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Summary 

• High efficiency methods for DNA assembly have enabled routine assembly of 

synthetic DNAs of increased size and complexity. However, these techniques require 

customisation, elaborate vector sets or serial manipulations for the different stages of 

assembly. 

• We have developed Loop assembly based on a recursive approach to DNA 

fabrication. The system makes use of two Type IIS restriction endonucleases and 

corresponding vector sets for efficient and parallel assembly of large DNA circuits. 

Standardised level 0 parts can be assembled into circuits containing 1, 4, 16 or more 

genes by looping between the two vector sets. The vectors also contain modular sites 

for hybrid assembly using sequence overlap methods. 

• Loop assembly enables efficient and versatile DNA fabrication for plant 

transformation. We show construction of plasmids up to 16 genes and 38 Kb with 

high efficiency (>80%). We have characterized Loop assembly on over 200 different 

DNA constructs and validated the fidelity of the method by high-throughput Illumina 

plasmid sequencing. 

• Our method provides a simple generalised solution for DNA construction with 

standardised parts. The cloning system is provided under an OpenMTA license for 

unrestricted sharing and open access. 

 

Introduction  

Standardised approaches to the assembly of large DNAs have played an important role in the 

development of systematic strategies for reprogramming biological systems. This began with 

the implementation of idempotent assembly methods based on DNA digestion/ligation using 

standardised nested restriction endonuclease (RE) sites, such as the BioBrick assembly 

method (Knight, 2003; Shetty et al., 2008). More recently, assembly techniques that enabled 

the parallel assembly of multiple components in a single reaction have been established. 
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These include methods that utilise long-sequence overlaps (Bitinaite et al., 2007; Li and 

Elledge, 2007; Zhu et al., 2007; Gibson et al., 2009; Bryksin and Matsumura, 2010; Zhang et 

al., 2012; Beyer et al., 2015; Jin et al., 2016), systems reliant on in vivo recombination (Ma et 

al., 1987; Gibson et al., 2008b; Joska et al., 2014), and Golden Gate (Engler et al., 2008) 

based methods that rely on selective digestion and re-ligation of plasmid DNAs with Type 

IIS RE (Sarrion-Perdigones et al., 2011; Weber et al., 2011; Sarrion-Perdigones et al., 2013; 

Engler et al., 2014; Storch et al., 2015; Iverson et al., 2016; Moore et al., 2016). Type IIS and 

long-overlap based methods have allowed increased scale and efficiency of DNA circuit 

assembly, while in vivo recombination remains the method of choice for genome-scale 

manipulations (Gibson et al., 2008a,b; Benders et al., 2010; Gibson et al., 2010a; Karas et 

al., 2012, 2013).  

Gibson assembly, a sequence overlap-based method, was developed for the synthesis and 

assembly of Mycoplasma genomes (Gibson et al., 2008a, 2010a) and enabled assembly of 

DNAs up to several hundred kb in one-pot isothermal reactions (Gibson et al., 2009). This 

method has been widely adopted by the synthetic biology community, being scar-free, 

versatile and relatively efficient. However, Gibson assembly generally relies on the use of 

oligonucleotides to perform in vitro amplification of DNA fragments, which can be error-

prone (Keohavong & Thilly, 1989; Gibson et al., 2010b; Potapov & Ong, 2017). The method 

is also sensitive to sequence composition and repeats, hence efforts have been made to 

standardise and streamline Gibson assembly by including flanking unique nucleotide 

sequences (UNS) that can be used as long overlaps for cloning of transcription units (TUs) 

into larger constructs (Torella et al., 2013). Perhaps due to the flexible nature of Gibson 

assembly, a standard for composing elemental parts into TUs has not been proposed yet. 

Laboratories that employ Gibson assembly rely on their own set of rules and templates for 

DNA parts, and there has been no community-wide effort to develop a common standard.  

In contrast, Type IIS assembly systems are virtually free of ad hoc design, and are highly 

efficient for both assembly of TUs and assembly of elementary parts into TUs (Patron, 2016). 

These methods do not require PCR amplification or fragment isolation, and allow parallel 

assembly of a large number of DNA parts (Potapov et al., 2018). Instead of PCR, these 

methods exploit Type IIS RE to generate fragments with short complimentary overhangs that 

can be ligated in a one-pot reaction. While this approach can be scarless, the application of 

standard overhangs (fusion sites) for DNA parts with a defined function (e.g. promoter, CDS, 

terminators) allows the same DNA parts to be re-assembled into multiple constructs without 
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redesign or modification (Engler et al., 2008; Sarrion-Perdigones et al., 2011; Weber et al. 

2011; Lampropoulos et al., 2013; Sarrion-Perdigones et al. 2013; Binder et al., 2014). 

Recently, a common syntax has been proposed by developers and adopters of Type IIS 

cloning methods. This standard defines an unambiguous arrangement of 12 Type IIS 

overhangs that form boundaries between functional domains found within a generalised 

eukaryote gene (Patron et al., 2015). The common syntax is based on the widely used MoClo 

and GoldenBraid standards, and has found acceptance in the plant field (Patron et al., 2015), 

and iGEM in the form of PhytoBricks standard parts. The common syntax ensures that these 

Type IIS assembly systems can share a common stock of standardised DNA parts to be 

shared and used in an off-the-shelf manner. The establishment of a common standard for 

stock DNA parts also provides a prevailing syntax that enhances transferability and 

reproducibility for compiling genetic instructions in different labs. Assembly of an exact 

copy of a genetic construct is possible simply by knowing its composition, eliminating 

unnecessary ad hoc design and enabling simple abstract descriptions that contain a precise 

implied sequence. However, Type IIS assembly systems require the refactoring or 

‘domestication’ of DNA parts, generally performed through PCR or DNA synthesis. 

