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Abstract

The discovery of human obesity-associated genes can reveal new mechanisms to target for
weight loss therapy. Genetic studies of obese individuals and the analysis of rare genetic
variants can identify novel obesity-associated genes. However, establishing a functional
relationship between these candidate genes and adiposity remains a significant challenge.
We uncovered a large number of rare homozygous gene variants by exome sequencing of
severely obese children, including those from consanguineous families. By assessing the
function of these genes in vivo in Drosophila, we identified 4 genes, not previously linked to
human obesity, that regulate adiposity (itpr, dachsous, calpA, and sdk). Dachsous is a trans-
membrane protein upstream of the Hippo signalling pathway. We found that 3 further mem-
bers of the Hippo pathway, fat, four-jointed, and hippo, also regulate adiposity and that they
act in neurons, rather than in adipose tissue (fat body). Screening Hippo pathway genes in
larger human cohorts revealed rare variants in TAOKZ associated with human obesity.
Knockdown of Drosophila tao increased adiposity in vivo demonstrating the strength of our
approach in predicting novel human obesity genes and signalling pathways and their site of
action.

Obesity is a major risk factor for type 2 diabetes, cardiovascular disease, cancers, and, most
recently, COVID-19 [1]. Despite the obvious environmental drivers to weight gain, multiple
genetic studies have demonstrated that 40% to 70% of the variation in body weight is attribut-
able to genetic variation [2]. The discovery of genes that contribute to the regulation of human
body weight can provide insights into the mechanisms involved in energy homeostasis and
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identify potential targets for weight loss therapy. Moreover, drug targets supported by human
genetic evidence are more likely to transit successfully through the drug discovery pipeline [3].

A classical approach to the discovery of pathogenic variants is to investigate consanguine-
ous populations with high degrees of parental relatedness (parents who are first or second
cousins) where large portions of the genome are identical by descent as a result of family struc-
ture in preceding generations (long regions of homozygosity). Indeed, studies in consanguine-
ous families led to the discovery of the first homozygous loss-of-function mutations in the
genes encoding leptin (LEP; [4]) and the leptin receptor (LEPR; [5]) associated with severe
obesity. However, at the time, the function of leptin and its receptor had already been estab-
lished in ob/ob and db/db mice, respectively [6], so the pathogenicity of homozygous muta-
tions that resulted in loss of function in cells was readily established.

The situation is more complex when studying homozygous mutations in new candidate
genes. Some of these genes may play a direct causal role in the development of obesity, others
may increase susceptibility to obesity only in certain contexts, and some genes will play no role
at all. Recent large-scale studies in healthy people in outbred populations have revealed that a
significant proportion of rare homozygous variants that are predicted to cause a loss of func-
tion do not result in a clinically discernible phenotype [7,8]. As such, identifying the subset of
genes that may be involved in the regulation of adiposity in large human genetic studies pres-
ents a major hurdle.

For some diseases, functional screens in cultured cells permit rapid testing of candidate
genes, as exemplified by studies of insulin secretion in islet cells for genes associated with type
2 diabetes [9]. However, obesity is a systems-level disorder that cannot be replicated in cells.
As such, a functional screen in vivo is needed. Here, we use Drosophila to screen the functional
consequences of knocking down expression of candidate human obesity genes and to explore
the complex interactions between multiple organ systems that are regulated by environmental
and genetic factors.

Drosophila has been a useful tool in the functional characterisation of human disease-asso-
ciated genes [10-12]. Many organ systems and metabolic enzymes are highly conserved in
Drosophila, as are the major regulatory mechanisms involved in metabolic homeostasis
[13,14]. As in humans, Drosophila accumulate lipids and become obese when raised on a high-
fat or high-sugar diet, developing cardiomyopathy and diabetic phenotypes [15,16]. Further-
more, more than 60% of the genes identified in an unbiased genome-wide RNAI screen for
increased fat levels in Drosophila have human orthologues [17]. Most studies in Drosophila
have performed forward genetic screens resulting in obesity [18] before assessing whether mis-
regulation of the corresponding mammalian orthologue affects adiposity [17]. Another report
knocked down Drosophila orthologs of human genes near body mass index (BMI) loci from
GWAS studies to identify genes regulating adiposity [19].

Here, instead, we chose to take advantage of new data from a cohort of patients carrying
rare genetic variants that might cause severe early-onset obesity. We set out to identify, in Dro-
sophila, whether any of these genes are likely to be responsible for the obese phenotype. An
additional advantage of working with Drosophila is the potential to identify interacting genes
and signalling pathways. We proposed that it would then be possible to search for variants in
human orthologues of these genes in larger cohorts of patients, to discover further as yet
unidentified genes regulating human obesity.

To increase our chances of finding pathogenic variants, we focused on rare homozygous
variants identified in probands with severe obesity, many from consanguineous families. After
knocking down expression of Drosophila orthologues of candidate human obesity genes, we
discovered 4 genes that significantly increased triacylglyceride (TAG) levels. Importantly,
none of these genes had been associated previously with human obesity, but the pathways in
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which they act are known and could be further analysed in Drosophila. Knockdown of further
members of one of these signalling pathways, the Hippo pathway, also gave an obesity pheno-
type, highlighting the success of our approach. We then searched for variants in the novel obe-
sity genes we identified in Drosophila, and their associated signalling pathways, in larger
cohorts of unrelated obese people and healthy controls. This uncovered yet another gene,
which, when knocked down in Drosophila, increased adiposity. We demonstrate that the
cross-fertilisation of human and Drosophila genetics is a powerful system to provide novel
insights into the genetic and cellular processes regulating adiposity and may ultimately con-
tribute to strategies for the prevention and treatment of obesity.

Results
Rare homozygous variants in individuals with severe early-onset obesity

We performed whole-exome sequencing (WES) of 73 individuals with severe early-onset obesity
recruited to the Genetics of Obesity Study (BMI standard deviation score [BMI SDS] > 3; age of
onset below 10 years; GOOS; www.goos.org.uk), in whom known causes of monogenic obesity
such as congenital leptin deficiency and MC4R deficiency had been excluded (Fig 1A, S1 Table;
Methods). Fifty-seven probands were offspring from consanguineous families in the United
Kingdom (predominantly of South Asian origin; only probands were sequenced; Fig 1B, S1
Table). We looked for autosomal homozygous nonsynonymous single-nucleotide variants
(SNVs) and insertions/deletions (indels) affecting exons or splice sites in affected individuals
(Methods). On the assumption that homozygous variants that cause severe obesity are likely to
be rare alleles, only variants with a minor allele frequency (MAF) <1% among all publicly avail-
able exomes (gnomAD) and <1% in the gnomAD South Asian subpopulation were retained.

