside if SERT blockade and platelet inhibition
occurred at similar antidepressant concentrations.
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6.3 Discussion

6.3.1 Overview

Results in this chapter show platelet inhibition by four SSRIs (citalopram, paroxetine,

sertraline, fluoxetine), a TCA (imipramine) and a SNRI (milnacipran). Inhibition was

concentration-dependent for each antidepressant and was only achieved at micromolar

concentrations, unlike the nanomolar concentrations required to inhibit 5-HT uptake

via SERT (Owens et al., 1997, 2001, Tatsumi et al., 1997, Vaishnavi et al., 2004). Every

antidepressant tested inhibited platelet aggregation (Figure 6.3), dense granule release

(Figure 6.4) and Ca2+ store release (Figure 6.5). Following agonist stimulation, early

increases in [Ca2+]cyt derived from intracellular stores are essential for subsequent platelet

aggregation and dense granule release (Varga-Szabo et al., 2009). Therefore, the inability

for antidepressant-treated platelets to aggregate and release dense granules following

stimulation with collagen is likely due to impaired Ca2+ release from intracellular stores.

Future studies should investigate whether these antidepressants inhibit GPVI-mediated

signal transduction upstream from increases in [Ca2+]cyt, as observed with citalopram

(Chapter 5).

6.3.2 Cytotoxicity

LDH is present in the cell cytosol, and supernatant concentrations are commonly

measured as a marker for membrane permeability and cell cytotoxicity (Decker and

Lohmann-Matthes, 1988, Fotakis and Timbrell, 2006). Paroxetine, sertraline and fluoxetine

all induced LDH release at concentrations at or above 100 µM (Figure 6.2), suggesting

these concentrations are cytotoxic to platelets. The highest working concentration of

dimethyl sulfoxide (DMSO, 0.4% [v/v]) that was used as a diluent for paroxetine, sertraline

and fluoxetine does not cause LDH release (Figure 2.6). Indeed, DMSO did not induce

LDH release at concentrations up to 10% [v/v]. Therefore, the cytotoxicity observed is

unlikely to be a result of DMSO and is more likely mediated by the SSRI compound itself.

Paroxetine, sertraline and fluoxetine, but not citalopram have previously been reported to

dose-dependently induce apoptosis between 10-100 µM in T lymphocytes (Gobin et al.,

2013) (discussed further in Chapter 7.4.1). However, cell cytotoxicity and programmed cell

death through apoptosis are two distinct mechanisms in which cell viability is reduced and

should therefore not be directly compared. Lymphocyte apoptosis was also observed in

cell culture after a 24 hour incubation, unlike experiments in this chapter, where platelets
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were treated for 10 minutes under turbidimetric conditions. Determining the rate and

cause of cell cytotoxicity induced by paroxetine, fluoxetine and sertraline are worthwhile

considerations for future experiments.

6.3.3 Varied inhibitory potencies between antidepressants

One of the major limitations of previous studies was the narrow or singular range of

concentration-responses to various antidepressants. By using a comprehensive range

of antidepressant concentrations, experiments from this chapter provided inhibitory

potencies (pIC50 values) for citalopram, paroxetine, sertraline, fluoxetine, imipramine and

milnacipran, which can be used to directly compare their antiplatelet effects.

Every antidepressant inhibited platelet aggregation, dense granule release and Ca2+

release from intracellular stores, but with varied potencies (Figure 6.6). The most potent

compounds for inhibiting platelet functions were paroxetine, sertraline, fluoxetine and

imipramine, with IC50 values of approximately 5 µM. Plasma concentrations of paroxetine

following chronic administration (30 mg per day) typically range between 100-200 nM,

of which approximately 95% is bound to plasma proteins (Kaye et al., 1989). Therefore,

the concentration of free paroxetine in the plasma (5-10 nM), would be enough to block

SERT (K i = 0.34 ± 0.03 nM) (Owens et al., 2001) but would not reach the micromolar

concentrations required to inhibit platelets in the in vitro experiments presented in this

chapter. The SNRI milnacipran demonstrated the lowest inhibitory potency for platelet

functions, with effects only observed at concentrations above 50 µM. With the exception

of milnacipran, citalopram was the least potent antidepressant tested, with IC50 values

greater than 10 µM. Future experiments should investigate how the differing inhibitory

potencies between antidepressants relate to their chemical structures (Figure 6.1).

6.3.4 Comparative effects to SERT inhibition

All the antidepressants tested inhibit platelet functional responses with micromolar

potencies (Figure 6.6). However, nanomolar concentrations are required to inhibit SERT-

mediated 5-HT uptake (Cheetham et al., 1993, Owens et al., 2001, Vaishnavi et al., 2004). If

the antiplatelet effects of these antidepressants were mediated through SERT blockade,

then the inhibitory potencies for platelet functions and 5-HT uptake would be equivalent

and congregate along the line of unity (Figure 6.6C). Figure 6.6B shows the linear

correlation between blocking SERT and inhibiting platelet functional responses is minimal

(coefficient of determination (R2) = 0.60), and influenced by the low inhibitory poten-
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cies of milnacipran for both 5-HT uptake and platelet functional responses (R2 = 0.18

without milnacipran). Taken together, these results show that like citalopram, other an-

tidepressants including paroxetine, sertraline, fluoxetine, imipramine and milnacipran

inhibit platelet functions through a SERT-independent mechanism. Future experiments

should address whether such effects are mediated through common inhibitory

mechanisms of action, such as the impaired Rap1 activation and reduced GPVI signal

transduction described with citalopram in Chapters 4 and 5, respectively.

6.3.5 SERT-independent mechanisms for antidepressants

Micromolar concentrations of SSRIs, SNRIs and TCAs also bind other monoamine

transporters and cell surface receptors, which may inhibit platelet functional responses.

The micromolar concentrations of antidepressants used in these experiments also bind

and block DAT, histamine H1 receptors and 5-HT2A receptors, which have all been either

identified or suggested to be expressed on platelets (de Clerck et al., 1984, Mannaioni

et al., 1990, Frankhauser et al., 2006). The consequences of antidepressants binding these

receptors on platelets are discussed further in Chapter 7.

Take together, results from this chapter show several classes of antidepressant inhibit

platelets in vitro, including 4 SSRIs (citalopram, paroxetine, sertraline, fluoxetine), a TCA

(imipramine) and a SNRI (milnacipran). The inhibitory potencies for platelet functional

responses varied between antidepressants and appear unrelated to their inhibitory poten-

cies for SERT-dependent 5-HT uptake. As reported with citalopram in previous chapters,

inhibition was observed following pre-incubation times of approximately 5 minutes and at

micromolar concentrations, with platelet functions unaffected at concentrations known to

block SERT. These findings suggest that like citalopram, the antidepressants tested in this

chapter also inhibit platelets irrespective of 5-HT transport. Future experiments should

investigate whether this inhibition is mediated through a common shared mechanism,

such as those previously described with citalopram (Chapters 4 & 5). Determining the

reasons for varied inhibitory potencies among antidepressants and how this may relate to

their differing chemical structures is another prospective area for future research.





Chapter 7

Discussion and conclusions

7.1 Summary of results

The results presented in this thesis have characterised the in vitro inhibitory effects of

citalopram and other selective serotonin reuptake inhibitors (SSRIs) on platelets. In

Chapter 3, the effects of citalopram on various platelet functions were defined. In

particular, the differential effects of (R) and (S) isomers of racemic (RS) citalopram were

used to assess the contribution of SERT-mediated 5-HT transport to platelet activation.

Despite (S)-citalopram being the more potent inhibitor of 5-HT uptake, both (R)-citalopram

and (S)-citalopram showed similar inhibitory potencies for platelet aggregation,

thromboxane A2 (TxA2) synthesis, and adhesion. Furthermore, platelet inhibition by

(R)-citalopram and (S)-citalopram was only achieved at micromolar concentrations,

despite both isomers blocking 5-HT uptake at nanomolar concentrations. It was therefore

concluded that citalopram inhibits in vitro platelet functions through a SERT-independent

mechanism.

The aims of Chapters 4 and 5 were to investigate and identify potential SERT-

independent mechanisms of platelet inhibition by citalopram, through characterising

the effects of citalopram on two distinct intracellular signalling processes: 1) calcium

(Ca2+) signalling and 2) signalling through tyrosine phosphorylation. In Chapter 4, the

effects of citalopram on Ca2+ signalling are reported. Citalopram failed to inhibit Ca2+

release from intracellular stores induced by the TxA2 mimetic, U46619, despite blocking

subsequent Rap1 activation and platelet aggregation. Similar results were observed using

human neutrophils stimulated with platelet-activating factor (PAF), which, like U46619,

induces Ca2+ signalling and Rap1 activation via phospholipase CØ (PLCØ). Notably, Ca2+-

dependent Rap1 activation in both platelets and neutrophils is mediated by the calcium

and diacylglycerol guanine nucleotide exchange factor-1 (CalDAG-GEFI). Results from an

in vitro binding assay show that citalopram inhibits CalDAG-GEFI-mediated nucleotide

exchange of Rap1B, suggesting that citalopram binds directly to either CalDAG-GEFI or

Rap1.

In Chapter 5, the effects of citalopram on glycoprotein VI (GPVI)-mediated signal

transduction were investigated. Citalopram suppressed protein tyrosine phosphory-

lation throughout the GPVI signalling pathway, preventing downstream aggregation in
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response to the GPVI-selective agonist, cross-linked collagen-related peptide

(CRPXL). Schild analysis of the inhibition of CRPXL-induced aggregation by citalopram

was consistent with a competitive mechanism of action at concentrations up to 50 µM,

yet showed non-competitive characteristics at greater concentrations (discussed further

in Chapter 7.2.3). Although citalopram reduced the binding of anti-GPVI antibodies to

unstimulated platelets, the reversibility of the inhibition of collagen-induced platelet

aggregation by citalopram suggests that impaired antibody binding was not due to a loss

of surface receptor expression, but to a disruption of antibody binding. The observation

that citalopram instantaneously inhibits collagen-induced platelet aggregation (Figure

3.3) suggests these inhibitory effects occur at the platelet surface. Taken together, these

results are consistent with a putative mechanism where citalopram binds directly to GPVI,

thereby preventing collagen- and CRPXL-induced platelet activation. However, additional

experiments are required to test an alternative hypothesis, whereby citalopram inhibits

GPVI-mediated platelet activation by blocking initial intracellular signal transduction.

Finally, Chapter 6 demonstrated that other commonly-prescribed antidepressants also

inhibit platelets. Experiments were conducted using several antidepressants that block

SERT with nanomolar affinity, including four SSRIs (citalopram, paroxetine, sertraline,

fluoxetine), a tricyclic antidepressant (imipramine) and a serotonin and norepinephrine

reuptake inhibitor (milnacipran). Every antidepressant tested inhibited platelet aggre-

gation, dense granule release, and increases in cytosolic Ca2+ ([Ca2+]cyt), but only at

concentrations greater than 2 µM, which are beyond the nanomolar concentrations

required to block SERT. These antidepressants inhibited platelets with varied potencies,

but with little correlation to their inhibitory potencies for SERT. This suggests that, as

previously concluded with citalopram, alternative mechanisms of platelet inhibition are

responsible. Whether the modes of action of these other antidepressants are similar to the

putative inhibitory mechanisms of citalopram remains to be determined.

7.2 The in vitro effects of SSRIs on platelets

This thesis aims to investigate and determine the in vitro inhibitory effects of citalopram

and other SSRIs on platelets. Several putative mechanisms for such inhibition exist, which

are either dependent on or are distinct from blockade of SERT.

7.2.1 SERT-dependent effects of SSRIs on platelets
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5-HT store depletion from dense granules

By blocking SERT on platelets, SSRIs prevent the uptake and storage of 5-HT within

dense granules (Hergovich et al., 2000). SSRI administration over several weeks gradu-

ally depletes intraplatelet 5-HT stores, which can no longer augment platelet activation

upon dense granule release (Hergovich et al., 2000, Maurer-Spurej et al., 2004). However,

platelets treated with either citalopram, fluoxetine, or sertraline for 4 minutes in vitro still

retain 5-HT within their dense granules (Maurer-Spurej et al., 2004). The typical SSRI

incubation times for experiments in this thesis were approximately 5 minutes, and

recorded times from previous in vitro studies range from 3-20 minutes (Galan et al., 2009,

Tseng et al., 2010, 2013, Carneiro et al., 2008). Therefore, 5-HT store depletion is unlikely

to occur in experiments from this thesis and previous in vitro studies. The concentrations

of SSRIs required to inhibit various platelet functions also inhibit dense granule release

(Chapter 6.4), implying that the intraplatelet concentration of 5-HT is of little consequence

to the inhibitory effects observed in experiments from this thesis.

Serotonylation

By blocking SERT prior to platelet activation, SSRIs prevent rapid 5-HT reuptake following

dense granule release. Such uptake increases cytosolic concentrations of 5-HT ([5-HT]cyt),

which has been proposed to potentiate platelet activation through a mechanism distinct

from 5-HT receptors (Walther et al., 2003). This process, termed serotonylation, involves

the transglutaminase (TG)-mediated covalent attachment of 5-HT to GTPases, rendering

them constitutively active. Serotonylation of the GTPases RhoA and Rab4 has, for exam-

ple, been associated with augmented aggregation and alpha granule release, respectively

(Walther et al., 2003). Acute SERT blockade by SSRIs may, therefore, prevent rapid 5-HT

uptake and increases in platelet [5-HT]cyt following dense granule release, thus preventing

serotonylation-enhanced platelet activation. However, in results presented in this thesis,

SSRIs only inhibited platelet responses at concentrations beyond those required to block

SERT, suggesting that inhibition was not through preventing the rapid uptake of 5-HT.

SSRIs also inhibited dense granule release (Chapter 6.4), suggesting a lack of extracellular

5-HT available for rapid uptake. TG also requires Ca2+ to covalently bind 5-HT to proteins

(Walther et al., 2003) and CRPXL-induced increases in [Ca2+]cyt were blocked by SSRIs

(Chapter 6.5), suggesting that CRPXL-stimulation did not increase TG activity. Taken

together, these three observations suggest that any effects of citalopram or other SSRIs on

platelet function described in this thesis are unrelated to serotonylation.



