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Abstract

In this work, we consider the following random process, motivated by the analysis of lock-free concur-
rent algorithms under high memory contention. In each round, a new scheduling step is allocated to one of
n threads, according to a distribution p = (p1, p2, . . . , pn), where thread i is scheduled with probability
pi. When some thread first reaches a set threshold of executed steps, it registers a win, completing its
current operation, and resets its step count to 1. At the same time, threads whose step count was close to
the threshold also get reset because of the win, but to 0 steps, being penalized for almost winning. We are
interested in two questions: how often does some thread complete an operation (system latency), and how
often does a specific thread complete an operation (individual latency)?

We provide asymptotically tight bounds for the system and individual latency of this general concur-
rency pattern, for arbitrary scheduling distributions p. Surprisingly, a simple characterization exists: in
expectation, the system will complete a new operation every Θ(1/‖p‖2) steps, while thread i will com-
plete a new operation every Θ(‖p‖2/p2i ) steps. The proof is interesting in its own right, as it requires a
careful analysis of how the higher norms of the vector p influence the thread step counts and latencies in
this random process. Our result offers a simple connection between the scheduling distribution and the
average performance of concurrent algorithms, which has several applications.

[ Regular submission. ]



1 Introduction

One of the main computing trends of the last decade has been increased pressure on concurrent algorithms
and data structures to scale under concurrency. Lock-free (non-blocking) data structures [14] represent a
promising solution to this problem, thanks to their good performance and relatively simple structure. Unlike
lock-based approaches, these data structures follow the principle that some operation should always complete
every finite number of steps; the blocking of a single execution thread should never prevent the whole system
from progressing. Efficient lock-free implementations are now known for many classic data structures, such
as counters, stacks, queues, lists, or trees [9, 14, 15, 17, 21, 23].

Recently, there has been increased interest in the analytical properties of lock-free data structures [1,8,15].
Herlihy and Shavit [15] suggested that, on realistic schedules, lock-free algorithms ensure that each operation
completes in a finite number of its own steps, i.e., that lock-free algorithms are in fact wait-free [12]. Alistarh,
Censor-Hillel, and Shavit [1] extended this idea and gave a simple stochastic condition on schedules under
which any lock-free algorithm becomes wait-free with probability 1: roughly, it is enough for the schedule
to have some non-zero probability of picking each thread i in each step. They also gave evidence that such
schedules are common in high memory contention scenarios, and characterized the performance of a general
family of lock-free algorithms, called Single-CAS Universal (SCU),1 under an idealized uniform stochastic
scheduler, which picks the next processor to schedule in each step with uniform probability.

More precisely, any algorithm in SCU follows a classic scan-and-validate pattern: a scan region designed
to assess the state of the concurrent data structure and to locally compute an updated state, ending with a
validate step consisting of a read-modify-write operation which atomically checks that the state of the data
structure is still consistent with the scan, and, if so, commits the updated state. Crucially, this last validation
step may fail if the data structure state changes between the scan and the validation step, meaning that some
other operation succeeded in the meantime. If validation fails, the current operation restarts. This pattern is
common in lock-free algorithms, e.g., [17, 23], and in databases with optimistic concurrency control [20].
The Stochastic Game. The analysis of algorithms in SCU under stochastic schedulers reduces to the follow-
ing process [1]: we are given constant operation length k ≥ 2, n bins (each associated with a thread), and
probability distribution p = (p1, p2, . . . , pn). In each step, we allocate one new ball (scheduler step) into one
of the bins, according to the distribution p, where bin i gets the ball with probability pi. Bins continue to
acquire balls, until one of them first reaches a threshold of k + 1 balls. At this time, the corresponding bin
registers a win (its thread completes its operation), and gets reset to containing a single ball. Moreover, bins
which contain k balls at this time get reset to having 0 balls, being penalized for almost winning.2 All other
bins maintain their ball count. Given this process, we are interested in two questions: how often does some
bin register a win (system latency), and how often does a specific bin i register a win (individual latency)?
The Question. Reference [1] gave bounds for these parameters under a uniform scheduler distribution p =
(1/n, . . . , 1/n). However, their technique hinges on the symmetry of the distribution, and does not apply to
non-uniform scheduling, leaving open the question of performance under non-uniform contention.

Bounding latencies for general p is important for several reasons. First, modern processors exhibit
consistently non-uniform scheduling, due to non-uniform memory access times. (See Appendix F or ref-
erences [7, 16] for examples.) Second, key questions remain unsolved: what is the relative performance
advantage of a thread that gets scheduled with higher probability? What is the worst-case scheduling dis-
tribution for lock-free algorithms? What is the optimal system latency achievable, while guaranteeing some
minimal progress guarantees for individual threads?
Contribution. In this paper, we give asymptotically tight bounds on the performance of lock-free algorithms
following the universal lock-free SCU pattern, in the common case where operations have constant length,
with respect to any arbitrary sequence of scheduling distributions p(n), where n is the number of processors.3

1The SCU algorithmic pattern is lock-free universal [1, 12] in the sense that it can be used to provide a lock-free concurrent
implementation for every object that can be specified sequentially.

2Since a newly completed operation changes the shared state, any thread that was about to win, performing its validation, is
penalized since it will fail its validation, after which it restarts its current operation.

3We express complexity in terms of the number of threads n, as is standard; throughout, we write p instead of p(n) for brevity.
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Theorem 1.1. Given an arbitrary scheduling distribution p = (p1, p2, . . . , pn), and constant operation length
k, algorithms in SCU have system latency Θ(1/‖p‖2). Each process i has individual latency Θ(‖p‖2/p2

i ).

Given the relatively complex structure of the algorithms, we find it surprising that such a simple charac-
terization exists for general p, and that this characterization does not depend on any higher norm of p. By
contrast, we exhibit simple modifications of this pattern which induce system latency Θ(1/‖p‖k).
Analysis Overview. The technical argument behind these bounds is quite non-trivial. We express the balls-
into-bins game corresponding to an algorithm as a Markov chain, where each state is a possible configuration
of occupancies of the bins, and each transition corresponds to a new ball being placed. An interesting feature
of this chain is that a win by bin i also affects the state of bins containing k balls before i’s win, which induces
non-trivial correlations between occupancies of the bins. It would be enough to characterize the stationary
distribution of this chain: the rate at which bin i wins is the stationary probability of bin i transitioning from
k balls to 1 ball, while the win rate of the system is the sum of individual rates. These win rates are the
reciprocals of individual and system latencies, respectively.

Computing the stationary distribution of such a process for general p, n, and k is infeasible, so we adopt
a more elaborate strategy. We begin by bounding the system latency. Our main gadget for this part of the
argument is to analyze a simplified chain, where all bin loads are considered modulo k. This choice is
somewhat unintuitive, since this simplification obscures exactly the probability that a bin has k balls, which
directly determines the bin winning rates. However, the stationary distribution of this simpler chain is easier
to compute, and we show that it implies a clean

√
k/‖p‖2 lower bound on the expected system latency.

The system latency upper bound is more involved. We split the execution into phases, where a phase is the
interval between two wins. (The expected length of this interval is the system latency.) We consider the state
of the chain at a random time t, and wish to bound the residual (remaining) phase length from such a time.
We partition bins according to the number of balls they contain at t, where a bin is at level 1 ≤ ` ≤ k+ 1 if it
still needs ` balls to reach k+ 1 and win the phase. Ideally, we would like to argue that there are many bins at
low levels, and that these bins will dominate the phase competition, winning within a small number of steps.

However, since the distribution p may be unbalanced, the probability weight contained by each level `
at time t might not be well-concentrated. We overcome this technical obstacle by a careful argument which
merges the Hoeffding bounds for each level `, showing that the expected residual phase length has to be
O(1/‖p‖2), irrespective of the structure of p. We prove high probability bounds similarly.

We then focus on bounding individual latencies, and in particular on upper and lower bounds on the
probability wi that a specific bin (thread) i wins a random phase. While the Ω(p2

i /‖p‖22) lower bound on wi
is relatively simple, following by the previous analysis, the upper bound on wi is non-standard.

To obtain the bound, we characterize the occupancies of all bins at the beginning of a random phase,
to ensure that bin i gets enough competition. These occupancies are complex, and not well-concentrated,
as we do not restrict p and k. We circumvent this problem by first considering the occupancy distribution
at a random time step. Then we build a connection between the probability that the bin occupancies are
unbalanced at a random time and the probability that the bin occupancies are unbalanced at the beginning of a
random phase. The proof of this relation employs an interesting adversarial counting argument. We roughly
show that bin i gets a lot of competition on average, which implies a matching upper bound of O(p2

i /‖p‖22)
on i’s winning probability, implying individual latency bounds.
Applications. Our result relates the scheduling distribution p with the average performance of a lock-free
algorithm in SCU, and provides simple answers to the questions on the relative latency advantage of processors
(ratio of scheduling probabilities squared), and the worst-case scheduling distribution (uniform).

It has two additional practical applications: given the simple relation between p and the performance
metrics, determining the scheduling probabilities which minimize system latency, i.e., the optimal backoff
scheme, under a set of individual latency constraints, becomes a well-defined optimization problem.

Second, a useful by-product of our technical framework is that we can understand the average-case behav-
ior of various other concurrency patterns under arbitrary scheduling distributions. A particularly interesting
pattern is when, on a win by thread i, all threads get reset to 1, irrespective of their current step count, which
corresponds to the general family of obstruction-free concurrent algorithms, e.g. [3, 13], and to database
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transactions with optimistic concurrency control, e.g., [20, Chapter 7]. Our framework shows that the system
latency of such algorithms is Θ(1/‖p‖k). This implies a separation in terms of average complexity between
this algorithmic class and lock-free algorithms, for virtually any scheduling distribution p.
Related Work. Aspnes [2] was the first to consider distributed algorithms under randomized schedulers,
solving consensus efficiently under a scheduler model different from the one we consider. Alistarh, Censor-
Hillel, and Shavit [1] introduced the stochastic scheduler model, and isolated the SCU algorithmic pattern.