We found a very large number of homozygous coding variants (n = 756) in regions of
homozygosity >100 kb at 743 different genomic locations suggesting substantial genetic het-
erogeneity (Fig 1C). Among these were 12 nonsense variants and 9 frameshift variants (Fig
1C, S2 Table). One proband harboured a homozygous rare nonsense variant in ALMSI con-
sistent with a diagnosis of Alstrom’s syndrome, a disorder characterised by childhood obesity,
visual impairment, hearing loss, and cardiomyopathy. To identify new genes for severe obesity,
we focused on a set of 61 genes in which 1 person carried a frameshift or nonsense variant or
at least 2 affected individuals carried a rare missense variant.

Screening obesity candidate genes in Drosophila melanogaster

We identified Drosophila orthologues for each of the 61 genes, taking advantage of the Dro-
sophila RNAi Screening Centre Integrative Ortholog Prediction Tool (DIOPT; Version 5) [20]
(S2 Table). DIOPT calculates a score indicating the number of orthologue prediction tools
that support a given orthologous gene-pair relationship. The Drosophila gene with the highest
DIOPT score for each human gene was chosen for further study. Of the 61 genes in our study,
DIOPT identified orthologues for 50 genes. Of these, 27 human genes with 24 Drosophila
orthologues were selected (Table 1) based on the following criteria: high DIOPT scores; RNAi
lines available from the Drosophila TRiP collection; and having been implicated previously in
regulating metabolism. We excluded 6 Drosophila orthologues without preexisting RNAI lines
and 15 genes with low DIOPT scores.

Several of the human genes shared a common Drosophila orthologue, for example, ACSM1
and ACSM2 (pdgy); SYNEI and SYNE2 (msp300) and CHIT1 and OVGPI (cht7). TRiP RNAi
lines for 2 genes (shn, unc-89) were unhealthy, and experimental crosses were unsuccessful.
For Drosophila Papss (human orthologue PAPSSI), no adult survivors of the correct genotype
were found after crosses to 2 different TRiP RNAi lines.
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Fig 1. Identification of genes harbouring homozygous rare variants in severely obese individuals. (A) Schematic of the approach used to identify candidate human
obesity genes and the prioritisation of genes containing rare exonic SNVs and indels for screening in Drosophila. (B) All probands had severe obesity and presented in
early childhood, as exemplified in 3 family pedigrees shown. Males (squares) and females (circles) with obesity (filled symbols) are indicated. BMI in children under 18
years is adjusted for age and sex and shown as BMI SDS. Arrows indicate probands who were sequenced; slashed lines indicate deceased individuals; double lines
indicate consanguineous union. Family numbers refer to S1 Table. (C) Cumulative medium to large ROHs in affected cases and prioritised homozygous exonic rare
SNVs and indels. The autosomal karyotype heatmap illustrates the cumulative coverage of medium to large ROHs (>4 Mb) among the affected individuals, based on
estimates of ROHs using WES data (displayed in bins of size 10° bp). Markers show the location and consequence of homozygous rare exonic SNVs and indels within
any ROHs (>100 kb). Stop codons and frameshifts are displayed, and missense variants where >1 affected person had a missense variant in the same gene. Variant
markers are shown per gene (S2 Table). BMI, body mass index; indel, insertion/deletion; ROH, run of homozygosity; SDS, standard deviation score; SNV, single-
nucleotide variant; WES, whole-exome sequencing.

https://doi.org/10.1371/journal.pbio.3001255.g001

For each of the genes selected for further study, we knocked down expression in a spatially
and temporally controlled fashion using the GAL4 system [21] with GAL80" [22,23]. Using
this system, GAL4-driven transgenes (UAS-RNAI) are expressed at the restrictive temperature
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Table 1. Drosophila orthologues of candidate human obesity genes. The 24 Drosophila orthologues of 27 human genes with rare variants in obese patients, which were
chosen for further study. The DIOPT score, TRiP RNAi line (except itpr (NIG line), and the function of each gene are given.

Human Symbol

ACO2
ACSM1
ACSM3
AGAP6

ALK
BMP2K
CAPNS

CDS1
CHIT1

CPA4
DCHS1

DNAH10
ITPKB

ITPR1

LPIN1
MYHI15

NUP133
OVGP1
PAPSS1
PGBD4
PLEKHG1

SCO1

SDK1
SYNE1
SYNE2

TJP3
TTN

Fly Symbol
Acon
pdgy
pdgy

CenG1A
Alk
Nak
CalpA
CdsA
Cht7
CG3097
ds
Dhc98D
IP3K2
Itp-r83A
Lpin
Mhc
Nup133
Cht7
Papss
CGI839
GEFmeso
Scox
sdk
Msp300
Msp300
pyd
bt

https://doi.org/10.1371/journal.pbio.3001255.t001

DIOPT Score TRiP line Function

12 34028 Aconitase; conversion of citrate to isocitrate in TCA cycle

1 55272 Acyl-CoA synthetase; activates FA destined for beta-oxidation
1 55272 Acyl-CoA synthetase; activates FA destined for beta-oxidation
8 31228 Centaurin gamma 1A; GTPase; ecdysone signalling-dependent
12 27518 Anaplastic lymphoma kinase; development and growth

7 38326 Numb-associated kinase; dendrite development
10 29455 Calcium-dependent endopeptidase; dorsal/ventral pattern
13 58118 CDP diglyceride synthetase; cell growth and lipid storage
10 65000 Chitinase 7, chitin-based cuticle development