120 Discussion and conclusions

7.2.2 SERT-independent effects of SSRIs on platelets

The principal aim of this thesis was to determine if the antiplatelet effects of citalopram

are mediated through inhibition of SERT. Results from Chapter 3 demonstrate that platelet

inhibition by citalopram is independent of SERT activity. Therefore, citalopram is likely to

mediate its effects through binding and modulating the activity of an alternative target.

Despite its classification as a SSRI, citalopram also binds several other transporters and

cell surface receptors, which may account for its in vitro effects.

Dopamine and norepinephrine transporters

SSRIs bind the dopamine transporter (DAT) and citalopram binds DAT with micromolar

affinity (Ki = 16.54 ± 3.80 µM) (Owens et al., 2001), suggesting that citalopram binds DAT

at concentrations used in experiments presented in this thesis. However, whether DAT

is expressed in platelets is unclear, with one study reporting its expression (Frankhauser

et al., 2006), despite a proteomic study failing to detect DAT amid approximately 4,000

different proteins (Burkhart et al., 2012). Even if DAT is expressed is platelets, citalopram

concentrations up to 100 µM have no effect on dopamine uptake into neurons (Owens

et al., 2001). Citalopram binding to DAT is therefore unlikely to be of importance to

experiments in this thesis. Citalopram also binds the norepinephrine transporter (NET, Ki

= 6.19 ± 0.82 µM), preventing norepinephrine uptake (Ki = 5.03 ± 0.13 µM) (Owens et al.,

2001). However, proteomic data suggest that NET is reportedly not expressed in platelets

(Burkhart et al., 2012). Together, these studies suggest that citalopram is unlikely to exert

its antiplatelet effects through binding either DAT or NET.

Serotonin receptors

Micromolar concentrations of citalopram bind 5-HT2A receptors (Ki º 1.7 µM) (Ley-

sen et al., 1982), preventing receptor stimulation (Hyttel, 1982, Leysen et al., 1982). In

experiments presented in this thesis, citalopram had little effect on platelet activation

at concentrations that inhibit 5-HT2A receptors (1-10 µM), and at higher concentrations

suppressed the release of 5-HT-enriched dense granules (Figure 6.4). Antagonism of

platelet 5-HT2A receptors marginally impairs platelet activation induced by sub-threshold

concentrations of collagen (Thompson et al., 1986, Lin et al., 2014), and tryptophan

hydroxylase 1-deficient mice which are devoid of peripheral 5-HT respond normally to

either collagen or U46619 (Walther et al., 2003). Collectively, these observations suggest

impaired serotonergic signalling was not the cause of platelet inhibition by citalopram.
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Histamine receptors

In addition to 5-HT, human platelets have been reported to sequester and store another

monoamine, histamine (Mannaioni et al., 1992, Masini et al., 1998), which is released

upon platelet activation (Mannaioni et al., 1990, 1993, Masini et al., 1994, 1998). Histamine

H1 receptors may also be expressed on human platelets (Mannaioni et al., 1992), and

nanomolar concentrations of SSRIs, including citalopram bind and inhibit H1 receptors

(Ki = 288 ± 20 nM) (Owens et al., 2001). Therefore, the micromolar concentrations of

citalopram used in experiments in this thesis are likely to bind and inhibit putative platelet

H1 receptors. However, if citalopram inhibits platelets through impaired histamine sig-

nalling, then effects should first be observed at the nanomolar concentrations required

to antagonise H1 receptors. The lack of dense granule release from platelets inhibited by

citalopram also suggests that even if H1 receptors are inhibited, histamine itself is not

released. It is also important to note that histamine levels in human platelets (12.2 ± 1.5

picomoles per 109 platelets) (Saxena et al., 2017) are negligible, and H1 antagonists only

inhibit platelet aggregation at concentrations at or exceeding 10 µM (Nosál et al., 2005,

Masini et al., 1994), despite binding H1 receptors at nanomolar concentrations (Janssens

et al., 2005). Therefore, the role of histamine and H1 receptors in platelet function is

poorly understood and is likely to hold little physiological relevance. Taken together, the

observations described in this section suggest the in vitro antiplatelet effects of citalopram

are unlikely to be mediated through antagonism of histamine H1 receptors.

Sigma-1 receptors

Murine neurons expressing citalopram-insensitive SERT (p.(Ile172Met)) displayed

similar (RS)-citalopram-induced migration responses to neurons expressing wild type

SERT. (RS)-citalopram also mediated its effects at 10 µM (Bonnin et al., 2012). Both of

these observations suggest a SERT-independent mechanism of action, and citalopram’s

effects were indeed attributed to the (R)-isomer, which activated intracellular sigma-1 (æ1)

receptors (Bonnin et al., 2012). In neurons, æ1 receptors respond to Ca2+ release from the

endoplasmic reticulum, prolonging Ca2+ signalling into mitochondria through inositol-

1,4,5-trisphosphate (IP3) receptors, which ensures cell survival (Hayashi and Su, 2007).

Despite proteomic analysis identifying æ1 receptors in platelets (Burkhart et al., 2012),

the role of æ1 receptors in platelet function has not been investigated. Both citalopram

(Ki = 292 nM) and fluvoxamine (Ki = 36 nM) bind æ1 receptors with nanomolar affinity

and act as receptor agonists (Narita et al., 1996, Yagasaki et al., 2006, Ishikawa et al., 2007).

However, platelet inhibition by SSRIs described in experiments presented in this thesis
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was only observed at micromolar concentrations and is therefore unlikely to be due to the

stimulation of æ1 receptors.

In summary, the concentrations of citalopram and other SSRIs used in this project

not only block SERT, but are also known to antagonise platelet 5-HT2A and histamine

H1 receptors, and act as æ1 receptor agonists. Platelet inhibition was, however, only

observed beyond the nanomolar concentrations required to modulate the activity of these

receptors. Therefore, the SERT-independent mechanisms of SSRIs demonstrated in this

thesis are unlikely to be due to their effects on signal transduction through 5-HT2A,

histamine H1, or æ1 receptors. Given this conclusion and the unlikely relevance of

serotonylation, the putative inhibitory mechanisms of suppressed Rap1 activation

(Chapter 4) and competitive antagonism of GPVI (Chapter 5) provide a more plausible

explanation for the antiplatelet effects of citalopram.

7.2.3 Putative concentration-dependent mechanisms of inhibition

In this thesis, I propose two novel and putative mechanisms of platelet inhibition by

citalopram: 1) inhibition of CalDAG-GEFI-mediated Rap1 activation; and 2) competitive

antagonism of the GPVI receptor. The concentration-dependent transition of citalopram

from a competitive to a non-competitive pattern of inhibition (Figure 5.2) is consistent

with these two inhibitory mechanisms exerting their effects at differing concentrations,

and may also underlie the apparent differing potencies of citalopram against U46619-

and collagen-induced platelet aggregation (Figure 3.4). Citalopram concentrations at

or below 50 µM may inhibit platelets by binding to GPVI and competing with collagen

or CRPXL, thereby impairing downstream protein phosphorylation, Ca2+ release from

intracellular stores and functional responses (Figure 7.1). However, at concentrations

above 50 µM, citalopram may exert additional inhibitory effects through preventing

CalDAG-GEFI-mediated Rap1 activation, which is essential to platelet aggregation by GPVI

agonists (Crittenden et al., 2004, Stefanini et al., 2015, Piatt et al., 2016). This inhibition

would not be competitively overcome by increased concentrations of agonist and would

therefore appear non-competitive. The observation that citalopram did not alter [Ca2+]cyt

increases in platelets stimulated with the TxA2 mimetic U46619 (Figure 4.3), and that

U46619-induced platelet aggregation was only inhibited by citalopram concentrations

at or exceeding 50 µM (Figure 3.4) is consistent with this mechanistic model of dual

inhibition. Citalopram may, therefore, solely inhibit U46619-induced platelet activation

through impaired Rap1 activation, which only occurs at citalopram concentrations at or

exceeding 50 µM.
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Future experiments could test if increasing the concentration of CRPXL above the

fixed concentration used in this study (0.5 µg mL°1) counteracts the inhibitory effects of

citalopram on Ca2+ release from intracellular stores. If citalopram is a competitive GPVI

antagonist, then platelets treated with high concentrations of both CRPXL and citalopram

should demonstrate Ca2+ store release. However, these platelets would also be expected

to show impaired Rap1 activation and aggregation, due to citalopram’s additional effects

on either CalDAG-GEFI or Rap1 at high concentrations. Measuring Rap1 activation in

U46619-stimulated platelets pre-treated with a range of citalopram concentrations could

also establish the lowest concentration required to initiate this inhibitory mechanism of

action, which should be approximately 50 µM.
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Figure. 7.1 Experiments presented in this thesis have identified two putative mechanisms for
platelet inhibition by citalopram. (A) Citalopram suppressed early protein phosphorylation
within the GPVI pathway, resulting in the inhibition of subsequent functional responses, such as
calcium (Ca2+) release from intracellular stores and platelet aggregation. Citalopram also impaired
antibody binding, which was more likely due to a disruption of antibody binding than a loss of
surface receptor expression. These observations suggest that citalopram binds GPVI and acts as a
competitive antagonist to GPVI ligands. (B) In contrast, citalopram did not affect U46619-induced
Ca2+ store release, despite blocking subsequent Rap1 activation. A valid target for this inhibitory
mechanism is direct binding to the Ca2+-dependent calcium and diacylglycerol guanine nucleotide
exchange factor-1 (CalDAG-GEFI). This second mechanism appears to be less sensitive to the
inhibitory effects of citalopram, as higher concentrations are required to inhibit U46619-induced
aggregation compared to platelets stimulated with GPVI agonists. Receptor agonists are stated
within brackets. Grey dashed lines indicate intermediate steps.
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7.3 The potential use of SSRIs as antiplatelet medications

7.3.1 Clinical relevance of SSRIs

Repeated daily oral doses of 30-60 mg citalopram gives a steady-state plasma

concentration of 120-600 nM, of which approximately 50-80% is bound to plasma

proteins (Milne and Goa, 1991, Parker and Brown, 2000). The micromolar concentra-

tions of citalopram required to inhibit platelets in experiments in this thesis are therefore

far higher than clinically achievable doses. This suggests that the reported effects of SSRIs

on haemostasis, which include increased risk of bleeding, are more likely through pro-

longed SERT blockade and the consequential disruption of 5-HT homeostasis, as opposed

to the putative SERT-independent mechanisms identified in this thesis.

Increasing citalopram dosage in patients may provide the additional antiplatelet effects

presented in this thesis. However, albeit rare, citalopram overdoses 30-100 times the

recommended maximum dose of 60 mg a day have been associated with convulsions and

tachycardia (Barbey and Roose, 1998). Citalopram overdose in combination with other

sedative drugs or ethanol has also resulted in several fatalities (Barbey and Roose, 1998).

In one fatal case, where citalopram was taken in isolation, blood concentrations were

approximately 75-fold higher than therapeutic levels (Barbey and Roose, 1998), which

equates to just under 50 µM. This concentration is similar to pIC50 values of citalopram

reported in this thesis (Table 3.1). Therefore, the micromolar concentrations of citalopram

required to inhibit platelets in vitro are unlikely to be tested in human subjects.

An alternative antiplatelet approach to increasing citalopram dosage would be to

identify similar compounds with greater inhibitory potencies. For example, paroxetine,

sertraline and fluoxetine all inhibit platelet functions with approximately 4-fold greater

potency than citalopram (Figure 6.6). Whether paroxetine, sertraline and fluoxetine

all inhibit platelet function through the same putative mechanisms as citalopram is an

important question that should be addressed in future studies. The differing antiplatelet

potencies for SSRIs described in this thesis should also encourage the screening of

structurally similar compounds (Topiol et al., 2017). Such a screen could be based on a

compound’s ability to inhibit platelets as opposed to blocking SERT, which could lead to

the identification of novel and potent antiplatelet agents.

Long-term administration of SSRIs at clinically relevant concentrations inhibits platelet

SERT, depletes intra-platelet 5-HT stores and impairs agonist-induced platelet

aggregation (Hergovich et al., 2000). SERT inhibition could, therefore, provide a novel
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form of antiplatelet therapy. However, one of the major limitations of SSRIs as potential

antiplatelet agents is their ability to cross the blood-brain barrier and inhibit 5-HT reup-

take by pre-synaptic neurons within the central nervous system (CNS). The addition of a

positively charged methyl group to a nitrogen atom on citalopram (N-methyl-citalopram)

prevents transport across the BBB, while maintaining inhibitory potency for 5-HT uptake

into platelets (Bismuth-Evenzal et al., 2010). The in vitro and in vivo antiplatelet effects

of N-methyl-citalopram have yet to be tested, but could provide a novel approach to in-

hibit either peripheral SERT, or at micromolar concentrations SERT-independent platelet

activation, without disrupting serotonergic signalling within the CNS. However, as with

citalopram, N-methyl-citalopram is also likely to block peripheral SERT within the gut,

which may disrupt serotonergic signalling of the enteric nervous system.

Despite minimal platelet inhibition following therapeutic SSRI dosage, SERT-inhibiting

compounds such as citalopram may act synergistically with conventional antiplatelet

drugs, such as low-dose aspirin and clopidogrel. Such effects may also apply for the in

vitro models tested in this thesis and should be explored in further studies.

7.3.2 CalDAG-GEFI as an antithrombotic target

Results presented in Chapter 4 suggest that micromolar concentrations of citalopram

prevent Rap1 activation, most likely through direct inhibition of CalDAG-GEFI or binding

to and inhibiting Rap1. Murine platelets lacking CalDAG-GEFI show preserved haemosta-

sis and are resistant to collagen-induced thrombosis, despite demonstrating prolonged

tail bleeding times (Crittenden et al., 2004). Albeit rare, human loss-of-function CalDAG-

GEFI mutations have been described in approximately 14 pedigrees (Canault et al., 2014,

Kato et al., 2016, Lozano et al., 2016, Bermejo et al., 2017, Sevivas et al., 2017, Westbury

et al., 2017). These patients display a non-syndromic recessive platelet function disorder,

where the presence of a single normal allele is sufficient to prevent bleeding. Similar

observations have been made in mice expressing approximately 10% of normal CalDAG-

GEFI levels, which were protected from arterial thrombosis, with minimal impact on

haemostasis (Piatt et al., 2016). Unlike for example cyclooxygenases, which are the target

of aspirin, CalDAG-GEFI expression is limited to the haematopoietic lineage and a sub-

population of neurons within the basal ganglia (Kawasaki et al., 1998, Crittenden et al.,

2004). Compounds that inhibit CalDAG-GEFI may, therefore, inhibit platelet function

and have fewer off-target effects on other cell types. However, CalDAG-GEFI inhibitors

are also likely to impair neutrophil function, as demonstrated by CalDAG-GEFI knockout

mice, which represent a model for leukocyte adhesion deficiency type III (Bergmeier et al.,
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2007). Nonetheless, the findings described in this section collectively suggest that partial

inhibition of CalDAG-GEFI could provide a novel approach to antiplatelet therapy.