Their work implies bounds on the system and individual latencies for SCU given p = (1/n, 1/n, . . . , 1/n).
Specifically, they showed that system latency is O(

√
n) steps, while individual latency is O(n

√
n) steps. In

brief, their analysis works by expressing the algorithm as a Markov chain, and noticing that, since both the
operation code and the scheduling distribution are symmetric, the general Markov chain can be collapsed onto
a simpler chain, called the global chain. This mapping is a proper lifting [6, 11] of the general chain, and
characterizing the stationary distribution of the global chain is enough to bound the latency of the algorithm.
One main technical step is bounding the stationary probabilities of the global chain; this works by carefully
characterizing the chain for k = 2, and then generalizing to general constants k by symmetry.

We analyze algorithms in SCU under arbitrary distributions p, which requires us to take a different
approach. We cannot employ Markov chain lifting, since states that are symmetric in terms of bin occupancies
may now have completely different probabilities in the stationary distribution of the chain. Similarly, we can
no longer reduce the system latency analysis to the case k = 2, since the generalization to arbitrary k relies
on symmetry of the distribution. Finally, in the symmetric case, system latency immediately determines the
individual latencies, as two bins have exactly the same probability of winning an arbitrary phase. This is
clearly no longer the case for non-uniform p, and, in fact, determining the individual winning probabilities
given the system latency is one of the main technical components of our argument. For uniform p, we obtain
the same asymptotic bounds as [1], although their lifting argument yields tighter constants.

Balls-into-bins processes [4] are popular abstractions for resource allocation problems, where balls (tasks,
requests) are randomly allocated to bins (resources, processors). Such processes are relatively well understood
in the uniform setting [4, 18], but recently there has been a growing interest in non-uniform settings, where
either balls have different weights [22] or bins have correlated probabilities to be picked [10].

2 Preliminaries
2.1 Modeling

The Shared Memory Model. In this model, n processes (threads) communicate through registers, on which
they perform atomic operations, such as read, write, or compare-and-swap(CAS). A CAS operation takes
three arguments (R, expectedVal ,newVal), where R is the register on which it is applied, expectedVal is the
expected value of the register, and newVal is the new value to be written. The operation compares expVal
with the current value v of R, and atomically updates R to newVal if the expected value matches the current
value, i.e. expVal = v. In this case, we say that the CAS succeeds. Otherwise, the value of R is not updated,
and the CAS fails.

Each algorithm implements a shared object, which is an abstraction providing a set of methods, each given
by its sequential specification. The algorithm is composed of shared-memory steps and local computation.
The order in which these steps are performed is controlled by a scheduler.
Stochastic Schedulers. In general, a scheduler for n processes can be defined by a triple (Πt, At, θ). For each
time step t ≥ 1, Πt is a probability distribution for scheduling the n processes at time t, andAt is the subset of
possibly active processes at time step t. At time step t ≥ 1, the distribution Πt gives, for every i ∈ {1, . . . , n}
a probability pti, with which process i is scheduled. The distribution Πt may depend on arbitrary outside
factors, such as the current state of the algorithm being scheduled. For every t ≥ 1, the parameters ensure the
following: (i)

∑n
i=1 p

t
i = 1; (ii) For every process i ∈ At, pti ≥ θ; (iii) For every process i /∈ At, pti = 0; (iv)

At+1 ⊆ At. A scheduler (Πt, At, θ) is stochastic if θ > 0. We consider a static non-uniform scheduler, which
picks the next process to schedule using a fixed distribution p = (p1, p2, . . . , pn) at every time t.
Executions and Schedules. An execution is a sequence of operations performed by the processes. Since
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1 Shared: registers R1, R2, . . . , Rk

2 procedure operation()
3 while true do
4 v1 ← R1.read(); v2 ← R2.read(); . . .; vk−1 ← Rk−1.read()
5 vk ← Rk.read() /* Scan region */
6 v′ ← new proposed state based on v1, v2, . . . , vk
7 flag ← CAS(Rk, vk, v

′) /* Validation step */
8 if flag = true then
9 output success

Algorithm 1: The structure of the lock-free algorithms in SCU .

process steps are atomic, we can assume discrete time, where at every time unit a single process is scheduled.
In a time unit, a process performs any number of local computations or coin flips, after which it issues a step,
which consists of a single shared memory operation. Whenever a process is scheduled to take a new step by
the scheduler, it performs its local computation and then executes its next step, as dictated by the algorithm.
Thus, the schedule is a possibly infinite sequence of process identifiers. If process i is in position t in the
sequence, then it is active at time t.
Progress Guarantees. An implementation is lock-free (non-blocking) if, for each time t in the execution,
there exists a finite bound Tt such that some operation returns within the next Tt steps. An implementation is
wait-free if, for every operation, there exists a finite bound T on the number of steps that the operation can
take before returning.

2.2 Algorithmic Pattern and Complexity Measures

We now describe the Single-CAS Universal algorithmic pattern which is the focus of our analysis. This
pattern can be used to provide a lock-free concurrent implementation of any sequential object, via a straight-
forward extension of Herlihy’s universal construction [12]. This pattern is also the basis for several efficient
implementations of shared objects, such as counters, lists, stacks, queues, or skip-lists, e.g. [9, 14, 23].

An operation using the SCU pattern consists of a scan-and-validate loop consisting of k steps reading
shared registersR1, R2, . . . , Rk, ending with a validation step which performs a compare-and-swap operation
on the last read location Rk. (Please see Algorithm 1.) If this compare-and-swap operation succeeds, then the
operation returns successfully. Otherwise, if the operation fails, and the process re-issues the operation.
Complexity Metrics. We address the following question: what is the performance of an arbitrary algorithmA
in SCU , under an arbitrary non-uniform stochastic scheduler given by the distribution p = (p1, p2, . . . , pn)?

We consider two natural performance measures. The first is system latency, i.e., the expected number
of time steps between two completed operations by the system. The second is individual latency, i.e., the
expected number of time steps between two committed operations by a specific process i. Individual latency
is the correspondent of the step complexity metric, which measures the number of individual steps taken by
an operation in order to complete.

2.3 Markov Chain Formulation and Preliminary Results

In the following, we fix an algorithm A in SCU , whose structure is fixed, and follows the pattern in Al-
gorithm 1. We assume that each process executes an infinite number of operations, and that each process
executes its next operation as soon as it completes the current one.
Modeling the Algorithm. First, notice that we can reduce A to the following balls-into-bins game. Consider
a system of n bins, representing the processes, each starting with one ball. This state corresponds to the
process being about to read the value of R1. In each scheduling round, the scheduler allocates a new ball
(i.e., a step) into one of the n bins: bin i gets the ball with probability pi. Bins continue to receive balls until
reaching k balls, which corresponds to being about to perform the CAS operation in line 7 in Algorithm 1.

Following the algorithm, whenever the scheduler places a ball into a bin that already contains k balls, a
new operation gets completed and we therefore record a win by the system and by the corresponding process.
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Crucially, on a win by process i, the bin corresponding to the process is reset to having one ball, whereas all
the other bins which had exactly k balls before i’s win will be reset to 0 balls.
Markov Chain Formulation. It is easy to see that the system can be modeled as a discrete-time Markov
chain. At the arrival of the t-th ball, a bin I(t) is selected at random by drawing a sample from the distribution
p = (p1, p2, . . . , pn). The state of the system is defined by the bin occupanciesX(t) = (X1(t), X2(t), . . . , Xn(t))
before the arrival of the t-th ball. If the selected bin has less than k balls, i.e., XI(t)(t) ∈ {0, . . . , k − 1},
then we simply increment XI(t) by 1 and continue. Otherwise, if XI(t)(t) = k, we reset I(t) to one ball, i.e.,
XI(t)(t+1) = 1. Further, we reset all other bins j 6= I(t) withXj(t) = k so thatXj(t+1) = 0. The process
of bin occupancies {X(t)}t≥0 is a discrete-time Markov chain with the finite state space {0, 1, . . . , k}n.
Stationary Distribution and Ergodicity. Under the assumption pi > 0 for each bin i, the transition matrix
of the Markov chain {X(t)}t≥0 is irreducible, and thus, has a unique stationary distribution π (see, e.g., [5]).

The chain {X(t)}t≥0 is not aperiodic. To resolve this issue, we simply consider a perturbed version that
is parameterized with δ ∈ (0, 1) such that at each time step a new ball arrives with probability 1 − δ and is
assigned to one of the bins according to the given distribution p, and otherwise no ball arrives in the given
time step and the occupancies of the bins remain unchanged. Such a perturbation results in a “lazy” Markov
chain {Xδ(t)}t≥0 that has the same stationary distribution, but unlike the original chain, it is aperiodic, and
hence, ergodic. The increase of the system and individual expected latencies is only for a factor 1/(1 − δ),
which can be made arbitrarily close to 1 by taking δ small enough. In what follows, we will tacitly assume
that the given vector p is already chosen so that the chain {X(t)}t≥0 is ergodic, i.e., irreducible and aperiodic.
Reset Points, Phases, and Latencies. For the Markov chain {X(t)}t≥0, we say that a time-step t is a reset
or a win point if at time-step t bin i is selected such that Xi(t− 1) = k. The reset points correspond to a point
process T0 ≤ 0 < T1 < T2 < . . . where Tr is the time-step of the r-th reset point.

A phase corresponds to the interval of time-steps starting at a reset point and ending in the time-step just
before the next reset point. The phases are enumerated such that the 0-th phase corresponds to the interval of
time-steps [T0, T1), first phase corresponds to the interval of time-steps [T1, T2) and so on. The length of the
r-th phase is denoted by Sr. Since we are interested in the long-run average performance, we shall consider
expected values with respect to the stationary distribution of the bin occupancies. We refer to a random time
t to be an arbitrary time t under the assumption that the initial bin occupancies at time 0 are according to the
stationary distribution. Under this assumption, the distribution of the bin occupancies at any given time t ≥ 0
is the stationary distribution.