9 65948 Carboxypeptidase
13 32964 Dachsous; cadherin; cell adhesion
13 77181 Dynein Heavy Chain; minus end MT motors
10 55240 Kinase regulates calcium levels by influencing IP3 signaling
15 1063-R2 (NIG) Inositol 1,4,5 trisphosphate receptor
13 63614 Fat body function, downstream effector of insulin and TORC1
12 35729 Myosin Heavy Chain, motor protein for muscle contraction
13 58290 Nucleoporin; constitutent of nuclear pore complex

7 65000 Chitinase 7; chitin-based cuticle development
14 60471 Adenlylsulphate kinase; sulphate assimilation

7 64933 PiggyBac transposable element-derived protein

8 42545 Guanine nucleotide exchange factor in mesoderm
14 55179 Synthesis of cytochrome C oxidase; copper chaperone

8 33412 Sidekick, Fibronectin type; photoreceptor cell differentiation
5 32377 Muscle-specific protein; positioning of muscle nuclei

4 32377 Muscle-specific protein; positioning of muscle nuclei

7 33386 Polychaetoid; cell adhesion molecule binding; scaffolding

9 31545 Projectin; associated with myosin thick filaments

for GAL80", 29.5°C, but not at the permissive temperature, 18°C, at which GAL80" is active
and represses GAL4. Lines from the TRiP RNAI collection targeting each of the 24 genes were
crossed to tubulin-GAL4, tubulin-GAL80" to drive expression ubiquitously in adults. So as not
to inhibit expression of the target gene during embryonic and larval development, the parents
of each cross and their progeny were kept at 18°C until eclosion (Fig 2A). The adults were
then shifted to 29.5°C for 12 days to induce RNAi expression. Adult males were frozen in
batches of 10 for further analysis.

Identification of candidate obesity genes

To assay increased adiposity in adults, we measured levels of TAG, the major storage form of
fat in the body [24] using a coupled colorimetric assay normalised to levels of protein [25] (Fig
2A). As a positive control, we measured TAG levels after ubiquitous knockdown of the Dro-
sophila glucagon receptor orthologue (adipokinetic hormone receptor (akhR)) [26] (Fig 2B-
2D). Loss of function of akhR has been shown to increase levels of TAG [26,27], and we
observed a dramatic increase in TAG levels (Fig 2B-2D).

For each knockdown experiment, we performed between 6 and 21 biological replicates (10
male flies per replicate). TAG and Bradford assays were carried out in 96-well plates with each
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Fig 2. Experimental design of the Drosophila screen to identify novel obesity genes. (A) Schematic of the functional
screen in Drosophila. (B, C, D) TAG levels normalised to level of protein upon ubiquitous adult specific knockdown of
Drosophila orthologues of human genes from severely obese people. Each data point corresponds to an average of 3
technical replicates of TAG normalised to protein levels obtained from 10 male flies. Results obtained from multiple
replicates are shown for knockdown of each gene. Error bars represent SEM; *p < 0.05, **p < 0.01 and ***p < 0.001
versus control by Mann-Whitney U Test. The underlying data for this figure can be found in S7 Table. Fig 2A was
“created with BioRender.com.” TAG, triacylglyceride.

https://doi.org/10.1371/journal.pbio.3001255.9002

plate having 3 or more biological replicates (as well as 3 technical replicates for each biological
replicate) of control RNAI (cherry), akhR knockdown, and experimental samples (Fig 2A).

We found significant increases in TAG normalised to protein levels after knockdown of 4
out of 24 genes (itpr, dachsous, calpA, and sdk; Fig 2B). itpr encodes an intracellular ligand-
gated calcium channel, Inositol 1,4,5 trisphosphate receptor (IP3R). Whereas the loss of IP3R
during early development is lethal, hypomorphic mutations or targeted knockdown in neuro-
peptide secreting neurons demonstrated a role for itpr in obesity [18,28,29] in line with our
results. Down-regulating calpA, a calcium-dependent endopeptidase orthologous to human
CAPNS, also increased levels of TAG. calpA is expressed in the adult midgut endocrine cells
[30] and mammalian CAPN8 in the gastrointestinal mucous secreting cells [31], suggesting
possible metabolic roles for both orthologues. A third gene, sidekick (sdk; SDK1 in humans), a
fibronectin family member [32,33] also raised TAG levels after knockdown. No role in regulat-
ing metabolism or obesity has been discovered previously for either calpA/CAPNS8 or sdk/
SDK1.

Knockdown of dachsous (ds, human DCHSI) also resulted in obese flies (Fig 2B). Dachsous
is a member of the cadherin family of transmembrane receptors [34] and is known to play a
role in 2 well-studied signalling pathways, the Hippo signalling pathway (Fig 3A) and the pla-
nar cell polarity pathway [35]. Dachsous mediates many of its actions, both in Drosophila and
in mammals, through binding to another cadherin family protein, called Fat [36]. As of yet, no
role for Dachsous in regulating metabolism or obesity has been reported in any organism.

Interestingly, we also found 3 genes that, when down-regulated, gave leaner, rather than fat-
ter, flies as evidenced by decreased TAG levels (nup133, Scox, and cht7; Fig 2C). The first
encodes the nucleoporin, nup133, which belongs to the Y-complex (also known as Nup107-
160 complex), an important component of the nuclear pore complex scaffold [37]. Although it
seems surprising that mutations in a nuclear pore protein, which is required in most if not all
cell types, would be involved specifically in the regulation of body fat, mutations in a number
of nuclear pore components have been linked to human hereditary diseases [38]. The second
gene, Scox (human SCO1), encodes a copper chaperone involved in the synthesis of cyto-
chrome C oxidase in mitochondria. Scox mutant larvae were found to be growth defective
[39], a phenotype comparable to what we observe after Scox knockdown. Down-regulation
of the third gene, Chitinase 7 (Cht7; human CHIT1), also resulted in flies with less TAG.
Knockdown of the remaining 16 genes did not result in a significant difference in TAG levels
(Fig 2D).

