
Pollock et al. Animal Microbiome            (2021) 3:80  
https://doi.org/10.1186/s42523-021-00144-x

RESEARCH ARTICLE

Milk microbiome in dairy cattle 
and the challenges of low microbial biomass 
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Abstract 

Background:  The blanket usage of antimicrobials at the end of lactation (or “drying off”) in dairy cattle is under 
increasing scrutiny due to concerns about antimicrobial resistance. To lower antimicrobial usage in dairy farming, 
farmers are now encouraged to use “selective dry cow therapy” whereby only cows viewed as at high risk of mastitis 
are administered antimicrobial agents. It is important to gain a better understanding of how this practice affects the 
udder-associated microbiota and the potential knock-on effects on antimicrobial-resistant bacterial populations cir-
culating on the farm. However, there are challenges associated with studying low biomass environments such as milk, 
due to known contamination effects on microbiome datasets. Here, we obtained milk samples from cattle at drying 
off and at calving to measure potential shifts in bacterial load and microbiota composition, with a critical assessment 
of contamination effects.

Results:  Several samples had no detectable 16S rRNA gene copies and crucially, exogenous contamination was 
detected in the initial microbiome dataset. The affected samples were removed from the final microbiome analysis, 
which compromised the experimental design and statistical analysis. There was no significant difference in bacterial 
load between treatments (P > 0.05), but load was lower at calving than at drying off (P = 0.039). Escherichia coli counts 
by both sequence and culture data increased significantly in the presence of reduced bacterial load and a decreasing 
trend of microbiome richness and diversity. The milk samples revealed diverse microbiomes not reflecting a typical 
infection profile and were largely comprised of gut- and skin-associated taxa, with the former decreasing somewhat 
after prolonged sealing of the teats.

Conclusions:  The drying off period had a key influence on microbiota composition and bacterial load, which 
appeared to be independent of antimicrobial usage. The interactions between drying off treatment protocol and milk 
microbiome dynamics are clearly complex, and our evaluations of these interactions were restricted by low bio-
mass samples and contamination effects. Therefore, our analysis will inform the design of future studies to establish 
whether different selection protocols could be implemented to further minimise antimicrobial usage.
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regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Mastitis is a highly prevalent and economically detrimen-
tal disease affecting dairy cattle, with the cost of mastitis 
in the UK being estimated at £170 million per year [1, 2]. 

The drying off period marks the end of a lactation cycle, 
and the udder is commonly artificially sealed using com-
mercially available teat sealants to enable healing and to 
minimise the potential for infection. However, new bac-
terial infections in the udder occur most frequently at 
drying off in comparison to any other time point during 
lactation [3], with new infections during the dry period 
occurring up to 10 times the rate of new infections 
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during lactation [4]. Consequently, intramammary anti-
microbials are commonly used at drying off to treat such 
infections.

Due to concerns about antimicrobial resistance, selec-
tive dry cow therapy is now being encouraged, whereby 
only cattle deemed most at risk of mastitis are adminis-
tered long acting intramammary antimicrobials after lac-
tation. This practice assumes that reduced antimicrobial 
usage will slow the development of antimicrobial-resist-
ant bacteria. Somatic cell count readings obtained from 
milk samples are used as a proxy for the concentration of 
leucocytes in milk [5] and consequently used as a selec-
tion criterion for the appropriate drying off treatment 
protocol—using a teat sealant only, or a teat sealant and 
intramammary antimicrobials. Although selective dry 
cow therapy is viewed as a positive change in the indus-
try, further work is required to establish how this prac-
tice affects bacterial populations and their abundance, 
and the potential knock-on effects on the antimicrobial 
resistance determinants in the udder.

Several studies have been carried out to investigate the 
milk microbiome in both healthy and infected udders [6–
11], and the effects of dry cow therapy with or without 
antimicrobial agents [6]. There are well known challenges 
associated with studying low biomass microbial commu-
nities, primarily associated with contamination effects 
[12, 13]. Here, we use 16S rRNA gene sequencing, bac-
terial culture and quantitative PCR to assess changes in 
milk microbiome composition and bacterial load in cows 
between drying off and calving, with a critical assessment 
of contamination effects.