Despite suggestions that CalDAG-GEFI is a clinically-relevant antiplatelet target

(Crittenden et al., 2004, Stefanini and Bergmeier, 2010), clear and viable inhibitors have

yet to be identified. Phenylarsine oxide (PAO) reportedly inhibits platelet aggregation

through putative binding to CalDAG-GEFI (Kuo et al., 2014). However, PAO is a highly

toxic thiol-reactive agent, which binds cysteine residues and effects numerous cellular

processes. For example, the concentrations of PAO reported to inhibit platelets (∏2 µM)

also inhibit protein-tyrosine phosphatases, induce apoptosis and cause cell cytotoxicity

(Garcia-Morales et al., 1990, Huang et al., 2017). In contrast, SSRIs retain a good safety

profile (Kushboo and Sharma, 2017), are clinically prescribed and could potentially be

restricted to peripheral circulation (Bismuth-Evenzal et al., 2010). However, further studies

are required to test whether citalopram and other SSRIs directly inhibit CalDAG-GEFI, and

indeed to what extent haemostasis is disrupted following pharmacological inhibition of

CalDAG-GEFI .

7.3.3 GPVI as an antithrombotic target

Results presented in Chapter 5 demonstrate a second putative mechanism of platelet

inhibition by citalopram, through preventing GPVI-mediated activation. Citalopram

suppressed GPVI-mediated signal transduction (Figure 5.3) and prevented the binding of

GPVI antibodies (Figure 5.4). Citalopram also rapidly inhibited collagen-induced platelet

aggregation (Figure 3.3), which was recovered by washing citalopram from the supernatant

(Figure 5.5). These findings collectively suggest that citalopram may directly bind the GPVI

receptor, competitively reduce agonist binding and thereby inhibit platelet activation.

GPVI is only expressed in megakaryocytes and platelets (Phillips and Agin, 1977b,

Jandrot-Perrus et al., 2000, Lagrue-Lak-Hal et al., 2001), implying that its inhibition

could provide a selective approach to antithrombotic therapy. GPVI-deficient patients

occasionally present a mild bleeding phenotype, suggesting a small but non-essential

role for GPVI in haemostasis (Moroi et al., 1989, Arai et al., 1995, Dumont et al., 2009). In

mice, pharmacological depletion of GPVI moderately increases bleeding, but completely

protects against collagen-induced thromboembolism (Nieswandt et al., 2001). These

studies and others have encouraged the ongoing development of GPVI inhibitors, some of

which are discussed below.

Current approaches to blocking GPVI-mediated platelet activation can be split into

three categories: 1) suppressing intracellular signalling downstream of GPVI, 2) occupying
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GPVI-binding sites on collagen, and 3) directly binding GPVI, which either depletes the

receptor or prevents agonist stimulation. Small molecule inhibitors targeting GPVI signal

transduction are currently under investigation. BI1002494, for example, is an orally

administered spleen tyrosine kinase (Syk) inhibitor, which protects mice from arterial

thrombosis and ischaemic stroke (van Eeuwijk et al., 2016). However, the diverse role

of kinases in most cell types remains the major limitation of such compounds. Syk, for

instance, is important not only for immune receptor signalling in platelets, but also in

lymphocytes and natural killer cells (Turner et al., 2000). The recombinant dimeric GPVI

fusion protein Revacept binds collagen and outcompetes GPVI, which reduces collagen-

induced aggregation while preserving haemostasis (Ungerer et al., 2011). A phase II clinical

trial investigating the effects of Revacept on patients undergoing elective percutaneous

coronary interventions is currently ongoing (European Union Clinical Trials Directive,

2017). The varying amounts of collagen exposed during atherosclerosis will, however,

complicate a suitable dosage strategy. Antibodies that bind GPVI, including OM4 Fab (Li

et al., 2007) and ACT017 (Lebozec et al., 2017) demonstrate high affinity, antithrombotic

efficacy, and have little or no impact on bleeding. However, intravenous administration

and immune recognition are common limitations of antibody therapy.

Small molecule inhibitors could provide an alternative approach to blocking GPVI-

mediated platelet activation. Such compounds could be orally administered, without

initiating immune responses. In silico docking models suggest losartan, an angiotensin

II receptor type 1 antagonist, may interact with the collagen-binding domain (CBD) of

GPVI (Taylor et al., 2014). However, despite inhibiting both CRPXL- and collagen-induced

aggregation (IC50 º 1-2 µM), losartan also inhibited U46619-induced aggregation (IC50 º
20 µM) (Taylor et al., 2014), suggesting that like citalopram, GPVI-independent

mechanisms must impair platelet activation through other receptors. The micromolar

concentrations of losartan required to inhibit platelets in vitro are an order of magnitude

higher than clinically achievable concentrations of approximately 120 nM (Yeung et al.,

2000). Citalopram also inhibited GPVI-mediated platelet activation at micromolar concen-

trations (Chapter 5), and suppressed U46619-induced aggregation (Figure 3.4), making it

a similarly undesirable candidate for selective GPVI inhibition. A direct comparison of

citalopram-mediated platelet inhibition in the presence or absence of losartan could fur-

ther address citalopram’s putative mechanism of GPVI inhibition. Further studies should

determine whether citalopram directly binds GPVI and if other SSRIs, such as those

described in Chapter 6, show greater inhibitory potency.
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7.4 SSRIs beyond haemostasis and thrombosis

A role for platelets has been proposed in numerous physiological and pathological

processes other than haemostasis and thrombosis (Smyth et al., 2009, Gay and Felding-

Habermann, 2011). Therefore, the antiplatelet effects of SSRIs may indirectly disrupt the

function of other cell types that communicate with platelets, particularly cells that line

the vasculature or mediate immune responses. SSRIs have also been reported to directly

modulate functions of leukocytes and cancerous cell lines (Gobin et al., 2014), through

either inhibition of SERT or via putative SERT-independent mechanisms.

7.4.1 SSRIs and the immune system

Innate immunity - neutrophils

The storage and release of 5-HT plays an important role in the innate immune system.

During platelet activation, 5-HT released from dense granules upregulates von Willebrand

factor (vWF) secretion from vascular endothelial cells, promoting neutrophil recruitment

and adhesion to sites of inflammation (Palmer et al., 1994, Duerschmied et al., 2013).

Blocking platelet SERT with fluoxetine depleted platelet 5-HT stores and reduced serum

5-HT concentrations, inhibiting leukocyte rolling and adhesion upon lipopolysaccharide

(LPS) stimulation (Duerschmied et al., 2013). In contrast, acute fluoxetine treatment for

two hours increased plasma 5-HT concentrations and LPS-induced leukocyte rolling (Herr

et al., 2014).

Comparatively few studies have investigated the in vitro effects of SSRIs on

neutrophil function. Fluoxetine treatment for 30 minutes at 10 µM inhibited PAF- and N-

formylmethionyl-leucyl-phenylalanine-induced superoxide generation, and micromolar

concentrations of fluoxetine also reduced cell viability (LD50 = 14 µM) (Strümper et al.,

2003). In experiments in this thesis however, citalopram treatment for approximately 5

minutes at micromolar concentrations did not cause cell cytotoxicity (Figure 4.10) and

suppressed neutrophil Rap1 activation, despite preserved increases in [Ca2+]cyt (Figures

4.5 & 4.7). Downstream effects of Rap1 activation including the transition of integrinÆMØ2

to a high-affinity binding state and neutrophil adherence to the ÆMØ2 ligand, fibrinogen,

were also inhibited by citalopram (Figures 4.8 & 4.9). Unlike platelets, neutrophils do

not express SERT (Tomazella et al., 2009). Therefore, these results reveal a direct and

SERT-independent effect of citalopram on neutrophil function.
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Adaptive immunity – lymphocytes

In addition to neutrophils, 5-HT and SSRIs have been reported to modulate cells of

the adaptive immune system. Lymphocytes express SERT (Barkan et al., 2004). However,

lymphocyte SERT function is thought to be minimal, with 5-HT uptake from the

circulation predominantly mediated by platelets (Beikmann et al., 2013). Lymphocytes do,

however, respond to 5-HT. For example, 5-HT stimulates lymphocyte 5-HT1A receptors

thereby increasing cell proliferation (Iken et al., 1995). Therefore, as with neutrophils,

blocking platelet SERT may disrupt lymphocyte function through modulating plasma

5-HT levels.

Several studies report that SSRI concentrations beyond those required for SERT

blockade directly inhibit lymphocyte functional responses to various agonists.

Micromolar concentrations of citalopram, fluoxetine, paroxetine, fluvoxamine and

sertraline reduced the proliferation of lymphocytes stimulated with anti-CD3/CD28 beads

in a concentration-dependent manner (Gobin et al., 2013). Of note, paroxetine, fluoxetine

and sertraline inhibited proliferation at concentrations below 10 µM, unlike citalopram,

which only exhibited effects at 50 µM (Gobin et al., 2013). These differing inhibitory

potencies are comparable to the antiplatelet effects observed in results presented in

this thesis (Figure 6.6), suggesting a similar mechanism of action for both platelets and

lymphocytes. Micromolar concentrations of paroxetine and sertraline also induced dose-

dependent lymphocyte apoptosis and decreased cell viability (Taler et al., 2007, Gobin

et al., 2013). Paroxetine and fluvoxamine concentrations above 10 µM arrested prolifera-

tion and induced apoptosis in both lymphoid and non-lymphoid cell lines, irrespective of

SERT expression (Schuster et al., 2007). Acetylated paroxetine and fluvoxamine also failed

to bind lymphocyte SERT, yet retained their antiproliferative and pro-apoptotic effects.

These two observations lead the authors to suggest that both paroxetine and fluvoxamine

modulate lymphocyte function through an unidentified, SERT-independent mechanism

of action (Schuster et al., 2007).

Micromolar concentrations of SSRIs also inhibit lymphocyte cytokine secretions.

Paroxetine and sertraline at or above 10 µM reduced tumour necrosis factor alpha

(TNFÆ) secretion from CD3-activated T lymphocytes (Taler et al., 2007). Incubating

T lymphocytes with citalopram (20 µM) also decreased LPS-induced secretion of

interleukin (IL)-1Ø, IL-2, IL-6, TNFÆ, and interferon gamma (IFN∞) (Xia et al., 1996).

Platelets store many of these pro-inflammatory cytokines within alpha granules, which

are released upon their activation (Battinelli et al., 2014). The observation that

citalopram (50 µM) inhibits collagen-induced alpha granule release in vitro (Tseng et al.,
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2010) suggests that micromolar concentrations of SSRIs impair the secretion of inflamma-

tory mediators from both platelets and lymphocytes.

The mechanism by which micromolar concentrations of SSRIs reduce lymphocyte

proliferation, induce apoptosis, and inhibit cytokine release is currently unknown. Both

fluoxetine (20 µM) and citalopram (20 µM) elevate cyclic adenosine monophosphate

(cAMP) levels in stimulated T cells (Xia et al., 1996, Edgar et al., 1999). cAMP-mediated

protein kinase A (PKA) activity is a key negative regulator of T cell activation (Tamir et al.,

1996), and its upregulation by SSRIs is therefore a potential mechanism of inhibition.

Increased cAMP production and PKA signalling are also important negative regulators in

platelets, which could account for the inhibitory effects of SSRIs presented in the results

of this thesis and of other in vitro studies. However, Tseng et al. (2013) did not observe any

change in platelet cAMP levels following citalopram treatment (25, 50 µM), suggesting the

effects of citalopram may vary dependent on cell type.

Taken together, SSRIs inhibit the in vitro functions of both neutrophils and lym-

phocytes at micromolar concentrations, which are comparable to the concentrations

that inhibit platelets in the results presented in this thesis. These micromolar SSRI

concentrations, alongside the lack of SERT expression on neutrophils and its minimal role

in lymphocytes suggest that as with platelets, SSRIs are able to modulate immune cell

functions through SERT-independent mechanisms.

7.4.2 SSRIs and cancer

Several conventional antithrombotic agents have been associated with impaired

cancer growth and metastasis. For example, both unfractionated heparin (UFH) and

low-molecular-weight heparin (LMWH) prevent the cancer cell-induced release of pro-

angiogenic proteins from platelet alpha granules, which inhibits in vitro models of

angiogenesis (Battinelli et al., 2014). UFH and LMWH are prescribed as anticoagulants

for their ability to accelerate the activity of antithrombin III, which inactivates both

thrombin and factor Xa (Griffith, 1982). The authors suggest this conventional mechanism

of action prevented the generation and activation of thrombin derived from either platelets

or cancer cells, which impaired subsequent platelet activation by protease activated

receptors, inhibiting alpha granule release and angiogenesis (Battinelli et al., 2014). More

recently, inhibition of platelet P2Y12 receptors with ticagrelor decreased cancer cell

proliferation and increased apoptosis, as well as reducing the growth of murine

ovarian tumours (Cho et al., 2017).
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Collectively, these studies suggest that other compounds that inhibit platelets may, in

doing so, also reduce the risk of cancer growth and metastasis. Despite numerous studies

investigating the putative antiplatelet effects of SSRIs (Chapter 1.2.4), no studies have

explored whether platelet inhibition by SSRIs in turn influences cancer development. SSRI

treatment has previously been associated with a reduced risk of colorectal cancer (Xu

et al., 2006, Coogan et al., 2009). However, the mechanisms underlying such effects are

unknown and may not be a consequence of platelet inhibition.

Previous studies in both animal models and cancer cell lines have associated SSRI

treatment with anticancer effects. Rats treated with fluoxetine for six weeks were less likely

to develop colon cancer and displayed reduced epithelial proliferation and angiogenesis

(Kannen et al., 2011). However, the effects of fluoxetine on tumorigenesis are controver-

sial, with aged (19-23 month) mice treated with fluoxetine for two weeks more prone to

experimental metastasis (Kubera et al., 2009). The prolonged exposure of fluoxetine at

nanomolar concentrations described in these studies should not be directly compared to

the in vitro antiplatelet effects of SSRIs presented in this thesis, which occur rapidly and at

micromolar concentrations.