Role of Dachsous, Fat, and Hippo pathway

Of the genes that increased TAG levels, we focused further attention on the cadherin family
member, Dachsous, which has been well studied in Drosophila and for which interacting part-
ners have been characterised (Fig 3A). The extracellular domain of Dachsous interacts with
the transmembrane protein Fat [35]. Initially identified almost 100 years ago, fat mutants were
so-named due to their “short, thick thorax and abdomen” [40-42]. In spite of its mutant phe-
notype, a role for fat in obesity has not been reported previously. To test whether Fat, and any
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Fig 3. Dachsous, Fat, Four-jointed, and Hippo regulate Drosophila obesity. (A) A schematic of Dachsous and Fat signalling
pathways. (B) TAG levels normalised to level of protein upon ubiquitous knockdown of Drosophila dachsous, fat, or fj in adult
flies. Each data point corresponds to an average of 3 technical replicates of TAG normalised to protein levels obtained from 10
male flies. Results obtained from multiple replicates are shown for knockdown of both genes. (C) Fly weight upon ubiquitous
knockdown of Drosophila dachsous, fat, or fj. Each data point corresponds to the weight of 8 to 10 males normalised to number
of flies. TAG levels normalised to level of protein in adult male flies upon adult specific (D) fat body and (E) pan-neuronal
knockdown of dachsous, fat, and hpo. Adult-specific pan-neuronal knockdown of ds, fat, or hpo decreases food intake and
excretion on fat and hpo knockdown (F, G), increases survival upon starvation after fat knockdown (H), and does not affect
climbing ability (I). Results obtained from multiple replicates are shown for all genes. Error bars represent SEM; *p < 0.05,

“*p < 0.01 and ***p < 0.001 versus control by Mann-Whitney U Test. The underlying data for this figure can be found in S7
Table. Fig 3A was “created with BioRender.com.” TAG, triacylglyceride.
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of the regulatory pathways in which Dachsous and Fat interact, regulates obesity we knocked
down expression of fat in adults by RNAi. Promisingly, we found that knockdown of fat also
increased TAG levels (Fig 3B).

The interaction between Dachsous and Fat is regulated by phosphorylation in the Golgi of
their extracellular cadherin repeats by a third protein, Four-jointed (Fj) [43,44] (Fig 3A). We
found that ubiquitous knockdown of fj also increased TAG levels (Fig 3B). Knockdown of ds,
fat, or fjled to an increase in body weight of the adult male flies (Fig 3C). Our results suggest
that Dachsous, Fat, and Four-jointed together regulate one or more pathways, which, when
disrupted, lead to obesity.

In Drosophila, Fat and Dachsous regulate the evolutionarily conserved Hippo signalling
pathway, a key pathway in the control of cell proliferation and organ size [35,45]. Initially dis-
covered in Drosophila, the core of the Hippo pathway consists of the kinases Hippo (MST 1/2
in mammals) and Warts (LATS 1/2), which block nuclear entry of the transcriptional coactiva-
tor Yorkie (YAP/TAZ) [46]. Interestingly, in Drosophila, Hippo signalling has been found to
regulate fat accumulation in the fat body, an organ analogous to the human adipose tissue and
liver [47]. Therefore, we hypothesised that perturbation of the Hippo signalling pathway
would result in obese flies.

To test this, we down-regulated the Hippo pathway by ubiquitous knockdown of the hpo
gene or by expression of the active form of yki (yki*®) [48] in adults, using the conditional tub-
GAL4;tubGALS0" system. After expression of hpo-RNAi or yki** (S1A-S1C Fig), we found
that TAG levels were dramatically reduced, rather than increased, when compared to controls
(S1D Fig). This was accompanied by significant degeneration of internal organs (S1C Fig) and
areduction in protein levels (S1E FIg). These phenotypes have previously been reported after
intestinal expression of yki*“ and are due to cachexia (organ wasting) [49]. As we did not
observe cachexia-like organ wasting after knockdown of Dachsous or Fat, we infer that they do
not function upstream of Hippo signalling in the context of cachexia.

Dachsous, Fat, and Hippo act in the nervous system to regulate obesity

Whereas the loss of Hippo signalling throughout the organism resulted in cachexia, down-reg-
ulation of Hippo in the fat body alone has been shown to increase body fat [47]. Therefore, we
tested whether tissue-specific knockdown of ds or fat would lead to obesity. We knocked down
ds, fat, or hippo specifically in the fat body (Ipp-GAL4) in adults and assessed TAG levels.
Encouragingly, fat body-specific knockdown of hippo increased TAG levels (Fig 3D) as previ-
ously reported [47]. However, we observed no significant change in TAG levels after fat body-
specific knockdown of fat. Furthermore, knockdown of ds, surprisingly, led to decreased TAG
(Fig 3D). Together, our results suggest that, in the context of increased adiposity, signalling
through ds/fat is not coupled to the Hippo pathway in the fat body.

The brain plays a central role in integrating external and internal stimuli to maintain energy
homeostasis. For example, components of the leptin and melanocortin signalling pathways
function in the brain to regulate energy balance [2]. Furthermore, the brain plays a critical role
in regulating fat storage in Drosophila [17,50,51]. Therefore, we knocked down ds, fat, or hippo
specifically in the nervous system of adult flies (elaV-GAL4) and assessed adiposity. We
observed significant increases in TAG levels upon knockdown of hippo or fat and a small but
significant increase after knockdown of ds (Fig 3E). We conclude, therefore, that Hippo path-
way activity in the nervous system regulates adiposity.

We examined the physiological basis of the obesity phenotype observed after adult-specific
neuronal knockdown of ds, fat, or hpo by assessing 4 physiological parameters: feeding behav-
iour, excretion, starvation resistance, and locomotive ability. First, feeding assays were carried

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001255 November 8, 2021 9/22


https://doi.org/10.1371/journal.pbio.3001255

PLOS BIOLOGY

Novel candidate human obesity genes

out using the “Capillary Feeder assay” (CAFE assay) [52]. Surprisingly, we found that fat or
hpo knockdown significantly decreased food intake while there is a smaller reduction on ds
knockdown (Fig 3F). Interestingly, these results parallel findings from studies on Akh- and
AkhR-deficient flies, where obesity and increased TAG levels were accompanied by decreased
food intake [53]. Second, we carried out CAFE-excretion studies [54] and found reduced
excretion upon fat or hpo knockdown and no significant difference on ds knockdown, comple-
menting our observations with feeding behaviour (Fig 3G).