Materials and methods
Study farm and experimental design
The experiment was carried out at Langhill Dairy Farm in 
Midlothian, Scotland (Royal (Dick) School of Veterinary 
Studies, The University of Edinburgh). Ethical approval 
was obtained from the Royal (Dick) School of Veterinary 
Studies Veterinary Ethics Research Committee. On this 
unit, selective dry cow therapy is carried out routinely 
and individual somatic cell count (SCC) readings are 
used to establish the appropriate treatment (i.e., cows 
with higher SCC than 200,000 cells/ml are administered 
an intramammary antimicrobial).

Prior to this study, cow identification numbers and 
pooled SCC readings were provided to allow selection of 
cattle for the experiment (n = 29). These Holstein–Frie-
sian, multiparous cattle calved between December 2018 
and February 2019. Using these data, cows were assigned 
to one of three treatment groups (high SCC with anti-
microbial treatment (n = 9), and two low SCC groups 
with (n = 10) or without (n = 10) antimicrobial treat-
ment) as outlined in Fig. 1. On animal welfare grounds, 

all cows with a SCC count higher than 200,000 cells/ml 
were administered the antimicrobial agent (cloxacillin) 
and teat sealant in each udder quarter. The mean somatic 
cell count for the high SCC group was 534,778 cells/ml, 
with the low SCC groups having means of 87,286 cells/ml 
(sealant only) and 76,182 cells/ml (sealant and antimicro-
bial). All cattle were housed in the same barn.

Sample collection and DNA extraction
Two sets of milk samples were taken from each quarter 
of every cow—at drying off and immediately post-calving 
(Fig. 1). Before milk sampling, each teat was thoroughly 
cleaned using a standardised protocol by experienced 
farm staff [14]. Samples were drawn from each quarter 
and collected in 30 ml universal tubes and placed on wet 
ice for transportation. DNA extractions were immedi-
ately carried out in random order on 500 μl of fresh milk 
using the DNeasy PowerSoil Kit (Qiagen, UK) following 
the manufacturer’s instructions. A DNA pool for each 
cow per sampling point was then created by combin-
ing an equal volume of DNA extract from each quarter, 
with each cow/udder being classified as the experiment 
unit. DNA yield and quality were assessed using a Nan-
oDrop Spectrophotometer (ThermoFisher, UK) and a 
Qubit Fluorometer (ThermoFisher, UK) using the Qubit 
double-stranded DNA High Sensitivity Assay Kit (Ther-
moFisher, UK).

Bacterial culture
100 μl of fresh milk from each quarter were spread onto 
Coliform ChromoSelect agar plates (Sigma Aldrich, UK) 
to select for growth of coliforms—specifically Escheri-
chia coli. The plates were incubated for 18–24 h at 37 °C 
and the E. coli colonies (showing a blue pigment) were 
counted and recorded. A mean value was calculated 
using the counts from each quarter per sampling point.

Quantitative (q)PCR
The number of copies of the 16S rRNA gene were meas-
ured to assess bacterial load in the milk samples (Fig. 1). 
qPCR mastermixes were set up using Brilliant III Ultra-
Fast qPCR Mastermix (Agilent Technologies, United 
States), reference dye (Agilent Technologies, United 
States) and primers and probes listed in previous work 
[15]. Each reaction was carried out in triplicate in a final 
volume of 20 μl, containing 1 μl of extracted DNA which 
included DNA standards (from 105 to 101 gene copies per 
μl) and a non-template (or “negative”) control (NTC). 
Absolute quantification was carried out using a Strata-
gene MX3005P qPCR System (Agilent Technologies, UK) 
using the following cycling conditions: 95 °C (5 min), fol-
lowed by 40 cycles of amplification at 95  °C (15  s) and 
then 60 °C (30 s). Standard curves were created from the 
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threshold cycle (CT) values using the Stratagene MxPro 
Software (Agilent Technologies, UK). The outputted 
values were then converted into gene copy number per 
ml of milk. Wilcoxon signed-rank tests were carried out 
using the compare_means function in R [16] to assess the 
effects of time point and treatment group on 16S rRNA 
gene copy number.