We shall also consider the state of the bin occupancies embedded at the reset points. We refer to a random
phase r to be an arbitrary phase r under assumption that the initial bin occupancies at time 0 are according to
the stationary distribution of the bin occupancies at a reset point. We are interested in characterizing system
latency τ , defined as the expected number of time-steps between two consecutive reset points, i.e., τ = E[Sr].
By the Palm inversion formula (see Lemma D.1)4, the rate of reset points λ satisfies λ = 1/τ . The individual
latency τi for bin i is the expected number of time steps between two consecutive reset points in which bin
i wins. Again, by the Palm inversion formula, the rate of wins of bin i, λi, satisfies λi = 1/τi. The rates of
reset points and individual reset points satisfy λ =

∑n
i=1 λi. The winning probability of bin i in a random

phase r is denoted with wi. By the Palm inversion formula, λi = λwi, for every bin i. The rate of reset points
for a bin i satisfies λi = pi ·Pr[Xi(t) = k], where t is a random time step.
Helper Results. We now state a couple of results which are used throughout the analysis. Their proofs are
deferred to the Appendix. The first result characterizes the stationary distribution of a simplified process.

Lemma 2.1. Let Y (t) = (X1(t) mod k,X2(t) mod k, . . . ,Xn(t) mod k). Then, Y (t) is an ergodic, discrete-
time Markov chain on the state space {0, 1, . . . , k − 1}n with uniform stationary distribution π, i.e.

lim
t→∞

Pr[Y (t) = x | Y (0) = y] = π(x) = 1/kn, for any x,y ∈ {0, 1, . . . , k − 1}n.

4A well-known formula in the context of renewal and regenerative processes that relates expectations of a stochastic process with
respect to the stationary distribution of the state at an arbitrary time and the stationary distribution of the state at a special point in
time, see e.g. [5].
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The second result characterizes the system latency and probability of winning a random phase for a sim-
pler process, where all bins get reset to 1 on a win. The analysis of this process is non-trivial (cf. Appendix
C), and may be of independent interest, as it is related to non-uniform birthday processes, e.g. [19].

Theorem 2.2. The length Sr of a random phase r and the probabilities wi that bin i wins an arbitrary phase,
in the process where all bins reset to one ball on a win, satisfy: E[Sr] ∈

[
(k!/2)1/k

2‖p‖k , 8ekk

‖p‖k

]
andwi = Θ

(
pki
‖p‖kk

)
.

3 Analysis of System Latency

Proof Strategy. We are interested in upper and lower bounds on system latency τ . Determining these quanti-
ties from the stationary distribution of the Markov chain described in the previous section would be sufficient.
Unfortunately, we will not be able to determine such bounds directly, as the occupancies of individual bins are
highly correlated. Instead, we take a more roundabout approach: we first consider the stationary distribution
of the simplified random process described in Lemma 2.1, in which bin occupancies are taken modulo k.
Analyzing such a process may appear useless at first, as it obscures the probability that a bin contains k balls,
which is essential for determining λi. However, a first application of this characterization is a clean

√
k/‖p‖2

lower bound on system latency τ for the full stochastic process. The proof can be found in the Appendix, and
follows by combining the balance equations for state Xi = 0, Lemma 2.1, and a simple convexity argument.

Theorem 3.1. The expected system latency satisfies τ ≥
√
k/‖p‖2.

The proof of the upper bound is more complex, and works as follows. We pick a random time t, and
bound the residual phase length S(t), i.e., the remaining number of steps until an operation completes. The
second step is to bound the length of a phase depending on this quantity; in fact bounding the residual phase
length gives a stronger measure of performance.

To bound the residual phase length, our starting tool is Lemma 2.1, which provides a handle on the
occupancy distribution modulo k at time t. However, the main difficulty with bounding S(t) is that the
occupancy distribution at time t may be quite irregular depending on the “shape” of the vector p. We will
take into account these possibilities, merging the Hoeffding bounds at each occupancy level to show that the
residual phase length is always O(1/‖p‖2).

Lemma 3.2. For a random time t, the residual phase length S(t) satisfies E[S(t)] = O(1/‖p‖2). Moreover,
Pr[S(t) ≤ C · (log n)1+ log k

2 /‖p‖2] ≥ 1− 1/n, for a constant C > 0.

Proof. We partition the bins into levels 1, 2, . . . , k+ 1, where a bin is at level ` at time t if it needs to acquire
` balls in order to win, i.e., it contains k+1− ` balls at t. Since we are interested in upper bounding the phase
length, we can assume that there are no bins at level 1 at time t, as those could only shorten the phase.

For each bin i and level 2 ≤ ` ≤ k + 1, we define the indicator random variable Z`,i(t) to equal p`i if bin
i is at level ` at time t, and 0, otherwise. Further, define Z`(t) =

∑n
i=1 Z`,i(t). By Lemma 2.1, we know

that E[Z`(t)] = 1
k‖p‖

`
` and that Z`,1(t), Z`,2(t), . . . , Z`,n(t) are independent events for every 2 ≤ ` ≤ k + 1.

Hence, for fixed `, we apply Hoeffding’s inequality to variables (Z`,i(t))i to obtain the following bound

Pr
[
Z`(t) ≤ ‖p‖``/(2k)

]
≤ exp

(
− 1

2k2

(
∑n

i=1 p
`
i)

2∑n
i=1 p

2`
i

)
= exp

(
− 1

2k2

‖p‖2``
‖p‖2`2`

)
. (1)

Recall that the phase ends as soon as, for some level `, a bin that is at level ` at time t acquires ` balls. By
Theorem C.2, we have that, conditional on the values of (Z`,i(t))`,i the expected residual phase length is

E[S(t) | (Z`,i(t))`,i] = O
(

min
2≤`≤k+1

1

Z`(t)1/`

)
. (2)

We now focus on bounding the left-hand side quantity in terms of 1/‖p‖2.
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For 2 ≤ ` ≤ k, let E` be the event thatZ`(t) ≤ ‖p‖``/(2k). Let j be the index of the first event E` that holds
when we consider the events E2, E3, . . . , Ek in increasing order of parameter ` if any exists, and let j be equal
to k + 1, otherwise. In other words, the norm bounds for all levels < j have failed, and the bound holds at j.
Combining the norm bound with Equation (2), it follows that E[S(t) | E2∧E3∧. . .∧Ej−1∧Ej ] = O(1/‖p‖j).

Applying the law of total expectation, it follows that there exists a constant C > 0 such that

E[S(t)] ≤ C
( 1

‖p‖2
+

k∑
`=2

Pr
[
E2 ∧ E3 ∧ . . . ∧ E`

] 1

‖p‖`+1

)
. (3)

Bounding the probability term for fixed ` and applying the bound (1) we obtain

Pr
[
E2 ∧ E3 ∧ . . . ∧ E`

]
≤

`
min
j=2

{
Pr[Ej ]

}
≤
(∏̀
j=2

Pr[Ej ]
)1/(`−1)

≤
∏̀
j=2

exp

(
− 1

2k2(`− 1)

‖p‖2jj
‖p‖2j2j

)
.

Bounding the last term using the fact that exp(−x) ≤ 1/x for x > 0, and ‖p‖j/‖p‖j+1 ≥ 1, we have

∏̀
j=2

exp
(
− 1

2k2(`− 1)

‖p‖2jj
‖p‖2j2j

)
≤
∏`
j=2 2(`− 1)k2 ‖p‖j+1

‖p‖j ≤ (2(`− 1)k2)`−1 ‖p‖`+1

‖p‖2 .

Combining with Equation (3), it follows that there exists a constant C ′ > 0 such that

E[S(t)] ≤ C ′
( 1

‖p‖2
+

k∑
`=2

‖p‖`+1

‖p‖2
· 1

‖p‖`+1

)
≤ C ′ · k

‖p‖2
= O

( 1

‖p‖2

)
.

The proof of the high probability bound is similar, and can be found in the appendix.

Final Step. To obtain the upper bounds on the phase length, we relate the residual phase length S(t) at a
random time t to the expected phase length Sr of a random phase r. We have that E[Sr] ≤ 2E[S(t)], and
Pr[Sr > 2θ] ≤ 2Pr[S(t) > θ], for θ ≥ 0 (Lemma A.1). This completes the proof of the phase upper bound.

Theorem 3.3. The expected system latency satisfies τ = O(1/‖p‖2).

4 Analysis of Individual Latencies

4.1 Upper Bound for Winning Probabilities

We prove the following bound on the probability that bin i wins a phase, which will imply an individual
latency bound of Ω(‖p‖2/p2

i ) for bin i.

Theorem 4.1. For every bin i, the winning probability satisfies wi = O(p2
i /‖p‖22).

Proof Outline. The proof of this result is quite involved, so we first provide an outline for the case k = 2.
Fix an arbitrary bin i. Let Wr be the event that in a random phase r bin i wins, so wi = Pr[Wr]. A time
step t is defined to be bad if

∑n
i=1 p

2
i1Yi(t)=1 ≤ ‖p‖22/16. Similarly, a phase r is defined to be bad if its

first time step is bad. Intuitively, if a phase is not bad, then there is “enough competition” which limits the
winning probability of i. Let Br denote the event that phase r is bad. By a simple conditioning, we have
Pr[Wr] = Pr[Br] ·Pr[Wr | Br] + Pr[Br] ·Pr[Wr | Br]. We shall establish the following three claims:

Pr[Br] ≤ exp

(
−C ‖p‖

2
2

‖p‖23

)
, for a constant C > 0, (4)
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Pr[Wr | Br] = O

(
p2
i

‖p‖22

)
and Pr[Wr | Br] = O

(
p2
i

‖p‖23

)
. (5)

The asserted upper bound follows then by combining these bounds and the fact exp(−x) ≤ 1/x for x > 0,

Pr[Wr] ≤ exp

(
−C ‖p‖

2
2

‖p‖23

)
· p2

i

‖p‖23
+

p2
i

‖p‖22
= O

(
p2
i

‖p‖22

)
.

The inequality in (4) is obtained by showing first that the probability that a random time t is bad is at most
exp(−C ′‖p‖2/‖p‖3) for a constant C ′ > 0, and then showing that the probability that a random phase r is
bad is upper bounded by a similar bound. The first upper bound in (5) is obtained by conservatively assuming
that at the beginning of phase r, bin i has one ball and exploiting that the probability mass on the bins having
one ball is large enough, and then applying Theorem C.3. The second upper bound in (5) is obtained by
assuming that bin i has one ball and all other bins have zero balls, and applying Corollary C.4.