Domestication refers to the elimination of RE sites present in the DNA sequence prior to its 

use in the assembly system. To date, the most commonly used REs have been BsaI, BsmBI 

and BpiI, which have 6 bp recognition sites that, while not frequent on average, are regularly 

encountered in DNA sequences (Lin & O’Callaghan, 2018). Type IIS REs such as SapI and 

AarI with 7 bp recognition sites can be used to lower the probability of finding sites requiring 

domestication, and are used in the ElectraTM 
(ATUM) and GeneArtTM 

(ThermoFisher) kits, 

respectively. Type IIS based systems have found rapid acceptance in the synthetic biology 

field due to the need for robustness, scalability and compatibility with automated assembly 

methods. Since synthetic biology is already at the point where constructs can consist of 

multiple logic gates (Nielsen et al., 2016), entire biosynthetic pathways (Temme et al., 2012) 

or engineered genomic DNA (Richardson et al., 2017), robust assembly methods such as 

Type IIS assembly are essential to enable fabrication of higher-order genetic constructs.  

Despite much progress in the technical aspects of DNA construction and part reusability, 

restrictive intellectual property (IP) practices and material transfer agreements (MTA) can 

hinder the sharing of DNA components in both the public and private sectors, delaying 

experimental work through paperwork and legal consultation. For this purpose, an 

international effort is underway to establish the OpenMTA (http://www.openmta.org) as a 

way of expediting the sharing of biological materials. The OpenMTA provides a legal 

template for free and unrestricted distribution of materials, providing a formal mechanism for 

effectively placing materials in the public domain, in a way that extends existing practices. 

Open sharing of DNA assembly systems and parts through the OpenMTA will facilitate the 
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engineering of new solutions for problems in human health, agriculture and the environment, 

such as those identified as Sustainable Development Goals by the United Nations 

(http://www.un.org/sustainabledevelopment) and Global Grand Challenges by the Gates 

Foundation (https://gcgh.grandchallenges.org).  

Here we present Loop assembly, a versatile, simple and efficient DNA fabrication system 

based on recursive DNA assembly. It combines all the benefits of Type IIS assembly, but 

requires only a set of eight plasmids to build constructs with theoretically unlimited length. 

As well as Type IIS assembly, the system integrates long-overlap assembly methods. In this 

way, four TUs can be assembled into multiple transcription units by using alternative 

methods such as Gibson Assembly via flanking UNS (Torella et al., 2013). In our method, 

Type IIS assemblies are performed through iterated ‘loops’. Two sets of four plasmid vectors 

are provided, which allow alternating assembly cycles. First, Level 0 parts, defined by the 

PhytoBrick common syntax, are assembled into Level 1 transcription units in each of four 

odd-numbered vectors using BsaI. Second, four Level 1 modules can then be assembled into 

a Level 2 construct in each of the four even-numbered vectors using SapI. Following this, 

Level 2 constructs can be combined by cloning back into odd-numbered vectors, using BsaI, 

to create Level 3 assemblies containing up to 16 transcription units each. The iterative 

process of combining genetic modules, four at a time, can be continued without theoretical 

limit, alternating assembly steps between odd and even Loop vectors. Since levels are used 

recursively, it is possible to create hybrid levels that can contain a mixture of parts from 

different levels of the same parity (i.e. Level 2 vectors combined with elements from Level 0 

vectors). In addition, we have developed LoopDesigner, a software framework for in silico 

sequence handling and assembly design. The software tools are open source and available 

through Github, and Loop assembly vectors are provided through the OpenMTA for 

unrestricted use. We have developed and tested the Loop assembly system in different 

laboratories and provide data to support the efficiency and robustness of the method. We 

have assembled over 200 constructs with up to 16 TUs and over 38 kb in size. We have tested 

Loop constructs in planta and validated their function in transgenic Marchantia polymorpha, 

and through transient expression in Arabidopsis thaliana protoplasts. 
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Materials and Methods 

Construction of Loop assembly backbones. Loop assembly vectors were constructed using 

Gibson assembly (Gibson et al., 2009). Several changes were made to a pGreenII vector 

(Hellens, et al., 2000) to obtain a basic plasmid backbone for the Loop assembly vectors: 

BsaI and SapI sites were removed from the plasmid using silent mutations when possible. In 

order to reduce issues with stability of large constructs in bacteria (Moore et al. 2016, Watson 

et al., 2016), two nucleotides of  the pGreenII ColEI-derived origin of replication were 

mutated, reversing it into the medium-low copy number pBR322 origin of replication. A 

region extending from the T-DNA left border to the hygromycin resistance gene cassette was 

replaced with the sequence of the pET15 vector (Haseloff, 1999) from the nptII nosT 

terminator to the UASGAL4 promoter (bases 2851-3527). A spectinomycin resistance was 

cloned to replace the nptI cassette to provide a microbial selection marker for the pEven 

plasmids. UNSes were cloned into the kanamycin and spectinomycin version of vector 

backbones after the 3’ end of the pET15 vector sequence and the right border (RB). Finally, 

the Loop restriction enzyme sites (BsaI and SapI), overhangs and the lacZ� cassette were 

cloned in between the UNS, yielding the pOdd and pEven vectors. L0 plasmids used for 

Loop Type IIS assembly were assembled using Gibson assembly into a modified pUDP2 

(BBa_P10500) plasmid, which contained a 20 bp random sequence (5’-

TAGCCGGTCGAGTGATACACTGAAGTCTC-3’) downstream of the 3’ convergent BsaI 

site and upstream of the BioBrick suffix, to provide non-homologous flanking regions for 

correct orientation during overlap assembly. 