16S rRNA gene sequencing and bacterial community 
analysis
Due to the low biomass nature of milk and the udder, 
samples and consequent sequences were carefully 
curated for analysis (Fig.  1). Samples to be submitted 
for sequencing were selected based on 16S rRNA gene 

counts by qPCR. Seven samples were not included as 
they had undetectable  16S rRNA gene counts. The 
fifty-one remaining DNA extracts, including a mock 
bacterial community and a non-template control 
were submitted to Integrated Microbiome Resource 
(Canada) for sequencing as per the following proto-
col—https://​imr.​bio/​proto​cols.​html—using custom 
dual-indexed primers outlined previously [17]. Using 
the mock bacterial community (20 Strains Even Mix 
Genomic Material ATCC MSA-2002, ATCC, United 
States), the mean sequencing error rate was calculated 
as 0.01%. The raw sequence files are available via the 
European Nucleotide Archive (ENA) under accession 
number PRJEB43646.

Fig. 1  Experimental design and sample workflow from milk collection to the final 16S rRNA gene sequencing analysis. Samples included in the final 
analysis were subject to filtration based on 16S rRNA gene qPCR counts, 16S rRNA gene sequence counts and an exogenous contamination screen. 
Drying off = D, Calving = C. This Figure was created using BioRe​nder.​com

https://imr.bio/protocols.html
https://BioRender.com
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Prior to analyses, samples with low sequencing 
depths (< 500 sequences) were removed (n = 17) and the 
remaining samples (n = 34) were taken forward (Fig.  1). 
Sequence analysis was carried out using mothur software 
[18] as described in detail previously [17, 19]. An opera-
tional taxonomic unit (OTU)-level (i.e., 97% similarity) 
analysis generated 1705 unique taxonomic groups. Tax-
onomic overlap was evident when comparing the non-
template control to the milk samples (see discussion), 
and so removal of these OTUs was deemed inappropri-
ate. A mean of 2818 sequences per sample remained after 
quality control and chimera removal.

The following steps were carried out using mothur, 
unless stated otherwise. The Shannon and Inverse Simp-
son indices were calculated per sample to assess alpha 
diversity. A distance matrix was compiled using Yue and 
Clayton theta similarity coefficients [20] with cluster-
ing by group visualised by non-metric multidimensional 
scaling (NMDS). To identify bacterial taxa that were sig-
nificantly different in relative abundance between groups, 
Metastats [21] was used, with the P-values adjusted using 
Bonferroni correction.

Assessment of exogenous contamination
A non-template control was amplified and sequenced to 
aid in identification of DNA contamination from labora-
tory processes. This yielded 224 reads from 25 bacterial 
families. The majority of these families were not previ-
ously reported reagent contaminants [13] but rather 
taxa that were abundant in the study including Lachno-
spiraceae, Staphylococcaceae, and Pseudomonadaceae. 
The relative abundance of these taxa was highly vari-
able between samples and did not hold a consistent pro-
file. Therefore, the authors concluded that their sparse 
representation in the negative control likely resulted 
from background barcode bleed in sequencing, and was 
not sufficient evidence to subtract these taxa from the 
dataset.

The data was then assessed for artefactual associations 
between taxa, as a contamination event may be expected 
to comprise DNA from several species. Reads from the 
34 samples taken forward were binned by classification 
(genus level or equivalent), subsampled, and convert 
to BIOM format using mothur and biom-format ver-
sion 2.1.8 [22]. A correlation matrix was produced for 
the 185 taxonomic groups using FastSpar version 1.0.0 
[23] (an implementation of the SparCC algorithm [24]). 
Heatmaps of clustered correlation scores were generated 
using R version 4.0.4 [16] and the gplots package [25] 
(Additional file 1: Fig. 1). The relative abundances of 25 
phylotypes were visualised using R and the ggplot2 pack-
age [26] (Additional file 2: Fig. 2).

Results
Bacterial load measured by qPCR
Despite differences in copy number of the 16S rRNA gene 
among bacteria, bacterial load may be broadly inferred by 
total gene copies. The bacterial load in the pooled milk 
samples was highly variable between cows and sampling 
point, ranging from 0 to 2.43 × 106 16S rRNA gene cop-
ies/ml milk. No significant differences were observed 
when comparing the three treatment groups (P > 0.05). 
However bacterial load was significantly higher at drying 
off than at calving (Fig.  2; P = 0.039) and there were no 
interactions between treatment group and time of sam-
pling (P > 0.05).

