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Abstract 33 
The Anthropocene is characterized by unparalleled human impact on other species, potentially ushering in 34 

the sixth mass extinction. Yet mitigation efforts remain hampered by limited information on the spatial 35 

patterns and intensity of the threats driving global biodiversity loss. Here we use expert-derived information 36 

from the IUCN Red List on threats to 23,271 species, representing all terrestrial amphibians, birds and 37 

mammals, to generate global maps of the six major threats to these groups: agriculture, hunting & trapping, 38 

logging, pollution, invasive species, and climate change. Our results show that agriculture and logging are 39 

pervasive in the tropics, and that hunting & trapping is the most geographically widespread threat to 40 

mammals and birds. Additionally, current representations of human pressure underestimate overall pressure 41 
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on biodiversity, due to the exclusion of threats like hunting and climate change. Alarmingly, this is 42 

particularly the case in areas of the highest biodiversity importance.  43 
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Main text 44 
The world has entered the Anthropocene, characterized by unparalleled human impact on the global 45 

environment1,2, and associated with devastating biodiversity losses3,4. Despite this, we still have limited 46 

information about the spatial patterns and intensity of the threats responsible for this crisis5,6. This is 47 

particularly true for pressures such as over-exploitation, pollution, and invasive species, for which no 48 

suitable remotely sensed proxies exist7-9. Additionally, for threats where remotely sensed data are available, 49 

these measure physical processes such as habitat conversion or the expansion of infrastructure10-12. However, 50 

the specific impact on species and habitats does not necessarily scale with the intensity of the processes but 51 

is highly context specific13. As a result, existing representations of pressures may not adequately capture 52 

impacts on ecosystems and species, and lack the detail required to target conservation actions efficiently14,15. 53 

Better information on the spatial intensity of threats and how they affect species on the ground is critically 54 

important for improving conservation responses5. 55 

 56 

The IUCN Red List of Threatened Species™ (hereafter ‘Red List’) is one of the richest and most 57 

authoritative data-sources in conservation16 derived from tens of thousands of hours from expert volunteer 58 

contributors worldwide17. To date, over 100,000 species have been assessed against the IUCN Red List 59 

Categories and Criteria, including all amphibians, birds and mammals18. For assessed species, experts have 60 

evaluated the threats affecting individual species using a standardized method and classification scheme19. 61 

However, information on the spatial occurrence of threats affecting a given species within its distribution is 62 

not collected systematically and is limited to documenting whether the species is affected by a given threat 63 

anywhere within its range. Additionally, there are no comprehensive spatial summaries of these threats to 64 

species. 65 

 66 

Here we address these knowledge gaps through a novel approach to develop global maps for the six main 67 

threats affecting terrestrial amphibians, birds, and mammals (23,271 species in total assessed by the IUCN 68 

Red List): 1) agriculture, 2) hunting & trapping, 3) logging, 4) pollution, 5) invasive species (including 69 

pathogens such as chytrid), and 6) climate change4. To generate these maps, we utilize data from the 70 

thousands of species assessed in the Red List in a probabilistic framework which explicitly incorporates the 71 

spatial uncertainty introduced by only knowing that a species is affected somewhere in the range. Our 72 

approach is inspired by methods from citizen science, which face similar issues resulting from large 73 

quantities of data with unknown and varying precision of the individual observations. We first used a set of 74 

simulated threat maps, with the same properties as the Red List, to develop our model framework and assess 75 

different model-parameterizations ability to reproduce our simulated threat data (Extended Data Figure 1). 76 

Choosing the model which showed the highest concordance with the simulated data (Extended Data Figure 77 

2), we then mapped the impact probability of each of the six threats using the actual Red List data. Following 78 

this, we then evaluated the predictions of the best-fit model against two independent data sources; one on 79 
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threats assessed by experts within ca. 6,000 Key Biodiversity Areas (KBAs)20 and a dataset based on 80 

remotely sensed forest-change10. Both evaluations showed that our predictions were consistent with 81 

empirical data (Fig. S5-11), giving us confidence in the validity of our approach to map the impact of threats 82 

at a global scale.  83 

Results and discussion 84 

Major threats across taxa and space 85 

Our method estimates the ‘impact probability’, which is the probability that a randomly selected species 86 

occurring in a given grid-cell is impacted in that cell by a particular threat, while accounting for the spatial 87 

uncertainty inherent in the Red List data. Across the six threats, amphibians had higher average impact 88 

probabilities (median threat probability across cells, M = 0.11; 95% interval, I95% = 7×10-3-0.42) followed 89 

by mammals (M = 0.10; I95% = 0.04-0.21) and birds (M = 0.05; I95% = 0.01-0.19). This accords with the 90 

higher overall extinction risk of amphibians21. The largest uncertainties in the estimated impact probabilities 91 

were observed in the Congo Basin for amphibians, and across the Sahara and Central Asia for birds and 92 

