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Preface

This book arises from a conference held at the British 
School at Rome, and the Finnish Institute in Rome, 
in March 2013, entitled Fuel and Fire in the Ancient 
Roman World. The conference represented the first real 
attempt to try to bridge the gap between ‘top-down’ 
generalized models about Roman energy consump-
tion (itself, still a relatively new area of research), and 
research carried out by artefact and environmental 
specialists. In many ways it exceeded our expecta-
tions, although it probably raised more questions 
than it answered. As fuel is used in many different 
domestic and industrial contexts, the papers were very 
heterogeneous; some presenters came from a strong 
archaeobotanical background, which is a central area 
for fuel research, while others came from social, techni-
cal and economic spheres, opening up the discussion 
beyond archaeobotany. Some papers presented more 
‘qualitative’ rather than ‘quantitative’ results but, as a 
new research area, this was inevitable and qualitative 
evaluation can provide the framework for approaching 
quantitative studies. Nevertheless, useful quantita-
tive beginnings are proposed in a number of papers. 
Although focused on the Roman period, the research 
often extended beyond this chronological span, to help 
contextualize the results.

We gratefully acknowledge the support and assis-
tance of the British School at Rome and the Institutum 
Romanum Finlandiae (Finnish Institute of Rome). In 
particular we thank Professor Katariina Mustakallio, 
then director of the IRF, for generously hosting the 
conference lunch on the final day. The financial sup-
port of the Oxford Roman Economy Project, through 

Professor Andrew Wilson, and a significant private 
donation from Mr Jim Ball, former Commonwealth 
Forests Chairman (administered through the BSR 
Rickman Fund) allowed speakers’ travel, accommo-
dation and subsistence costs to be covered, as well as 
a contribution towards publication costs. Professor 
Wilson and Mr Ball both provided much appreci-
ated moral support and intellectual input, acting as 
our major discussants. The McDonald Institute for 
Archaeological Research, through its Conversations 
series, also helped fund publication. Professor Graeme 
Barker (McDonald Institute director to September 
2014), Professor Cyprian Broodbank (current direc-
tor), Dr James Barrett (current deputy director) and 
Dr Simon Stoddart (former acting deputy director) 
all provided advice and guidance over time. This was 
much appreciated. Dora Kemp provided initial advice 
on manuscript preparation, and after her untimely 
death, Ben Plumridge took over the practical side of 
production. Maria Rosaria Vairo, then a Masters stu-
dent of the University of Lecce, and Dana Challinor, a 
doctoral student at the University of Oxford, provided 
significant voluntary support during the conference 
and we thank them both profusely. Robyn Veal would 
also like to acknowledge the long-term financial and 
intellectual support of the Department of Archaeology, 
University of Sydney, through much of her early work 
on fuel. This led to the opportunity of a fellowship at 
the BSR, and the idea for this conference. The feedback 
from reviewers has greatly improved the book.

Robyn Veal & Victoria Leitch
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3.	� Calculate areas of walls, doors, windows and 
ceiling

4.	� Determine U-values4 of these (from published 
tables)

5.	� Calculate heat loss = area × U-value × (θι – θο) 
through:

	 a.  walls
	 b.  doors
	 c.  windows
	 d.  ceiling 
6.	� Determine ground-loss U-value from floor 

dimensions and published tables
7.	� Calculate ground loss
	 Loss = U-value × (θι – θο)
8.	� Add these to give total conductive heat loss
9.	� Calculate volume of room
10.	� Determine the air changes (depends on type of 

room)
11.	� Calculate ventilation loss: 
	 Loss = volume of room × air changes 
	 per second × (θι – θο) × 0.33
12.	� Add together the results of steps 4, 6 and 10. 

A real situation can be more complicated, e.g. by hav-
ing a range of temperature differences across walls 
(into other rooms). 

Openings

Some of the factors involved in calculating heat losses 
in ordinary buildings, especially heat loss through 
openings, pose special problems. The example of 
windows in Roman baths (in this case, the main baths 
at Ostia) is discussed in detail by Miliaresis in this 
volume. Whereas an opening that is efficiently closed 
by a door, shutter or by glass (or double glazing) can 
be treated as a conductivity issue mathematically; 
problems with U-values; openings without doors, 

In the 1950s, in addition to advising on conventional 
heating of buildings I did original research on the intro-
duction of domestic electrical underfloor heating.1 My 
excavation of the Welwyn Roman baths (published in 
full in Rook 1986), and my work on the study of Roman 
domestic baths in Britain (Rook 1975, 1976)2 led to my 
publishing a paper (Rook 1978) in which I attempted to 
calculate approximately the fuel consumption of a small 
suite of Roman baths, based on the remains excavated 
at Welwyn. This was intended to be a ballon d’essai. 
Was the suggested reconstruction feasible? Were the 
assumed conditions correct? Were my naive mathemat-
ics satisfactory? Unfortunately, I received no feedback. 