Assessment of exogenous contamination
We aimed to identify patterns of exogenous DNA con-
tamination in addition to the sequenced non-template 
control. Contamination may impact interpretation, as 
the presence and abundance of contaminant taxa from 
a common source are likely to correlate more closely 
than a true biological signal. FastSpar correlation scores 
revealed a block of co-associated taxa (Additional file 1: 
Fig.  1A) supported by P values < 0.05 which could have 
been introduced to the udder environment together from 
a common source, such as faeces. These taxa were plau-
sible bovine gut inhabitants and not typical reagent con-
taminants. However, closer examination suggested that 
the correlation block was driven by an identical signal 
in 10 samples (Additional file  2: Fig.  2). These samples 
were from different cows and collected and processed on 
different dates, leading the authors to conclude that the 
pattern was likely the result of inter-sample contamina-
tion at a later point in the workflow. Since the correlating 
phylotypes are present at varying abundance throughout 
the dataset, the artefact comprises most of the data from 
the 10 samples, and the source was uncertain, the authors 
chose to remove these 10 samples from the analysis. The 
removal of samples due to zero bacterial counts and 
exogenous contamination negatively impacted the sta-
tistical power of the study (Fig.  1), and so a descriptive 
analysis of the milk microbiota from drying off to calving 
is carried out hereafter.

Descriptive analysis of the milk microbiome
In summary, 19 bacterial phyla were found with the 
most dominant being Proteobacteria (46.1%), Firmi-
cutes (23.5%), Bacteroidetes (21.3%) and Actinobac-
teria (8.2%). There were 114 bacterial families, with 
11 of these comprising more than 1% of the total 
reads—Pseudomonadaceae (31.6%), Enterobacteriaceae 
(14.6%), Lachnospiraceae (8.3%), Moraxellaceae (7.8%), 
Staphylococcaceae (7.7%), Rikenellaceae (3.9%), Pro-
pionibacteriaceae (3.8%), Streptococcaceae (3.5%), 
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Ruminococcaceae (2.5%), Corynebacteriaceae (1.6%) and 
Pasteurellaceae (1.1%).

There were decreases observed in both diversity indi-
ces from drying off to calving (Fig. 3). When considering 
microbiome community structure, clustering by sam-
pling point was observed by NMDS (Fig. 4).

To establish which microbial taxa may have under-
pinned these changes in community structure by 
sampling point, comparisons of taxonomic relative 
abundances were made. There were significant shifts in 
dominant bacterial taxa between drying off and calv-
ing (Table  1), with a decrease in an unclassified Lach-
nospiraceae, and increases in Escherichia coli and 
Staphylococcus aureus. Four samples from the calving 
timepoint had profiles with decreased diversity, domi-
nated by a single phylotype (Pseudomonas at 97.5%, 
79.5% and 54.4%, and Streptococcus at 55% relative abun-
dance respectively). Two of the Pseudomonas-dominated 
samples also had a large increase (42-fold and 296-fold) 
in 16S rRNA gene copy estimation between the drying off 
and calving time points from the same animal, suggesting 
that there was a concurrent increase in bacterial load.

Bacterial culture
The number of Escherichia coli (E. coli) colonies per ml 
of pooled milk was calculated, and comparisons were 
made between samples taken at drying off and at calv-
ing (Fig. 5). The E. coli counts were highly variable within 
and between treatments (i.e. between 0 and 5800 colony 

forming units (CFU/ml milk), with a significantly higher 
count being observed in samples at calving (P < 0.0001).

Discussion
This animal experiment was designed to study milk 
microbiota compositional shifts before and after calving, 
across differing drying off treatment protocols. Despite 
careful handling of samples throughout processing (dis-
cussed in detail below), low biomass milk samples and 
contamination had a profound effect on the sample num-
bers for the microbiome analysis. As such, statistical 
assessment of treatment effects was not possible as part 
of this work. Nevertheless, we have critically profiled the 
milk microbiome from samples before and after drying 
off and carried out a descriptive analysis to inform future 
larger-scale studies to test specific hypotheses.

The challenges of studying low biomass communities
In samples with a low biomass, it is critical to address the 
potential impacts of contamination on microbiome data-
sets. We recruited cows that did not have signs of clinical 
mastitis at drying off, which means that the bacterial load 
was likely much less than that of cows with mastitis. As 
such, we believe our data set is more sensitive to contam-
ination effects. The following considerations were made, 
and steps to minimise these effects were carried out.