mammals (Figs. 1h; 2h; 3h). For amphibians, agriculture was the most prevalent of any threat, having the 93 

highest probability of impact in 44% of the mapped area (Fig. 1g), while hunting & trapping was the most 94 

prevalent threat for birds (in 50% of mapped range; Fig. 2g) and overwhelmingly for mammals (73% of 95 

mapped range; Fig. 3g). Our findings support existing non-spatial assessments5 and policy syntheses4. There 96 

are sizeable continental areas in which there was greater than 50% chance that any given amphibian, 97 

mammal or bird species was threatened by logging, hunting & trapping, agriculture, invasive species or 98 

climate change (between 1.6-10.8 million km2; Extended Data Figure 3).   99 

 100 

Southeast Asia, particularly the islands of Sumatra and Borneo, as well as Madagascar, exhibited high 101 

probability of impact across all threats and all taxa (Fig. 1-3). For amphibians, Europe stood out as a region 102 

with high impact probabilities, driven by a combination of agriculture, invasive species (typically chytrid 103 

fungus), and pollution (Fig. 1), while polar regions, the east coast of Australia and South Africa showed the 104 

highest impact probabilities for climate change, driven in particular by impacts on birds (Fig. 2). For 105 

mammals and birds, high probabilities of species being impacted by hunting & trapping were found across 106 

much of the terrestrial surface (Fig. 2, 3). 107 

 108 

Across all taxa, agriculture, followed by hunting & trapping, and logging had the highest average impact 109 

probability (Extended Data Figure 3), while the probability of being impacted by pollution was low in most 110 

parts of the terrestrial world. The probability of a species being impacted by invasive species was on average 111 

low for amphibians (M = 0.01, I95% = 2.3×10-10-0.65), mammals (M = 0.05, I95% = 1.7×10-9-0.21), and birds 112 

(M = 0.04, I95% = 8.4×10-11-0.13). However, this probability of impact was elevated in some locations for 113 

birds and amphibians. For birds, the higher probabilities were seen on those islands included in our models. 114 
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For amphibians they were located on the east coast of Australia, the dry forests of Madagascar, Europe and 115 

North America, the latter being consistent with observational data of recorded chytrid outbreaks22.  116 

 117 

Our approach is also able to highlight where knowledge gaps about species distributions and threats most 118 

influence the certainty of our predictions by including the proportion of Data Deficient species in our 119 

analyses. While not a perfect proxy for knowledge-certainty, the proportion of Data Deficient species is 120 

likely to correlate with overall certainty in knowledge in a given region. Thus, it is reasonable to assume 121 

that if particular regions are less well studied there will also be less certainty about the distribution, 122 

conservation status, and threats to species in that region. We show the largest uncertainties in the estimated 123 

impact probabilities were observed in the Congo Basin for amphibians, and across the Sahara and Central 124 

Asia for birds and mammals (Fig. 1h; 2h; 3h). These regions have previously been identified as data-poor23 125 

and increased sampling would likely both improve our model predictions and improve our understanding 126 

of threats to species in these areas. 127 

Priorities for threat mitigation 128 

To identify areas of priority for threat mitigation, it is necessary to combine the estimates of the probability 129 

that a threat impact occurs with information on spatial pattern of biodiversity importance. We therefore 130 

developed ‘conservation risk maps’ for each threat by multiplying our ‘probability of impact’ with species 131 

richness (Extended Data Figures 4 - 6). For each threat and taxonomic group in turn we then identified 132 

hotspot areas as the top decile (Fig. 4). Given the resolution of the Red List data and that of our maps (50 x 133 

50 km), the latter are not intended for guiding local conservation action, but illustrate overall patterns of 134 

conservation priorities for mitigating threats to biodiversity across Earth. 135 

 136 

Hotspots of highest risk from agriculture, hunting & trapping, and logging were primarily located in the 137 

tropics. Conversely, hotspots of risk from pollution were found in Europe, driven by impacts on amphibians 138 

and mammals (Fig. 4a-f). Except for the Australian East coast, invasive species risk hotspots showed distinct 139 

patterns for the three taxa. Amphibians and mammals were particularly threatened in different parts of the 140 

New World and Europe, while hotspots of risk for birds were found on islands, consistent with existing 141 

syntheses7,8,24, distributed along coastal areas, and across eastern and southern Africa.   142 

 143 

Hotspots of risk for different taxa rarely overlapped, and overall, 50% of the terrestrial surface was identified 144 

as a hotspot of risk from at least one threat for one taxonomic group (Fig. 4g). High priority areas for threat 145 

mitigation were identified as: The Himalayas, Southeast Asia, the east coast of Australia, the dry forest of 146 

Madagascar, the Albertine Rift and Eastern Arc Mountains in Eastern Africa, the Guinean forests of West 147 

Africa, Atlantic Forest, the Amazon basin and the Northern Andes into Panama and Costa Rica in South 148 

and Central America (Fig 4g).  149 
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Augmenting existing threat maps 150 