As with lymphocytes, SSRIs also modulate apoptosis and proliferation in several cancer

cell lines at micromolar concentrations, suggesting a SERT-independent mechanism

of action. For example, micromolar concentrations of sertraline and paroxetine dose-

dependently inhibit proliferation and increase apoptosis in both malignant Jurkat T-

cells (Amit et al., 2009) and two colorectal cell lines (HT29 and LS1034) (Gil Ad et al.,

2008). Fluoxetine, paroxetine and citalopram also activate caspases and increase surface

phosphatidylserine (PS) expression in Burkitt lymphoma cells (Serafeim et al., 2003),

suggesting upregulated apoptosis. Despite SERT expression on Burkitt lymphoma cells,

apoptotic effects were only observed at concentrations ranging from 1-100 µM, leading

the authors to suggest inhibition was independent of SERT. Contrary to results presented

in this thesis, fluoxetine, paroxetine, and citalopram increased [Ca2+]cyt (Serafeim et al.,

2003). These studies collectively support conclusions from Chapter 7.4.1, that SSRIs

mediate various SERT-independent effects in vitro, which may vary depending on the cell

type, the length of SSRI exposure, and the SSRI itself.

7.4.3 Potential effects of SSRIs along the platelet lineage

Platelets are derived from megakaryocytes (MKs), which predominantly reside within the

bone marrow. Therefore, it is noteworthy that MKs also express 5-HT2A receptors, whose

stimulation is associated with anti-apoptotic and pro-mitogenic effects (Yang et al., 1996,
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2007). MKs also express functional SERT, which is blocked in vitro by citalopram (Tytgat

et al., 2002, Giannaccini et al., 2010). However, despite reported cases of escitalopram-

mediated thrombocytopenia (Song et al., 2012), the effects of either prolonged or short-

term SERT blockade on MK function are undocumented. The physiological relevance

of SERT expression within the bone marrow is also unknown, as the vast majority of

platelet 5-HT is derived from enterochromaffin cell secretions into the blood, which are

transported into circulating platelets (Gershon and Tack, 2007, Mawe and Hoffman, 2013).

This poses the question of whether MKs express SERT solely to package into platelets, or if

the transporter mediates a distinct and undefined role in MK function.

Both platelets and MKs express CalDAG-GEFI, which upregulates Rap1-mediated

integrin ÆIIbØ3 activation (Eto et al., 2002, Crittenden et al., 2004). Activated ÆIIbØ3 in

mature MKs binds fibrinogen, which is associated with increased platelet production (Lar-

son and Watson, 2006). In platelets, micromolar concentrations of citalopram inhibited

both CalDAG-GEFI-mediated Rap1 activation (Figures 4.6, 4.7 & 4.11) and integrin ÆIIbØ3

activation (Tseng et al., 2010). Similar SERT-independent effects might also be observed

in MKs treated with citalopram, which could impair platelet production. Therefore, inves-

tigating the effects of citalopram on MKs should be considered for future investigation.

7.5 Conclusions and future directions

Understanding the inhibitory mechanisms of citalopram and other SSRIs on platelets may

lead to either the discovery of similar compounds with greater antiplatelet potency, or the

use of SSRIs as in vitro tools to investigate the mechanisms governing platelet activation.

Results presented in this thesis provide compelling evidence that inhibition of platelet

SERT by citalopram is not responsible for its functional inhibition of platelets. In addition,

two putative mechanisms for SERT-independent platelet inhibition by citalopram have

been proposed: 1) prevention of CalDAG-GEFI-dependent Rap1 activation and 2) com-

petitive inhibition of the GPVI receptor. Both CalDAG-GEFI and GPVI are currently under

investigation as novel targets to prevent thrombosis, and results from this thesis may

contribute towards the identification and development of drugs that inhibit either of these

proteins. Future studies should investigate if other SSRIs that inhibit platelets utilise the

same putative inhibitory mechanisms as citalopram. Investigating the structure-activity

relationships underlying platelet inhibition by different SSRIs is also recommended, and

could lead to the targeted identification and development of novel antiplatelet agents.





References

Abbracchio, M. P. and Burnstock, G. (1994). Purinoceptors: Are there families of P2X and
P2Y purinoceptors? Pharmacology and Therapeutics, 64(3):445–475.

Adams, J. W., Ramirez, J., Ortuno, D., Shi, Y., Thomsen, W., Richman, J. G., Morgan, M.,
Dosa, P., Teegarden, B. R., Al-Shamma, H., Behan, D. P., and Connolly, D. T. (2008).
Anti-thrombotic and vascular effects of AR246686, a novel 5-HT2A receptor antagonist.
European Journal of Pharmacology, 586:234–243.

Akers, W. S., Oh, J. J., Oestreich, J. H., Ferraris, S., Wethington, M., and Steinhubl, S. R.
(2010). Pharmacokinetics and pharmacodynamics of a bolus and infusion of can-
grelor: a direct, parenteral P2Y12 receptor antagonist. Journal of Clinical Pharmacology,
50(1):27–35.

Alvarez, J. C., Gluck, N., Fallet, A., Grégoire, A., Chevalier, J. F., Advenier, C., and Spreux-
Varoquaux, O. (1999). Plasma serotonin level after 1 day of fluoxetine treatment: a
biological predictor for antidepressant response? Psychopharmacology, 143(1):97–101.

Ambrosio, A. L., Boyle, J. A., and Di Pietro, S. M. (2015). TPC2 mediates new mechanisms
of platelet dense granule membrane dynamics through regulation of Ca2+ release.
Molecular Biology of the Cell, 26(18):3263–3274.

Amit, B. H., Gil-Ad, I., Taler, M., Bar, M., Zolokov, A., and Weizman, A. (2009). Proapop-
totic and chemosensitizing effects of selective serotonin reuptake inhibitors on T cell
lymphoma/leukemia (Jurkat) in vitro. European Neuropsychopharmacology, 19(10):726–
734.

Anderson, I. M. (1998). SSRIs versus tricyclic antidepressants in depressed inpatients: a
meta-analysis of efficacy and tolerability. Depression and Anxiety, 7(1):11–17.

Andrews, R. K., Karunakaran, D., Gardiner, E. E., and Berndt, M. C. (2007). Platelet
receptor proteolysis: a mechanism for downregulating platelet reactivity. Thrombosis
and Vascular Biology, 27(7):1511–1520.

Andrews, R. K., Suzuki-inoue, K., Shen, Y., Tulasne, D., Watson, S. P., and Berndt, M. C.
(2002). Interaction of calmodulin with the cytoplasmic domain of platelet glycoprotein
VI. Blood, 99(11):4219–4221.

Antithrombotic Trialists Collaboration (2002). Collaborative meta-analysis of randomised
trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke
in high risk patients. British Medical Journal, 324:71–86.

Arai, M., Yamamoto, N., Moroi, M., Akamatsu, N., Fukutake, K., and Tanoue, K. (1995).
Platelets with 10% of the normal amount of glycoprotein VI have an impaired response
to collagen that results in a mild bleeding tendency. British Journal of Haematology,
89(1):124–130.

Aslan, J. E., Itakura, A., Gertz, J. M., and McCarty, O. J. T. (2012). Platelet shape change and
spreading. In Gibbins, J. M. and Mahaut-Smith, M. P., editors, Platelets and megakary-
ocytes. Methods in molecular biology (methods and protocols), pages 91–100. Springer,
New York, NY.



136 References

Asselin, J., Gibbins, J. M., Achison, M., Lee, Y. H., Morton, L. F., Farndale, R. W., Barnes, M. J.,
and Watson, S. P. (1997). A collagen-like peptide stimulates tyrosine phosphorylation
of syk and phospholipase C∞2 in platelets independent of the integrin Æ2Ø1. Blood,
89(4):1235–1242.

Asselin, J., Knight, C. G., Farndale, R. W., Barnes, M. J., and Watson, S. P. (1999). Monomeric
(glycine-proline-hydoxyproline)10 repeat sequence is a partial agonist of the platelet
collagen receptor glycoprotein VI. Biochemical Journal, 339:413–418.

Aszódi, A., Pfeifer, A., Ahmad, M., Glauner, M., Zhou, X. H., Ny, L., Andersson, K. E., Kehrel,
B., Offermanns, S., and Fässler, R. (1999). The vasodilator-stimulated phosphoprotein
(VASP) is involved in cGMP- and cAMP-mediated inhibition of agonist-induced platelet
aggregation, but is dispensable for smooth muscle function. EMBO Journal, 18(1):37–48.

Atar, D., Malinin, A., Pokov, A., van Zyl, L., Frasure-Smith, N., Lesperance, F., and Serebru-
any, V. L. (2007). Antiplatelet properties of escitalopram in patients with the metabolic
syndrome: a dose-ranging in vitro study. Neuropsychopharmacology, 32(11):2369–2374.

Bampalis, V. G., Khandoga, A. L., and Siess, W. (2010). Fluoxetine inhibition of 5-
HT-potentiated platelet aggregation in whole blood. Thrombosis and Haemostasis,
104(6):1272–1274.

Barbey, J. T. and Roose, S. P. (1998). SSRI safety in overdose. Journal of Clinical Psychiatry,
59:42–48.

Barkan, T., Gurwitz, D., Levy, G., Weizman, A., and Rehavi, M. (2004). Biochemical and
pharmacological characterization of the serotonin transporter in human peripheral
blood lymphocytes. European Neuropsychopharmacology, 14(3):237–243.

Barrett, J. S., Murphy, G., Peerlinck, K., De Lepeleire, I., Gould, R. J., Panebianco, D.,
Hand, E., Deckmyn, H., Vermylen, J., and Arnout, J. (1994). Pharmacokinetics and
pharmacodynamics of MK-383, a selective non-peptide platelet glycoprotein-IIb/IIIa
receptor antagonist, in healthy men. Clinical Pharmacology and Therapeutics, 56:377–
388.

Barter, R. and Everson Pearse, A. G. (1955). Mammalian enterochromaffin cells as the
source of serotonin (5-hydroxytryptamine). The Journal of Pathology, 69(1):25–31.

Battinelli, E. M., Markens, B. A., Kulenthirarajan, R. A., Machlus, K. R., Flaumenhaft, R.,
and Italiano, J. E. (2014). Anticoagulation inhibits tumor cell mediated release of platelet
angiogenic proteins and diminishes platelet angiogenic response. Blood, 123(1):101–
113.

Beikmann, B. S., Tomlinson, I. D., Rosenthal, S. J., and Andrews, A. M. (2013). Serotonin
uptake is largely mediated by platelets versus lymphocytes in peripheral blood cells.
ACS Chemical Neuroscience, 4(1):161–170.

Bellavite, P., Andrioli, G., Guzzo, P., Arigliano, P., Chirumbolo, S., Manzato, F., and San-
tonastaso, C. (1994). A colorimetric method for the measurement of platelet adhesion
in microtiter plates. Analytical Chemistry, 216:444–450.



References 137

Benkelfat, C., Ellenbogen, M. A., Dean, P., Palmour, R. M., and Young, S. N. (1994). Mood-
lowering effect of tryptophan depletion. Archives of General Psychiatry, 51:687–697.

Bergmeier, W., Goerge, T., Wang, H. W., Crittenden, J. R., Baldwin, A. C. W., Cifuni, S. M.,
Housman, D. E., Graybiel, A. M., and Wagner, D. D. (2007). Mice lacking the signaling
molecule CalDAG-GEFI represent a model for leukocyte adhesion deficiency type III.
The Journal of Clinical Investigation, 117(6):1699–1707.

Bergmeier, W. and Stefanini, L. (2009). Novel molecules in calcium signaling in platelets.
Journal of Thrombosis and Haemostasis, 7:187–190.

Berlanga, O., James, J. R., Frampton, J., Davis, S. J., and Tomlinson, M. G. (2007). Gly-
coprotein VI oligomerization in cell lines and platelets. Journal of Thrombosis and
Haemostasis, 5:1026–1033.

Berlanga, O., Tulasne, D., Bori, T., Snell, D. C., Miura, Y., Jung, S. M., Moroi, M., Frampton,
J., and Watson, S. P. (2002). The Fc receptor ∞-chain is necessary and sufficient to
initiate signalling through glycoprotein VI in transfected cells by the snake C-type lectin,
convulxin. European Journal of Biochemistry, 269:2951–2960.

Berman, C. L., Yeo, E. L., Wencel-Drake, J. D., Furie, B. C., Ginsberg, M. H., and Furie, B.
(1986). A platelet alpha granule membrane protein that is associated with the plasma
membrane after activation. The Journal of Clinical Investigation, 78(1):130–137.

Bermejo, E., Alberto, M. F., Paul, D., Cook, A. A., Nurden, P., Sanchez Luceros, A., Nurden,
A., and Berg (2017). Marked bleeding diathesis in patients with platelet dysfunction
due to a novel mutation in RASGRP2, encoding CalDAG-GEFI (p.Gly305Asp). Platelets,
20:1–3.

Bernardi, B., Guidetti, G. F., Campus, F., Crittenden, J. R., Graybiel, A. M., Balduini, C.,
and Torti, M. (2006). The small GTPase Rap1b regulates the cross talk between platelet
integrin Æ2Ø1 and integrin ÆIIbØ3. Blood, 107(7):2728–2736.

Bismuth-Evenzal, Y., Gonopolsky, Y., Gurwitz, D., Iancu, I., Weizman, A., and Rehavi,
M. (2012). Decreased serotonin content and reduced agonist-induced aggregation
in platelets of patients chronically medicated with SSRI drugs. Journal of Affective
Disorders, 136:99–103.

Bismuth-Evenzal, Y., Roz, N., Gurwitz, D., and Rehavi, M. (2010). N-methyl-citalopram: a
quaternary selective serotonin reuptake inhibitor. Biochemical Pharmacology, 80:1546–
1552.

Blakely, R. D., Berson, H. E., Fremeau, R. T., Caron, M. G., Peek, M. M., Prince, H. K., and
Bradley, C. C. (1991). Cloning and expression of a functional serotonin transporter from
rat brain. Nature, 354:66–70.

Blanchette, C. M., Simoni-Wastila, L., Zuckerman, I. H., and Stuart, B. (2008). A secondary
analysis of a duration response association between selective serotonin reuptake in-
hibitor use and the risk of acute myocardial infarction in the aging population. Annals
of Epidemiology, 18(4):316–321.