Third, starvation survival assays, where flies were food deprived (water only) to assess their
capacity to mobilise energy reserves. We found that neuronal knockdown of fat led to signifi-
cantly increased starvation resistance as compared to controls, as might be expected from
increased TAG levels (Fig 3H). However, no significant change in starvation survival was seen
after ds or hpo knockdown. A more detailed assessment of metabolic parameters would be
required to gain further insights into this observation.

Fourth, we assessed locomotive ability with a climbing assay that makes use of the negative
geotaxis behaviour of flies and provides a quantitative measure [55]. Adult-specific neuronal
knockdown of ds, fat, or hpo did not significantly alter climbing ability (Fig 3I) demonstrating
that general locomotion is not perturbed.

Variants in human orthologues of genes identified in the Drosophila screen

To test whether rare variants in the human counterparts of Dachsous, Fat, Four-jointed, and
Hippo, or their signalling pathways, contribute to severe human obesity, we performed
exploratory analysis using WES data available on 927 severely obese individuals from the
GOOS cohort who are of UK Caucasian ancestry from the GOOS cohort (referred to as the
SCOOP cohort in previous studies) [56,57] and 4,057 healthy volunteers INTERVAL
cohort) (S3 Table). We first examined DCHSI and FAT4 for gene-based burden of rare
(MAF < 0.1%) and very rare (MAF < 0.025%) variants. As whole-gene analysis can mask
effects that may be constrained to regions within a gene, we also performed an additional
exploratory analysis of very rare variants in localised coding regions using overlapping win-
dows of width 1,500 bp (sliding window analysis; Methods). Two regions in FAT4 reached
Benjamini-Hochberg (BH)-adjusted p < 0.05 (adjusting for multiple sliding windows within
the gene) with an odds ratio (OR) > 1 (Fig 4A, S4 Table). These regions encompass the
FAT4 transmembrane domain and cadherin repeats 28 to 30 (Fig 4A and 4B, regions R1 to
R2). Further work will be needed to assess whether these genetic findings replicate in other
cohorts.

We identified a set of genes encoding further components of the human Hippo signalling
pathway and performed gene-based analysis of very rare (MAF < 0.025%) and rare
(MAF < 0.1%) variants in severely obese versus controls (S3 Table). While we are underpow-
ered to formally test for enrichment of rare variants in any single gene in this set, we observed
nominal significance for the burden of rare variants in TAOK2 (S3 Table). Exploratory sliding
window analysis of very rare variants across the gene set also indicated a region of TAOK2
(Fig 4C and 4D, S4 Table). Although the expected number of variants in obese cases was
small, we hypothesise that a region of TAOK2 encompassing the transmembrane domains
may be enriched for very rare variants in severely obese cases (Fig 4C and 4D).

To test these hypotheses in an independent cohort, we interrogated very rare variants
(MAF < 0.025%) in TAOK2, DCHSI, and FAT4 in approximately 50,000 exomes from UK
Biobank (Methods) using a case-control approach for severe obesity (n = 925 cases, BMI > 40
kg/mz; n = 46,673 controls, BMI < 40 kg/mz). We did not find an association of rare variants
in DCHS1 or FAT4, nor in the specific regions of DCHSI or FAT4 that we interrogated, with
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Fig 4. Rare variants in DCHS1, FAT4, and the Hippo pathway in severely obese people and healthy controls. (A) Locations of very rare (MAF < 0.025%)
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value < 0.05 after BH adjustment for multiple sliding windows; grey (R3-R4), nominal p-value < 0.05. (B) Cartoon illustrating DCHS1-FAT4 and the location of regions
R1-R4, as (A). (C, D) TAOK? sliding window analysis of very rare variants (MAF < 0.025%) (S4 Table). (E) TAG levels normalised to level of protein in adult male flies
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severe obesity in UK Biobank (S5 Table). These observations will require further study in
larger cohorts.

We did find a nominally significant burden of very rare coding variants in TAOK2 in peo-
ple with severe obesity (n = 225 markers, p = 0.001, SKAT-O test; #case carriers = 14, #control
carriers = 426, OR = 1.6 (0.9 to 2.8), p = 0.08, Fisher’s exact test) (S5 Table, S2 Fig). Analysis
of the 2 specified regions of TAOK?2 also indicated an association of rare variants in these
regions with severe obesity (S5 Table, S2 Fig). Interestingly, TAOK2 is located on human
chromosome 16p11.2, a region in which deletions are associated with neurodevelopmental dis-
orders and obesity [58,59].

The Drosophila orthologue of TAOK2, Tao, is a Sterile 20 family Serine/Threonine kinase
that directly phosphorylates and activates Hippo [60,61]. Given the association between rare
variants in TAOK2 and severe obesity, we assessed the functional significance of this finding
by knockdown of tao expression in Drosophila. We found that ubiquitous knockdown in
adults significantly increased TAG levels (Fig 4E), further supporting the role of Hippo signal-
ling in regulating adiposity.
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Discussion

Here, we demonstrate the success of functional screens in Drosophila in assessing the likely
pathogenicity of rare variants in human genes associated with severe obesity and in predicting
novel candidate human obesity genes and signalling pathways. Obesity is a systems-level disor-
der arising from complex interactions between multiple organ systems. An in-depth under-
standing of obesity benefits from studies in simple model organisms where this integrative
network can be comprehensively examined in vivo. The use of Drosophila as a model system
enables the investigation of genetic pathways underlying obesity at a whole organism level.
This work provides a template for identifying genes carrying pathogenic variants relatively
rapidly and for investigating the signalling pathways within which these proteins act. In this
way, the identification of candidate obesity causing genes from severely obese people has the
potential to uncover entire signalling pathways linked to obesity.

We identified homozygous coding variants in a large number of genes by studying people
with severe obesity including those from consanguineous families. From 61 genes studied, we
identified 7 genes that, when knocked down in Drosophila, lead to changes in whole body
TAG levels: itpr, calpA, sdk, ds, nup133, scox, and cht7. Six of the 7 genes had not been shown
previously to regulate adiposity in either Drosophila or humans.