First, we measured the bacterial load in each pooled 
milk sample by qPCR, which was used as a selec-
tion criterion for submitting samples for 16S rRNA 
gene sequencing. We excluded samples which had 

Fig. 2  Mean log (10) 16S rRNA gene counts per ml milk at drying off and calving
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undetectable or zero 16S rRNA gene copies. The major-
ity of samples taken forward had over 1 × 104 16S rRNA 
gene copies/ml, which appears to be a crucial tipping 
point, as two previous studies have shown that samples 
with less than 1 × 104 bacterial cells/ml are more sensi-
tive to contamination effects [13, 27].

Second, we considered removal of OTUs that were 
present in our non-template control (NTC). A relatively 
low sequencing coverage was observed in these milk 
samples, compared to higher biomass samples such as 
faeces. Consequently, contaminating taxa from labora-
tory reagents can have a profound impact on microbiome 
data, but whether these should be removed is still under 
debate, as there may be overlapping taxa which can gen-
uinely be found in samples [12]. We only obtained 224 
reads from the NTC, with low read numbers representing 
many taxa. The most encountered NTC taxa in our data-
set were Cutibacterium species, unclassified Micrococca-
les, Staphylococcus species, unclassified Lachnospiraceae, 

Pelomonas species and Pseudomonas species. However, 
many contaminating genera such as Corynebacterium, 
Pseudomonas, Staphylococcus, Propionibacterium and 
Streptococcus species are also known colonisers of the 
udder environment [28]. The taxa present in the NTCs 
did not significantly correlate with one another accord-
ing to FastSpar analysis, suggesting that they were not 
co-introduced from a common source. Therefore, we did 
not it deem it appropriate to remove any OTUs from our 
dataset, as key microbiome shifts may have been missed. 
To minimise contamination effects, we studied core and 
dominant OTUs which were present across samples at a 
minimum level of 1% relative abundance, which are less 
likely to be influenced by contaminants.

Third, we cultured a dominant genus to provide evi-
dence that the sequencing data is not only composed of 
PCR and sequencing artefacts. We selectively cultured E. 
coli from all milk samples, with a range of 0 to 5800 cells/
ml of whole milk being observed. The culture results 
broadly reflect the relative abundance of the Shigella/
Escherichia phylotype in the microbiota analysis.

Fourth, we randomised DNA extractions and carried 
these out in small batches to minimise batch effects. 
Salter et  al. [13] compared nasopharyngeal microbiome 
samples from children at two different time points, and 
although the samples clustered separately, this effect 
was due to bias driven by contamination from the DNA 
extraction kits used. Randomisation of samples prior to 
extraction has been suggested previously [12]. None-
theless, rhizosphere organisms (often detected as con-
taminants) are present at low levels in our dataset, as 
indicated by the non-template control, and we also 
detected patterns of exogenous DNA contamination as 
part of this study. The taxa observed included likely gut 
inhabitants and not typical reagent contaminants, but a 
more detailed examination showed a correlation block 
that was driven by an implausibly identical signal in 10 
samples. Since the source of this contamination was 
uncertain, we chose to eliminate these samples from the 
analysis.

Study design limitations
Although we carried out these analyses as carefully and 
critically as possible, we do recognise that there are 
limitations to this study design. Specifically, a marked 
decrease in sample numbers per treatment group 
occurred due to our filtration steps, meaning that many 
of our statistical analyses on the microbiome data-
set could not be carried out. Although a larger study 
would have provided a deeper insight into multifacto-
rial effects on the milk microbiome, it was not possible 
to increase the scale of this experiment. Small and well-
designed studies defining a population of interest have 
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the potential to advance knowledge in the field [29], but 
we did not expect this magnitude of sample loss. Given 
the potential for contaminants to significantly affect the 
results in 16S rRNA gene sequencing studies, we rec-
ommend considering similar steps as presented here in 
future work and to anticipate marked decreases in sam-
ple numbers.

Bacterial load and E. coli counts
We found that bacterial load decreased after drying off, 
which appeared to be independent of treatment proto-
col. Interestingly, previous work has shown the opposite 
effect [6]. It has been proposed that the use of internal 
teat sealant as a physical barrier alone may be effective in 
reducing bacterial colonisation [6], which would explain 
the overall decrease in bacterial load and gut- associated 
taxa specifically, that we observed as part of this study. 

In the presence of a reduced overall bacterial load, E. 
coli counts by culture increased—suggesting that after 
the transient introduction of bacteria from the external 
environment diminishes, some species can thrive in this 
niche.