138 References

Bonnin, A., Zhang, L., Blakely, R. D., and Levitt, P. (2012). The SSRI citalopram affects fetal
thalamic axon responsiveness to netrin-1 in vitro independently of SERT antagonism.
Neuropsychopharmacology, 37:1879–1884.

Bori-Sanz, T., Suzuki-Inoue, K., Berndt, M. C., Watson, S. P., and Tulasne, D. (2003). De-
lineation of the region in the glycoprotein VI tail required for association with the Fc
receptor ∞-chain. The Journal of Biological Chemistry, 278(38):35914–35922.

Born, G. V. R. (1962). Aggregation of blood platelets by adenosine diphosphate and its
reversal. Nature, 194:927–929.

Bos, J., Rehmann, H., and Wittinghofer, A. (2007). GEFs and GAPs: critical elements in the
control of small G proteins. Cell, 129:865–877.

Bougie, D. W., Wilker, P. R., Wuitschick, E. D., Curtis, B. R., Malik, M., Levine, S., Lind,
R. N., Pereira, J., and Aster, R. H. (2002). Acute thrombocytopenia after treatment
with tirofiban or eptifibatide is associated with antibodies specific for ligand-occupied
GPIIb/IIIa. Blood, 100(6):2071–2076.

Boulaftali, Y., Hess, P. R., Kahn, M. L., and Bergmeier, W. (2014). Platelet immunoreceptor
tyrosine-based activation motif (ITAM) and hemITAM signaling and vascular integrity
in inflammation and development. Circulation Research, 114:1174–1184.

Bowsher, R. R. and Henry, D. P. (1986). Aromatic L-amino acid decarboxylase: biochemistry
and functional significance. In Boulton, A. A., Baker, G. B., and Yu, P. H., editors,
Neurotransmitter Enzymes, pages 33–78. Humana Press, Totowa, NJ.

Brenner, B., Harney, J. T., Ahmed, B. A., Jeffus, B. C., Unal, R., Mehta, J. L., and Kilic,
F. (2007). Plasma serotonin levels and the platelet serotonin transporter. Journal of
Neurochemistry, 102(1):206–215.

British Heart Foundation (2016). BHF CVD statistics factsheet - UK [pdf]. Available at:
https://www.bhf.org.uk/research/heart-statistics. Accessed: 09/13/2017.

Burke, W. J., Gergel, I., and Bose, A. (2002). Fixed-dose trial of the single isomer SSRI
escitalopram in depressed outpatients. Journal of Clinical Psychiatry, 63(4):331–336.

Burkhart, J. M., Gambaryan, S., Watson, S. P., Kerstin, J., Ulrich, W., Albert, S., Heemskerk,
J. W., and Zahedi, R. P. (2014). What can proteomics tell us about platelets? Circulation
Research, 114:1204–1219.

Burkhart, J. M., Vaudel, M., Gambaryan, S., Radau, S., Walter, U., Martens, L., Geiger,
J., Sickmann, A., and Zahedi, R. P. (2012). The first comprehensive and quantitative
analysis of human platelet protein composition allows the comparative analysis of
structural and functional pathways. Blood, 120(15):e73–e82.

Bymaster, F. P., Dreshfield-Ahmad, L. J., Threlkeld, P. G., Shaw, J. L., Thompson, L., Nelson,
D. L., Hemrick-Luecke, and Susan K. Wong, D. T. (2001). Comparative affinity of duloxe-
tine and venlafaxine for serotonin and norepinephrine transporters in vitro and in vivo,
human serotonin receptor subtypes, and other neuronal receptors. Neuropsychophar-
macology, 25(6):871–880.



References 139

Caillé, G., Kouassi, E., and de Montigny, C. (1983). Pharmacokinetic study of zimelidine
using a new GLC method. Clinical Pharmacokinetics, 8(6):530–540.

Canault, M., Ghalloussi, D., Grosdidier, C., Guinier, M., Perret, C., Chelghoum, N., Germain,
M., Raslova, H., Peiretti, F., Morange, P. E., Saut, N., Pillois, X., Nurden, A. T., Cambien, F.,
Pierres, A., van den Berg, T. K., Kuijpers, T. W., Alessi, M. C., and Tregouet, D. A. (2014).
Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes
severe bleeding. The Journal of Experimental Medicine, 211(7):1349–1362.

Cantley, L. (2002). The phosphoinositide 3-kinase pathway. Science, 296:1655–1657.

Carneiro, A. M. D. and Blakely, R. D. (2006). Serotonin-, protein kinase C-, and Hic-5-
associated redistribution of the platelet serotonin transporter. Journal of Biological
Chemistry, 281(34):24769–24780.

Carneiro, A. M. D., Cook, E. H., Murphy, D. L., and Blakely, R. D. (2008). Interactions
between integrin ÆIIbØ3 and the serotonin transporter regulate serotonin transport
and platelet aggregation in mice and humans. The Journal of Clinical Investigation,
118(4):1544–1552.

Chackalamannil, S., Xia, Y., Greenlee, W. J., Clasby, M., Doller, D., Tsai, H., Asberom, T.,
Czarniecki, M., Ahn, H. S., Boykow, G., Foster, C., Agans-Fantuzzi, J., Bryant, M., Lau, J.,
and Chintala, M. (2005). Discovery of potent orally active thrombin receptor (protease
activated receptor 1) antagonists as novel antithrombotic agents. Journal of Medicinal
Chemistry, 48(19):5884–5887.

Cheetham, S. C., Viggers, J. A., Slater, N. A., Heal, D. J., and Buckett, W. R. (1993).
[3H]Paroxetine binding in rat frontal cortex strongly correlates with [3H]5-HT uptake:
effect of administration of various antidepressant treatments. Neuropharmacology,
32(8):737–743.

Chen, N. H., Reith, M. E. A., and Quick, M. W. (2004). Synaptic uptake and beyond: the
sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers
Archiv European Journal of Physiology, 447(5):519–531.

Cho, S. M., Noh, K., Haemmerle, M., Li, D., Park, H., Hu, Q., Hisamatsu, T., Mitamura,
T., Ling Celia Mak, S., Kunapuli, S., Ma, Q., Sood, K., Afshar-Kharghan, V., and Sood,
A. K. (2017). Role of ADP receptors on platelets in the growth of ovarian cancer. Blood,
130(10):1235–1243.

Chrzanowska-Wodnicka, M., Smyth, S. S., Schoenwaelder, S. M., Fischer, T. H., and White,
G. C. (2005). Rap1b is required for normal platelet function and hemostasis in mice.
The Journal of Clinical Investigation, 115(3):680–687.

Coates, M. D., Johnson, A. C., Greenwood-van Meerveld, B., and Mawe, G. M. (2006).
Effects of serotonin transporter inhibition on gastrointestinal motility and colonic
sensitivity in the mouse. Neurogastroenterology and Motility, 18(6):464–471.

Cocks, T. M. and Angus, J. A. (1983). Endothelium-dependent relaxation of coronary
arteries by noradrenaline and serotonin. Nature, 305(13):627–629.



140 References

Cohen, H. W., Gibson, G., and Alderman, M. H. (2000). Excess risk of myocardial infarction
in patients treated with antidepressant medications: Association with use of tricyclic
agents. American Journal of Medicine, 108(1):2–8.

Coleman, J. A., Green, E. M., and Gouaux, E. (2016). X-ray structures and mechanism of
the human serotonin transporter. Nature, 532:334–339.

Coller, B. S., Peerschke, E. I., Scudder, L. E., and Sullivan, C. A. (1983). A murine monoclonal
antibody that completely blocks the binding of fibrinogen to platelets produces a
thrombasthenic-like state in normal platelets and binds to glycoproteins IIb and/or IIIa.
The Journal of Clinical Investigation, 72(1):325–338.

Coogan, P. F., Strom, B. L., and Rosenberg, L. (2009). Antidepressant use and colorectal
cancer risk. Pharmacoepidemiology and Drug Safety, 18:1111–1114.

Coppinger, J. A., Cagney, G., Toomey, S., Kislinger, T., Belton, O., McRedmond, J. P., Cahill,
D. J., Emili, A., Fitzgerald, D. J., and Maguire, P. B. (2004). Characterization of the
proteins released from activated platelets leads to localization of novel platelet proteins
in human atherosclerotic lesions. Blood, 103(6):2096–2104.

Coughlin, S. R. (2000). Thrombin signalling and protease-activated receptors. Nature,
407:258–264.

Coxon, C. H., Geer, M. J., and Senis, Y. A. (2017). ITIM receptors: more than just inhibitors
of platelet activation. Blood, 129(26):3407–3418.

Coxon, C. H., Lewis, A. M., Sadler, A. J., Vasudevan, S. R., Thomas, A., Dundas, K. A., Taylor,
L., Campbell, R. D., Gibbins, J. M., Churchill, G. C., and Tucker, K. L. (2012a). NAADP
regulates human platelet function. Biochemical Journal, 441:435–442.

Coxon, C. H., Sadler, A. J., Huo, J., and Campbell, R. D. (2012b). An investigation of
hierachical protein recruitment to the inhibitory platelet receptor, G6B-b. PLoS ONE,
7(11):e49543.

Craven, L. L. (1950). Acetylsalicylic acid, possible preventive of coronary thrombosis.
Annals of Western Medicine and Surgery, 4(2):95.

Crittenden, J. R., Bergmeier, W., Zhang, Y., Piffath, C. L., Liang, Y., Wagner, D. D., Hous-
man, D. E., and Graybiel, A. M. (2004). CalDAG-GEFI integrates signaling for platelet
aggregation and thrombus formation. Nature Medicine, 10(9):982–986.

Czikora, A., Lundberg, D. J., Abramovitz, A., Lewin, N. E., Kedei, N., Peach, M. L., Zhou,
X., Merritt, R. C., Craft, E. A., Braun, D. C., and Blumberg, P. M. (2016). Structural
basis for the failure of the C1 domain of ras guanine nucleotide releasing protein 2
(RasGRP2) to bind phorbol ester with high affinity. Journal of Biological Chemistry,
291(21):11133–11147.

Dall, M., Schaffalitzky de Muckadell, O. B., Lassen, A. T., Hansen, J. M., and Hallas, J. (2009).
An association between selective serotonin reuptake inhibitor use and serious upper
gastrointestinal bleeding. Clinical Gastroenterology and Hepatology, 7(12):1314–1321.



References 141

Dalton, S. O., Johansen, C. J., Mellemkaer, L., Norgard, B., Sorenson, H. T., and Olsej, J. H.
(2003). Use of selective serotonin reuptake inhibitors and risk of upper gastrointestinal
tract bleeding. Archives of Internal Medicine, 163:59–64.

Damian, L. (2013). Isothermal titration calorimetry for studying protein-ligand interac-
tions. In Williams, M. and Daviter, T., editors, Protein-ligand interactions. methods in
molecular biology (methods and protocols), pages 103–118. Humana Press, Totowa, NJ.

Davoren, A. and Aster, R. H. (2006). Heparin-induced thrombocytopenia and thrombosis.
American Journal of Hematology, 81(1):36–44.

de Abajo, F. J. (2011). Effects of selective serotonin reuptake inhibitors on platelet function:
mechanisms, clinical outcomes and implications for use in elderly patients. Drugs and
Aging, 28(5):345–367.

de Abajo, F. J., García Rodríguez, L. A., and Montero, D. (1999). Association between
selective serotonin reuptake inhibitors and upper gastrointestinal bleeding: population
based case-control study. British Medical Journal, 319:1106–1109.

de Abajo, F. J., Montero, D., García Rodríguez, L. A., and Madurga, M. (2006). Antidepres-
sants and risk of upper gastrointestinal bleeding. Basic and Clinical Pharmacology and
Toxicology, 98(3):304–310.

de Clerck, F., Xhonneux, B., Leysen, J., and Janssen, P. (1984). Evidence for functional 5-HT2
receptor sites on human blood platelets. Biochemical Pharmacology, 33(17):2807–2811.

Decker, T. and Lohmann-Matthes, M. L. (1988). A quick and simple method for the
quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity
and tumor necrosis factor (TNF) activity. Journal of Immunological Methods, 115(1):61–
69.

Dees, C., Akhmetshina, A., Zerr, P., Reich, N., Palumbo, K., Horn, A., Jüngel, A., Beyer, C.,
Krönke, G., Zwerina, J., Reiter, R., Alenina, N., Maroteaux, L., Gay, S., Schett, G., Distler,
O., and Distler, J. H. (2011). Platelet-derived serotonin links vascular disease and tissue
fibrosis. The Journal of Experimental Medicine, 208(5):961–972.

DeLean, A., Munson, P. J., and Rodbard, D. (1978). Simultaneous analysis of families of
sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-
response curves. The American Journal of Physiology, 235(2):97–102.

Delgado, P. L., Price, L. H., Miller, H. L., Salomon, R. M., Aghajanian, G. K., Heninger, G. R.,
and Charney, D. S. (1994). Serotonin and the neurobiology of depression: effects of
tryptophan depletion in drug-free depressed patients. Archives of General Psychiatry,
51:865–874.

Deranleau, D. A., Dubler, D., Rothen, C., and Lüscher, E. F. (1982). Transient kinetics of the
rapid shape change of unstirred human blood platelets stimulated with ADP. Proceed-
ings of the National Academy of Sciences of the United States of America, 79(23):7297–
7301.



142 References

Dilks, J. R. and Flaumenhaft, R. (2008). Fluoxetine (Prozac) augments platelet activation
mediated through protease-activated receptors. Journal of Thrombosis and Haemostasis,
6(4):705–708.

Duerschmied, D., Suidan, G. L., Demers, M., Herr, N., Carbo, C., Brill, A., Cifuni, S. M.,
Mauler, M., Cicko, S., Bader, M., Idzko, M., Bode, C., and Wagner, D. D. (2013). Platelet
serotonin promotes the recruitment of neutrophils to sites of acute inflammation in
mice. Blood, 121(6):1008–1015.

Dumont, B., Lasne, D., Rothschild, C., Bouabdelli, M., Ollivier, V., Oudin, C., Ajzenberg, N.,
Grandchamp, B., and Jandrot-Perrus, M. (2009). Absence of collagen-induced platelet
activation caused by compound heterozygous GPVI mutations. Blood, 114(9):1900–
1903.