Using an inducible RNAi system for gene knockdown, we were able to avoid developmental
defects that might be associated with a reduction in gene activity. This proved to be significant,
as we found that unrestricted knockdown of ds resulted in early lethality. From our results, we
inferred that mutations in 4 of the human genes (IP3R, CAPNS8, SDK1, and DCHSI) were likely
to be loss of function or hypomorphic variants, as knockdown of orthologous genes in Dro-
sophila raised TAG levels. Based on the reduction in TAG observed on knockdown of nup133,
scox, and cht7, we hypothesise that the human variants in these genes may be gain-of-function
mutations. This could be tested in Drosophila by overexpressing the wild-type genes or by
introducing the mutations found in the human variants into the corresponding Drosophila
genes.

Knockdown of ds, a member of the Hippo signalling pathway, resulted in obesity prompt-
ing us to investigate other proteins acting in the Hippo pathway. This proved fruitful as we
were able to identify 3 further genes controlling adiposity in Drosophila: fat, fj, and hippo. We
found that neuronal knockdown of ds, fat, and hippo led to increased TAG levels in adults.
Previous genome-wide association studies of BMI in humans have provided strong evidence
for a role of the nervous system in obesity susceptibility in the population [62] as well as in
monogenic obesity. Identifying the specific neurons in which the Hippo pathway acts will help
to reveal the neuronal circuitry regulating adiposity.

Surprisingly, and contrary to expectation, we observed a decrease in food intake after
knockdown of fat, hpo, or ds. This is similar to observations of Akh- and AkhR-deficient flies,
where increased TAG levels are accompanied by decreased food intake [53]. Although the
physiological basis for this hypophagia is not known, the study found that Akh mutants have
increased expression of the orexigenic genes NPF and CChamide-2. This could be a compensa-
tory homeostatic increase but suggests that the effect of Akh on feeding is independent, or
downstream of, these orexigenic peptides. Additionally, AKH signalling was found to regulate
expression of other metabolic genes such as Corazonin, Limostatin, and Insulin-like peptides
[53]. Similar mechanisms might be operating in the case of ds, fat, and hippo and will require
further investigation.

Our study serves as a proof of principle that Drosophila functional screens are an efficient
and effective way to assess the likely pathogenicity of rare exonic variants associated with
human obesity. With this approach, we were not only able to identify 7 genes most likely to
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regulate human adiposity, we were also able to predict further novel candidate human obesity
genes, for example, TAOK2, which we then showed to be functionally relevant as a regulator of
obesity in Drosophila. Future work to generate precision obesity models incorporating patient-
specific genetic mutations using CRISPR/Cas9 technology will elucidate further the role of the
variants and their associated genes in the regulation of obesity.

Methods
Human studies

All human studies were approved by the Cambridge Local Research Ethics Committee (03/
103), and all participants and their parents (for children below the age of 16) gave written
informed consent. All research was conducted in line with the principles outlined in the Decla-
ration of Helsinki.

Whole-exome sequencing and variant annotation for autosomal
homozygous variants

Exome sequencing and variant-calling was performed in 2 batches (Beijing Genomics Insti-
tute, BGI). For 50 patients, BGI performed exome sequencing (Agilent 51M exon capture kit),
hg19 alignment, variant-calling (UnifiedGenotyper), and variant quality filtering based on
GATK Best Practices [63]; variants were excluded if read-depth DP < 4 or (MQO > 4 and
MQO/DP > 0.1); sample coverage (%target at read-depth >20x: median of samples = 92.4%,
min = 89.4%; >4x: median = 98.9%, min = 97.6%). For 23 patients, BGI performed exomes
sequencing (SureSelect All Exon 38M exon capture kit) at lower coverage (%target at read-
depth >20x: approximately 60%; >4x: approximately 93%); reads were then aligned to hg19
followed by variant-calling (HaplotypeCaller) and hard-threshold variant quality filtering
according to GATK v3.7 Best Practices [63], and variant-level quality control was performed
using hard-threshold filtering to retain SN'Vs (QD > 2, MQ > 40, FS < 60, SOR < 3,
MQRankSum > —12.5, ReadPosRankSum > -8) and indels (QD > 2, ReadPosRankSum >
—20, InbreedingCoeff > —0.8, FS < 200, SOR < 10). Runs-of-homozygosity analysis was per-
formed from bam files using H3M2 [64] with default parameters. Variants were filtered to
retain homozygous variants using SelectVariants (isHOMVar) from GATK v3.7, annotated
for gnomAD exomes [65] using Annovar (version 1 February 2016; hg19_gnomad_exome,
version 11 March 2017) and filtered to retain homozygous variants with MAF <1% in gno-
mAD exomes (gnomAD_exome_ALL < 0.01 or missing). The resulting autosomal homozy-
gous variants were annotated using Ensembl VEP v90 [66] with respect to Ensembl canonical
transcripts and filtered to retain nonsynonymous SNVs, splice region variants, and indels.
Variants with MAF <1% among all exomes available in gnomAD and <1% in the gnomAD
South Asian subpopulation were retained. Further filtering of variants against existing and
emerging population sequencing datasets will be required to facilitate prioritisation of variants
for further studies. After these variant filtering steps, genes were taken forward for homology
analysis in Drosophila if they contained a variant annotated as VEP “Impact = HIGH” (result-
ing in VEP “Consequence” of “stop-gain,” “frameshift_insertion” or “frameshift_deletion” in
this variant set), or if at least 2 affected individuals carried a nonsynonymous SNV or

“Impact = HIGH” variant.

Rare variants in SCOOP-INTERVAL exomes

Whole-exome variant calls from the SCOOP and INTERVAL cohorts were obtained from the
UK10K-INTERVAL study as previously described [67]. Details of sequencing and variant-
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calling can be found elsewhere [57]. N =927 SCOOP cases and n = 4,057 INTERVAL controls
survived QC as previously described [57] and were used in this study.

For this study, SCOOP-INTERVAL variants were annotated using Ensembl VEP v96 [66],
and population frequencies for additional population studies were obtained using Annovar
(version 16 April 2018; hgl9; gnomad_genome, gnomad211_exome, gnomad211_genome,
popfreq_all 20150413, abraom, gme, hrcrl, kaviar_20150923) [68]. Variants were defined as
rare (MAF < 0.1%) or very rare (MAF < 0.025%) if the allele frequency thresholds at that posi-
tion were satisfied in every queried population and among the SCOOP-INTERVAL samples
used in this study. Exonic nonsynonymous or splice region variants were defined using VEP
filter “(Impact in HIGH,MODERATE) or (Consequence is splice_region_variant)” with
respect to the Ensembl canonical transcript. We defined a further nested category of variants
summarised as “high impact or predicted damaging,” defined as variants with Ensembl VEP
impact = HIGH (including stop-gains, stop-loss, and frameshift variants) and SNVs predicted
to be damaging by both SIFT and PolyPhen2 (SIFT “deleterious” and PolyPhen2
“probably_damaging”).