Observations at the reconstructed mansio baths at 
Xanten (Rook 1993) strongly suggested that the condi-
tions assumed in my 1978 paper, which were based on 
published figures for present-day so-called ‘Turkish’ 
baths in England, were incorrect. In particular that a 
maximum temperature of 40 °C could be assumed for 
the caldarium. Since this article was published, more 
modern studies, particularly of comfort physics, have 
made a more sophisticated approach possible.3 So this 
present paper attempts to show in relatively simple 
terms how heat loss calculations from buildings are 
performed now, and also questions some of the basic 
assumptions I made in the 1978 article and suggests 
approaches to correcting some of them. 

Simplified calculation of heat loss from buildings

When calculating the heat input required for a build-
ing, it is usual to take a total over a long period, such 
as a year, taking average conditions over the period. 
The procedure is as follows:

1.	� Decide on inside temperature 
2.	� Decide on outside temperatures (based on 

published meteorological tables)

Chapter 3

Problems in estimating fuels consumed in buildings:  
fuel requirements of hypocausted baths

Tony Rook
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•	� The air temperature
•	� The air velocity 
•	� Humidity (how much water vapour there is in 

the air)
•	� Personal metabolism (heat generated by the 

body)
•	� Radiation (infrared) in the environment

The thermal conditions in a room are usually measured 
by fairly simple instruments:

•	� T – Air temperature measured by an ordinary 
mercury-in-glass thermometer

•	� W – The ‘wet-bulb’ temperature, given by a 
thermometer with its bulb wrapped in a wick 
and therefore cooled by evaporation. This takes 
into account both humidity and air velocity 

•	� B – The ‘black bulb’ temperature, read 
from a thermometer with the bulb inside a 
hollow, matt-black, copper sphere. This takes 
into account infrared radiation. It was not 
considered when I did my earlier work

For an average person who is naked and not taking 
exercise, and when infrared is negligible, a simplified 
formula is: 

	 0.7W + 0.3T5 

The introduction of cavity walls (e.g. employing tegulae 
mammatae or tubuli) led to a considerable increase in 
the radiant heat in rooms. In fact, it probably resulted 
in the introduction of unglazed, single-glazed and 
double-glazed windows in some bath rooms, and 
in ‘sunbathing lounges’ or cella solaris, which can be 
seen (or postulated) in late public baths (Rook 1975, 
2005, 2013). The ramifications of these architectural 
developments are further discussed by Miliaresis in 
this volume.

Where infrared radiation is significant, a com-
posite ‘wet-bulb globe temperature (WBGT)’6 can be 
calculated using the formula 

	 WBGT = O.7W + 0.2B + 0.1T

The US military uses this to produce temperature 
categories for each of which the quantity of physical 
work and type of clothing are recommended.

(A more sophisticated ‘thermal limit algorithm 
index’, concerned principally with working conditions, 
has also now been developed. It uses published experi-
mental studies of human heat transfer and established 
heat and moisture transfer equations for clothed people 
doing physical work. Work areas are measured and 

shutters or glazing, (involving ventilation, either by 
convection or by wind), cannot accurately be known. 

Heat requirements of a simplified caldarium

The case of a hypothetical caldarium, where all the walls 
are lined with all the tubuli functioning as chimneys, 
is illustrated here. No heat is lost through the walls 
from the room. It is lost only through the ceiling, i.e. 
through heating the roof space. The roof space loses 
heat through the (usually) tiled roof. The fuel required 
to heat the room can easily be calculated. A difficulty 
exists, however, with any attempt to estimate the 
amount of heat lost in the gases leaving the hypocaust. 

It is noteworthy that, like most Roman furnaces, 
those of hypocausts were without grates; the fire 
burned on the ground. Most of the air entering the 
system flowed over the fire, and there was no inlet air 
control or outlet damper (as far as we know).