Existing global threat maps estimate the extent of pressures or changes to the natural world such as land-151 

use, human settlements, and infrastructure11,12,25. These capture the intensity of some of the most important 152 

human pressures on the environment, but they do not measure how these drivers and processes affect species 153 

and habitats13 and do not include all of the most important threats to biodiversity5,26,27. Our method, based 154 

on Red List data on threats to thousands of species, provides valuable complementary information. To assess 155 

the difference between maps based on drivers and processes and maps based on impacts on species, we 156 

compared our maps of impact probability with the latest version of the Human Footprint11.  157 

 158 

We first created a new composite land-use impact probability layer as the mean of agriculture and logging 159 

for each pixel, to better compare with the land-use component of the Human Footprint. We found a weak 160 

positive relationship between our measure of probability of impact from land-use and the Human Footprint 161 

(Fig. 5a). However, there were discrepancies, with the Human Footprint generally showing a lower pressure 162 

from land use in wilderness areas and higher pressures in urbanised areas compared with our impact 163 

probability map (Fig. 5d). This divergence was even more pronounced for hunting & trapping, with Human 164 

Footprint values relatively low across most of the tropical forests, where our maps suggest high impact from 165 

hunting & trapping (Fig. 5b,e). The largest discrepancy was with climate change, for which some areas, 166 

especially in the Arctic, show a low Human Footprint but high impacts from climate change (Fig. 5c,f). Our 167 

results indicate that current global descriptions of pressure potentially underestimate the impact of human 168 

threats to biodiversity, particularly in the most pristine areas that are likely to be of high importance for 169 

nature conservation28-30. However, given the constraints associated with the species based threat assessment 170 

used in the Red List, it is also plausible that our approach could overestimate the probability of impact for 171 

areas which, in reality, have low levels of threat and might serve as refugia for species. Thus, our findings 172 

suggest that multiple approaches are needed, traversing drivers, processes and effects to better understand 173 

the multifaceted nature of human pressures on biodiversity. Additionally, while our threat maps represent 174 

the impacts on extant species to threats from human drivers, they omit impacts from pressures that have 175 

already led to extirpations or extinctions. For example, in Europe where a large part of the original fauna 176 

has already been lost31, maps of accumulated drivers, such as the Human Footprint, might better represent 177 

the true extent of human impacts than the response of the remaining species to current threatening factors32.  178 

Filling important knowledge-gaps 179 

Our approach helps to address important data- and knowledge-gaps in more direct measures of threats based 180 

on field assessments by using a globally consistent, robust, and high-quality dataset16,33,34. For hunting & 181 

trapping, pollution, and invasive species, all of which are implicated in dramatic population declines of 182 

native species around the world7,35-37, our approach provides a novel and in some instances the only way of 183 

mapping their impacts on biodiversity at regional to global scales9. Even for threats where remotely sensed 184 



7 

 

maps of human activity exist (e.g. agriculture and forest loss), our maps add additional information on where 185 

species appear to be adversely impacted by these activities. Regional analyses have also included 186 

information about species distributions to account for where threats are likely to affect most individuals38, 187 

but while valuable, such analyses still assume that threats are uniformly likely across the species range. Our 188 

results show that patterns of impact often differ from patterns of occurrence of threatening processes or the 189 

number of species affected by a given threat39. This discrepancy in part relates to current threat 190 

representations omitting some types of threats (e.g. 'empty forest syndrome' resulting from pervasive 191 

hunting and trapping in apparently pristine forest6,40,41). Additionally, the effect of a threat varies with the 192 

specific context, so that the same intensity of a threatening process can have different impact in different 193 

places or on different species. For example, forest loss affects a larger proportion of species in Southeast 194 

Asia, where little primary forest is left compared with the Amazon, where substantial forest remains despite 195 

high rates of loss in both places10. 196 

 197 

Our analysis and maps do not cover any plant or invertebrate groups, many of which are severely impacted 198 

by multiple threats42-44 and whose hotspots of diversity and conservation importance are not always 199 

overlapping with those of terrestrial vertebrates45 and also is limited in terms of its representation of 200 

freshwater taxa. Additionally, our threat representation estimates the probability of a random species in a 201 

given location being affected by a threat. While we believe this is closer to measuring the impact than 202 

mapping the drivers of threats, it does not capture the severity of the impact46. Thus, while our maps show 203 

that invasive alien species are not affecting very large numbers of species overall, the native species affected 204 

are often undergoing rapid population declines as a consequence8,47,48, particularly on many oceanic 205 

islands7,8,24. We acknowledge that it is possible that expert predispositions may influence assessments of 206 

some threats to some species on the Red List. However, the Red List assessment process is explicitly 207 

designed to mitigate this risk, by ensuring that assessments are grounded in evidence from peer-reviewed 208 

and other vetted sources, properly documented, applied in a consistent fashion and subjected to independent 209 