Durrant, T. N., van den Bosch, M. T., and Hers, I. (2017). Integrin ÆIIbØ3 outside-in
signaling. Blood, Aug 9. pii: blood-2017-03-773614. doi: 10.1182/blood-2017-03-773614.
[Epub ahead of print].

Edgar, V. A., Sterin-Borda, L., Cremaschi, G. A., and Genaro, A. M. (1999). Role of protein
kinase C and cAMP in fluoxetine effects on human T-cell proliferation. European Journal
of Pharmacology, 372(1):65–73.

Elhusseiny, A. and Hamel, E. (2001). Sumatriptan elicits both constriction and dilation
in human and bovine brain intracortical arterioles. British Journal of Pharmacology,
132(1):55–62.

Elkeles, R. S., Hampton, J. R., Honour, A. J., Mitchell, J. R. A., and Prichard, J. S. (1968).
Effect of a pyrimido-pyrimidine compound on platelet behaviour in vitro and in vivo.
Lancet, 292:751–754.

Ellison, S., Mori, J., Barr, A. J., and Senis, Y. A. (2010). CD148 enhances platelet respon-
siveness to collagen by maintaining a pool of active Src family kinases. Journal of
Thrombosis and Haemostasis, 8(7):1575–1583.

Erspamer, V. and Asero, B. (1952). Identification of enteramine, the specific hormone of
the enterochromaffin cell system, as 5-Hydroxytryptamine. Nature, 169:800–801.

Erspamer, V. and Testini, A. (1959). Observations on the release and turnover rate of 5-
hydroxytryptamine in the gastrointestinal tract. Journal of Pharmacy and Pharmacology,
11(1):618–623.

Ersparmer, V. and Viallu, M. (1937). Ricerche sul secreto delle cellule enterocromaffini.
Zeitschrift für Zellforschung und Mikroskopische Anatomie, 27(1):81–99.

Eto, K., Murphy, R., Kerrigan, S. W., Bertoni, A., Stuhlmann, H., Nakano, T., Leavitt, A. D.,
and Shattil, S. J. (2002). Megakaryocytes derived from embryonic stem cells implicate
CalDAG-GEFI in integrin signaling. Proceedings of the National Academy of Sciences of
the United States of America, 99(20):12819–12824.



References 143

European Union Clinical Trials Directive (2017). Revacept, a novel inhibitor of
platelet adhesion in patients with stable coronary artery disease undergoing
elective percutaneous coronary interventions. EudraCT: 2015-000686-32. Available
at: https://www.clinicaltrialsregister.eu/ctr-search/search?query=2015-000686-32. ac-
cessed: 30/10/2017.

Ezumi, Y., Shindoh, K., Tsuji, M., and Takayama, H. (1998). Physical and functional
assoication of the Src family kinases Fyn and Lyn with the collagen receptor glycoprotein
VI-Fc receptor ∞ chain complex on human platelets. The Journal of Experimental
Medicine, 188(2):267–276.

Falati, S., Patil, S., Gross, P. L., Stapleton, M., Merrill-Skoloff, G., Barrett, N. E., Pixton, K. L.,
Weiler, H., Cooley, B., Newman, D. K., Newman, P. J., Furie, B. C., Furie, B., and Gibbins,
J. M. (2006). Platelet PECAM-1 inhibits thrombus formation in vivo Platelet PECAM-1
inhibits thrombus formation in vivo. Blood, 107(2):535–541.

Faraj, B. A., Olkowski, Z. L., and Jackson, R. T. (1994). Expression of a high-affinity serotonin
transporter in human lymphocytes. International Journal of Immunopharmacology,
16(7):561–567.

Ferreiro, J. L., Ueno, M., and Angiolillo, D. J. (2009). Cangrelor: a review on its mechanism of
action and clinical development. Expert Review of Cardiovascular Therapy, 7(10):1195–
1201.

Fishkes, H. and Rudnick, G. (1982). Bioenergetics of serotonin transport by membrane vesi-
cles derived from platelet dense granules. Journal of Biological Chemistry, 257(10):5671–
5677.

FitzGerald, G. A. (1991). Mechanisms of platelet activation: thromboxane A2 as an ampli-
fying signal for other agonists. The American Journal of Cardiology, 68(7):11–15.

Flick, M. J., Du, X., Witte, D. P., Jiroušková, M., Soloviev, D. A., Busuttil, S. J., Plow, E. F.,
and Degen, J. L. (2004). Leukocyte engagement of fibrin(ogen) via the integrin receptor
ÆMØ2/Mac-1 is critical for host inflammatory response in vivo. The Journal of Clinical
Investigation, 113(11):1596–1606.

Flöck, A., Zobel, A., Bauriedel, G., Tuleta, I., Hammerstingl, C., Höfels, S., Schuhmacher,
A., Maier, W., Nickenig, G., and Skowasch, D. (2010). Antiplatelet effects of antidepres-
sant treatment: a randomized comparison between escitalopram and nortriptyline.
Thrombosis Research, 126(2):e83–e87.

Fotakis, G. and Timbrell, J. A. (2006). In vitro cytotoxicity assays: comparison of LDH, neu-
tral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium
chloride. Toxicology Letters, 160(2):171–177.

Franke, B., Akkerman, J. W. N., and Bos, J. L. (1997). Rapid Ca2+-mediated activation of
Rap1 in human platelets. EMBO Journal, 16(2):252–259.

Frankhauser, P., Grimmer, Y., Bugert, P., Deuschle, M., Schmidt, M., and Schloss, P. (2006).
Characterization of the neuronal dopamine transporter DAT in human blood platelets.
Neuroscience Letters, 399(3):197–201.



144 References

Fredrickson, B. J., Dong, J. F., McIntire, L. V., and López, J. A. (1998). Shear-dependent
rolling on von Willebrand factor of mammalian cells expressing the platelet glycoprotein
Ib-IX-V complex. Blood, 92(10):3684–3693.

Freedman, J. E., Loscalzo, J., Barnard, M. R., Alpert, C., Keaney, J. F., and Michelson, A. D.
(1997). Nitric oxide release from activated platelets inhibits platelet recruitment. The
Journal of Clinical Investigation, 100:350–356.

Fujita, H., Fukuhara, S., Sakurai, A., Yamagishi, A., Kamioka, Y., Nakaoka, Y., Masuda, M.,
and Mochizuki, N. (2005). Local activation of Rap1 contributes to directional vascular
endothelial cell migration accompanied by extension of microtubules on which RAPL, a
Rap1-associating molecule, localizes. Journal of Biological Chemistry, 280(6):5022–5031.

Fuller, G. L., Williams, J. A., Tomlinson, M. G., Eble, J. A., Hanna, S. L., Pöhlmann, S.,
Suzuki-Inoue, K., Ozaki, Y., Watson, S. P., and Pearce, A. C. (2007). The C-type lectin
receptors CLEC-2 and Dectin-1, but not DC-SIGN, signal via a novel YXXL-dependent
signaling cascade. Journal of Biological Chemistry, 282(17):12397–12409.

Galan, A. M., Lopez-Vilchez, I., Diaz-Ricart, M., Navalon, F., Gomez, E., Gasto, C., and Es-
colar, G. (2009). Serotonergic mechanisms enhance platelet-mediated thrombogenicity.
Thrombosis and Haemostasis, 102(3):511–519.

Gammie, J. S., Zenati, M., Kormos, R. L., Hattler, B. G., Wei, L. M., Pellegrini, R. V., Griffith,
B. P., Dyke, C. M., Reopro, B. A., Lilly, E., and Lilly, E. (1998). Abciximab and excessive
bleeding in patients undergoing emergency cardiac operations. The Annals of Thoracic
Surgery, 65(2):465–469.

Garcia-Morales, P., Minami, Y., Luong, E., Klausner, R. D., and Samelson, L. E. (1990).
Tyrosine phosphorylation in T cells is regulated by phosphatase activity: studies with
phenylarsine oxide. Proceedings of the National Academy of Sciences of the United States
of America, 87:9255–9259.

Gardiner, E. E., Arthur, J. F., Khan, M. L., Berndt, M. C., and Andrews, R. K. (2004). Regula-
tion of platelet membrane levels of glycoprotein VI by a platelet-derived metalloproti-
nase. Blood, 104:3611–3617.

Gardiner, E. E., Karunakaran, D., Shen, Y., Arthur, J. F., Andrews, R. K., and Berndt, M. C.
(2007). Controlled shedding of platelet glycoprotein (GP) VI and GPIb–IX–V by ADAM
family metalloproteinases. Journal of Thrombosis and Haemostasis, 5:1530–1537.

Gay, L. J. and Felding-Habermann, B. (2011). Contribution of platelets to tumour metasta-
sis. Nature Reviews Cancer, 11(2):123–134.

Geddes, J., Freemantle, N., Mason, J., Eccles, M., and Boynton, J. (2006). Selective serotonin
reuptake inhibitors (SSRIs) versus other antidepressants for depression. Cochrane
database of systematic reviews, 1(3):3–6.

Geng, Y. J. and Libby, P. (2002). Progression of atheroma: a struggle between death and
procreation. Arteriosclerosis, Thrombosis, and Vascular Biology, 22(9):1370–1380.

Gershon, M. D. (2004). Serotonin receptors and transporters - roles in normal and abnor-
mal gastrointestinal motility. Alimentary Pharmacology and Therapeutics, 20:3–14.



References 145

Gershon, M. D. and Tack, J. (2007). The serotonin signaling system: from basic understand-
ing to drug development for functional GI disorders. Gastroenterology, 132:397–414.

Geue, S., Walker-Allgaier, B., Eißler, D., Tegtmeyer, R., Schaub, M., Lang, F., Gawaz, M.,
Borst, O., and Münzer, P. (2017). Doxepin inhibits GPVI-dependent platelet Ca2+ signal-
ing and collagen-dependent thrombus formation. American Journal of Physiology Cell
Physiology, 312:765–774.

Giannaccini, G., Betti, L., Palego, L., Schmid, L., Fabbrini, L., Pelosini, C., Gargini, C.,
Da Valle, Y., Lanza, M., Marsili, A., Maffei, M., Santini, F., Vitti, P., Pinchera, A., and
Lucacchini, A. (2010). Human serotonin transporter expression during megakaryocytic
differentiation of MEG-01 cells. Neurochemical Research, 35(4):628–635.

Gibbins, J. M. (2004). Platelet adhesion signalling and the regulation of thrombus forma-
tion. Journal of Cell Science, 117(16):3415–3425.

Gibbins, J. M., Asselin, J., Farndale W, R., Barnes, M., Law, C. L., and Watson, S. P. (1996).
Tyrosine phosphorylation of the Fc receptor ∞-chain in collagen-stimulated platelets.
Journal of Biological Chemistry, 271(30):18095–18099.

Gibbins, J. M., Briddon, S., Shutes, A., Vugt, M. J. V., van de Winkel, J. G. J., Saito, T., and
Watson, S. P. (1998). The p85 Subunit of phosphatidylinositol 3-kinase associates with
the Fc receptor ∞-chain and linker for activitor of T cells (LAT) in platelets stimulated by
collagen and convulxin. Journal of Biological Chemistry, 273(51):34437–34443.

Gibbins, J. M., Okuma, M., Farndale, R. W., Barnes, M., and Watson, S. P. (1997). Glycopro-
tein VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of
the Fc receptor gamma-chain. FEBS Letters, 413(2):255–259.

Gibbs, C. R. and Lip, G. Y. H. (1998). Do we still need dipryidamole? British Journal of
Clinical Pharmacology, 45:323–328.

Gil Ad, I., Zolokov, A., Lomnitski, L., Taler, M., Bar, M., Luria, D., Ram, E., and Weizman, A.
(2008). Evaluation of the potential anti-cancer activity of the antidepressant sertraline in
human colon cancer cell lines and in colorectal cancer-xenografted mice. International
Journal of Oncology, 33:277–286.

Gladding, P. A., Webster, M. W. I., Farrell, H. B., Zeng, I. S. L., Park, R., and Ruijne, N.
(2008). The antiplatelet effect of six non-steroidal anti-inflammatory drugs and their
pharmacodynamic interaction with aspirin in healthy volunteers. American Journal of
Cardiology, 101(7):1060–1063.

Goa, K. L. and Noble, S. (1999). Eptifibatide: a review of its use in patients with acute
coronary syndromes and/or undergoing percutaneous coronary intervention. Drugs,
57(3):439–62.

Gobin, V., Van Steendam, K., Denys, D., and Deforce, D. L. (2014). Selective serotonin re-
uptake inhibitors as a novel class of immunosuppressants. International Immunophar-
macology, 20(1):148–156.



146 References

Gobin, V., Van Steendam, K., Fevery, S., Tilleman, K., Billiau, A. D., Denys, D., and Deforce,
D. L. (2013). Fluoxetine reduces murine graft-versus-host disease by induction of T cell
immunosuppression. Journal of Neuroimmune Pharmacology, 8(4):934–943.

Gresele, P., Arnout, J., Deckmyn, H., and Vermylen, J. (1986). Mechanism of the antiplatelet
action of dipyridamole in whole blood: modulation of adenosine concentration and
activity. Thrombosis and Haemostasis, 55(1):12–18.

Griffith, M. J. (1982). Kinetics of the heparin-enhanced antithrombin III/thrombin
reaction: evidence for a template model for the mechanism of action of heparin.
257(13):7360–7365.

Gross, B. S., Melford, S. K., and Watson, S. P. (1999). Evidence that phospholipase C-∞2
interacts with SLP-76, Syk, Lyn, LAT and the Fc receptor ∞-chain after stimulation of the
collagen receptor glycoprotein VI in human platelets. European Journal of Biochemistry,
263(3):612–623.

Grosse, J., Braun, A., Varga-Szabo, D., Beyersdorf, N., Schneider, B., Zeitlmann, L., Hanke,
P., Schropp, P., Mühlstedt, S., Zorn, C., Huber, M., Schmittwolf, C., Jagla, W., Yu, P.,
Kerkau, T., Schulze, H., Nehls, M., and Nieswandt, B. (2007). An EF hand mutation in
Stim1 causes premature platelet activation and bleeding in mice. The Journal of Clinical
Investigation, 117(11):3540–3550.

Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985). A new generation of Ca2+ indica-
tors with greatly improved fluorescence properties. Journal of Biological Chemistry,
260(6):3440–3450.

Gurbel, P. A., Bliden, K. P., Turner, S. E., Tantry, U. S., Gesheff, M. G., Barr, T. P., Covic, L., and
Kuliopulos, A. (2016). Cell-penetrating pepducin therapy targeting PAR1 in subjects with
coronary artery disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 36:189–197.