DNA Spacers. Random DNA sequences were retrieved from Random DNA Sequence 

Generator (http://www.faculty.ucr.edu/~mmaduro/random.htm), ordered as dsDNA 

fragments from IDT and assembled using Gibson assembly. 

Plasmids and construct design. L0 parts used for DNA construction are described in Table 

S1, their sequences included in Supplementary Files and are available through Addgene. 

Sequences for Loop plasmids and resulting multigene assemblies are included in 

Supplementary Files.  

The design of the constructs was performed using LoopDesigner software, installed on a 

local machine. The software was configured to use Loop assembly backbones together with 

BsaI and SapI RE, as well as A-B and �-� overhangs. In addition, definition of 12 L0 part 
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types were added to the software, based on the overhangs specified by the common syntax. 

The sequences of the L0 parts were added to the LoopDesigner database, assigning one of the 

defined part types, and assembled consequently into Level 1 and Level 2 constructs in silico. 

The concentration of L0 parts and Level 1 constructs were adjusted to those suggested by the 

LoopDesigner for 10 �L reactions.  

Loop Type IIS assembly protocol. The Loop Type IIS assembly protocol was adapted from 

Patron, 2016, and can be found in https://www.protocols.io/view/loop-assembly-pyqdpvw. 15 

fmol of each part to be assembled were mixed with 7.5 fmol of the receiver plasmid in a final 

volume of 5 �L with dH20 (Table S2). The reaction mix containing 3 �L of dH20, 1 �L of T4 

DNA ligase buffer 10x (NEB cat. B0202), 0.5 uL of 1 mg/mL purified bovine serum albumin 

(1:20 dilution in dH20 of BSA, Molecular Biology Grade 20 mg/mL, NEB cat. B9000), 0.25 

�L of T4 DNA ligase at 400 U/�L (NEB cat. M0202) and 0.25 �L of corresponding restriction 

enzyme at 10 U/�L (BsaI NEB cat. R0535 or SapI NEB cat. R0569) was prepared on ice. 

Then, 5 �L of the reaction mix was combined with the 5 �L of DNA mix for a reaction 

volume of 10 �L (Table S3) by pipetting and incubated in a thermocycler using the program 

described in Table S4. For SapI reactions, T4 DNA ligase buffer was replaced by CutSmart 

buffer (NEB cat. B7204S) supplemented with 1 mM ATP. 1 �L of the reaction mix was 

added to 50 �L of chemically competent TOP10 cells (ThermoFisher cat. C4040100) and 

following incubation at 42°C for 30 seconds, samples were left on ice for 5 minutes, 250 �L 

of SOC media was added and cells incubated at 37 ºC for 1 hour. Finally, 5 �L of 25 mg/mL 

of X-Gal (Sigma-Aldrich cat. B4252) dissolved in DMSO, was added and the cells were 

plated onto selective LB-agar plates supplemented with 1mM IPTG (Sigma cat. I6758). 

Assembly reactions were also automated. The assembly reactions were identical except 

scaled down to a total volume of 1 �L. Reactions were set up on a Labcyte Echo in 384 well 

plates and incubated on a thermal cycling machine using the same conditions as described 

above. Reactions were transformed into 4 �L competent XL10-Gold® Ultracompetent Cells 

(Agilent Technologies, Santa Clara, CA, USA) and plated onto eight-well selective LB-agar 

plates. Colonies were picked for growth in 1 mL of media in 96-well plates on a Hamilton 

STARplus® platform.  
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Standardised PCR of transcriptional units. PCR using UNS oligonucleotides was 

performed with an annealing temperature of 60 ºC, 35 cycles using Phusion High-Fidelity 

DNA polymerase (ThermoFisher cat. F-530) in 50 �L reactions, according to manufacturer’s 

instructions. Template was added to a final concentration of 20 pg/�L. DNA fragments were 

visualised using SYBR Safe DNA Gel Stain (ThermoFisher cat. S33102) on a blue LED 

transilluminator (IORodeo). DNA purification was performed using NucleoSpin Gel and 

PCR Clean-up purification kit (Macherey-Nagel, cat. 740609.250). UNS primers used in TUs 

amplification are listed in Table S5.  

 

Validation by sequencing. The sequences of assembled plasmids were verified by complete 

sequencing using 150 base pair paired-end reads on an Illumina MiSeq platform, and can be 

found in the EMBL-ENA database grouped under study PRJEB29863. Libraries were 

prepared using the Nextera XT DNA Library Prep Kit (Illumina cat. FC-131-1096), using the 

manufacturer’s protocol modified to a one in four dilution. Reads were filtered and trimmed 

for low-quality bases and mapped to plasmids using the ’map to reference tool’ from the 

Geneious 8.1.8 software (http://www.geneious.com, Kearse et al., 2012), with standard 

parameters. Sequence fidelity was determined manually.  

 

Agrobacterium-mediated Marchantia transformation. Agrobacterium-mediated 

transformation was carried out as described previously (Ishizaki et al., 2008), with the 

following exceptions: half of an archegonia-bearing sporangium (spore-head) was used for 

each transformation. Dried spore-heads were crushed in a 50 mL Falcon tube with a 15 mL 

Falcon tube and resuspended in 1 mL of water per spore-head. Resuspended spores were 

filtered through a 40 �m mesh (Corning cat. 352340) and 1 mL of suspension was aliquoted 

into a 1.5 mL Eppendorf tube and centrifuged at 13,000 xg for 1 min at room temperature. 