For k ≥ 3, we need a more careful analysis, as the (conditional) winning probabilities could lie between
any of the values p2

i /‖p‖2j for 2 ≤ j ≤ k+ 1. Corresponding to these values, we define different gradients of
“badness”, and derive bounds as in (4) and (5) for each gradient separately. Then all these bounds are charged
against each other and the proof is completed in a similar way as in Lemma 3.2. We give the full proof of
Theorem 4.1 in the appendix and focus here on establishing the key step, Eq. (4), and its version for k ≥ 3.
Probability of a Bad Phase. Our goal is to show that the probability that a random phase is bad is small.
In order to capture the general case k ≥ 3, we first have to formalize the notion of `-badness of a time step
and introduce some further pieces of notation. Similar to the proof of Lemma 3.2, we partition bins into
levels 1, 2, . . . , k + 1, where bins at level ` need to acquire ` balls in order to win. For each bin i and level
2 ≤ ` ≤ k + 1, we define the indicator random variable Z`,i(t) to equal p`i if bin i is at level ` at time t, and
0, otherwise. Further, define Z`(t) =

∑n
i=1 Z`,i(t).

Definition 4.2. For every level 2 ≤ ` ≤ k, a time step t is (i) `-bad if Z`(t) < ‖p‖``/(8k), (ii) `-good if
Z`(t) ≥ ‖p‖``/(8k), (iii) `-perfect if all time steps in [t, t+ 1/(32k‖p‖2)] are `-good.

As before, a phase is `-bad, `-good or `-perfect if the first time step of that phase is `-bad, `-good or
`-perfect. The idea behind the definition of `-perfect is that it enforces a particular structure on the time steps;
every block of `-perfect time steps is followed up with exactly 1/(32k‖p‖2) rounds which are `-good (but not
`-perfect), after which there is at least one `-bad round. The next lemma is the key ingredient of the proof.

Lemma 4.3 (Key Lemma). For every 2 ≤ ` ≤ k, a random phase is `-bad w. p. ≤ exp(−Ω(( ‖p‖`‖p‖`+1
)4)).

Proof. Let B`(T ) be the number of `-bad phases and let N(T ) be the number of phases in the time interval
[0, T ). By the ergodicity of the Markov chain of bin occupancies and Theorem 3.3, Pr[phase r is `-bad] =
limT→∞B

`(T )/N(T ) and limT→∞N(T )/T = Ω(‖p‖2), where the limits hold with probability 1.
Let L`(T ) be the number of non-perfect times steps in the time interval [0, T ). From Lemma 4.5 below

it follows that limT→∞B
`(T )/L`(T ) = O(‖p‖2) with probability 1. Combining these relations with the

relation below which comes from Lemma 4.4 completes the proof:

lim
T→∞

L`(T )

T
≤ exp

(
−Ω
(
(
‖p‖`
‖p‖`+1

)4
))

w.p. 1

Lemma 4.4. For every level 2 ≤ ` ≤ k, a random time t is `-perfect w. p. at least 1− exp
(
−Ω
(
( ‖p‖`‖p‖`+1

)4
))
.

The proof of Lemma 4.4 follows by first exploiting that for a random time t, the occupancy distribution
modulo k is uniform, which allows us to apply Hoeffding’s bound to lower bound Z`(t). Then we lower
bound the set of bins at level ` at time step t which do not receive any ball until time t + 1/(32k‖p‖2).
Combining these two parts yields the statement of the lemma (see appendix for further details).
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Lemma 4.5. For every level 2 ≤ ` ≤ k and a random time t,

Pr[ time step t is beginning of a `-bad phase ] ≤ O(‖p‖2) ·Pr[ time step t is not `-perfect ].

The proof of this lemma relies on a careful comparison between the point process associated to `-bad
phases, and the point process associated to `-(non-)perfect time steps. Intuitively, we will show that, on
average, every bad phase can be charged Ω(1/‖p‖2) non-perfect time steps, which then implies Lemma 4.5.
Proof of Lemma 4.5. We will relate `-non-perfect time steps and `-bad phases (since 2 ≤ ` ≤ k − 1 is fixed
throughout this part, we will often simply say non-perfect and bad). To this end we will consider a specific
process which in parallel counts the number of bad phases and lower bounds the number of non-perfect time
steps. This process will use a (non-complete) partitioning of phases into set of phases, called epochs.

Definition 4.6. An epoch is defined to be an interval of consecutive phases that starts at the beginning of a
bad phase and ends at the end of the first occurance of a phase that contains at least one perfect time step.

Starting from a fixed perfect time step (w.l.o.g. time 0), we can enumerate all epochs by E1, E2, . . .. The
j-th phase of the e-th epoch is denoted by Ee,j , whose length is |Ee,j |. Finally, |Ee| ≥ 1 denotes the size of
epoch e, i.e., the number of phases it contains. An illustration of these definitions can be found in Figure 1.

P G B G B P G B P G B G B G B P G B G
time0

E1,1 E1,2 E1,3 E2,1 E3,1

Figure 1: Illustration of phases viewed as a point process in time, which can be of three different types: P (perfect), G (good but not
perfect) and B (bad). Arrows with a label Ee,j form phase j in epoch e. Phases without a label do not belong to any epoch.

Counting the Ratio Phase-by-Phase. Figure 1 suggests a link between the phase lengths and the number of
non-perfect time steps. In particular, every phase of an epoch except for the last one contains only non-perfect
time steps. To elaborate on this link, we next describe a process which follows the partitioning into epochs to
update two counters. First, a counter B adds up all phases which are part of the e-th epoch. Simultaneously,
a second counter L adds up all phase lengths |Ee,j | except the last one as well as the 1/(32k‖p‖2) good but
non-perfect time steps that prelude any new epoch. The precise description can be found in Process 2.

1 e = 0, j = 0 /* counters for epoch and phase */
2 L = 0, B = 0 /* counters for non-perfect rounds and bad phases */
3 while true do
4 Jump to the next bad phase, e = e + 1, j = 0
5 repeat
6 j = j + 1
7 Allocate balls until phase j of epoch i ends
8 if j = 1 then L = L + 1/(32k‖p‖2), B = B + 1
9 if j ≥ 2 then L = L + |Ee,j−1|, B = B + 1

10 until phase j contained a perfect time step

Process 2: The original counting process and its phase-based updates.

The next lemma shows that the counters B and L are indeed related to the number of bad phases and the
number of non-perfect rounds. It basically follows from the definition of an epoch (see appendix for details).

Lemma 4.7. Consider Process 2 running until the f -th epoch is completed, and letB = B(f) and L = L(f)
be the values of the counters B and L at this time. Then the following two statements hold. First, B(f)
counts exactly the total number of bad phases that occur until the last time step of the f -th epoch. Second,
the expression L(f) =

∑f
e=1

(
1

32k‖p‖2 +
∑|Ee|−1

j=1 |Ee,j |
)

lower bounds the number of non-perfect time steps
which belong to a phase of the first f epochs.
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Counting the Ratio Epoch-by-Epoch. The problem with analyzing Process 2 is that we do not have a good
control on its actual length in terms of phases or time steps. We could think of it as facing an online adversary
who is allowed to see the evolution of all phase lengths and then able to end the epoch after an arbitrary
phase. However, we know that every phase will take Ω(1/‖p‖2) with constant prob. > 0, regardless of the
occupancy distribution at the beginning of that phase. This motivates the definition of a modified process,
where the epoch length is the maximum number x so that more than half of its phase lengths are less than
some threshold 1/(16k‖p‖2). If x > 0, then we conservatively assume that the epoch runs for x phases all of
which have length 0. If x = 0, then we assume that the epoch consists of one phase of length 1/(128k‖p‖2).

For the modified process we generate for the e-th epoch with phase j a separate infinite sequence of bin
samples denoted by Me,j ∈ {1, . . . , n}N. Here, Me,j(t) is the bin where the t-th ball of phase j in epoch Ee
is placed, where for any bin i, Pr[Me,j(t) = i] = pi. Further, for every pair e, j, we use an indicator variable
Ze,j which is one iff the bin samples Me,j ensure that no bin gets two balls within 1/(16k‖p‖2) time steps.

1 e = 0, L̃ = 0, B̃ = 0 /* counters for epoch, non-perfect rounds and bad phases */

2 Me,j ∈ {1, . . . , n}N /* random sequence for bin samples in phase j of the e-th epoch */
3 while true do
4 e = e + 1

5 S̃e = max{x ≥ 1 :
∑x

j=1 Ze,j < x/2} /* defined by Me,j for j = 1, 2, . . . */

6 if S̃e = 0 then L̃ = L̃ + 1/(128k‖p‖2), B̃ = B̃ + 1

7 if S̃e 6= 0 then L̃ = L̃ + 0, B̃ = B̃ + S̃e

Process 3: The modified process and its epoch-based updates.

We proceed to establish a coupling which implies that L/B majorises L̃/B̃. A random variable X is
stochastically smaller (is majorized by) Y , in symbols X � Y , if Pr[X ≥ θ] ≤ Pr[Y ≥ θ] for every θ.

Lemma 4.8. Consider the original process and modified process both running until epoch f is completed, and
let B(f), L(f), B̃(f), L̃(f) be the value of the four counters at this time. Then L(f)/B(f) � L̃(f)/B̃(f).

The proof of this lemma is based on a coupling where the original process uses the same bin samplesMe,j

as the modified process (cf. appendix for details). Finally, we study the distribution of the counters B̃ and L̃.

Lemma 4.9. For the modified process (Process 3), the following statements holds.

• For any θ ≥ 1 and epoch e, Pr[S̃e ≥ θ] ≤ (1/4)2−θ, thus, in particular, Pr[S̃e <∞] = 1.

• Let B̃ = B̃(f) and L̃ = L̃(f) be the values of the counters B̃ and L̃ until epoch f is completed. Then,
L̃(f) � Bin(f, 1/2)/(128k‖p‖2), and B̃(f) � Geo(1/2) · f .