Gene-based and sliding window analysis was performed for a selected list of genes for fur-
ther study in SCOOP-INTERVAL exomes. The selected genes comprised components of the
Hippo pathway and the genes in our TAG Drosophila screen.

Gene-based analysis of rare (MAF < 0.1%) or very rare (MAF < 0.025%) exonic nonsynon-
ymous or splice region variants in SCOOP-INTERVAL were performed using SKATBinary
(method = “burden” or “SKAT-O”, method.bin = “UA”) from R package SKAT (v2.0.0 (Lee
and colleagues, 2012; SKAT v2 package [69]. P values are reported before and after adjustment
for multiple tests (genes) using Benjamini-Hochberg (BH) and Holm methods.

Sliding window analysis of very rare (MAF < 0.025%) exonic nonsynonymous variants in
SCOOP-INTERVAL were performed in overlapping windows of the Ensembl canonical tran-
script using custom scripts. Window size was 1,500 bp (corresponding to 500 aa), and sliding
windows were overlapped by 600 bp (200 aa). Variants were included in the analysis if the
VEP annotated “Protein_position” was located within the window. Burden tests within sliding
windows were performed using SKATBinary (method = “burden”, method.bin = “UA”) as for
the gene-based analysis described above. Multiple testing corrections (BH and Holm methods)
are reported with respect to all sliding windows in the selected gene list (approximately 3,200
windows in total).

Rare variants in UK Biobank 50k FE exomes and severe obesity

This research was conducted using the UK Biobank Resource under Application Number
53821. We used the UK Biobank PLINK-formatted variant files from the FE exome pipeline
(UK Biobank Field 23160; n = 49,960 individuals) [70]. Variant annotation was performed
using Annovar (version 16 April 2018; hg38; refGene, ensGene, gnomad211_exome) [68] and
filtered to retain nonsynonymous exonic or splicing variants. Variant filtering for population
MAF was based on the annotation field “AF_popmax.” Relatedness was obtained from the UK
Biobank Genetic Data resource (ukbgene rel). BMI (kg/mz) was obtained from the UK Bio-
bank initial assessment visit (UK Biobank Field 21001, Instance 0), and this value was available
to us for n = 47,599/47,766 unrelated individuals with FE exomes (kinship < 0.0442). Because
this study was focused only on very rare variants and severe obesity (BMI > 40 kg/m?), we
included all unrelated individuals with available BMI regardless of age, sex, self-reported eth-
nicity, reported genetic ethnicity, and genetic principal components of common variation and
did not use as covariates in formal burden tests. Fisher’s exact tests were performed for cases
(severely obese, BMI > 40 kg/mz) for versus controls (BMI < = 40 kg/mz). Burden tests and
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SKAT-O tests for cases and controls were performed as described above using variants result-
ing in an amino acid change in RefSeq transcripts NM_003737 (DCHSI), NM_024582 (FAT4)
or NM_016151 (TAOK2).

Homozygous rare variants in Genes & Health study cohorts

Variant calls (VCFs) from exome sequencing of 8,000 people from the Genes & Health study
were downloaded from the European Genome-phenome Archive at the European Bioinfor-
matics Institute (Study ID EGAS00001001565, Dataset ID EGAD00001004581). Approxi-
mately 3,781 people were from the East London Genes & Health (ELGH) cohort [71]
(Bangladeshi and Pakistani, with self-stated related parents); 2,791 people from the Born in
Bradford cohort (Pakistani, mostly self-stated or DNA autozygous individuals); and 1,428 peo-
ple from the Birmingham cohort (Pakistani, unselected) [7]. About 86/8,086 samples in the
downloaded VCFs originated from a rare disease study and were excluded. Variants were fil-
tered to retain SNPs and indels with {PASS, FS < 30, GQ > 10}. The provided variant annota-
tion (Ensembl VEP v85, hg38) was used to filter variants to retain homozygous exonic
nonsynonymous or splice donor/acceptor variants (VEP Impact in “HIGH,MODERATE”
with respect to the Ensembl canonical transcript). Population frequency thresholds were
defined with respect to the provided annotation for 1000G and ExAC subpopulations and the
allele frequency among ELGH samples inspected in this study (56 Table).

Drosophila stocks and media

Transgenic RNAi lines (Harvard TRiP library; www.flyrnai.org), UAS- yki®® and elaV- GAL4
were obtained from BDSC, itpr RNAi strain (1063R-2) from the National Institute of Genetics,
Kyoto, Japan. tubulin-GAL4, tubulin-GAL80" driver line was a gift from Dr Timothy Megraw.
Ipp-GAL4 line was a gift from Dr Suzanne Eaton. Male transgenic RNAi flies were crossed to
either tubulin-GALA4, tubulin-GAL80" or tubulin-GAL80"; elaV- GAL4 or tubulin-GAL80";
Ipp- GAL4 virgin females. The progeny were allowed to develop at 18°C until eclosion of adult
flies. Adults were then collected and transferred to 29.5°C for 12 days with the flies transferred
to fresh food every 2 to 3 days. Males of the correct genotype were then collected in batches of
10, weighed and flash frozen and stored at —80°C for further analysis.

Flies were reared on standard fly food containing, per litre, 7.5 g agar (Oxoid agar number
2; LP0012), 55 g glucose (Fischer chemicals; CAS 50-99-7), 50 g dry yeast (Kerry; 20050488),
35 g wheat flour (Cann Mills Stoneground), 25 ml of 10% Nipagin (Chemlink Speciality;
CLA-CHIGINM), 4 ml Propionic acid (Merck; 79-09-4), and 10 ml Penicillin/Streptomycin
(GIBCO; 15140-122).