Habib, A., Fitzgerald, G. A., and Maclouf, J. (1999). Phosphorylation of the thromboxane
receptorÆ, the predominant isoform expressed in human platelets. Journal of Biological
Chemistry, 274(5):2645–2651.

Hackam, D. G. and Mrkobrada, M. (2012). Selective serotonin reuptake inhibitors and
brain hemorrhage. Neurology, 79:1862–1865.

Haining, E. J., Cherpokova, D., Wolf, K., Becker, I. C., Beck, S., Eble, J. A., Stegner, D.,
Watson, S. P., and Nieswandt, B. (2017). CLEC 2 contributes to hemostasis independently
of classical hemITAM signaling in mice. Blood, ():blood–2017–03–771907. Accessed:
22/10/2017.

Halai, K., Whiteford, J., Ma, B., Nourshargh, S., and Woodfin, A. (2014). ICAM-2 facilitates
luminal interactions between neutrophils and endothelial cells in vivo. Journal of Cell
Science, 127:620–629.

Hallback, I., Hagg, S., Eriksson, A. C., and Whiss, P. A. (2012). In vitro effects of serotonin
and noradrenaline reuptake inhibitors on human platelet adhesion and coagulation.
Pharmacological Reports, 64(4):979–983.



References 147

Hamberg, M., Svensson, J., and Samuelsson, B. (1975). Thromboxanes: a new group of
biologically active compounds derived from prostaglandin endoperoxides. Proceedings
of the National Academy of Sciences of the United States of America, 72(8):2994–2998.

Hancock, A. A., Bush, E. N., Stanisic, D., Kyncl, J. J., and Lin, C. T. (1988). Data normalization
before statistical analysis: keeping the horse before the cart. Trends in Pharmacological
Sciences, 9(1):29–32.

Harder, S., Klinkhardt, U., and Alvarez, J. M. (2004). Avoidance of bleeding during surgery
in patients receiving anticoagulant and/or antiplatelet therapy: pharmacokinetic and
pharmacodynamic considerations. Clinical Pharmacokinetics, 43(14):963–981.

Harper, A. G. S., Brownlow, S. L., and Sage, S. O. (2009). A role for TRPV1 in agonist-evoked
activation of human platelets. Journal of Thrombosis and Haemostasis, 7(2):330–338.

Harrison, P. and Cramer, E. M. (1993). Platelet Æ-granules. Blood Reviews, 7(1):52–62.

Hassock, S. R., Zhu, M. X., Trost, C., Flockerzi, V., and Authi, K. S. (2002). Expression
and role of TRPC proteins in human platelets: evidence that TRPC6 forms the store-
independent calcium entry channel. Blood, 100(8):2801–2811.

Hayashi, T. and Su, T. P. (2007). Sigma-1 receptor chaperones at the ER-mitochondrion
interface regulate Ca2+ signaling and cell survival. Cell, 131(3):596–610.

Heemskerk, J. W. M., Bevers, E. M., and Lindhout, T. (2002). Platelet activation and blood
coagulation. Thrombosis and Haemostasis, 88(2):186–193.

Hergovich, N., Aigner, M., Eichler, H. G., Entlicher, J., Drucker, C., and Jilma, B. (2000).
Paroxetine decreases platelet serotonin storage and platelet function in human beings.
Clinical Pharmacology and Therapeutics, 68(4):435–442.

Herr, N., Mauler, M., Witsch, T., Stallmann, D., Schmitt, S., Mezger, J., Bode, C., and
Duerschmied, D. (2014). Acute fluoxetine treatment induces slow rolling of leukocytes
on endothelium in mice. PLoS ONE, 9(2):e88316.

Hippisley-Cox, J., Fielding, K., and Pringle, M. (1998). Depression as a risk factor for
ischaemic heart disease in men: population based case-control study. British Medical
Journal, 316:1714–1719.

Hodge, G. L., Flower, R., and Han, P. (1999). Optimal storage conditions for preserving
granulocyte viability as monitored by Annexin V binding in whole blood. Journal of
Immunological Methods, 225:27–38.

Hollopeter, G., Jantzen, H. M., Vincent, D., Li, G., England, L., Ramakrishnan, V., Yang,
R. B., Nurden, P., Julius, D., and Conley, P. B. (2001). Identification of the platelet ADP
receptor targeted by antithrombotic drugs. Nature, 409:202–207.

Horii, K., Kahn, M. L., and Herr, A. B. (2006). Structural basis for platelet collagen responses
by the immune-type receptor glycoprotein VI. Blood, 108(3):936–943.

Hua, C. T., Gamble, J. R., and Vadas, M. A. (1998). Recruitment and activation of SHP-1
protein-tyrosine phosphatase by human platelet endothelial cell adhesion molecule-1
(PECAM-1). Journal of Biological Chemistry, 273(43):28332–28340.



148 References

Huang, P., Zhang, Y. H., Zheng, X. W., Liu, Y. J., Zhang, H., Fang, L., Zhang, Y. W., Yang, C.,
Islam, K., Wang, C., and Naranmandura, H. (2017). Phenylarsine oxide (PAO) induces
apoptosis in HepG2 cells via ROS-mediated mitochondria and ER-stress dependent
signaling pathways. Metallomics, page doi: 10.1039/c7mt00179g. [Epub ahead of print].

Hynes, R. O. (2002). Integrins: Bidirectional, allosteric signaling machines. Cell, 110(6):673–
687.

Hyttel, J. (1977). Neurochemical characterisation of a new potent and selective serotonin
uptake inhibitor: Lu 10-171. Psychopharmacology, 233(51):225–233.

Hyttel, J. (1982). Citalopram pharmacological profile of a specific serotonin uptake in-
hibitor with antidepressant activity. Progress in Neuro-Psychopharmacology & Biological
Psychiatry, 6:277–295.

Iken, K., Chheng, S., Fargin, A., Goulet, A. C., and Kouassi, E. (1995). Serotonin upregulates
mitogen stimulated B lymphocyte proliferation through 5-HT1A receptors. Cellular
Immunology, 163:1–9.

Inoue, O., Suzuki-Inoue, K., Dean, W. L., Frampton, J., and Watson, S. P. (2003). Inte-
grin Æ2Ø1 mediates outside-in regulation of platelet spreading on collagen through
activation of Src kinases and PLC∞2. Journal of Cell Biology, 160(5):769–780.

Inoue, O., Suzuki-Inoue, K., McCarty, O. J. T., Moroi, M., Ruggeri, Z. M., Kunicki, T. J., Ozaki,
Y., and Watson, S. P. (2006). Laminin stimulates spreading of platelets through integrin
Æ6Ø1-dependent activation of GPVI. Blood, 107(4):1405–1412.

Ishikawa, M., Ishiwata, K., Ishii, K., Kimura, Y., Sakata, M., Naganawa, M., Oda, K., Miy-
atake, R., Fujisaki, M., Shimizu, E., Shirayama, Y., Iyo, M., and Hashimoto, K. (2007). High
occupancy of sigma-1 receptors in the human brain after single oral administration
of fluvoxamine: a positron emission tomography study using [11C]SA4503. Biological
Psychiatry, 62(8):878–883.

Iversen, L. (2005). The monoamine hypothesis of depression. In Licinio, J. and Wong,
M. L., editors, Biology of depression: From novel insights to therapeutic strategies, pages
71–86. Wiley-VCH, Weinheim, Germany.

Jacobsen, J. P. R., Plenge, P., Sachs, B. D., Pehrson, A. L., Cajina, M., Du, Y., Roberts, W.,
Rudder, M. L., Dalvi, P., Robinson, T. J., O’Neill, S. P., Khoo, K. S., Morillo, C. S., Zhang,
X., and Caron, M. G. (2014). The interaction of escitalopram and R-citalopram at
the human serotonin transporter investigated in the mouse. Psychopharmacology,
231(23):4527–4540.

Jaffe, E. A. and Weksler, B. B. (1979). Recovery of endothelial cell prostacyclin production
after inhibition by low doses of aspirin. The Journal of Clinical Investigation, 63(3):532–
535.

Jandrot-Perrus, M., Busfield, S., Lagrue, a. H., Xiong, X., Debili, N., Chickering, T., Le
Couedic, J. P., Goodearl, a., Dussault, B., Fraser, C., Vainchenker, W., and Villeval, J. L.
(2000). Cloning, characterization, and functional studies of human and mouse glyco-
protein VI: a platelet-specific collagen receptor from the immunoglobulin superfamily.
Blood, 96(5):1798–1807.



References 149

Janssens, F., Leenaerts, J., Diels, G., De Boeck, B., Megens, A., Langlois, X., van Rossem, K.,
Beetens, J., and Borgers, M. (2005). Norpiperidine imidazoazepines as a new class of
potent, selective, and nonsedative H1 antihistamines. Journal of Medicinal Chemistry,
48(6):2154–2166.

Jardetzky, O. (1966). Simple allosteric model for membrane pumps. Nature, 211:969–970.

Jarvis, G. E., Atkinson, B. T., Snell, D. C., and Watson, S. P. (2002). Distinct roles of GPVI and
integrin Æ2Ø1 in platelet shape change and aggregation induced by different collagens.
British Journal of Pharmacology, 137(1):107–117.

Jarvis, G. E., Best, D., and Watson, S. P. (2004). Glycoprotein VI/Fc receptor ∞ chain-
independent tyrosine phosphorylation and activation of murine platelets by collagen.
The Biochemical Journal, 383:581–588.

Jarvis, G. E., Bihan, D., Hamaia, S., Pugh, N., Ghevaert, C., Pearce, A. C., Hughes, C. E.,
Watson, S. P., Ware, J., Rudd, C. E., and Farndale, R. W. (2012). A role for adhesion
and degranulation-promoting adapter protein in collagen-induced platelet activation
mediated via integrin Æ2Ø1. Journal of Thrombosis and Haemostasis, 10(2):268–277.

Jarvis, G. E., Humphries, R. G., Robertson, M. J., and Leff, P. (2000). ADP can induce
aggregation of human platelets via both P2Y1 and P2T receptors. British Journal of
Pharmacology, 129(2):275–282.

Jarvis, G. E., Raynal, N., Langford, J. P., Onley, D. J., Andrews, A., Smethurst, P. A., and
Farndale, R. W. (2008). Identification of a major GpVI-binding locus in human type III
collagen. Blood, 111(10):4986–4996.

Joffe, P., Larsen, F. S., Pedersen, V., Ring-Larsen, H., Aaes-Jorgensen, T., and Sidhu, J.
(1998). Single-dose pharmacokinetics of citalopram in patients with moderate renal
insufficiency or hepatic cirrhosis compared with healthy subjects. European Journal of
Clinical Pharmacology, 54(3):237–242.

Jokinen, J. and Nordström, P. (2009). HPA axis hyperactivity and cardiovascular mortality
in mood disorder inpatients. Journal of Affective Disorders, 116(1-2):88–92.

Jones, K. L., Hughan, S. C., Dopheide, S. M., Farndale, R. W., Jackson, S. P., and Jackson,
D. E. (2001). Platelet endothelial cell adhesion molecule-1 is a negative regulator of
platelet-collagen interactions. Blood, 98(5):1456–1463.

Jonnakuty, C. and Gragnoli, C. (2008). What do we know about serotonin? Journal of
Cellular Physiology, 217(2):301–306.

Judd, B. A., Myung, P. S., Obergfell, A., Myers, E. E., Cheng, A. M., Watson, S. P., Pear, W. S.,
Allman, D., Shattil, S. J., and Koretzky, G. A. (2002). Differential requirement for LAT and
SLP-76 in GPVI versus T cell receptor signaling. The Journal of Experimental Medicine,
195(6):705–17.

Jung, S. M., Moroi, M., Soejima, K., Nakagaki, T., Miura, Y., Berndt, M. C., Gardiner, E. E.,
Howes, J. M., Pugh, N., Bihan, D., Watson, S. P., and Farndale, R. W. (2012). Constitutive
dimerization of glycoprotein VI (GPVI) in resting platelets is essential for binding to



150 References

collagen and activation in flowing blood. Journal of Biological Chemistry, 287(35):30000–
30013.

Jung, S. M., Tsuji, K., and Moroi, M. (2009). Glycoprotein (GP) VI dimer as a major collagen-
binding site of native platelets: direct evidence obtained with dimeric GPVI-specific
Fabs. Journal of Thrombosis and Haemostasis, 7:1347–1355.

Kahn, M. L., Nakanishi-Matsui, M., Shapiro, M. J., Ishihara, H., and Coughlin, S. R. (1999).
Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin.
The Journal of Clinical Investigation, 103(6):879–887.

Kahn, M. L., Zheng, Y. W., Huang, W., Bigornia, V., Zeng, D., Moff, S., Farese Jr., R. V., Tam,
C., and Coughlin, S. R. (1998). A dual thrombin receptor system for platelet activation.
Nature, 394:690–694.

Kannen, V., Marini, T., Turatti, A., Carvalho, M. C., Brandão, M. L., Jabor, V. A. P., Bonato,
P. S., Ferreira, F. R., Zanette, D. L., Silva, W. A., and Garcia, S. B. (2011). Fluoxetine induces
preventive and complex effects against colon cancer development in epithelial and
stromal areas in rats. Toxicology Letters, 204:134–140.

Kato, H., Nakazawa, Y., Kurokawa, Y., Kashiwagi, H., Morikawa, Y., Morita, D., Banno, F.,
Honda, S., Kanakura, Y., and Tomiyama, Y. (2016). Human CalDAG-GEFI deficiency
increases bleeding and delays ÆIIbØ3 activation. Blood, 128(23):2729–2733.

Katsuki, S., Arnold, W., Mittal, C., and Murad, F. (1977). Stimulation of guanylate cyclase
by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations
and comparison to the effects of sodium azide and hydroxylamine. Journal of Cyclic
Nucleotide Research, 3(1):23–35.

Kaumann, A. J., Parsons, A. A., and Brown, A. M. (1993). Human arterial constrictor
serotonin receptors. Cardiovascular Research, 27(12):2094–2103.

Kawasaki, H., Springett, G. M., Toki, S., Canales, J. J., Harlan, P., Blumenstiel, J. P., Chen, E. J.,
Bany, I. A., Mochizuki, N., Ashbacher, A., Matsuda, M., Housman, D. E., and Graybiel,
A. M. (1998). A Rap guanine nucleotide exchange factor enriched highly in the basal
ganglia. Proceedings of the National Academy of Sciences of the United States of America,
95(22):13278–13283.