Supernatant was discarded and spores were resuspended in 1 mL of sterilisation solution, and 

incubated at room temperature for 20 min at 150 RPM on an orbital shaker. The sterilisation 

solution was prepared by dissolving one Milton mini-sterilising tablet (Milton 

Pharmaceutical UK Company, active ingredient: Sodium dichloroisocyanurate CAS: 2893-

78-9: 19.5% w/w) in 25 mL of sterile water. Samples were centrifuged at 13,000 xg for 1 

min, washed once with sterile water and resuspended in 100 �L of sterile water per each 
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spore-head used. One hundred �L of sterilised spores were inoculated onto half strength 

Gamborg’s B5 1 % (w/v) agar plates and grown under constant fluorescent lighting (50-60 

mol photons/m
2
s) upside down for 5 days until co-cultivation. Sporelings were co-cultivated 

with previously transformed and induced Agrobacterium GV2260 transformed with the 

pSoup plasmid (Hellens et al. 2000) in 250 mL flasks containing 25 mL of half strength 

Gamborg’s B5 media supplemented with 5 % (w/v) sucrose, 0.1 % (w/v) N-Z Amine A 

(Sigma cat. C7290), 0.03 % (w/v) L-glutamine (Sigma cat. G8540) and 100 �M 

acetosyringone (Sigma-Aldrich cat. D134406) for 36 h, until washed and plated onto 

selective media.  

 

Laser-scanning confocal microscopy. A microscope slide was fitted with a 65 �L Gene 

Frame (ThermoFisher cat. AB0577) and 65 �L of dH20 was placed in the center. Marchantia 

gemmae were carefully deposited on the drop of dH20 using a small inoculation loop and a 

#0 coverslip was attached to the Gene Frame. Slides were examined on a Leica TCS SP8 

confocal microscope platform equipped with a white-light laser (WLL) device. Imaging was 

conducted using a Leica HC PL APO 20x CS2 air objective with a sequential scanning mode 

with laser wavelengths of 405 nm, 488 nm and 515 nm, capturing emitted fluorescence at 

450-482 nm, 492-512 nm and 520-550 nm windows in each sequential scan, respectively. Z-

stacks were collected every 5 �m for the complete volume range and maximum intensity 

projections were processed using ImageJ software. Fluorescence bleedthrough from the blue 

pseudocoloured channel (membrane localized eGFP) into the green pseudocoloured channel 

(nuclear localized Venus) was eliminated using custom Python scripts which subtracted a 

20% of the value of pixels present in the blue channel to the green channel. Images were 

edited to scale the pixel intensity to the full 8-bit range and a merged image was processed.  

 

Transient expression in Arabidopsis mesophyll protoplasts. Well-expanded leaves from 

3-4 weeks old Arabidopsis plants (Columbia-0) were used for protoplast transfection. Plants 

were grown at 22ºC, low light (75 �mol/m
2

s) and short photoperiod (12 h light/12 h dark) 

conditions. Protoplasts were isolated and PEG- transfected according to Yoo et al. 2007. For 

transfection, 6 �L of Loop L2 plasmids (2 �g/�L) isolated by NucleoBond Xtra Midi/Maxi 
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purification kit (Macherey-Nagel cat. 740410.50), were used. Transfected protoplasts were 

incubated for 12 h in light and then visualized by epifluorescent microscopy in a Neubauer 

chamber (Hirschmann).  

 

Epifluorescence microscopy. Transfected protoplasts were visualized using a Nikon Ni 

microscope equipped with a 49021 ET - EBFP2/Coumarin/Attenuated DAPI filter cube (ex: 

405/20 nm, dichroic: 425 nm, em: 460/50 nm), 96227 AT-EYFP filter cube (ex: 495/20 nm, 

dichroic: 515 nm, em: 540/30 nm), 96223 AT-ECFP/C filter cube (ex: 495/20 nm, dichroic: 

515 nm, em: 540/30 nm) and a 96312 G-2E/C filter cube (ex: 540/20 nm, dichroic: 565 nm, 

em: 620/60 nm).  

 

LoopDesigner. In order to implement an object oriented model for Loop assembly, we built a 

PartsDB library (https://github.com/HaseloffLab/PartsDB) to define several interlinked 

classes, each of which is associated with a table in a relational SQL database. The structure of 

LoopDesigner is built around a Part class, which either represents an ordered collection of 

children parts it is assembled from, or a DNA sequence in case of L0 parts. In this way we 

ensured that the actual DNA sequence is only stored once, while the sequences of L1 and 

higher parts are constructed on demand from the relational links. In addition, each Part is 

associated with one of the Backbone instances, which together with a Part sequence 

represents a complete Loop assembly plasmid. Every instance of a Backbone class is a 

combination of a Base Sequence and a donor Restriction Enzyme Site, e.g. pOdd 1-4 and 

pEven 1-4 are Backbone instances in the schema described in this paper. Base Sequence 

represents a type of a receiver plasmid, e.g. pOdd and pEven, and is composed of a DNA 

sequence of the plasmid and an instance of a receiver Restriction Enzyme Site. Finally, 

Restriction Enzyme Site class is composed of a Restriction Enzyme instance, which stores 

restriction enzyme recognition sequence, and a pair of overhang sequences, which can be 

either receiver or donor overhangs. 
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Results  

Loop assembly. Loop assembly kit consists of two sets of plasmids that participate in a 

cyclic assembly process. Type IIS restriction endonucleases, BsaI and SapI, are used 

alternately for recursive assembly of genetic modules into a quartet of either odd (L1, L3, ...) 

or even (L2, L4, ...) receiver plasmids. At each step in the assembly ‘loop’, four genetic 

modules are combined into a receiver plasmid (Fig. 1a). Odd and even-level plasmids use 

alternating types of antibiotic selection, kanamycin resistance for odd-levels (pOdd plasmids) 

and spectinomycin resistance for even-levels (pEven plasmids), to enable the use of one-pot 

digestion-ligation assembly reaction (Engler et al., 2008). At each level (except for TU 

assembly from L0 parts), four parental plasmids are required, leading to an exponential 

increase in the number of TUs by a factor of 4 per level (Fig. 1b).  