review (see SI for a full description of the Red List assessment process).  210 

Improving future threat mapping 211 

The current biodiversity crisis derives from current levels of action and resources being insufficient or 212 

misaligned to mitigate and reverse the increase in human pressures on the environment3,49. Thus, while the 213 

ultimate objective of conservation is to preserve biodiversity, understanding and addressing threats to nature 214 

is essential to ensure action is targeted at the places most in need. Our maps provide an important step 215 

towards a more complete understanding of the distribution and impact of threats. However, this does not 216 

suggest that these maps cannot be improved. Indeed, a key strength of our approach is that it demonstrates 217 

a new way forward. The maps can help to stimulate and inform models of how biodiversity is currently 218 

being impacted by a broader range of human activities than is typically considered. They can also help 219 
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inform future Red Listing assessments, by providing a more systematic understanding of potential threats 220 

within the range of focal species. Additionally, other sources of data on anthropogenic pressures to 221 

biodiversity, such as from acoustic monitoring, camera-traps, drones, and satellite imagery, will be critical 222 

to help augment and improve our maps and develop more robust statistical synthesis of the impact of threats 223 

to biodiversity. There is substantial potential for these maps to drive conservation science, and policy. 224 

However, given the resolution of the maps and the precision of the underlying data we caution against using 225 

these maps to guide local conservation action. Their value is in illuminating global patterns and 226 

demonstrating a new approach to mapping threat impacts as well as to inform decisions within the context 227 

of international policy processes such as the Convention on Biological Diversity and Sustainable 228 

Development Goals, recognizing that understanding where in the world different threats impact terrestrial 229 

vertebrate species is essential for designing effective conservation responses15. 230 
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Figure legends 355 
 356 
Fig. 1. | Probability of impact for amphibians. Probability that a randomly selected amphibian occurring 357 
in a 50x50 km cell is impacted by (a) logging, (b) agriculture, (c) hunting, (d) pollution, (e) invasive species, 358 
and (f) climate change. Darker colours indicate higher probability. Zero indicates no species is affected, and 359 
one that all species occurring are affected. Grey indicates areas with fewer than 10 species for which the 360 
impact probability has not been estimated. (g) shows for each cell the threat with the highest probability of 361 
impact and (h) shows the variability of the estimates estimated by resampling threat-classes of each species 362 
based on the proportion of Data Deficient species in a given cell (see Methods). 363 
 364 
Fig. 2. | Probability of impact for birds. Probability that a randomly selected bird occurring in each 50x50 365 
km cell is impacted by (a) logging, (b) agriculture, (c) hunting, (d) pollution, (e) invasive species, and (f) 366 
climate change. Darker colours indicate higher probabilities. Zero indicates no species is affected, and one 367 
that all species occurring are affected. Grey indicates areas with fewer than 10 species for which the impact 368 
probability has not been estimated. (g) shows for each cell the threat with the highest probability of impact 369 
and (h) shows the variability of the estimates estimated by resampling threat-classes of each species based 370 
on the proportion of data deficient species in a given cell. 371 
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 372 
Fig. 3. | Probability of impact for mammals. Probability that a randomly selected mammal occurring in 373 
each 50x50 km cell is impacted by (a) logging, (b) agriculture, (c) hunting, (d) pollution, (e) invasive 374 
species, and (f) climate change. Darker colours indicate higher probability. Zero indicates no species is 375 
affected, and one that all species occurring are affected. Grey indicates areas with fewer than 10 species for 376 
which the impact probability has not been estimated. (g): shows for each cell the threat with the highest 377 
probability of impact and (h) shows the variability of the estimates estimated by resampling threat-classes 378 
of each species based on the proportion of data deficient species in a given cell. 379 
 380 
Fig. 4. | Global hotspots of threat. Global threat hotspots (90th percentile of risk, the product of the 381 
probability of impact and the species richness) for amphibians, birds and mammals for the six principal 382 
threats: (a) agriculture, (b) hunting and trapping, (c) logging (d) pollution (e) invasive species and diseases, 383 
and (f) climate change. Colours indicate whether an area falls within a threat hotspot for one or more taxon 384 
groups. g: shows the relative importance of each pixel across species and threats. It is the count of the 385 
number of times a pixel falls into a hotspot region for any taxon or threat, so pixels with higher values 386 
indicate that it falls in the 90th percentile for many taxonomic groups and threats. 387 
 388 
Fig. 5. | Comparison between probability of impact and pressure. Relationship between the Human 389 
Footprint (HF) and the probability of threats estimated from the Red List for amphibians, birds and mammals 390 
for land use (a), and for two threats for which the HFI does not explicitly include: hunting and trapping (b) 391 
and climate change (c). Grey lines indicate a 1:1 linear relationship. (d-f) show residuals from unity. 392 
Negative values (red colours) indicate where the standardised HFI is higher than our estimated probability 393 
of threat occurrence, PTh and, conversely, positive values (blue colours) indicate where PTh is higher than 394 
the standardised HFI value. 395 

