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This project has made progress towards the development
of a novel alternative reinforcement technique for concrete
structures with complex geometries, which are difficult to
reinforce with conventional steel. Fibre-reinforced poly-
mers (FRP) are woven into geometrically appropriate rein-
forcement cages to provide the required strength exactly
where it is needed. Automated fabrication of the reinforce-
ment utilises a modification of the filament winding tech-
nique. Being extremely lightweight, the resulting wound-
FRP (W-FRP) cages are well suited to automation of the
construction process, as they can be delivered ready for
casting in optimized concrete elements. This is a key ad-
vance in research progress towards achieving minimum
embodied energy, optimised, concrete structures. Experi-
mental tests conducted on full-size W-FRP reinforced con-
crete beams demonstrate the reliability of the solution pro-
posed, showing a new frontier for sustainable and durable
reinforced concrete structures.

Flexible formworks use a system of flexible sheets of high
strength, lightweight fabric to allow complex concrete shapes
to be easily cast, thus facilitating the construction of optimised

structures [1]. However, the need to assemble quite complex
reinforcing cages together with the low durability of steel re-
inforcement in thin walled structures, are two reasons why
large-scale deployment of this technology has not yet oc-
curred. The use of FRP as internal reinforcement can help to
overcome these kinds of issue since it can be accurately
shaped during manufacture according to the final design de-
mands.

Serviceability limit states, rather than ultimate limit states, nor-
mally govern the design of FRP reinforced structures, with the
control of deflection being very often the most decisive check
in the design process [2, 3]. Additionally, the lack of yielding
of FRP reinforcement requires the design of over-reinforced
sections to obtain concrete crushing flexural failure and pre-
vent sudden FRP rupture. This issue is even more problematic
when designing optimized structural shapes, which lead – by
definition – to slender and deformable structures. 

Another relevant design problem is modelling the mecha-
nisms of shear resistance in FRP reinforced concrete mem-
bers. Shear failure of reinforced concrete structures is brittle
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Fig. 1: Design Method
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and can be tremendously sudden and dangerous when deal-
ing with FRP shear reinforcement [4-6]. Furthermore, the most
up-to-date design codes do not provide specific guidance to
analyse the shear strength of non-prismatic concrete mem-
bers [7].

Design

To develop a model that can efficiently predict the structural
behaviour of complex structural elements and consequently
perform the structural optimization of flexibly–formed con-
crete beams reinforced with FRP, a method of analysis with
broad applicability was developed. The geometry of the fab-
ric formed member and the distribution of the reinforcement
was modelled in a closed form allowing for variation in the
section dimensions along the member length. The optimiza-
tion parameters aim to obtain the minimal mass of concrete
and observing the capacity design requirements as per the
mostly recognized design codes [8, 9].

The computational procedure followed, suitable for statically
determinate structures is briefly outlined in Fig. 1. Additional
details of the design method can be found in [10].

The code produces a ‘.stl’ output file of the designed beam,
which details all the information pertaining to the geometry
of the structural elements and is utilised in the automation of
reinforcement construction.
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Manufacturing 

Computer controlled winding of impregnated carbon fibres
around a set of FRP bars provides the opportunity to obtain
durable, lightweight, and ready-to-use reinforcement cages. 
The manufacturing of web reinforcement is operated by
means of a process based on the filament winding fabrication
technique, which consists on wrapping continuous fibres
under tension over a rotating mandrel. As the mandrel ro-
tates, a carriage moves horizontally to lay down CFRP fibres
in the designed pattern. After the required number of layers
are wound, the reinforcement cage is cured and subsequently
removed from the mandrel. This method of manufacturing
provides a satisfactory control over fibre placement and uni-
formity of the material structure and it is generally used to
produce continuous hollow shapes with constantly uniform
cross section. 
In the present application, curved CFRP bars responsible for
providing the flexural strength to the concrete beams are at-

tached to the mandrel according to the designed reinforce-
ment geometry. The manufacturing system has sufficient con-
trol to allow the winding of any number of carbon tow layers
in the form of spirals with variable cross section (Fig.2). 

After both the winding and curing processes occur, the rein-
forcing bars are maintained in the curved configuration by the
cured wound reinforcement (Fig. 3). Details of the raw mate-
rials used can be found in [11].

Flexibly Formed Beams 

With the aim of validating both the optimization procedure
and the W-FRP reinforcement cage manufacturing method,
eight FRP reinforced fabric formed beams were designed and
tested. The adopted static scheme is a simply supported
beam with a three- meter span and a half-meter overhang on
each end, subject to a uniformly distributed load (see Fig. 4).
The design dead load was 2.5 kN/m and design live load was
7.5 kN/m. The design concrete strength was C30/37. Longi-
tudinal reinforcement was provided by GFRP bars in the top
and CFRP bars in the bottom of the section.

Two different study cases were taken in consideration:
- The first set of beams (Set J – beams J.0, J.2, J.3-3, J.6) is

intended to simulate a precast fabric formed joist sup-
porting a lightweight floor (e.g. all-FRP or timber floor).