We found that the presence of cloxacillin, a narrow-
range antimicrobial, did not have a significant effect on 
bacterial load after treatment. It is challenging to make 
comparisons to other work, since different antimicrobial 
classes can be used at drying off. Nonetheless, previous 
work has shown that ceftiofur (a broad-spectrum antimi-
crobial agent) treatment at drying off had no impact on 
bacterial load by qPCR [6, 30]. Indeed, other work has 
highlighted that the number of new occurrences of mas-
titis during dry cow therapy was not different when com-
paring cows administered antimicrobials or teat sealant 
only [30–33]. Therefore, it may not be surprising that sig-
nificant differences in bacterial load after antimicrobial 
treatment were not observed in our dataset.

Microbiome changes by sampling point
Previous work has shown that the milk microbiome 
changed dramatically over the drying off period [6, 34], 
with sampling point being the key influencing factor 
rather than antimicrobial treatment. We showed that 
when bacterial colonisation decreased, the richness and 
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Table 1  Changes in relative abundances of dominant taxa 
between drying off and calving

Drying off Calving Taxa P-value

0.74 ± 0.33% 1.60 ± 0.04% Escherichia coli 0.050

12.2 ± 0.30% 5.74 ± 0.23% Unclassified Lachnospiraceae 0.008

18.0 ± 1.10% 15.4 ± 1.83% Staphylococcus aureus 0.036
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evenness in bacterial communities decreased, which has 
been shown previously by Derakhshani et  al.[34]. Many 
studies have highlighted that a decrease in microbiome 
alpha diversity is linked to cattle with mastitis, with path-
ogens becoming more dominant after drying off being a 
risk factor for the development of mastitis during lacta-
tion [9, 30, 35].

Most samples in this study revealed a diverse microbi-
ota, largely composed of gut-associated and skin-associ-
ated taxa. The presence of these bacteria in milk samples 
is likely to reflect the vulnerable nature of the teat in dairy 
cattle, where impaired teat sphincter function common 
in mechanically milked cows [36, 37] permits bacterial 
access to the teat canal from the environment. In keeping 
with this hypothesis, the bacterial load and proportional 
abundance of many gut-associated taxa was somewhat 
lower at calving—after prolonged sealing of the teat—
than at the first timepoint. This diverse assortment of 
bacteria is utterly distinct from a typical infection profile 

involving a single organism. The cows with milk samples 
dominated by Pseudomonas and with a high bacterial 
load did not develop mastitis, but their microbial profile 
suggests that a subclinical infection may have been estab-
lishing itself by the calving timepoint.

Between drying off and calving, there was a reduction 
in unclassified Lachnospiraceae, which is a gut-associ-
ated family likely to be decreased because of the physi-
cal barrier imparted by the teat sealant. E. coli counts by 
both 16S rRNA gene sequencing and culture increased 
between drying off and calving, with Staphylococcus 
aureus being a dominant member of the microbiome 
across both time points—both of which are potential 
causative agents of mastitis.

Conclusions
We found that the drying off process changed bacte-
rial load and microbiome composition—with these fac-
tors appearing not to be affected by the presence of an 
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intramammary antimicrobial agent. Milk microbial com-
munities are challenging to study, and we have provided a 
critical analysis to ensure that contamination effects were 
minimised. This study sets the scene for further work to 
fully characterise the milk microbiome in the unique set-
ting of modern dairy farms, and to establish whether dif-
ferent thresholds could be used in future for treatment 
selection at drying off.
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Additional file 1: Fig. 1. Heatmap of pairwise correlation scores for 
185 genus-level phylotypes derived from 34 samples with FastSpar. No 
significant phylotype correlation was found for most taxa. A small number 
of abundant phylotypes are highly correlated (0.25–0.75, p < 0.05) in two 
groups: (A) probable gut-associated bacteria (including Bacteroides and 
unclassified Clostridiales, Lachnospiraceae, Muribaculaceae, Prevotel-
laceae, Ruminococcaceae) from a contamination artefact, and (B) prob-
able skin-associated bacteria (including Actinobacteria, Cutibacterium, 
Staphylococcus) present throughout the dataset.

Additional file 2: Fig. 2. Proportional abundance profiles of the 25 most 
abundant phylotypes in the dataset, including those from the highly 
correlated groups A and B (see Additional file 1: Fig. 1). The inter-sample 
contamination artefact can be seen in the ten samples on the right which 
were discarded from further analysis.
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