Methods 396 
Species level data 397 
Species range maps were derived from BirdLife International & NatureServe50 and IUCN51.  Threat data 398 

were from the IUCN Threats Classification Scheme (Version 3.2) which contains 11 primary threat classes 399 

and almost 50 sub-classes52. In Red List assessments, assessors assign those threats that impact the species. 400 

For birds, the scope of the impact is also recorded categorically as the percentage of the species population 401 

which the threat impacts (unknown, negligible, <50% 50-90% or >90%) and the severity, describing the 402 

scale of the impact on population declines: unknown, no decline, negligible declines, fluctuations, slow but 403 

significant declines (<20% over 10 years or three generations), rapid declines (20-30%), very rapid declines 404 

(>30%). 405 

 406 

Model development approach 407 

We designed our analytical framework with three considerations in mind. Firstly, the threat location 408 

information is limited: for each species the data only describe whether a species is threatened by a given 409 

activity anywhere within its range (data on the timing, scope and severity of threats are available only for 410 

birds and are not spatially explicit). Second, we wanted to compare the spatial patterns of threat against 411 

independent data on spatial distributions of human activities. Third, for many activities the relationship 412 

between human activity (e.g. hunting or invasive species & diseases) and biodiversity response is poorly 413 
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understood. We therefore chose not to incorporate known patterns of human activity as explanatory 414 

variables in our models. 415 

 416 

In the absence of global datasets on the spatial patterns of probability or impact of each threat, we used a 417 

simulation approach to develop our models and assess the ability of different model-parameterizations to 418 

reproduce our simulated threat. This process had four steps (Extended Data Figure 1). 419 

 420 

Simulated threat intensity maps: First, we simulated a continuous synthetic threat across sub-Saharan Africa.  421 

The concept behind this is that a credible model should be able to reproduce a “true”, synthetic threat pattern 422 

based on information comparable to that available in the Red List. To test this, we generated a set of 423 

synthetic, continuous surfaces of threat intensity with different levels of spatial autocorrelation and random 424 

variation (Supplementary Figure 1).  This was achieved by taking a grid of 50 × 50 km (2,500 km2) pixels 425 

across the Afrotropic biogeographic realm (i.e Sub-Saharan Africa). Threat intensity was modelled as a 426 

vector of random variables, Z, one for each pixel i, generated with correlation structure given by the distance 427 

matrix between points weighted by a scalar value, r, indicating the degree of correlation (Eq. S1 – S3). Four 428 

values of r were used, 1× 10-6 which yields very strong autocorrelation, 1× 10-4 which yields strong 429 

autocorrelation, 0.05, which yields moderate autocorrelation and 0.3, which produces a low-correlation, 430 

localised pattern (Supplementary Figure 1). 431 

𝑍𝑍(𝑟𝑟) = 𝑈𝑈𝑇𝑇  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑛𝑛, 0,1) Eq. S1 

𝑊𝑊 = 𝑈𝑈𝑈𝑈∗ Eq. S2 

𝑊𝑊 = 𝑒𝑒(−𝑟𝑟𝑟𝑟) Eq. S3 

Where r is a scalar determining the degree of spatial autocorrelation, as r decreases the autocorrelation 432 

increases; D is the Euclidean distance matrix between each pair of pixels; W is the matrix of weights for the 433 

threat intensity; U and U* are the upper triangular factor of the Choleski decomposition of W and its 434 

conjugate transpose; UT is the transpose of U; and n is the number of pixels. 435 

 436 
We chose the Afrotropic biogeographic realm (e.g. Sub-Saharan Africa) as our geography within which to 437 

develop the modelling approach because it permitted more rapid iterations than a global scale simulation 438 

whilst also retaining characteristics of importance for the model evaluation such as strong environmental 439 

gradients and heterogeneity in species richness. However, for the simulation, no information from the 440 

geography or overlapping species ranges are used, except the spatial configuration of the polygons. Thus, 441 

the use of the Afrotropic is purely to avoid generating thousands of complex geometries for the purpose of 442 

the simulation. Using a real geography and actual species ranges ensures that our simulation contains 443 

conditions that are observed in reality (e.g. areas of high and low species richness also observed in the real 444 

world). We took the simulated threat maps generated through this process to be our “true” likelihood of a 445 
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randomly drawn species occurring in that location being impacted by the synthetic threat (Supplementary 446 

Figure 1). 447 

 448 

Simulating Red Listing process: Second, we wanted to simulate the red listing process whereby experts 449 

evaluate whether a threat is impacting a species based on the overall threat intensity within its range. For 450 

this, we used the range maps for all mammal species within Africa and assigned a binary threat classification 451 