Completing the Proof of Lemma 4.5. First, we consider L̃(f)/B̃(f) for a large value of epoch f . By Lemma 4.9,
E[L̃(f)] ≥ (f/2)/(128k‖p‖2) and E[B̃(f)] ≤ 2f . Hence by ergodicity, the following limits hold w.p. 1:

lim
f→∞

L̃(f) ≥ f · 1

192k‖p‖2
and lim

f→∞
B̃(f) ≤ 3f, implying lim

f→∞

L(f)

B(f)
≥ lim

f→∞

L̃(f)

B̃(f)
≥ 1

576k‖p‖2
,

where the first inequality follows from Lemma 4.8. By Lemma 4.7, we know that L(f) is a lower bound on
the number of non-perfect time steps until the end of epoch f , and B(f) counts the number of bad phases
until the end of epoch f . Hence considering the beginning steps of bad phases as a separate process, we have

Pr[ time step t is beginning of a bad phase ] ≤ 576k · ‖p‖2 ·Pr[ time step t is not perfect ].

Lower Bound on Winning Probabilities. Finally, we prove a lower bound on the winning probability
exploiting the fact that at a random time t, any bin i has k − 2 balls with probability 1/k.

Theorem 4.10. For any bin i, the winning probability satisfies wi = Ω(p2
i /‖p‖22).
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5 Applications and Future Directions

Our characterization has two non-trivial applications. The first is given by the following practical question:
given a set of lower bound constraints on the performance of individual threads (individual latency upper
bounds), what is the scheduling distribution which minimizes system latency? Modifying the scheduling
distribution is commonly done through back-offs. By Theorem 1.1, this now corresponds to the simple opti-
mization problem of maximizing the 2-norm of the scheduling probabilities p, subject to a set of lower bounds
on the scheduling probabilities.

The second application comes by noticing that the simple process where all bins are reset to 1 on a win
models obstruction-free concurrent algorithms, which guarantee progress only in the absence of contention,
and may abort operations otherwise. Theorem C.2 implies that the system latency of an obstruction-free
algorithm is Θ(1/‖p‖k), where k is the operation length. This provides a complexity separation between
obstruction-free and lock-free algorithms, under stochastic schedulers, for most values of the scheduling
distribution p.

Summing up, we have given general framework for competitive non-uniform balls-into-bins processes.
While we focused on a particular application, lock-free algorithms, we believe that our techniques can be used
to model a broader class of algorithms and processes related to scheduling contended applications. Hence, a
natural but challenging question would be to find a general characterization, which parameterizes the winning
probabilities and phase lengths in terms of the reset policies. Further, it would be interesting if a similar model
applies to transactions (either in hardware or in software), and if similar performance bounds can be derived.
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A Omitted Details from Section 3

Lemma 2.1. Let Y (t) = (X1(t) mod k,X2(t) mod k, . . . ,Xn(t) mod k). Then, Y (t) is an ergodic, discrete-
time Markov chain on the state space {0, 1, . . . , k − 1}n with uniform stationary distribution π, i.e.

lim
t→∞

Pr[Y (t) = x | Y (0) = y] = π(x) = 1/kn, for any x,y ∈ {0, 1, . . . , k − 1}n.

Proof. For each bin i and time t, we have

Yi(t+ 1) =

{
Yi(t) + 1 mod k with probability pi
Yi(t) with probability 1− pi

. (6)

Hence, {Y (t)}t≥0 is a discrete-time Markov chain such that each coordinate {Yi(t)}t≥0 evolves autonomously
according to the transition probabilities given by the recurrence in (6). Each individual coordinate evolves ac-
cording to a discrete-time Markov chain on a cycle of states 0, 1, . . . , k − 1 where at each time instance the
state of this Markov chain either increments modulo k with probability pi or remains at the current state with
probability 1− pi. It is not difficult to see that the transition matrix of this Markov chain is doubly stochastic
and irreducible (due to the requirement that mini pi > 0), hence it has a unique stationary distribution which
is uniform. The claim about the convergence follows from the fact that the aperiodicity of X(t) extends to
Y (t), so that Y (t) is an ergodic Markov chain.

Theorem 3.1. The expected system latency satisfies τ ≥
√
k/‖p‖2.

Proof. Fix an arbitrary bin i. By the definition of the Markov chain {X(t)}t≥0, we have that the probability
that a bin i contains 0 balls at time t+ 1 is

Pr[Xi(t+ 1) = 0] = (1− pi)Pr[Xi(t) = 0] +
∑
j 6=i

pjPr[Xj(t) = k,Xi(t) = k],

since the bin’s state either did not change, or some other bin j 6= i won in the previous step, while i also
contained k balls.

Hence, for the expected values with respect to the stationary distribution we have

piPr[Xi(t) = 0] =
∑
j 6=i

pjPr[Xj(t) = k,Xi(t) = k].

By Lemma 2.1, Pr[Xi(t) = 0] + Pr[Xi(t) = k] = 1/k. Therefore, we can rewrite the previous relation
as

n∑
j=1

pjPr[Xi(t) = k,Xj(t) = k] =
1

k
pi.

Using this identity, we obtain

1

k

n∑
i=1

p2
i =

n∑
i=1

pi

n∑
j=1

pjPr[Xi(t) = k,Xj(t) = k]

= E

( n∑
i=1

pi1Xi(t)=k

)2


≥

(
n∑
i=1

piPr[Xi(t) = k]

)2

=

(
n∑
i=1

λi

)2

= λ2
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where the last inequality is by Jensen’s inequality and we use the fact that for every bin i, λi = piPr[Xi(t) =

k]. We have thus showed that λ ≤
√∑n

i=1 p
2
i /
√
k = ‖p‖2/

√
k. The proof is completed by recalling that

τ = 1/λ.

Lemma 3.2. For a random time t, the residual phase length S(t) satisfies E[S(t)] = O(1/‖p‖2). Moreover,
Pr[S(t) ≤ C · (log n)1+ log k

2 /‖p‖2] ≥ 1− 1/n, for a constant C > 0.

Proof (continued). As in the first part of the proof, fix a level `, whose occupancy at time t is given by the
random variables (Z`,i(t))1≤i≤n. By Theorem C.2, we have that the time until some bin at level ` acquires `
balls is O(log n/Z`(t)

1/`) with high probability, i.e., with probability at least 1− n−1.
Recall from the expectation bound argument that, by Lemma 2.1 and Hoeffding’s inequality, we obtain,

for each level 2 ≤ ` ≤ k, a series of concentration bounds of the type:

Z
1/`
` (t) ≤ ‖p‖`/(2k)1/` with probability at most exp

(
− 1

2k2

‖p‖2``
‖p‖2`2`

)
.

Let j be the first level in 2 ≤ ` ≤ k, in ascending order, for which the inequality ‖p‖2`` /‖p‖2`2` ≥ log n
holds, or k + 1, if no such level exists. We have that the residual phase length is O(log n/‖p‖j), with high
probability. To complete the proof, we need to relate ‖p‖j and ‖p‖2.

For this, it is sufficient to notice that, by the definition of j, ‖p‖`/‖p‖`+1 ≤ (log n)
1
2` , for all 2 ≤ ` ≤

j − 1. We can multiply out these inequalities to obtain that ‖p‖2 ≤ ‖p‖j(log n)
log k

2 . Putting together the last
two steps, it follows that the residual phase length from t is O((log n)1+ log k

2 /‖p‖2), with high probability.
Applying Lemma A.1 completes the proof of this claim.

Lemma A.1. Let Sr be the length of a random phase r, and let S(t) be the residual length of the phase at
a random time t. Then the following relations hold: E[Sr] ≤ 2E[S(t)] and Pr[Sr > 2θ] ≤ 2Pr[S(t) >
θ], for θ ≥ 0.

Proof. The first claim is showed as follows. By the Palm inversion formula, we have

E[S(t)] =
E[
∑Sr−1

s=0 (Sr − s)]
E[Sr]

=
E[Sr(Sr + 1)]

2E[Sr]

≥ E[S2
r ]

2E[Sr]

≥ 1

2
E[Sr]

where the last inequality is by Jensen’s inequality.
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The second claim is showed as follows. Again, by the Palm inversion formula we have

Pr[S(t) > θ] =
E[
∑Sr−1

s=0 1Sr−s>θ]

E[Sr]

=
E[max{Sr − θ, 0}]

E[Sr]

≥ E[max{Sr − θ, 0}1Sr>2θ]

E[Sr]

≥ E[Sr1Sr>2θ]

2E[Sr]

≥ E[Sr]E[1Sr>2θ]

2E[Sr]

=
1

2
Pr[Sr > 2θ]

where the last inequality follows by the Harris’ inequality (Lemma D.5) becuase Sr is a real-valued random
variable and E[Sr1Sr>2θ] = E[f(Sr)g(Sr)] for two non-decreasing functions f and g defined by f(x) = x
and g(x) = 1x>2θ for x ∈ R.

B Omitted Details from Section 4

Lemma 4.4. For every level 2 ≤ ` ≤ k, a random time t is `-perfect w. p. at least 1− exp
(
−Ω
(
( ‖p‖`‖p‖`+1

)4
))
.

Proof. Let us denote by N`(t) the set of bins which are at level `, i.e., they need to acquire ` more balls to
win the next phase. Further, let us define

φ` :=
‖p‖`
‖p‖`+1

≥ 1.

By Lemma 2.1, we know that at a random time t the occupancies of bins k are independent and uniformly
distributed. By applying Hoeffding’s inequality (Lemma D.4),

Pr

 ∑
i∈N`(t)

p`i ≥ ‖p‖``/(2k)

 ≥ 1− exp

(
−

2(‖p‖``/(2k))2

‖p‖2`2`

)
≥ 1− exp

(
− 1

4k2
φ4
`

)
. (7)

We now consider the execution over the next s := /(32k‖p‖2) time steps (independent of how many new
phases start between times t and t+ s). Let N`(t, s) be the set of bins in N`(t) which did not receive any ball
in the time interval [t, t+ s− 1]; in other words, N`(t, s) = ∩s−1

i=0N`(t+ i). Further, define

Z :=
∑

i∈N`(t)\N`(t,s)

p`i

which is an upper bound on the `-th norm of the probability mass which leaves the set N`(t) (at least once)
until time t+ s. Every bin i ∈ N`(t) is picked within the time-interval [t, t+ s− 1] with probability at most
s · pi, and hence by linearity of expectation,

E[Z] ≤
∑

i∈N`(t)

p`i · (s · pi) =
‖p‖`+1

`+1

32k‖p‖2
≤
‖p‖`+1

`+1

32k‖p‖`
≤ 1

32k
· ‖p‖``.
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In order to analyze Z, we consider a corresponding Poisson model which is run for a total time of s, and
every bin i is associated with an independent Poisson process with rate pi. Hence the number of times a bin
i is picked until time s is a Poisson random variable with parameter s · pi, and the probability that bin i is
picked at least once is at most 1− e−s·pi ≤ s · pi. Let

Z̃ :=
∑

i∈Ñ`(t)\Ñ`(t,s)

p`i ,

be the random variable corresponding to Z in the Poisson model. Then E[Z̃] ≤ ‖p‖``/(32k), and by Hoeffd-
ing’s inequality,

Pr

[
Z̃ −E[Z̃] ≥ 1

16k
‖p‖``

]
≤ exp

(
−

2( 1
16k‖p‖

`
`)

2

‖p‖2`2`

)
≤ exp

(
− 1

128k2
φ4
`

)
.