Plasmids in Loop assembly act both as donors and receivers due to the special arrangement of 

the RE sites. The odd receiver plasmids contain a pair of divergent BsaI sites that are 

removed in the cloning reaction, while a pair of convergent SapI sites, flanking the BsaI sites, 

allows the odd plasmids to act as donors for assembly into the following level. Similarly, the 

even plasmids contain a pair of divergent SapI sites flanked by convergent BsaI sites (Fig. 

2a). Upon digestion, donor plasmids release DNA fragments (between the convergent RE 

sites) with specific overhangs that define the direction and position in the assembly, while the 

receiver plasmids release the divergent RE sites allowing for assembly of the donor 

fragments. 

The overhangs created by the BsaI digestion of the odd receivers allow the construction of 

transcription units from any parts that are compatible with the PhytoBrick standard (Patron et 

al., 2015), such as L0 parts derived from MoClo and GoldenBraid plasmid libraries (if free of 

SapI sites). BsaI overhang sequences are termed A, B, C, E and F, with A and F designated as 

flanking terminal-overhangs, and SapI overhang sequences are termed �, �, �, � and �, with � 

and � designated as flanking terminal-overhangs. Examples of odd and even-level assemblies 

are shown in (Fig. 2b,c).  

Each reaction requires four donor plasmids (or DNA spacers) for successful assembly into a 

receiver of the next level. In order to provide a replacement for assemblies with less than four 

fragments,, we designed 200 bp long ‘universal spacer’ parts comprised of random DNA 

sequence free of BsaI and SapI sites. Plasmids containing spacers with flanking terminal-
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overhangs are provided for odd (pOdd-spacer) and even levels (pEven-spacer). They can be 

used for direct assembly into any of the four receiver plasmids of their corresponding level 

(Fig. S1).  

Assembly of synthetic promoters. The recursive nature of Loop assembly allows one to mix 

parts from different levels but with the same parity. For example, a multimeric promoter 

might be constructed from elemental parts through recursive assembly. Figure 3 shows the 

generation of synthetic promoters by cloning L0 functional domains (e.g. TF recognition sites 

and minimum promoter sequences) with flanking terminal-overhangs into specific L1 

plasmid positions, which determine the order of motif arrangement in the following L2 

assembly. Different TF recognition sites can be used in positions 1 (� and � overhangs), 2 (� 

and � overhangs) and 3 (� and � overhangs), while a minimal promoter sequence is placed in 

position 4 (� and � overhangs) of L1 receiver plasmids. These elements can then be composed 

in specific order. In this example, different combinations of TF binding sites and minimal 

promoter were cloned into positions 1 (A and B overhangs) and 2 (B and C overhangs) of L2 

receiver plasmids. The resulting composite promoter elements could be mixed with standard 

L0 gene parts, to create a customised hybrid gene assembly in an odd-level plasmid (Fig. 3a).  

Using this approach, we assembled three fluorescent reporters with synthetic promoters 

comprised of multimeric binding sites. The promoters included binding domains for the 

transcription factors GAL4 (Guarente et al., 1982; West et al., 1984; Giniger et al., 1985), 

HAP1 (Zhang and Guarente, 1994), a cytokinin operator (Müller and Sheen, 2008) and a 

minimal CaMV 35S promoter (Benfey and Chua, 1990) derivative (F. Federici and J. 

Haseloff, unpublished results) driving a Venus fluorescent protein (Nagai et al., 2002). 

Resulting reporters were composed of the same elements but with differing motif 

arrangements, containing 13 nucleotide scars between the motifs. Each reporter contained 

three dimeric binding domains for GAL4, three dimeric binding domains for HAP1, one 

dimeric CK operator binding domain and the minimal CaMV 35S promoter. (see Notes S1). 

The composite synthetic promoters, which were the result of 20 different assembly reactions, 

were verified through sequencing and showed no sequence errors. The sequences of the final 

constructs (pL3-1_PC1, pL3-1_PC2 and pL3-1_PC3) can be found in SI. 
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The recursive nature of Loop assembly also enables hybrid assemblies of multiple TUs 

derived from donor plasmids from different levels (i.e. three Level 1 and one Level 3 

plasmids). These can be assembled into a hybrid even receiver plasmid, providing further 

flexibility in the fabrication of genetic constructs (Fig. 3b).  

UNS for standardised overlap assembly. Apart from their capacity for Type IIS assembly, 

Loop vectors were designed for long overlap assembly techniques. Loop plasmids contain 

UNS that allow the use of standard primers for the amplification of TUs derived from Type 

IIS DNA parts (PhytoBricks, MoClo and GoldenBraid), since these can be assembled into 

UNS-flanked TUs by BsaI-mediated Type IIS assembly. Alternatively, TUs can be 

assembled from PCR-fragments or DNA synthesis into Loop plasmids by overlap assembly 

methods such as Gibson assembly (Fig. 4a). Each Loop plasmid contains two flanking UNS 

and a terminal UNSx. TUs can be assembled into a multi-TU destination plasmid 

(pUNSDest) by using overlap assembly methods (Fig. 4b). UNS have been designed 

following a number of guidelines to provide enhanced performance in PCR reactions and 

overlap assembly. Design rules are listed in Methods S1 and sequences provided in Table 

S6. Forward and reverse standard primers correspond to the first 20 bp of each UNS in both 

forward and reverse complement orientations, respectively, and are provided in Table S5. 

UNS have the advantage that they are designed for highly efficient PCR with standard 

conditions (60 ºC, 35 cycles), resulting in single amplicons with high yields (Fig. S2). This 

eliminates the need for gel purification during the workflow of Gibson assembly, if 

appropriate on-column purification is performed.  