TAG analysis

The TAG assay was adapted from [72]. Multiple batches of 10 male flies each were processed
for TAG analysis. A small scoop of zirconium beads and 300 pl of PBS, 0.05% Tween was
added to each tube. The samples were then homogenised using a Precellys homogeniser. For
protein estimation, 40 ul of homogenised sample was immediately collected and frozen. The
remaining sample was heat inactivated for 10 minutes at 70°C. A volume of 200 pl of the heat-
inactivated sample was transferred to fresh tubes. A volume of 4 l of lipase (25 KU/mL;
Merck; 437707) was added to each tube and mixed. The samples were then kept at 37°C over-
night. After overnight incubation, the samples were centrifuged at 14,000 rpm for 3 minutes,
and the supernatant collected. Each sample was then put in triplicates in a 96-well plate. Differ-
ent concentrations of glycerol were used as standards. Prewarmed Free Glycerol reagent
(Merck; F6428) was then added to the 96-well plate, and the plate was incubated at 37°C for 6
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minutes. After a brief spin, absorbance measurements were taken at 540 nm using a Hidex
Sense Plate Reader. The Bradford assay was used for protein estimation. Briefly, pre-heat-inac-
tivated sample was centrifuged, and the supernatant put in triplicates in a 96-well plate. Brad-
ford reagent was then added, and absorbance measurements taken at 600 nm.

Physiological assays

For all assays, male transgenic RNAI flies were crossed to tubulin-GAL80"; elaV- GAL4 virgin
females. The progeny were allowed to develop at 18°C until eclosion of adult flies. Adults were
then collected and transferred to 29.5°C for 12 days with the flies transferred to fresh food
every 2 to 3 days. Males of the correct genotype were then collected in batches of around 10
flies each for the assays.

Food intake was quantified using a modified CAFE assay [52] carried out at 29.5°C. CAFE
chambers were made from empty standard fly vials and fly plugs soaked in water (to maintain
CAFE chamber humidity and serve as a source of water). A 5-ul capillary micropipette
(Hirschmann) containing liquid food (2.5% sucrose, 2.5% inactivated yeast, and 0.5% blue
food dye (FD&C Blue 1; Merck) was inserted through the fly plug in each chamber. Flies were
left overnight for habituation with a capillary of liquid food (without blue dye). The capillary
was replaced with liquid food (with blue dye), and food consumption was recorded after 6
hours. Excretion studies were carried out using CAFE-excretion assays [54] with fresh capillar-
ies containing liquid food (without blue dye) inserted into the same CAFE chambers for 18
hours. The excreted blue waste that accumulated on the vials was then collected by adding 1
ml of water to each vial and absorbance measured at 630 nm. For each cross, 10 biological rep-
licates (10 male flies per replicate) were assessed.

Starvation survival assays were carried out at 29.5°C by keeping male flies in empty stan-
dard fly vials. Fly plugs soaked in water provided a source of water and maintained humidity
and were hydrated frequently. The number of dead flies was scored every 6 to 10 hours. For
each cross, 3 to 6 biological replicates (10 male flies per replicate) were assessed.

Climbing assays to assess for locomotion defects are based on the negative geotaxis behav-
iour of flies [55]. These were carried out using 6 empty standard fly vials that were stuck next
to each other on a flat ruler. Male flies in batches of around 10 were transferred into each vial,
and another empty vial was then sealed over. The fly vials were tapped together to displace the
flies to the bottom of the vial, and video recordings were made of their climbing behaviour.
The number of flies crossing a 5-cm mark on the bottom vial in 10 seconds was counted. Mul-
tiple trials were conducted for each batch with 1 minute of recovery time in between. Climbing
activity was determined by dividing the average number of flies that crossed the target line by
the total number of flies in that batch.

Supporting information

S1 Fig. Ubiquitous knockdown of Hippo signalling leads to cachexia. (A, B) Expression of
hpo-RNAi or yki* results in flies with a “bloated” abdomen. (C) Dissection of the bloated flies
revealed significant degeneration of internal organs as compared to controls. (D) TAG levels
normalised to level of protein and (E) protein levels upon ubiquitous knockdown of ipo or
misexpression of activated yki in adult flies. Each data point corresponds to an average of 3
technical replicates of TAG normalised to protein levels obtained from 10 male flies. Results
obtained from multiple replicates are shown for all genes. Error bars represent SEM;

*p < 0.05,**p < 0.01, and ***p < 0.001 versus control by Mann-Whitney U Test. The underly-
ing data for this figure can be found in S7 Table. TAG, triacylglyceride.

(EPS)
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S2 Fig. TAOK?2 very rare variants (MAF < 0.025%) variants causing amino acid changes in
the UK Biobank 50k FE exomes. Variants are displayed with respect to the location of the
amino acid change (x-axis) versus BMI (y-axis; Methods). Regions R5 and R6 correspond to
(Fig 4C). Gene-based and region-based association tests for cases (BMI > 40) versus controls
(BMI < = 40) are shown in (S5 Table). BMI, body mass index; MAF, minor allele frequency.
(EPS)

S1 Table. Anthropometric measurements and associated phenotypes from 73 people from
a cohort with severe obesity.
(XLSX)

S2 Table. Genes identified in severely obese probands and their selection for the screen in
Drosophila.
(XLSX)

$3 Table. Gene-level burden analysis of rare (MAF < 0.1%) or very rare (MAF < 0.025%)
exonic nonsynonymous variants in Hippo signalling components using the SCOOP-IN-
TERVAL dataset.

(XLSX)

$4 Table. Sliding window burden analysis of very rare (AF < 0.025%) nonsynonymous var-
iants in SCOOP-INTERVAL.
(XLSX)

S5 Table. Gene-based and region analysis in UK Biobank 50k FE exomes.
(XLSX)

$6 Table. Summary table of rare alleles with at least 1 homozygous variant carrier.
(XLSX)

S7 Table. Phenotypic characterisation of human obesity candidate genes in Drosophila:
data for Figs 2B-2D, 3B-31, 4E, and S1D and S1E. The underlying data for S2 Fig is provided
in S5 Table. The raw data for S2A and S2B Fig (UK Biobank 50K FE exomes and BMI mea-
surements) were obtained under agreement with UK Biobank and the Project ID and Data
Field IDs are in the Methods section.

(XLSX)
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