Furthermore, the random variable Z̃ is non-increasing in s, which implies the following relation between the
Poisson and the original process (cf. [18, Chapter 8]): For any θ ≥ 0,

Pr[Z ≥ θ] ≤ 4 ·Pr[Z̃ ≥ θ].

Finally, this yields

Pr
[
Z ≥ E[Z] + ‖p‖``/(16k)

]
≤ 4 · exp

(
− 1

128k2
φ4
`

)
. (8)

Since E[Z] + ‖p‖``/(16k) ≤ ‖p‖``/(32k) + ‖p‖``/(16k) ≤ ‖p‖``/(8k), taking the union bound over the
events in equation (7) and equation (8) implies that with probability at least 1 − exp

(
−φ4

`/(8k
2)
)
− 4 ·

exp
(
−φ4

`/(128k2)
)
≥ 1−8 ·exp

(
−φ4

`/(128k2)
)
, all time steps in the [t, t+1/(‖32kp‖2)] are perfect. This

completes the proof.

Recall that in the following, the level 2 ≤ ` ≤ k will be fixed so that we simply write perfect, good and
bad instead of `-perfect, `-good and `-bad.

Lemma 4.7. Consider Process 2 running until the f -th epoch is completed, and letB = B(f) and L = L(f)
be the values of the counters B and L at this time. Then the following two statements hold. First, B(f)
counts exactly the total number of bad phases that occur until the last time step of the f -th epoch. Second,
the expression L(f) =

∑f
e=1

(
1

32k‖p‖2 +
∑|Ee|−1

j=1 |Ee,j |
)

lower bounds the number of non-perfect time steps
which belong to a phase of the first f epochs.

Proof. The first claim follows by the fact that every bad phase has to be part of an epoch.
For the second claim, consider the first phase Ee,1 of any epoch e and the most recent time-step t prior to

that phase which is perfect. Then the time steps in the interval I = [t+ 1, t+ 1/(32k‖p‖2)] are good, but not
perfect. Furthermore, the time-step t cannot be part of the phase Ee,1 itself (as the first phase of an epoch is a
bad phase), and moreover, if it is part of the phase of the previous epoch, then it has to be phase Ee−1,|Ee−1|.
Furthermore, any other phase Ee,j with 1 < j < |Ee| includes only non-perfect time-steps which can be also
credited to epoch e. Adding up the contributions yields the second claim.

Lemma 4.8. Consider the original process and modified process both running until epoch f is completed, and
let B(f), L(f), B̃(f), L̃(f) be the value of the four counters at this time. Then L(f)/B(f) � L̃(f)/B̃(f).

Proof. We define our coupling in the natural way by assuming that both processes use identical sets of bin
samples M`,j ∈ {1, . . . , n}N. Figure 2 summarizes the updates of the two counters in the modified process
and the induced conditions on the updates of the two counters in the original process. These conditions follow
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from the definition of S̃e, since whenever epoch Ee contains more than S̃e phases, then at least half of their
phases take at least 1/(16k‖p‖2) steps. This implies that in at least 1/4 of the phases, the counter L is
incremented by 1/(32k‖p‖2) (recall that the last phase is not taken into account by L).

Case Modified Process Original Process

S̃e = 0
L̃← L̃ + 1

128k‖p‖2
L← L + ∆L

s.t. ∆L
∆B
≥ 1

128k‖p‖2
and ∆B ≥ 1

B̃ ← B̃ + 1 B ← B + ∆B

S̃e 6= 0
L̃← L̃ + 0 L← L + ∆L

s.t.
{

1 ≤ ∆B ≤ S̃e, ∆L = 0, or

B̃ ← B̃ + S̃e B ← B + ∆B ∆L
∆B
≥ 1

128k‖p‖2
.

Figure 2: Update rules of the original and the modified process for epoch Ee.

Next we observe that we may replace the condition ∆L/∆B ≥ 1/(128k‖p‖2) by ∆L/∆B = 1/(128k‖p‖2),
since this can only decrease L(f)/B(f). For the same reason, we may also replace the condition 1 ≤ ∆B <

S̃e by ∆B = S̃e.
Then, let A(f) be the set of indices 1 ≤ e ≤ f with S̃e = 0. With this notation, the modified process

produces a ratio of

L̃(f)

B̃(f)
=

∑
i∈A(f)

1
128k‖p‖2∑

i∈A(f) 1 +
∑

e6∈A(f) S̃e
.

For the original process, we can find a scaling parameter β = β(f) > 0 so that

L(f)

B(f)
≥

β · 1
128k‖p‖2

β +
∑

e6∈A(f) : ∆B≤S̃e
S̃e
.

Now using the fact that the last expression is non-decreasing in β,

L(f)

B(f)
≥

|A(f)| · 1
128k‖p‖2

|A(f)|+
∑

e6∈A(f) : ∆B≤S̃e
S̃e
≥

|A(f)| · 1
128k‖p‖2

|A(f)|+
∑

e 6∈A(f) S̃e
=
L̃(f)

B̃(f)
.

Hence there is a coupling so that

Pr

[
L(f)

B(f)
≥ L̃(f)

B̃(f)

]
= 1,

which implies the desired majorization.

Lemma 4.9. For the modified process (Process 3), the following statements holds.

• For any θ ≥ 1 and epoch e, Pr[S̃e ≥ θ] ≤ (1/4)2−θ, thus, in particular, Pr[S̃e <∞] = 1.

• Let B̃ = B̃(f) and L̃ = L̃(f) be the values of the counters B̃ and L̃ until epoch f is completed. Then,
L̃(f) � Bin(f, 1/2)/(128k‖p‖2), and B̃(f) � Geo(1/2) · f .

Proof. First, consider an arbitrary epoch e. Recall that Ze,j = 1 if and only if there is no bin which gets two
balls in the j-th phase of the e-th epoch during 1/(16k‖p‖2) steps. Hence if Ze,j = 1, then this phase will
take 1/(16k‖p‖2) steps, regardless of the initial occupancy configuration at the beginning of that phase. Then
for any j ≥ 1, it follows by Theorem C.2 with δ = (1/16)2 and k = 2, Pr[Ze,j = 0] ≤ 1

256 . Therefore, for
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any θ ≥ 1,

Pr[S̃e ≥ θ] ≤
∞∑
k=θ

(
k

k/2

)
256−k/2 ≤

∞∑
k=θ

2k · 2−4k =
∞∑
k=θ

2−3k ≤ 1

4
· 2−θ, (9)

which establishes the first claim. The second claim about L̃(f) follows directly, as the first claim implies
Pr[S̃e = 0] ≥ 1/2 for any epoch e, and these events are independent across epochs e = 1, 2, . . . , f . The claim
about B̃(f) follows since the tails in equation (9) are smaller than the corresponding ones for Geo(1/2).

Completing the Proof of Theorem 4.1

We will now complete the proof of Theorem 4.1 that the winning probability of bin i is at most O(p2
i /‖p‖22).

The final step of this proof is somewhat to similar to the one of Lemma 3.2.
Recall that N t

j denotes the set of bins which have load k− j at time-step t (i.e., they need to aquire j more
balls to win the next phase).

Proof of Theorem 4.1. For ` ∈ {2, 3, . . . , k}, let E` be the event that a random phase is `-good. Given an
arbitrary occupancy configuration, let Ej be the first event of this type that holds, where we consider events
in increasing order of `. Therefore, the norm bounds for all previous levels have failed, but the current bound
is correct. Ignoring all balls which are allocated to bins outside N t

j and bin i, we only increase the winning
probability of bin i. Formally, we consider a different probability vector p̃ defined by p̃j := pj · β, where
β := 1/(pi +

∑
k∈Nj(t) pk) is a scaling factor to ensure that ‖p̃j‖1 = 1. Applying Corollary C.4 to p̃ implies

that the probability for bin i to win is still at most

O

 p̃2
i(∑

i∈Nj(t) p̃
j
i

)2/j

 = O

 p2
i(∑

i∈Nj(t) p
j
i

)2/j

 = O

(
p2
i

‖p‖2j

)
,

where the first equality holds since p̃ is obtained from p by scaling, and the second inequality holds since the
event Ej holds.

We then obtain that the following upper bound on the winning probability holds, up to a constant.

p2
i

‖p‖22
+

k∑
`=2

Pr
[
E2 ∧ E3 ∧ . . . ∧ E`

] p2
i

‖p‖2`
. (10)

We now focus on bounding the probability term for fixed `. By Lemma 4.3,

Pr
[
Ej
]
≤ exp

(
−c ·

‖p‖4j
‖p‖4j+1

)
,

where c > 0 is some constant, which implies the following:

Pr
[
E2 ∧ E3 ∧ . . . ∧ E`

]
≤
∏̀
j=2

exp

(
− c

2j

‖p‖4j
‖p‖4j+1

)
.