 

Reliability of Loop assembly. To evaluate the reliability of the technique, we tested L1 Type 

IIS Loop assemblies in different laboratories, and obtained consistent results (Table 1). We 

assembled over 200 plasmids using the Type IIS pathway for Levels 1-3 and obtained 

average assembly efficiency between 83 to 97 % depending on the level of assembly and 

complexity of constructs (Table 1, Notes S2). This was evaluated though DNA profiling by 

means of restriction endonuclease digestion (Fig. S3). Further, we performed Illumina 

sequencing of 92 Level 2 and Level 3 assembled constructs to validate Loop assembly 

fidelity at the sequence level, to determine if the reaction had produced correct assemblies 

and if mutations had been introduced by our method. We found that 95.4 % of constructs 
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assembled correctly with 98.8 % of overhang scars present at expected junctions. Overall, 

99.8 % of nucleotides were correctly assembled, and the few incorrect constructs showed 

missing regions due to misassembly, rather than sequence errors per se (Table S7).  

In planta activity of Loop plasmids. Loop vectors were derived from the pGreenII (Hellens 

et al., 2000) plant binary transformation vector, but decoupled from plant selection markers 

(see Materials and Methods) to enable their introduction during assembly. As in pGreenII, 

Loop plasmids contain elements for propagation in Agrobacterium tumefaciens and are 

capable of Agrobacterium-mediated plant transformation. We have tested the application of 

Loop constructs in plant developmental biology by assembling TU composed of fluorescent 

proteins, localisation tags and endogenous promoters. This allowed us to highlight cellular 

features and track patterns of gene expression in planta. A Level 2 construct (pL2-1_TPL) 

containing four TU composed of  a HygR selectable marker, a mTurquoise2-N7 nuclear-

localised reporter driven by a MpEF1� constitutive promoter (Nagaya et al., 2011; Althoff et 

al., 2014), a Venus-N7 nuclear-localised reporter driven by a MpTPL tissue specific promoter 

(Flores-Sandoval et al., 2015) and a eGFP-Lti6b membrane-localised marker driven by a 

MpEF1� promoter was assembled from L0 parts (Table S1) using Loop assembly and 

transformed into Marchantia polymorpha (Marchantia). Regenerated transformants were 

obtained and clonal propagules called gemmae were examined using confocal microscopy. 

All three fluorescent protein reporter genes were expressed and allowed visualisation of 

distinct cellular and subcellular features across the tissue (Fig. 5). 

In addition, four L1 TUs that had been constructed by Type IIS Loop assembly were 

assembled into a multi-TU destination plasmid using Gibson assembly. Transfected 

protoplasts showed expression of the engineered fluorescent reporters in their expected 

localizations (Fig. S4), providing a fast and efficient system to evaluate functionality of Loop 

constructs. Plasmid maps for constructs are provided in Fig. S5. 

Loop assembly design automation. We have developed software tools to aid Loop assembly 

experiments. We developed LoopDesigner, a web application that facilitates (i) the sequence 

design and domestication of Level 0 DNA parts, (ii) generation of a Loop assembly parts 

database, and (iii) simulation of Loop assembly reactions and the resulting plasmid maps and 

sequences (Fig. 6). An input L0 sequences are domesticated by identifying unwanted RE 

sites and removing them by the introduction of synonymous mutations. Appropriate BsaI 

overhangs are added according to the rules of the common syntax for DNA parts and stored 
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in the part database. See methods for detailed description of the LoopDesigner 

implementation. We invite readers to visit the LoopDesigner web tool available at 

loopdesigner.herokuapp.com (supported in Google Chrome) for exploring Loop assembly 

techniques. The source code of LoopDesigner is available at GitHub 

(https://github.com/HaseloffLab/LoopDB LoopDesigner branch), and provided under an MIT 

license. 

Discussion 

The design of Loop assembly was inspired by existing assembly methods such as 

GoldenBraid, MoClo, and standardised Gibson assembly. We attempted to integrate. these 

techniques in a general-purpose DNA assembly system. Loop assembly combines recursive 

use of two restriction enzymes and plasmid sets, which together create a simple and versatile 

Type IIS assembly platform. Type IIS RE sites are employed in head-to-head configurations, 

eliminating the requirement for end-linkers used in MoClo systems. Instead, restriction sites 

for successive levels are integrated in receiver plasmids, as in GoldenBraid, but using 

quaternary assembly parity instead of binary. This enables faster assembly of large 

constructs, but demands all four positions to be filled by either TUs or by spacers. Fixing the 

number of donor parts allows systematisation without increasing the complexity of assembly, 

with standardised reactions containing determined number of DNA parts and overhangs.  

Further, the recursive nature of Loop assembly enables the usage of a compact plasmid 

library whilst providing versatile construction strategies. We show the use of recursive 

assembly for the fabrication of complex DNA such as synthetic promoters composed of 

repetitive sequences and hybrid levels. Type IIS restriction sites in the Loop vectors are 

flanked by standardised UNS, enabling the use of Loop vectors with overlap assembly 

methods and the reuse of oligonucleotides for assembly. This provides users of Gibson and 

overlap assembly methods with the capacity to tap into libraries of domesticated DNA parts 

already available. We have demonstrated the high efficiency of Loop assembly by generating 

a variety of constructs with different number of TUs, achieving reliable assembly of 

constructs up to 16 TUs composed of 56 individual parts. Additionally, we have used Loop 

assembly for the generation of multispectral reporter constructs and show their activity in 

planta. 
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Use and characterisation of the products of Loop assembly demonstrated that it is a robust 

and reliable DNA assembly system regardless of levels and types of parts. Loop assemblies 

varying in size, total number of fragments and DNA composition were performed in order to 

provide an accurate estimate of the method performance in routine use. The high rate of 

successful assemblies, even in the absence of cPCR pre-selection, considerably decreases the 

effort and time required for DNA construction. Further, the system  takes advantage of (i) a 

common syntax for DNA parts, (ii) a simple, recursive assembly scheme, (iii) a small set of 

plasmid vectors and (iv) streamlined protocols, to provide a streamlined and logical 

framework for assembly that will enable rapid adoption by students and non-specialists. As 