(i.e. affected or not affected) to each species based on the values of the synthetic threat within each species’ 452 

range. We assumed that the binary assessment of threat for a species is based on whether the level of impact 453 

across a proportion of its range is judged as significant. This step was intended to replicate the real red-454 

listing process, where assessors define threats that impact the species based on an assessment of the 455 

information available on threatening mechanisms and species responses. In practice, this was done by 456 

overlaying the real range maps for mammals over the four simulated threat surfaces and assessing the 457 

intensity of synthetic threat within each species range map. We wanted to assign species impacts considering 458 

that species will be more likely to be impacted if a greater part of their range has high threat intensity. 459 

Understanding how to set a threshold for what intensity would constitute sufficient threat to be assessed as 460 

affected is a complicated exercise. Thus, we tested three different thresholds to capture different 461 

assumptions. These thresholds were chosen following discussion with leading experts on the red-listing 462 

process. More specifically we calculated the 25th, 50th and 75th percentile of threat intensity across pixels 463 

within the species range. We then used a stochastic test to convert these quantiles to binary threat class, C. 464 

For each species we produced a set of 10 draws from a uniform distribution bounded by 0 and 1. If over 465 

half of the draws were lower than the threat intensity quantile, then species was classified as threatened for 466 

that percentile. 467 

 468 
The above simulation assumes perfect knowledge of the threat intensities across the species range which 469 

might not always be the case in the actual red-listing process. In real life, certain areas within species ranges 470 

are less well known for a suite of different reasons. To incorporate some uncertainty about the knowledge 471 

of the red-listing experts about the “true” threat intensity, we constructed a layer to describe the spatial data 472 

uncertainty associated with the Red List. This aspect was intended to simulate the imperfect knowledge of 473 

the simulated ‘Red List assessors’. This layer was calculated as the proportion of species present in a given 474 

location that are categorised as Data Deficient, in other words there is insufficient information known about 475 

the species to assess its extinction risk using the IUCN Red List Criteria (Extended Data Figure 7). Then 476 

when calculating the 25th, 50th and 75th percentile of threat intensity across each range, we weighted this 477 

calculation by one minus the proportion of Data Deficient species, so that more uncertain places (those with 478 

a greater proportion of Data Deficient species) contributed less to the calculation than threat intensities in 479 

locations where knowledge was more certain. These were then converted to a binary threat class accounting 480 
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for uncertainty in expert knowledge amongst the simulated ‘assessors’, CUncertain, using the same stochastic 481 

process described above for the calculation of C. 482 

 483 

This step produced, for each species, a threat classification analogous to the threat classification assigned 484 

by experts as part of the IUCN Red List process. Six sets of threat classifications were produced for each 485 

synthetic threat surface, based on 25th, 50th and 75th percentile with perfect (C0.25, C0.5, C0.75) or uncertain 486 

(CUncertain-0.25, CUncertain-0.5, CUncertain-0.75) spatial knowledge. 487 

 488 

Model formulation and selection: Third, using all species polygons with assigned threat assessment from 489 

step 2 (i.e. affected or not affected) we fitted nine candidate models and predicted for each grid cell the 490 

estimated probability of impact. Then in a fourth step, the predicted probabilities of impact produced in step 491 

3 were compared with the original synthetic threat maps created in step 1 to test the predictive ability our 492 

models.  493 

 494 

The Red List threat assessment does not contain information on where within the range the impact occurs. 495 

Therefore, a species with a very small range provides higher spatial precision about the location of the 496 

impact, whereas a species with a large range may be impacted anywhere within a wide region. To address 497 

this lack of precision in the impact location, we took the area of each species range, (i.e. the range size, ‘R’) 498 

to serve as a proxy for the spatial certainty of the impact information. The certainty that a species was 499 

impacted or not impacted in a given cell depended on its range size, R. The models we evaluated therefore 500 

incorporated the range (R) in different ways (Supplementary Table 1). 501 

 502 

Models were fitted as a binomial regression with logit link function. For each pixel, the model predicts the 503 

‘probability of impact’, PTh, in other words the probability that if you sampled a species at random from 504 

those that occur in that pixel, the species would be impacted by the activity being considered. To account 505 

for uncertainties in the simulation of the threat assessment process (thresholds for impact, perfect or 506 

imperfect knowledge) models were fitted to the six sets of threat codes (C0.25, C0.5, C0.75, CUncertain-0.25, 507 

CUncertain-0.5, CUncertain-0.75) and the root mean squared error (RMSE) calculated between PTh (estimated impact 508 

probability) and the simulated threat intensity, Z(r), for each value of correlation structure, r. For each 509 

simulation we ranked the different models according to their model fit measured by RMSE. We assessed 510 

these ranks across all simulations and sets of threat codes. We evaluated models based on the ranks of 511 

RMSE, across the threat code sets and threat intensity maps. Rank distributions for each model are shown 512 

in Extended Data Figure 2 and results from these models are shown in Supplementary Table 1 and 2. 513 