This holds since we can bound the conjunction by the least probable event, and, in turn, this event is less
likely than the `th root of the product of probabilities for all events. In turn, we have

∏̀
j=2

exp

(
− c

2j

‖p‖2j
‖p‖2j+1

)
≤
∏̀
j=2

2j

c

‖p‖2j+1

‖p‖2j
≤ 2`!

c

‖p‖2`+1

‖p‖22
,
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where in the last step we have used the fact that exp(−x) ≤ 1/x for x > 0. Returning to Equation 10, we
obtain that there exists a constant C > 0 such that the phase length is upper bounded by

C

(
p2
i

‖p‖22
+

k∑
`=2

‖p‖2`+1

‖p‖22
· p2

i

‖p‖2`

)
= O

(
p2
i

‖p‖22

)
.

Theorem 4.10. For any bin i, the winning probability satisfies wi = Ω(p2
i /‖p‖22).

Before giving the formal proof, we present a brief outline. We know that for a random time t the proba-
bility that bin i has k− 2 balls is exactly 1/k. We show that this condition continues to hold from time t until
the end of the current phase with a constant probability. This will follow by considering the additional events
that (i) bin i does not receive a ball in the time interval [t, t+ s] where s = Θ(1/‖p‖2) and (ii) the event that
the next phase starts in that interval. By reasoning about the point process, we can deduce that for a constant
fraction of phases, bin i has k − 2 balls, and the claim then follows by Theorem C.3 which shows that bin i
has a probability of Ω(p2

i /‖p‖22) for winning such a phase.

Proof. By Lemma 3.2, there is a constant c ≥ 1 so that the residual phase length satisfies E[S(t)] ≤ c·1/‖p‖2.
We continue with a case distinction regarding pi.

1. Case: pi ≥ ‖p‖2/(100ck2). In this case, we conservatively assume that at the beginning of a phase,
bin i has 0 balls and each other bin has k − 2 balls. In addition, we will also assume that pi ≤ 1/(100ck)
because, otherwise, bin i has a constant winning probability and the statement holds trivially.

Consider now the balls that are allocated to the n−1 bins except bin i for the next s := 1/‖p‖2 times. For
any bin j 6= i, let Zj be a binary random variable which takes value 1 if bin j receives at least two balls in the
given s time steps, and takes value 0, otherwise. Then, for Z :=

∑
j 6=i Zj we have by linearity of expectation

E[Z] ≤
∑
j 6=i

(
s

2

)
· p2
j ≤

1

2
,

and hence by Markov’s inequality, Pr[Z ≥ 1] ≤ Pr[Z ≥ 2 · E[Z]] ≤ 1/2, which in turn implies Pr[Z =
0] ≥ 1/2.

On the other hand, the probability that bin i receives at least k balls during 1/(100cpi) ≤ s time-steps is
at least some constant > 0, since 1/(100cpi) ≥ k and 1/pi ≤ (100ck2)/‖p‖2. Since these two events are
negatively correlated, it follows that bin i wins with a constant probability > 0.

2. Case: pi ≤ ‖p‖2/(100ck2). To lower bound the winning probability of bin i, we will first prove that
in a random phase, bin i starts with k − 2 balls with constant probability > 0. In order to establish this, for a
random time t, we consider the following three events:

1. E1: bin i has k − 2 balls at time t
2. E2: the residual phase length at time t is less than or equal to (10ck)/‖p‖2 time steps
3. E3: bin i does not get any ball during (10ck)/‖p‖2 time steps after time step t.

By Lemma 2.1, Pr[E1] = 1/k, by Markov’s inequality, Pr[E2] ≥ 1− 1/(10k) and by a simple union bound,
Pr[E3] ≥ 1− (10ck/‖p‖2) · pi ≥ 1− 1/(10k). Another application of the union bound yields

Pr[E1 ∧ E2 ∧ E3] ≥ 1− k − 1

k
− 1

10k
− 1

10k
=

4

5k
.

If all these three events occur, bin i has k − 2 balls at the beginning of the next phase after time t.
The final step of this proof is somewhat similar to the proof of Lemma 4.5. In the following, we will

call a time step t good if the event E1 ∧ E2 ∧ E3 occurs. Further, we will call a phase good if bin i has
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k − 2 balls at the beginning of that phase. By the above considerations, it follows that for any time interval
[0, T ], the number of good time-steps is Ω(T ) with probability 1, as T → ∞. Since every good phase
corresponds to at most 10ck/‖p‖2 good time steps, it follows that the number of good phases within [0, T ]
is Ω(T/‖p‖2), w.p. 1 as T → ∞. Finally, we know from Theorem 3.3 that the expected phase length is
Θ(1/‖p‖2), hence the ratio of the number of good phases to the number of phases within a time interval
of T time steps is Ω(1), w.p. 1 as T → ∞. Combining these insights yields that a random phase is good
with constant probability > 0. By Theorem C.3, bin i wins in every good phase with probability at least
Ω(p2

i /‖p‖22). Hence wi = Ω(1) · Ω(p2
i /‖p‖22) = Ω(p2

i /‖p‖22), as needed.

C Analysis of a Simpler Balls-into-Bins Process

For the analysis of our original balls-into-bins process {X(t)}t≥0, we will require latency bounds for a simpler
balls-into-bins process in which all bins restart to one at an attempt to add a ball into a bin with k balls. Hence
unlike the original process {X(t)}t≥0, the configuration at the beginning of every phase is identical, which
implies the following simple but useful lemma.

Lemma C.1 (Sub-Multiplicativity). For any two integers θ ≥ 1, y ≥ 1, the length of an arbitrary phase r,
Sr, satisfies

Pr[Sr ≥ y · θ] ≤ Pr[Sr ≥ θ]y.

Proof. This lemma follows by simply dividing the time-interval of length y·θ into y consecutive time-intervals
of length θ. Then, for any of these fixed intervals of length θ, the probability that there is no bin which gets k
balls within this interval equals Pr[Sr ≥ θ].

Theorem 2.2. The length Sr of a random phase r and the probabilities wi that bin i wins an arbitrary phase,
in the process where all bins reset to one ball on a win, satisfy: E[Sr] ∈

[
(k!/2)1/k

2‖p‖k , 8ekk

‖p‖k

]
andwi = Θ

(
pki
‖p‖kk

)
.

We split the proof of this theorem into two parts, the analysis of phase length (system latency) and the
analysis of winning probabilities.

C.1 Analysis of Phase Length

In the next theorem we provide bounds for the probability of deviation and the expected value of the length
of a random phase r. In particular, this theorem implies that for the simple balls-into-bins game the expected
phase length satisfies E[Sr] = Θ(1/‖p‖k).

Theorem C.2. The length of an arbitrary phase r, Sr, satisfies the following properties:

• Lower bound:

Pr

[
Sr >

(δk!)1/k

‖p‖k

]
≥ 1− δ, for 0 < δ < 1

and

E[Sr] ≥
1

2

(k!/2)1/k

‖p‖k
.

• Upper bound:

Pr

[
Sr ≤

1

‖p‖k

]
≥ 1

4ekk

and

E[Sr] ≤
4ekk

‖p‖k
.
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The bounds in Theorem C.2 even apply to vectors p = (p1, p2, . . . , pn) ∈ Rn
+ such that 0 <

∑n
i=1 pi < 1,

which as outlined Section 2, corresponds to a lazy version where no ball is placed with probability 1−
∑n

i=1 pi.

Proof. We first prove the two lower bounds. We shall assume for simplicity that the phase begins at time-step
1. Let Y be the number of bins which receive at least k balls over t time steps from the beginning of an
arbitrary phase r. By linearity of expectations and the fact that for any Z ∼ Bin(m, p), Pr[Z ≥ s] ≤

(
m
s

)
·ps,

we have

E[Y ] ≤
n∑
i=1

(
t

k

)
· pki ≤

tk

k!
· ‖p‖kk.

Choosing t = (δk!)1/k/‖p‖k yields E[Y ] ≤ δ, and by Markov’s inequality,

Pr[Sr ≤ t] = Pr[Y ≥ 1] ≤ Pr

[
Y ≥ 1

δ
·E[Y ]

]
≤ δ.

Consequently, for δ = 1/2 and t = (k!/2)1/k/‖p‖k,

E[Y ] ≥ Pr[Sr ≥ t] · t ≥
1

2
· t.

In order to prove the two upper bounds, we first lower bound E[Y ] and then do a second moment analysis.
First,

E[Y ] ≥
n∑
i=1

(
t

k

)
· pki · (1− pi)t−k ≥

tk

kk
·
n∑
i=1

pki · (1− pi)t−k.

We now choose t := 1/‖p‖k. In particular, this implies t ≤ 1/pi and using the fact (cf. Lemma D.2) that
(1− pi)t−k ≥ (1− pi)1/pi−1 ≥ 1/e, we conclude

E[Y ] ≥ tk

e · kk
· ‖p‖kk =

1

e · kk
.

We now turn to E[Y 2]. Notice that Y =
∑n

i=1 Zi, where Zi is a binary random variable taking value 1 if bin
i has received at least k balls in the given interval of t time steps, and taking value 0 otherwise. Hence,

E[Y 2] = E

[( n∑
i=1

Zi

)2
]

=
n∑
i=1

E[Z2
i ] +

∑
1≤i 6=j≤n

E[Zi · Zj ]

= E[Y ] +
∑

1≤i 6=j≤n
Pr[Zi = 1] ·Pr[Zj = 1 | Zi = 1]

where the last equality holds because Z2
i = Zi. Next observe that Pr[Zj = 1 | Zi = 1] ≤ Pr[Zj = 1]
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which yields

E[Y 2] ≤ E[Y ] +
∑

1≤i,j≤n
Pr[Zi = 1] ·Pr[Zj = 1]

≤ E[Y ] +
n∑
i=1

Pr[Zi = 1]
n∑
j=1

Pr[Zj = 1]

≤ E[Y ] + E[Y ]2.

By Lemma D.3,

Pr

[
Y ≥ 1

2
·E[Y ]

]
≥ 1

4
· E[Y ]2

E[Y 2]
≥ 1

4
· E[Y ]2

E[Y ] + E[Y ]2
=

1

4
· E[Y ]

1 + E[Y ]
≥ 1

8e · kk
:= ck,

where ck is a strictly positive constant. This implies that phase r ends after t = 1/‖p‖k time steps with
probability at least ck > 0.

Next recall that Sr is submultiplicative (cf. Lemma C.1), which means

Pr[Sr ≥ θ · t] ≤ (Pr[Sr ≥ t])θ , for any θ ≥ 1.