Kawashima, Y., Nagasawa, T., and Ninomiya, H. (2000). Contribution of ecto-5’-
nucleotidase to the inhibition of platelet aggregation by human endothelial cells. Blood,
96(6):2157–2162.

Kaye, C. M., Haddock, R. E., Langley, P. F., Mellows, G., Tasker, T. C. G., Zussman, B. D., and
Greb, W. H. (1989). A review of the metabolism and pharmacokinetics of paroxetine in
man. Acta Psychiatrica Scandinavica, 80:60–75.

Kilic, F. and Rudnick, G. (2000). Oligomerization of serotonin transporter and its functional
consequences. Proceedings of the National Academy of Sciences, 97(7):3106–3111.



References 151

Kimmel, S. E., Schelleman, H., Berlin, J. A., Oslin, D. W., Weinstein, R. B., Kinman, J. L.,
Sauer, W. H., and Lewis, J. D. (2011). The effect of selective serotonin re-uptake inhibitors
on the risk of myocardial infarction in a cohort of patients with depression. British
Journal of Clinical Pharmacology, 72(3):514–517.

Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Feng,
J., Nakano, T., Okawa, K., Iwamatsu, A., and Kaibuchi, K. (1996). Regulation of myosin
phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science, 273:245–248.

Klages, B., Brandt, U., Simon, M. I., Schultz, G., and Offermanns, S. (1999). Activation
of G12/G13 results in shape change and Rho/Rho-kinase-mediated myosin light chain
phosphorylation in mouse platelets. The Journal of Cell Biology, 144(4):745–54.

Knight, C. G., Morton, L. F., Onley, D. J., Peachey, A. R., Ichinohe, T., Okuma, M., Farndale,
R. W., and Barnes, M. J. (1999). Collagen-platelet interaction: Gly-Pro-Hyp is uniquely
specific for platelet Gp VI and mediates platelet activation by collagen. Cardiovascular
Research, 41:450–457.

Knight, C. G., Morton, L. F., Peachey, A. R., Tuckwell, D. S., Farndale, R. W., and Barnes,
M. J. (2000). The collagen-binding A-domains of integrins Æ1Ø1 and Æ2Ø1 recognize
the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens.
Journal of Biological Chemistry, 275(1):35–40.

Kobilka, B., Matsui, H., Kobilka, T., Yang-Feng, T., Francke, U., Caron, M., Lefkowitz, R.,
and Regan, J. (1987). Cloning, sequencing, and expression of the gene coding for the
human platelet Æ2-adrenergic receptor. Science, 238:650–656.

Kop, W. J., Gottdiener, J. S., Tangen, C. M., Fried, L. P., McBurnie, M. A., Walston, J.,
Newman, A., Hirsch, C., and Tracy, R. P. (2002). Inflammation and coagulation factors
in persons > 65 years of age with symptoms of depression but without evidence of
myocardial ischemia. The American Journal of Cardiology, 89(4):419–424.

Kragh-Sørensen, P., Overø, K. F., Petersen, O. L., Jensen, K., and Parnas, W. (1981). The
kinetics of citalopram: single and multiple dose studies in man. Acta Pharmacologica et
Toxicologica, 48(1):53–60.

Kubera, M., Grygier, B., Arteta, B., Urbańska, K., Basta-Kaim, A., Budziszewska, B.,
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Figure. A.1 Unprocessed images of X-ray films from Western blots used to quantify Rap1-GTP and
Rap1 levels from platelet lysates. Platelets were either untreated or treated with racemic citalopram
(200 µM) for approximately 5 minutes, then either unstimulated or stimulated with cross-linked
collagen-related peptide (CRPXL, 0.5 µg mL°1) or U46619 (0.2 µM). Samples from 4 blood donors
were used in total, labelled A-D. Samples were not randomised. *Indicates the blot presented in
Figure 4.6. X-ray film exposure times are shown underneath each blot identification (ID).
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Figure. A.2 Unprocessed images of X-ray films from Western blots used to quantify Rap1-GTP and
Rap1 levels from neutrophil lysates. Neutrophils were either untreated or treated with racemic
citalopram (200 µM) for approximately 5 minutes, then either unstimulated or stimulated with
platelet-activating factor (PAF, 1 µM). Samples from 4 blood donors were used in total, labelled
E-H. For an optional positive control, lysates were incubated with GTP∞S. However, due to a lack
of exogenous MgCl2 in samples from donors E, F & G, GTP∞S-loaded samples showed low levels of
binding. *Indicates the blot presented in Figure 4.7. Bands with a molecular weight of º 40 kDa
are likely to represent the GST-RalGDS-RBD fusion protein. X-ray film exposure times are those
used for quantification of Rap1-GTP and differ from the exposure times used to quantify total
Rap1 levels (donor E = 45 seconds, F = 60 seconds, G = 60 seconds & H = 30 seconds). Marks on
the bottom right corner of Blot ID: HGR_083 indicate the outline of the polyvinylidene difluoride
(PVDF) membrane.
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Figure. A.3 Unprocessed images of X-ray films of Western blots used for the quantification of
phospho-PLC∞2 (Tyr-1217), phospho-LAT (Tyr-200), PLC∞2, and LAT. 5 blood donors were used in
total, labelled A, B, C, I & J. Donors A, B and C were the same donors previously used in Figure A.1.
White scissors and dashed white lines indicate where membranes were cut for subsequent blotting
with different antibodies for either PLC∞2 or LAT. Samples were randomised and allocated into
wells 2-9 in a blinded fashion. Different X-ray film exposure times were taken for each blot and
those generating the greatest contrast are presented in this figure and were used for quantification.
Exposure times (in seconds) and the primary antibody are shown on the left of each blot. [(RS)]
indicates the concentration of racemic (RS)-citalopram. CRPXL = cross-linked collagen-related
peptide (5 µg mL°1).
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Figure. A.4 Unprocessed images of X-ray films from Western blots used to quantify phospho-
Src family kinases (SFK) (Tyr-416) and Src. Samples from 4 blood donors were used in total,
labelled A, B, C & I, which were the same donors previously used in Figure A.1 & A.2. No data were
obtained for donor J as there was insufficient material from this donor for all conditions when
the analysis was performed. Samples were randomised and allocated into wells 2-9 in a blinded
fashion. Different X-ray film exposure times were taken for each blot and those generating the
greatest contrast are presented in this figure and were used for quantification. Exposure times
are shown underneath each blot identification (ID). The primary antibody is shown to the left of
each blot. [(RS)] represents the concentration of racemic (RS)-citalopram. CRPXL = cross-linked
collagen-related peptide (5 µg mL°1)
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Protein sequences

CalDAG-GEFI/RASGRP2 (wild type) (UniProtKB-Q7LDG7)
MAGTLDLDKGCTVEELLRGCIEAFDDSGKVRDPQLVRMFLMMHPWYIPSSQLAAKLLHIYQQSRKDNSNSLQVKTCHLVRYWISAFPAEFDLNPELAEQIKELK
ALLDQEGNRRHSSLIDIDSVPTYKWKRQVTQRNPVGQKKRKMSLLFDHLEPMELAEHLTYLEYRSFCKILFQDYHSFVTHGCTVDNPVLERFISLFNSVSQWVQ
LMILSKPTAPQRALVITHFVHVAEKLLQLQNFNTLMAVVGGLSHSSISRLKETHSHVSPETIKLWEGLTELVTATGNYGNYRRRLAACVGFRFPILGVHLKDLV
ALQLALPDWLDPARTRLNGAKMKQLFSILEELAMVTSLRPPVQANPDLLSLLTVSLDQYQTEDELYQLSLQREPRSKSSPTSPTSCTPPPRPPVLEEWTSAAKP
KLDQALVVEHIEKMVESVFRNFDVDGDGHISQEEFQIIRGNFPYLSAFGDLDQNQDGCISREEMVSYFLRSSSVLGGRMGFVHNFQESNSLRPVACRHCKALIL
GIYKQGLKCRACGVNCHKQCKDRLSVECRRRAQSVSLEGSAPSPSPMHSHHHRAFSFSLPRPGRRGSRPPEIREEEVQTVEDGVFDIHL

CalDAG-GEFI/RASGRP2
p.(Ala552_Leu609del)
MAGTLDLDKGCTVEELLRGCIEAFDDSGKVRDPQLVRMFLMMHPWYIPSSQLAAKLLHIYQQSRKDNSNSLQVKTCHLVRYWISAFPAEFDLNPELAEQIKELK
ALLDQEGNRRHSSLIDIDSVPTYKWKRQVTQRNPVGQKKRKMSLLFDHLEPMELAEHLTYLEYRSFCKILFQDYHSFVTHGCTVDNPVLERFISLFNSVSQWVQ
LMILSKPTAPQRALVITHFVHVAEKLLQLQNFNTLMAVVGGLSHSSISRLKETHSHVSPETIKLWEGLTELVTATGNYGNYRRRLAACVGFRFPILGVHLKDLV
ALQLALPDWLDPARTRLNGAKMKQLFSILEELAMVTSLRPPVQANPDLLSLLTVSLDQYQTEDELYQLSLQREPRSKSSPTSPTSCTPPPRPPVLEEWTSAAKP
KLDQALVVEHIEKMVESVFRNFDVDGDGHISQEEFQIIRGNFPYLSAFGDLDQNQDGCISREEMVSYFLRSSSVLGGRMGFVHNFQESNSLRPVACRHCKALIL
GIYKQGLKCRACGVNCHKQCKDRLSVECRRR

CalDAG-GEFI/RASGRP2
p.(Ala552_Leu609del)
p.(Arg387_Pro404)
MAGTLDLDKGCTVEELLRGCIEAFDDSGKVRDPQLVRMFLMMHPWYIPSSQLAAKLLHIYQQSRKDNSNSLQVKTCHLVRYWISAFPAEFDLNPELAEQIKELK
ALLDQEGNRRHSSLIDIDSVPTYKWKRQVTQRNPVGQKKRKMSLLFDHLEPMELAEHLTYLEYRSFCKILFQDYHSFVTHGCTVDNPVLERFISLFNSVSQWVQ
LMILSKPTAPQRALVITHFVHVAEKLLQLQNFNTLMAVVGGLSHSSISRLKETHSHVSPETIKLWEGLTELVTATGNYGNYRRRLAACVGFRFPILGVHLKDLV
ALQLALPDWLDPARTRLNGAKMKQLFSILEELAMVTSLRPPVQANPDLLSLLTVSLDQYQTEDELYQLSLQREP__________________PVLEEWTSAAKP
KLDQALVVEHIEKMVESVFRNFDVDGDGHISQEEFQIIRGNFPYLSAFGDLDQNQDGCISREEMVSYFLRSSSVLGGRMGFVHNFQESNSLRPVACRHCKALIL
GIYKQGLKCRACGVNCHKQCKDRLSVECRRR

CalDAG-GEFI/RASGRP2
p.(Ala552_Leu609del)
p.(Gly248Trp)
MAGTLDLDKGCTVEELLRGCIEAFDDSGKVRDPQLVRMFLMMHPWYIPSSQLAAKLLHIYQQSRKDNSNSLQVKTCHLVRYWISAFPAEFDLNPELAEQIKELK
ALLDQEGNRRHSSLIDIDSVPTYKWKRQVTQRNPVGQKKRKMSLLFDHLEPMELAEHLTYLEYRSFCKILFQDYHSFVTHGCTVDNPVLERFISLFNSVSQWVQ
LMILSKPTAPQRALVITHFVHVAEKLLQLQNFNTLMAVVWGLSHSSISRLKETHSHVSPETIKLWEGLTELVTATGNYGNYRRRLAACVGFRFPILGVHLKDLV
ALQLALPDWLDPARTRLNGAKMKQLFSILEELAMVTSLRPPVQANPDLLSLLTVSLDQYQTEDELYQLSLQREPRSKSSPTSPTSCTPPPRPPVLEEWTSAAKP
KLDQALVVEHIEKMVESVFRNFDVDGDGHISQEEFQIIRGNFPYLSAFGDLDQNQDGCISREEMVSYFLRSSSVLGGRMGFVHNFQESNSLRPVACRHCKALIL
GIYKQGLKCRACGVNCHKQCKDRLSVECRRR

Rap1B (UniProtKB-Q7LDG7)
MREYKLVVLGSGGVGKSALTVQFVQGIFVEKYDPTIEDSYRKQVEVDAQQCMLEILDTAGTEQFTAMRDLYMKNGQGFALVYSITAQSTFNDLQDLREQILRVK
DTDDVPMILVGNKCDLEDERVVGKEQGQNLARQWNNCAFLESSAKSKINVNEIFYDLVRQINRKTPVPGKARKKSSCQLL

Rap1B
p.(Lys168_Leu184del)
MREYKLVVLGSGGVGKSALTVQFVQGIFVEKYDPTIEDSYRKQVEVDAQQCMLEILDTAGTEQFTAMRDLYMKNGQGFALVYSITAQSTFNDLQDLREQILRVK
DTDDVPMILVGNKCDLEDERVVGKEQGQNLARQWNNCAFLESSAKSKINVNEIFYDLVRQINR

Figure. B.1 Protein sequences for wild type and mutated CalDAG-GEFI and Rap1B. Recombinant
calcium and diacylglycerol guanine nucleotide exchange factor-1 (CalDAG-GEFI) and Ras-related
protein 1B (Rap1B) were provided by Professor Wolfgang Bergmeier and Aaron Cook, from the
University of North Carolina. Aaron Cook cloned CalDAG-GEFI and Rap1B from human genes into
a protein expression vector p15LIC2 6xHis, which was purified in E. coli. The CalDAG-GEFI variants
provided all contained a C-terminal truncation (p.(Ala552_Leu609del)). The C-terminal of Rap1B
was also truncated (p.(Lys168_Leu184del)). According to personal communication, this truncation
"removed disordered regions to improve stability during the purification process, while leaving all
the functional domains intact". Catalytically inactive CalDAG-GEFI variants contained either an
additional deletion (p.(Arg387_Pro404del)), or a glycine-tryptophan substitution (p.(Gly248Trp)).
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Sage SO and Jarvis GE. Citalopram inhibits platelet function independently of SERT-

mediated 5-HT transport. Scientific Reports, volume 8, Article number: 3494 (2018),
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Manuscripts under revision or in preparation
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