 514 
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All models were correlated (Pearson’s r2 > 0.5) albeit with some variation between model types and across 515 

the simulation parameters (Supplementary Figure 2). However, some models had greater predictive 516 

accuracy when evaluated using RMSE. The top four ranking models were, in order of decreasing summed 517 

rank, (1) inverse of cube root range size as a weight, (2) inverse 2.5 root range size as a weight, (3) inverse 518 

square root range size as a weight and (4) inverse natural logarithm of range size as a weight. The fact that 519 

these four models show good model fit suggests that the best model structure has a measure of range size 520 

as a weight, but that the model was not particularly sensitive to the transformation of range size. 521 

 522 

The best-fitting model across the range of simulations parameters was an intercept only logistic regression 523 

where the response variable was the binary threat code (1 = threatened, 0 = not threatened) for each species 524 

in the pixel and using the inverse cube root of the range size of each species as a weighting. The model was 525 

concordant across the set of simulated datasets with a relationship that was predominantly linear with r2 526 

between 0.47 and 0.7, depending on simulation parameters for Z(r) in 0.05, 10-4 and 10-6, centred around 527 

unity, and with root mean squared error ranging between 0.129 – 0.337 depending on simulation parameters 528 

Figures S2 and S3). The choice of the inverse cube root range size weight was based on the performance of 529 

this against eight other model types (Supplementary Figure 4 Supplementary Table 1).  530 

 531 

A decomposition of variance in model performance, using a binomial regression model, with RMSE as the 532 

dependent variable and model type, knowledge level and autocorrelation structure as the independent 533 

factorial variables, showed that knowledge about the threats underlying each species range and how that 534 

threat information is used in assessment, explained the vast majority (94.7%) of the variation in RMSE 535 

outcomes (Supplementary Figure 4). 536 

 537 

For birds, further information on the scope of the threat was available as an ordinal variable describing the 538 

fraction of range that the threat covers. We explored the use of scope in our models but concluded that to 539 

avoid arbitrary decisions about the scope of non-threatened species (where they are either not threatened 540 

anywhere or threatened in only a small part of their range), and for consistency with other taxonomic groups, 541 

we would model birds using the same model structure as used for mammals and amphibians (see 542 

supplementary methods for further details). 543 

 544 

Mapping probability of impact 545 

Once the best performing model was identified using the simulated data, we then used this model on the 546 

actual Red List threats and range data to develop of threat maps. This model produced threat maps for each 547 

taxonomic group (amphibians, birds, mammals) of the probability of impact, PTh, for each individual threat. 548 

This estimates for a given pixel, threat and taxonomic group the probability that a randomly sampled species 549 



16 

 

with a range overlapping with that pixel is being impacted by the threat, while taking into account spatial 550 

imprecision in the Red List data. 551 

 552 

Threat maps were generated using range map data and threat assessments from the IUCN Red List18. We 553 

intersected range maps for 22,898 extant terrestrial amphibians (n = 6,458), birds (n = 10,928; excluding 554 

the spatial areas within the range that are associated with “Passage” – where the species is known or thought 555 

very likely to occur regularly during a relatively short period(s) of the year on migration) and mammals (n 556 

= 5,512; including those with uncertain ranges) with a global 50x50 km (2,500 km2) resolution, equal area 557 

grid for the terrestrial world. This provided, for each 50x50 km pixel, a list of the species whose range 558 

overlapped it, along with the associated range size of each species. For each pixel and taxonomic group 559 

(amphibians, birds and mammals) independently, we then modelled the ‘probability of impact’, PTh,Activity, 560 

(e.g. PTh,Logging for logging, PTh,Agriculture for agriculture or PTh,Pollution for pollution) for each of the six threats: 561 

agriculture, hunting & trapping, logging, pollution, invasive species & diseases, and climate change. We 562 

focused on these as the six main threats as defined by IPBES4, but our methodological framework is flexible 563 

and could be expanded to other threats in the IUCN classification19. We used only taxonomic groups with a 564 

sufficiently high total number of species and where they have been comprehensively assessed so that 565 

potential biases associated with the groups of species prioritized by experts are avoided. 566 

 567 

Calculating uncertainties for the threat probability: We estimated a measure of uncertainty associated with 568 

our impact probability predictions using maps of the proportions of Data Deficient species in each cell 569 

within each taxonomic class (amphibians, birds or mammals) as a measure of knowledge-certainty in that 570 

cell. The rationale for this approach is that places with more Data Deficient species with unknown threatened 571 

status, should have greater uncertainty in the probability of impact. Therefore, we created greater variation 572 

in the data where there were more Data Deficient species. We used the knowledge-certainty map to 573 

probabilistically draw a sample of 100 threat codes for each species, based on the median Data Deficiency 574 

across the species range. The random sample changed the species threat code with a probability related to 575 

the proportion of Data Deficient species within its range. If the median proportion of data deficient was 576 

zero, then we assumed that there was a small probability (0.005) that the species could have been incorrectly 577 

coded. Where the median proportion was greater than zero, the probability increased linearly. So, for a 578 

species with 5% Data Deficient species within its range, the sample changed the species threat code with a 579 

probability close to 5%, or, if the median proportion was equal to 0.5, then the probability of the species 580 

being incorrectly assigned was equal to 0.5. We then fitted the impact probability model with each of the 581 