Although radiation must have been important 
close to the furnace, the transfer of heat further from 
the fire was mainly achieved by gas flow, which was 
powered by convection. With a conventional chimney 
this depends upon its area of cross section, its height 
and the temperature difference between its bottom 
and its outlet at the top. In the wall cavities provided 
by tubuli or tegulae mammatae, flow was not greatly 
restricted, and it is probably convenient to think of the 
furnace as a bonfire. Actual heat transfer was affected 
by two factors: gases lost heat as they travelled away 
from the furnace and they were also actually leaving 
the system. This probably defies theoretical analysis. 

There are two additional ways in which heat is 
lost by the furnace gases: through the walls from the 
gases in the tubuli and as sensible heat in the gases 
leaving the system to the outside. In my 1978 article 
an attempt was made to estimate these and hence to 
calculate the fuel consumption.

Inside temperature

The calculation of heat loss (and therefore require-
ment) of a building relies on the assumption of the 
temperature inside it. In living/working spaces this 
is comparatively simple. In the cases of the warm 
and hot rooms of baths, however, we do not know what 
conditions were desired. Clues are provided, however, 
by the study of thermal comfort. 

The temperature a person perceives depends mainly 
upon: 

•	� Clothing (in a study of baths we may assume 
that the person is naked)
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surface temperatures that I measured at Xanten. The 
physics of it probably cannot be theoretically pre-
dicted, and experimental reconstruction would be a 
useful exercise.

Some indication of the scale of the problem can 
be seen by attempting a description of the combustion 
process. If wood is the fuel, 1 kg of it requires 6.4 kg of 
air for complete combustion, and yields about 1.83 kg 
of C02, 0.52 kg of H20 (as a superheated steam) and 
5.05 kg of N2 and about 20 MJ of heat. Damp wood 
would use some of this heat to evaporate the water, 
and yield a corresponding quantity of steam. Air-dried 
wood can contain up to 25 per cent moisture. 

Complete combustion of the fuel requires at least 
100 per cent excess air: it seems likely that a much 
larger quantity of air flowed over the fire, and the 
stoker adjusted the geometry of the fire to ensure that 
the gases going under the floor were at the optimum 
temperature: an empirical result. Thus, we cannot 
know the temperature or mass of the gases entering 
the hypocaust from the furnace.

Whatever these were, the gases left the ‘chimneys’ 
(whatever their form) and took heat with them. ‘How 
much?’ is an important question for which we can only 
estimate possible limits. It is possible to assume an 
average temperature in this case. In a suite of baths the 
furnace would have heated at least two rooms, which 
would make the problem more difficult. It is useful, 
however, to approximately calculate, for example, 
the heat lost in the gases leaving the chimneys of a 
hypothetical hypocaust burning 1 kg of wood per hour. 

Thus, for a furnace using five times the theoreti-
cal (stoichiometric) quantity of air, with the flue gases 
leaving the chimneys with an average temperature 
100 °C above outside temperature, the heat loss would 
be 19.4 per cent.8 Carbon dioxide would be 4 per cent 
of the gases, assuming that the water vapour/steam 
has condensed. 

Measurements were made in the NOVA baths 
that were constructed at Sardis.9 The results, although 
subject to a number of caveats, were salutary and 
surprising. It was calculated that only 8 per cent of 
the (theoretical) heat produced by the combustion of 
the wood was used!10

Conclusions

To date, we have been able to model various aspects 
of heating a Roman bath building. The film docu-
mentary of the NOVA project that reconstructed a 
Roman bath at Sardis, and the subsequent work of the 
coordinators, suggested quite a large loss of heat in 
the building (only 8 per cent efficiency). Much could 
be learnt by repeating the exercise of reconstruction, 

categorized based on a metabolic heat balance equation, 
using dry-bulb, wet-bulb and air movement readings 
to measure air-cooling power. Instruments are made 
that measure this directly.) 

The structure of a hypocausted building

The basic idea of a hypocaust, at least at ground level, 
is so well known as to require no description. Problems 
arise when a reconstruction is contemplated, because 
usually insufficient amounts of the structure survive 
at higher levels. For example:

•	� How tall was the building? How were the 
ceiling and roof constructed? 

•	� How large were the windows?
•	� Were the windows glazed? Double-glazed?
•	� Were hollow vaults used as flues? 
•	� What sort of chimneys were there?
•	� What was the ventilation rate? 