- The second set of beams (Set T – beams T.0, T.2, T.2-2,
T.4) aims to reproduce the use of a precast fabric formed
beam with an in-situ casting of a concrete floor. In the ex-
periments performed, the beam and the slab elements
were cast together for ease of construction. 

A 3D visualization of the beam’s topology, as generated by
the design code, is also shown in Figures 5a and 5b. Each set
is composed of four beams having identical concrete geom-
etry and longitudinal reinforcement but different W-FRP shear
reinforcement. Whereas they all satisfy the first three points
of the above-mentioned computational procedure, only
beams J.6, J.3-3, T.4, and T.2-2 have the required shear
strength to fail in flexure. 

The wound reinforcement in beams J.3-3 and T.2-2 is quanti-
tatively similar to the one employed in beams J.6 and T.4, re-
spectively. However, it is arranged in two shifted patterns, aim-
ing at increasing the wound reinforcement diffusion and ide-
ally increase the overall efficiency of the cage.

Fig. 2: Filament winding machine

Fig. 3: FRP optimized reinforcement cage

Fig. 4: Experimental setup

03a-Technology_050-067_en_Layout 1  06.09.17  11:05  Seite 64



CONCRETE TECHNOLOGY

Figure 6 illustrates the T.2-2 beam reinforcement. The first pat-
tern (highlighted in red) is composed by 2 layers arranged in
the same geometrical configuration employed in beam T-2 (2
layers) and beam T-4 (4 layers). The second pattern (high-
lighted in blue) is composed by 2 additional layers, having

the effect of halving the shear reinforcing spacing tough
maintaining the shear reinforcement ratio employed in beam
T-4. Similar criteria were used to design the reinforcement
employed in beam J.3-3.

Table 1: Details of the beams

description Set J Set T
beam length (mm) 4100 4100
clear span (mm) 3000 3000
flange width (mm) 300 900
flange thickness (mm) 60 60
web minimum width (mm) 85 85
beam depth at midspan (mm) 265 190
beam depth at supports (mm) 180 150
beam depth at ends (mm) 95 110
top reinforcement at supports (mm) 2 × #3 GFRP 3 × #3 GFRP
bottom reinforcement at midspan (mm) 3 × #3 CFRP 4 × #3 CFRP
concrete volume (m3) 0.14 0.27
wound CFRP layers (#) 0 / 2 / 6 / 3+3 0 / 2 / 4 / 2+2
Specimen ID J.0 / J.2 / J.6 / J.3-3 T.0 / T.2 / T.4 / T.2-2
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The essence of flexible construction is to secure the fabric on
a supporting frame in order to achieve the desired form once
the formwork is filled with concrete. In the present work, the
fabric is draped into a plywood supporting frame to shape
the non-planar lateral surface of the web. Control of the beam
elevation is achieved using a simple timber member (a “keel”),
pre-cut to the desired elevation. Fig. 7 shows the intrados of
a flexibly formed concrete beam. 

Further details of the method of construction and results of
the experimental tests can be found in [12].

Test Results

A synthesis of the experimental results obtained on each of
the tested beams and the relative analytic predictions are re-
ported in Table 2. Results obtained are sufficiently in agree-
ment with the predictions. Only beam T.0 exhibited an exper-
imental capacity significantly higher than predicted. 

Final Remarks

A new method of manufacturing CFRP shear reinforcement
for optimised concrete beams by winding carbon fibres
around a bundle of FRP reinforcing bars was developed. The
method is well suited to automation and mass production of
entire reinforcing cages. Fabric formworks and flexibility of
the winding process greatly reduces technical limitation on
the shapes that can be built. 

The effectiveness of the reinforcing material is established by
mean of flexural tests conducted on real scale optimized
beams subject to a uniformly distributed load. The results of
those tests support the following conclusions:
- The W-FRP, if used in requested quantity and in the ap-

propriate geometry, is able to prevent shear failure of
such members; 

- The existing FRP provisions can be conveniently used to
predict the behaviour of FRP optimized beams, through
a section-by-section analysis.

Fig. 5: 3D visualization of the beams: a) Set J; b) Set T

Fig. 7: Flexibly formed concrete beam.

Fig. 6: 3D visualization of beam T.2-2: two shifted patterns are distinguished by red and blue colours

Table 2: Materials strength, predicted failure and experimental failure

specimen Predicted UDLs at Failure Experimental Failure Predicted to Experimental 
Flexure Shear mode UDL UDL ratio
kN/m kN/m kN/m

J.0 73.2 25.1 Shear1 33.3 1.33
J.2 83.4 57.4 Shear2 59.0 1.03
J.6 72.3 76.7 Flexure3 87.7 1.21
J.3-3 72.3 84.9 Flexure3 73.1 1.01
T.0 60.2 18.1 Shear1 41.3 2.28
T.2 68.7 55.6 Shear2 63.9 1.15
T.4 59.4 70.6 Flexure3 60.0 1.01
T.2-2 59.4 75.0 Flexure3 70.1 1.18
1Shear Tension Failure; 2Shear Tension Failure and W-FRP rupture; 3Flexural failure due to concrete crushing; 4See Figure 3.
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Future work will build on the success of this project to en-
hance the optimisation and analysis procedures and intro-
duce pre- and post-tensioning and bespoke participating
formwork.
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