Loop assembly integrates Type IIS and overlap assembly, it encourages the development of a 

community around a DNA construction system, yielding a growing collection of DNA parts 

and composites. The wide compatibility of Loop assembly facilitates proper curation and 

improvement of DNA part collections through collaboration, easier exchange and transfer of 

genetic modules between labs, and cross-validation. The ability to use either overlap or Type 

IIS assembly provides further flexibility in making DNA constructions where sequence 

alterations introduced by removal of illegal RE sites are not desirable (such as for 

experiments involving native genetic sequences), or when the assembly fails by one of the 

pathways.   

Although the falling costs of DNA synthesis suggest that DNA synthesis of transcriptional 

units or even chromosomes might eventually be time and cost-effective, synthetic biology 

requires the capacity for rapid, high-throughput and combinatorial assemblies. This is 

necessary for characterisation and troubleshooting of smaller DNA parts and circuits before 

compiling high-level devices and systems. Assembly systems that are tailored to exploit the 

opportunities provided by automation technologies will undoubtedly benefit from robotics 

platforms.  Automated design and liquid handling platforms for fabrication DNA constructs 

have already been adopted by some
 
and the technologies are rapidly expanding: at the high 

end of the market platforms such as the Echo (Labcyte) are enabling miniaturization and 

increasing throughput, yielding a substantial reduction in reaction costs (Kanigowska et al., 

2016), while low-cost platforms such as the OT-One S (OpenTrons) are aiming to make 

automated pipetting affordable in every laboratory.  
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To enable facile design of constructs we developed LoopDesigner, a software framework that 

provides an interface between digital design and experimentation. We have demonstrated the 

usefulness of the LoopDesigner by implementing a simple web tool where users can design 

assembly strategy and run virtual reactions before stepping into the lab. The LoopDesigner 

framework allows definition of Loop assembly schemas of arbitrary complexity, with any 

number of levels and plasmids per level, as well as with any possible restriction enzymes and 

overhangs. In this sense, LoopDesigner generalises the concept of the assembly, so that the 

assembly schema presented in this paper become a single instance of many possible 

implementations of the Loop assembly, allowing for the exploration of novel ways of 

assembling DNA parts through Type IIS strategies. 

DNA construction has been traditionally coupled to the concurrent use of plasmids in model 

organisms. Loop assembly provides additional throughput and versatility for working with 

general-purpose backbones, to which users can add specific new functions e.g. parts for 

transfection. Vectors could be decoupled from specific uses by modularising replication 

origins and selection markers as basic DNA parts and introducing host-specific elements 

during the assembly process. This would provide higher flexibility during design, and allow 

switching selection markers when super-transformation is required, for instance. Such 

approaches would make the DNA fabrication process host-agnostic, promoting the 

development of universal DNA assembly systems using standards such as the common 

syntax, which would provide unprecedented exchange of DNA components within the 

biological sciences.  

Until recently, the majority of materials for research were exchanged under a Uniform 

Biological Material Transfer Agreement (UB-MTA). This is a bilateral legal agreement that, 

in its standard form, does not allow redistribution, exchange or use with those outside of 

educational and research organisations. At the same time, in scientific publishing and in 

software, there is a trend toward openness to facilitate collaboration and translation of basic 

research. An excellent example of how the open source philosophy has powered and enabled 

innovation is exemplified by community-based coding projects such as the ones hosted by 

Github (https://github.com). Git was originally developed for the purpose of distributed 

software development, and nowadays most collaborative projects, both in the public and the 

private sector, use Git as an underlying framework. It is unlikely that we will see similar 

success in DNA engineering and synthetic biology, unless new forms of unrestricted DNA 
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sharing and assembly are established under more open frameworks such as the OpenMTA. 

We support the adoption of an open-source inspired L0 elemental part exchange by providing 

Loop assembly for the higher-level construction of these L0 components under an OpenMTA 

framework. Work to establish the OpenMTA will ensure access to the Loop assembly system 

for work in both the public and the private sector.  
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Fig. 1 Overview of Loop assembly. (a) Loop assembly workflow, L0 parts are assembled to 

L1 transcription units (TUs) into one pOdd receiver by BsaI-mediated Type IIS assembly. L1 

TUs are assembled to L2 multi-TUs into one pEven receiver by SapI-mediated Type IIS 

assembly. This workflow is then repeated for higher-level assemblies. Only four odd level 

and four even level receiver plasmids are required for Loop assembly. (b) Combinatorial and 

exponential assembly. L0 parts can be assembled to L1 TUs into any of the four positions of 

odd receivers. Genetic modules can be easily be swapped in each TU arrangement and 

receiver position. L1 TUs can then be assembled into L2 multi-TUs with variable 

combinations of the L1 TUs, also into any of the four positions of the even receivers. Each 

round of assembly generates four assembled plasmids and consequent rounds of assembly 

increase the number of TUs by a factor of four, leading to an exponential increase in TU 

number.  