100 species threat codes and generated a distribution of predicted threat probabilities in each grid cell, from 582 

which we took the 95% confidence intervals as the uncertainty estimate (Extended Data Figures 8-10). 583 

 584 

Evaluating modelled threat patterns 585 
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We evaluated the spatial patterns of threat based on the real Red List threat assessment data against empirical 586 

data in two independent ways. First we compared the probability of impact from logging and agriculture 587 

combined within forested biomes (i.e. corresponding to remotely detected forest loss, which we refer to the 588 

probability of impact from forest loss, PTh, forest-loss) to data on forest cover change10. Forest cover change was 589 

aggregated from their native 30x30 m (900 m2) resolution pixels to our 50×50 km resolution pixels using 590 

Google Earth Engine. For each 50×50 km pixel we calculated the total area lost between 2000 and 2013 and 591 

the area lost as a proportion of the area in 2000. We restricted our analysis to forested biomes: a) Tropical 592 

and subtropical moist broadleaf forests, b) Tropical and subtropical dry broadleaf forests, c) Tropical and 593 

subtropical coniferous forests, d) Temperate broadleaf and mixed forests, e) Temperate Coniferous Forest 594 

and f) Boreal forests / Taiga, following WWFs ecoregions classification53. The relationship between forest 595 

loss and the probability of impact from forest loss as captured by agriculture and logging overall showed a 596 

significant positive correlation, PTh, forest-loss increased with increasing forest cover loss (p < 1×10-5, 597 

Supplementary Figure 5) but also showed some nuances.  598 

 599 

Second, we evaluated threat levels against threat for ca. 6,000 KBAs assessed by specialists through a 600 

rigorously tested and standardized approach developed by Bird Life International20. For a given activity, we 601 

calculated the median of predicted impact probabilities within each KBA and then grouped these KBA 602 

estimates by KBA severity class. On average, PTh was higher in KBAs assessed as having a high severity of 603 

threat from an activity than in KBAs classed as having low threat. Significant relationships (p < 0.05, 604 

Wilcoxon test) were found in one or more taxonomic group for logging, agriculture, hunting and climate 605 

change. For both evaluations, we conclude that the modelled spatial patterns of threat were consistent with 606 

expectations from the empirical data (Figures S5 – S11). We subsequently shared threat maps with taxon-607 

specific experts from the Red List assessment groups, who qualitatively reviewed the patterns and assessed 608 

them as consistent with expert knowledge. Further details on the evaluation methods can be found in the 609 

supplementary methods text. 610 

 611 

We suggest that the broad concordance with empirical data in two independent evaluations demonstrates 612 

that the maps of impact probability are sufficiently plausible to underpin the findings of this study. We 613 

provide a framework that can easily be updated with future versions of the IUCN data, and we also stress 614 

that our approach should be viewed as an initial attempt to map patterns of threat impacts, which should be 615 

used iteratively to guide collection of new data and improvement of the mapping approaches used. 616 

 617 

Comparing threat occurrence likelihoods and human footprint index 618 

Human Footprint Index (HFI) data for the year 2009 was taken from Venter, et al. 11. The native resolution 619 

of the index was 1 km2 so we calculated the mean HFI in each 50×50 km pixel used in our analysis. The 620 

HFI was standardised to lie within the bounds 0 and 1 by dividing by the maximum HFI index value (50). 621 
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 622 

We compared the standardised, averaged HFI values to the predicted likelihood of threat occurring from 623 

land use change, hunting and trapping and climate change. For land use change we combined agriculture 624 

and logging. Hence, for land use change we calculated the unweighted mean threat occurrence likelihood 625 

across taxa for logging and agriculture. For hunting we took the mean threat occurrence likelihood across 626 

taxa, whilst for climate change we used the predicted threat occurrence likelihood for birds. 627 

 628 

To plot the spatial relationship between HFI and mean threat occurrence likelihood we used a 2-dimensional 629 

kernel density estimator (MASS package 54 to estimate the variation in density of pixels for a given HFI and 630 

mean threat occurrence likelihood. 631 

 632 

Data availability 633 

Data on range maps are freely available at https://www.iucnredlist.org/resources/spatial-data-download and 634 

http://datazone.birdlife.org/species/requestdis. IUCN threat classification assessment data can be 635 

downloaded using the Red List API (http://apiv3.iucnredlist.org/api/v3/docs) or on request from IUCN’s 636 

Global Species Programme Red List Unit (redlist@iucn.org). Other data are freely available using citations 637 

in the manuscript. 638 

 639 

Code Availability 640 

Code is available from the github repository https://github.com/mikeharfoot/ThreatMapping 641 

  642 
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Figure 1 643 
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Figure 2 646 
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