As with most fires, a hypocaust obtained air by convec-
tion and would work only if there were chimneys of 
some sort connecting the space under the floor to the 
outside at a higher level. The evolution of these is dealt 
with in my 1978 paper. Little evidence survives, or has 
been published or perhaps sought, for what happened 
at the top of walls that were lined with tubuli. I postu-
lated that they all connected to a continuous ‘collecting 
channel’ which took the exhaust gases to outlets at the 
corners of the rooms. A collecting channel of this sort 
can be seen under a window in the Hadrianic Baths 
and leading to the chimneys of the ‘annex’ to the Hunt-
ing Baths at Lepcis Magna.7 In discussions regarding 
the NOVA reconstruction (Yegül & Couch 2005) this 
idea was at first fiercely resisted, but an unspecified 
compromise was tacitly adopted, where only some of 
the tubuli were assumed to have been connected to the 
collecting channel. The reason for this compromise is 
not clear, and the actual construction was not made 
public, despite a documentary being filmed.

The fuel consumption of a hypocaust

A clear error in my 1978 paper, which was not pointed 
out by anybody, lies in the assumption that for calcu-
lations, one can make use of the concept of an average 
temperature of the gases in a hypocaust. The actual 
conditions are complex. The temperature decreases 
as the gases flow away from the furnace, since they 
are losing heat, mainly to the rooms. In addition, their 
mass and rate of flow are decreasing as more and more 
are lost up the flues as the distance from the furnace 
increases. The effect of this is indicated by the inside 
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8	 Assuming that CO2 is measured after water vapour has 
been condensed, as in Orsat’s apparatus. (The Orsat 
apparatus consists essentially of a calibrated water-
jacketed gas burette connected by glass capillary tubing 
to two or three absorption pipettes containing chemical 
solutions that absorb the gases.)

9	 The full transcript of the film recording the building of 
the baths may be read at: https://www.pbs.org/wgbh/
nova/transcripts/27rbroman.html.

10	 Yegül & Couch (2003) use a Sankey diagram in their figure 
4 to demonstrate this (Sankey diagrams are a type of flow 
diagram in which the width of the arrows is proportional 
to the flow rate, after a method first documented by Irish 
engineer Captain Matthew H.R. Sankey, 1853–1925). I am 
doubtful about the result this diagram represents. Since 
the temperatures of the exit gases are below 100 °C, some 
of the heat used to evaporate the water would have been 
given up in the hypocaust as it condensed, and they omit 
this consideration in the figure.
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which also allowed for measurement of gas tempera-
tures as they pass through the system. This would be 
costly, but it would provide us with a more detailed 
understanding, at least of one building. However, 
studying bathing suites in Britain (Rook 1975, 1992) 
seems to confirm that which is intuitive: every bath-
ing suite was unique, apart from some modularity of 
plan which is imposed by the dimensions of bipedales 
used in flooring. There does not appear otherwise to 
be any standardization of plans and many domestic 
baths were ‘do-it-yourself’ jobs. Large public baths 
and their complexity are another thing entirely. Any 
experimental reconstruction, besides detailed instru-
mentation, would also need the ability to vary the 
operation of the flues. At Xanten and at Sardis, I was 
unable to find a satisfactory configuration of flues, 
and so in some ways a reconstruction would be ham-
pered until (or unless) archaeology can provide us 
with more details. Questions also arise as to whether 
bath furnaces would have been kept burning over-
night (probably they would have in most cities), but 
this too would have varied by demand, climate and 
fuel availability. Generally speaking, a lot of fuel is 
required to get a bathhouse up to temperature (from 
cold), and less fuel is required (per hour) to keep it 
running. From the point of view of fuel consumption, 
it would be possible to run a reconstructed bathhouse 
and observe the fuel used – and to use this data to 
create a rough model to estimate an annual/per capita 
basis of fuel consumption for bathing for a small town, 
and eventually for larger cities.

Notes

1	 Unpublished; commercial work for G. Wimpey, Central 
Laboratories. 

2	 See also Rook (1975).
3	 See, for example, Parsons (2002). 
4	 U-values measure how effective a material is as an 

insulator. Thermal performance is measured in terms of 
heat loss, and is commonly expressed in the construction 
industry as a U-value (or R-value).

5	 This formula can also be employed in weather forecasting.
6	 The wet-bulb globe temperature (WBGT) is a type of 

apparent temperature used to estimate the effect of tem-
perature, humidity, wind speed (wind chill) and visible 
and infrared radiation (usually sunlight) on humans.

7	 Personal observation. See also Rook (2013), fig. 68.
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