 

 

Fig. 2 Loop assembly schema. (a) Loop receiver plasmids. Each of the four pOdd and pEven 

receivers plasmids has a specific set of SapI (3 bp) and BsaI (4 bp) convergent overhangs 

respectively, required for higher level assembly. Odd receivers contain diverging BsaI 

restriction sites and terminal-overhangs according to the common syntax, making them 

compatible for cloning L0 parts into pOdd plasmids. They contain SapI converging sites with 

donor-overhangs for directing SapI-mediated Type IIS assembly into even-level receivers. 

pEven plasmids have SapI diverging restriction sites and terminal-overhangs to receive parts 

from pOdd plasmids. For higher-level assemblies, pEven plasmids contain converging BsaI 

sites with donor-overhangs for BsaI-mediated Type IIS assembly into pOdd plasmids. (b) 

Loop odd-level assembly. L0 DNA parts containing overhangs defined in the common syntax 

are assembled into a Loop odd-level receiver. BsaI digestion releases the DNA modules, 

which are assembled into an even-level receiver by directional assembly defined by 4 bp 

overhangs. pOdd plasmids contain A and F overhangs as terminal-overhangs for receiving 

parts, which are flanked by convergent SapI restriction sites with 3 bp donor-overhangs for 

further assembly. (c) Loop even-level assembly. Four previously assembled pL1 transcription 

units (TUs) are assembled into a pEven plasmid. SapI digestion releases TUs from pL1 

plasmids, which are assembled into an even-level receiver by directional assembly defined by 

3 bp overhangs. pEven plasmids contain � and � overhangs as terminal-overhangs, which are 
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flanked by convergent BsaI restriction sites with donor-overhangs defined in the common 

syntax required for further assembly.  

 

 

Fig. 3 Hybrid assembly. (a) Synthetic promoter assembly. L0 functional domains flanked by 

terminal overhangs are assembled into odd level receivers in any given position. L1 motifs 

are then assembled into L2 composites with differing arrangements into positions 1 and 2. L2 

composites in positions 1 and 2 are used in a hybrid assembly with L0 parts to generate a 

hybrid odd level transcription unit (TU) with a synthetic promoter composed of the L0 

functional domains in the defined arrangement. (b) Mixed level assembly. L3 and L1 parts 

are assembled into an even level receiver generating a hybrid even level multi-TU plasmid.  

 

Fig. 4 Loop overlap assembly. (a) Transcription unit (TU) assembly for overlap assembly. 

Unique nucleotide sequences (UNS) flanked transcription units (TUs) can be generated either 

by standard L0 BsaI-mediated Type IIS assembly or by overlap assembly methods using 

PCR-fragments or DNA synthesis. TUs produced by overlap assembly are only compatible 

with the overlap assembly pathway but do not require domestication. (b) Standardised 

overlap assembly. Linear UNS flanked TUs are amplified by PCR or excised from plasmids 

by digestion by uncommon restriction enzymes. Linear UNS flanked TUs are then assembled 

to the destination plasmid pUNSDest by overlap assembly methods.  

 

Fig. 5 In planta activity of a Loop assembly construct. Marchantia gemmae transformed with 

a L2 construct were imaged through a Leica SP8 laser-scanning confocal microscope to 

assess expression of fluorescent markers. mTurquoise2-N7, Venus-N7 and eGFP-Lti6b were 

excited with appropriate wavelengths and fluorescence was captured in their respective 

emission windows in sequential scanning mode. Images shown are Z-stack maximum 

intensity projections.  
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Fig. 6 Design automation. A DNA sequence is submitted to LoopDesigner, which screens for 

BsaI and SapI sites and domesticates them to silent mutations where possible. A part type is 

specified for the assembly schema to save the part to the database library. To perform an in 

silico assembly, a receiver plasmid is selected which displays the compatible parts that can 

be placed in the current position of the assembly schema. As parts are included, the next 

compatible parts are displayed. When the assembly schema finds that the all parts required to 

complete the assembly are selected, the assembly simulation is performed. Then, 

LoopDesigner outputs the resulting plasmid map with its concurrent highlighted sequence 

and a protocol for Loop Type IIS reaction setup or export of GenBank sequence. Instructions 

to robots can be outputted if an API is provided with the required information (plasmid 

positions, ID mappings, robot functions) to produce the concurrent instruction file using 

Python scripting. The assembled part is then saved into the part library database for further 

assembly. 
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Table 1 Loop assembly efficiency. 

Level Constructs (Nº) TU (Nº) Avr. length (bp) O. efficiency* (%) Avr. efficiency† (%) 

Lab 1 
     

L1 104 1 6243 96 97 

L2 79 4 13519 82 88 

L3 23 16 26731 81 83 

Hybrid 3 Var. 5473 100 100 

Lab 2 
     

L1 14 1 5570 91 91 

UNS overlap 5 4 12548 71 71 

 

*
Overall efficiency calculated as total number of samples with correct RD patterns over total samples tested. 

†Average efficiency calculated as the mean of correct RD patterns over samples tested per construct. 

UNS, unique nucleotide sequences; TU, transcription unit.  
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Supporting Information 

Fig. S1. pOdd-spacer and pEven-spacer usage. 

Fig. S2. Standardised UNS PCR. 

Fig. S3. L3 assembly verification. 

Fig. S4. Transient expression of a multi-TU L2 construct in Arabidopsis mesophyll 

protoplasts.  

Fig. S5. Plasmid maps for L2 constructs used for plant heterologous expression. 

Table S1. DNA parts. 

Table S2. Loop Type IIS assembly DNA preparation. 

Table S3. Loop Type IIS assembly reaction preparation. 

Table S4. Loop Type IIS assembly cycling conditions. 

Table S5. UNS primers. 

Table S6. Loop vectors UNS for plants. 

Table S7. High-throughput sequencing validation of Loop assemblies. 

Notes S1. Synthetic promoter assembly. 

Notes S2. Characterisation of Loop assembly efficiency. 

Methods S1. Loop assembly UNS.  
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