This in turn implies that Sr is stochastically smaller than a geometric random variable with parameter ck/t,
hence

E[Sr] ≤
1

ck
· t =

8e · kk

‖p‖k
.

C.2 Analysis of Winning Probabilities

Recall that wi denotes the probability that bin i wins in an arbitrary phase.

Theorem C.3. For every bin i, wi = Θ
(
pki /‖p‖kk

)
.

Proof. (Lower Bound). Consider a random phase r that start at a time-step Tr, when all bins have zero balls.
Let us define S−ir as the elapsed time until the first bin 6= i reaches k balls, and let t := 1/‖p‖k. Applying
Theorem C.2 with δ = (1/k!), Pr[Sr > t] ≥ 1− 1/k! ≥ 1/2. Since S−ir is stochastically larger than Sr, we
have

Pr
[
S−ir > t

]
≥ Pr [Sr > t] ≥ 1

2
.

Now define two events:

• E1 := {bin i has at least k balls within t time steps}

• E2 :=
{
S−ir > t

}
Observe that Pr[E2 | E1] ≥ Pr[E2], since conditioning on bin i having at least k balls at time tmakes it more
likely that none of the other n− 1 bins has at least k balls at the same time. Therefore,

wi ≥ Pr[E1 ∧ E2] ≥ Pr[E1] ·Pr[E2] ≥
(
t

k

)
· pki · (1− pi)t−k ·

1

2
,
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and since we have already shown in the proof of Theorem C.2 that (1− pi)1/‖p‖k−k ≥ 1/e, it follows that

wi ≥
1

kk · e · 2
· pki
‖p‖kk

.

(Upper Bound). We first focus on the case wi ≤ 1/4 and defer the case 1/4 < wi ≤ 1, which turns out
to be easier, to the end of the proof. LetWi denote the event that bin i wins, so wi = Pr[Wi]. Let S̃−ir be the
waiting time for a process where bin i has probability 0 and all other probabilities are increased by a factor
of 1/(1 − pi). We can couple two executions of S̃−ir and Sr so that the subsequence of chosen bins 6= i in
Sr is equal to the sequence of chosen bins in S̃−ir . Hence the random variable S̃−ir will be smaller than Sr,
conditional on the event that bin i does not win. Hence,

Pr[S̃−ir ≥ 4 ·E[Sr] | Wi] ≤ Pr[S−ir ≥ 4 ·E[Sr] | Wi] ≤
1

4
,

where the second inequality follows by Markov’s inequality. This implies

Pr[S̃−ir ≥ 4 ·E[Sr]] ≤ (1− wi) ·Pr[S̃−ir ≥ 4 ·E[Sr] | Wi] + wi ·Pr[S̃−ir ≥ 4 ·E[Sr] | Wi]

≤ 1 · 1

4
+

1

4
· 1 =

1

2
,

where the second inequality follows by Markov’s inequality and the assumption wi ≤ 1/4. Since the random
variable S̃−ir is submultiplicative (cf. Lemma C.1), the above inequality implies that S̃−ir is stochastically
smaller than a geometric random variable with parameter 1/2 times 4E[Sr] which yields

E[S̃−ir ] ≤ 4E[Sr]

1− 1/2
= 8 ·E[Sr].

By Markov’s inequality,

Pr[S̃−ir ≥ 16E[Sr]] ≤ 1/2,

and by submultiplicativity,

Pr[S̃−ir ≥ 16θ ·E[Sr]] ≤ 1/2θ, for every integer θ. (11)

It follows that

wi = Pr[bin i wins before time 32k ·E[Sr]] +

∞∑
s=32k·E[Sr]

Pr[bin i wins within s time steps]

≤ Pr[bin i has k balls before 32k ·E[Sr] time steps elapsed]

+
∞∑

s=32k·E[Sr]

Pr[bin i has k − 1 balls before time s] ·Pr[S̃−ir > s− k] · pi

≤
(

32k ·E[Sr]

k

)
· pki +

∞∑
s=32k·E[Sr]

(
s− 1

k − 1

)
pk−1
i ·Pr[S̃−ir > s/2] · pi,

where in the first inequality we used our coupling above between Sr and S−ir to conclude that

Pr[Sr > s− 1 | bin i has k − 1 balls before s time steps elapsed] = Pr[S̃−ir > s− k].
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Now we apply inequality (11) to obtain

wi = O

pki ·E[Sr]
k + pki ·

∞∑
s=32k·E[Sr]

sk−1 · 2−b`/(32E[Sr])c


= O

(
pki ·E[Sr]

k + pki · 32E[Sr]

∞∑
s=0

(32(s+ 1)kE[Sr])
k−1 · 2−s

)

= O
(
pki ·E[Sr]

k + pki ·E[Sr]
k
)

= O

(
pki
‖p‖kk

)
,

where the last line we used the bound E[Sr] = O(1/‖p‖k) from Theorem C.2.
Finally, let us consider the case wi ≥ 1/4. In this case,

wi ≤ Pr[bin i gets k balls before time 8 ·E[Sr] ] + Pr[Sr ≥ 8 ·E[Sr]] ≤ O
(

pki
‖p‖kk

)
+

1

8
,

and rearranging implies wi = O
(
pki /‖p‖kk

)
, as needed.

Corollary C.4. Fix any bin 1 ≤ i ≤ n and consider the variant of the iterative balls-into-bins process where
after every reset, bin i starts at level k− 2 and all other bins start at level 1. Then bin i wins a random phase
with probability at most O(p2

i /‖p‖2k).

Proof. The proof is almost identical to the proof of Theorem C.3, the only difference is that every power of k
has to be replaced with a power of 2.

D Useful Relations

Lemma D.1 (Palm inversion formula). Let X(t) be a regenerative process (e.g. see [5]) on the state space E
with regeneration points · · · < T−1 < T0 = 0 < T1 < · · · and the let Sr = Tr+1 − Tr for r ∈ Z. Suppose
that f : E → R is such that

E

[
S0−1∑
t=0

|f(X(t))|

]
<∞.

Suppose π is the stationary distribution of the process X(t). Then, we have

∑
x∈E

f(x)π(x) =
E
[∑S0−1

t=0 f(X(t))
]

E[S0]
.

If the distribution of S0 is proper and non-lattice, then for any initial state x ∈ E,

lim
t→∞

E[f(X(t)) | X(0) = x] =
∑
x∈E

f(x)π(x).

Lemma D.2. For all t, n ∈ R, such that n ≥ 1 and |t| ≤ n,

et
(

1− t2

n

)
≤
(

1 +
t

n

)n
≤ et.
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Lemma D.3 (Paley-Zigmund’s inequality). Let Z ≥ 0 be any random variable. Then for any 0 < θ < 1,

Pr[Z ≥ θ ·E[Z]] ≥ (1− θ)2 · E[Z]2

E[Z2]
.

Lemma D.4 (Hoeffding’s Inequality: one-sided versions)). Let X1, X2, . . . , Xn be a sequence of random
variables such that Xi ∈ [ai, bi] for 1 ≤ i ≤ n with probability 1 and let X :=

∑n
i=1Xi. Then, it holds for

any θ > 0,

Pr[X −E[X] ≥ θ] ≤ exp

(
− 2θ2∑n

i=1(bi − ai)2

)
,

and

Pr[X −E[X] ≤ −θ] ≤ exp

(
− 2θ2∑n

i=1(bi − ai)2

)
.

Lemma D.5 (Harris’ inequality). Let X be a real-valued random variable. Then, for every pair of non-
decreasing functions f : R→ R and g : R→ R,

E[f(X)g(X)] ≥ E[f(X)]E[g(X)].

E Notation Glossary

• n number of bins

• i denotes a bin

• t random time

• r random phase

• k the maximum occupancy of a bin

• Xi(t) ∈ {0, 1, . . . , k} number of balls in bin i at time t

• ` ∈ {1, . . . , k + 1} level of a bin (i.e., ` more balls are needed to win)

• N`(t) set of bins with level ` at time t

• Sr length of phase r

• S(t) residual length of the phase at time t

• τ system latency

• τi latency of process i

• λ rate

• λi rate for bin i

• wi the winning probability for bin i in a random phase

• Ee the e-th epoch (epochs are indexed 1, 2, . . .)

• |Ee| size of epoch e, i.e., number of phases it contains
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Figure 3: Example of how non-uniformity in the memory access times leads to non-uniform scheduling distribution.

• Ee,j the j-th phase of the e-th epoch

• |Ee,j | length of the j-th phase of the e-th epoch

• B counter for bad phases

• L counter for non-perfect time steps

F Empirical Evidence for Non-Uniformity

In this section, we provide some basic empirical evidence for the non-uniformity of stochastic schedulers
on modern concurrent architectures. Such evidence was already provided by Dice et al. [7] for the case of
single-socket machines, where all the cores are located on the same silicon die, as a consequence of cache
effects, and is folklore for the case of multi-socket non-uniform memory access (NUMA) machines.

We provide a simple experiment exhibiting scheduling non-uniformity for a NUMA machine. More
precisely, we consider a Fujitsu PRIMERGY RX600 S6 server with four Intel Xeon E7-4870 (Westmere EX)
processors. Each processor has 10 2.40 GHz cores. Each core has private write-back L1 and L2 caches; an
inclusive L3 cache is shared by all cores.

In our experiment, we run a simple application where five threads implement a shared counter using a
lock-free pattern. In particular, each thread reads a shared variable, and then attempts to increment it via a
compare-and-swap operation. We pin the five threads in different configurations across processors, so that not
all threads are instantiated on the same processor, and observe the percentage of steps that each thread gets to
take on the variable in relation to other threads over a one second period.

Figure 3 provides the results for two different configurations. In the first, we place threads 1, 2, 3, 4 on
the same processor, which is also the same processor to which the memory location belongs, and thread 5 on
an outside processor. As a consequence, threads 1 to 4 will have lower memory access times than 5, and in
particular are scheduled to access memory about twice more often than 5. The second graph is the percentage
of steps taken in the configuration where threads 1, 2, and 3 are on the first processor, and 4 and 5 are on
another processor. The scheduling ratios of 4 and 5 are decreased as a consequence.
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