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Abstract
The ability to accurately estimate the sample size required by a stepped-wedge (SW)

cluster randomized trial (CRT) routinely depends upon the specification of several

nuisance parameters. If these parameters are misspecified, the trial could be overpow-

ered, leading to increased cost, or underpowered, enhancing the likelihood of a false

negative. We address this issue here for cross-sectional SW-CRTs, analyzed with a

particular linear-mixed model, by proposing methods for blinded and unblinded sam-

ple size reestimation (SSRE). First, blinded estimators for the variance parameters of

a SW-CRT analyzed using the Hussey and Hughes model are derived. Following this,

procedures for blinded and unblinded SSRE after any time period in a SW-CRT are

detailed. The performance of these procedures is then examined and contrasted using

two example trial design scenarios. We find that if the two key variance parameters

were underspecified by 50%, the SSRE procedures were able to increase power over

the conventional SW-CRT design by up to 41%, resulting in an empirical power above

the desired level. Thus, though there are practical issues to consider, the performance

of the procedures means researchers should consider incorporating SSRE in to future

SW-CRTs.
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1 INTRODUCTION

A stepped-wedge (SW) cluster randomised trial (CRT) involves the sequential roll-out of an intervention across several clusters

over multiple time periods, with the time period in which a cluster begins receiving the intervention determined at random.

Recent papers have established methods for sample size determination in the case of cross-sectional (Hussey & Hughes, 2007)

and cohort (Hooper, Teerenstra, de Hoop, & Eldridge, 2016) designs, for trials with multiple levels of clustering and for incom-

plete block SW-CRTs (Hemming, Lilford, & Girling, 2015).

Undeniably, there has been a growing interest in the design, and in particular, it has now become associated with scenarios in

which there is a belief that the trial's experimental intervention will be effective (Brown & Lilford, 2006; Mdege, Man, Taylor

(nee Brown), & Torgerson, 2011). Given this commonly held belief, it may come as a surprise that a recent literature review

determined that in 31% of the SW-CRTs completed by February 2015, there was no significant effect of the experimental inter-

vention on any of the trials primary outcome measures (Grayling, Wason, & Mander, 2017a). To guard against this, implicitly

assuming this failure rate was due to the experimental interventions being futile, methodology for the incorporation of interim
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analyses in SW-CRTs was recently described (Grayling, Wason, & Mander, 2017b). One other possible explanation is that the

studies have been false negatives. A high false-negative rate could be associated with SW-CRTs having been underpowered.

Methodology available to determine the sample size required by SW-CRTs is dependent upon the specification of the values of

several nuisance parameters (e.g., the between cluster and residual variances). In practice, it may be difficult to provide accurate

estimates for these factors, and their misspecification may be leading to under-powered studies. Alternatively, if these param-

eters are being misspecified such that SW-CRTs have been overpowered, there may have been more measurements taken than

actually required, leading to unnecessary cost.

A common approach to addressing the specification of nuisance parameters in the trial design literature is the use of a sample

size reestimation (SSRE) procedure. Each such method has essentially the same intention: to alleviate the issue of prespecifying

nuisance parameters by allowing them to be reestimated during the trial, and the required sample size adjusted. Reviews of SSRE

methodology have been provided by Friede and Kieser (2013), Proschan (2009), and Pritchett et al. (2015), among others. We

refer the reader to these articles for a wider overview of SSRE. Of importance here is that, broadly speaking, SSRE procedures

can be subcategorized according to whether they are a blinded or unblinded technique, and also in relation to whether they

reestimate the variance parameters, the effect-size, or some combination of the two. Regulatory agencies prefer that the blind

be maintained whenever possible, so as to not risk compromising the validity of the trial (ICH, 1998). Fortunately therefore,

blinded SSRE methodology is today available for a range of settings (e.g. Friede & Kieser, 2013; Golkowski, Friede, & Kieser,

2014; and Kunz, Stallard, Parsons, Todd, & Friede, 2017), with each such procedure typically conferring highly desirable trial

operating characteristics.

However, while some results exist on SSRE in multicentre (Jensen & Kieser, 2010) and parallel group CRTs (van Schie &

Moerbeek, 2014), no work has established methodology for SSRE in SW-CRTs, with the increased complexity in the design

of SW-CRTs necessitating a specialised approach. In this article, we address this by developing and exploring the performance

of both blinded and unblinded SSRE procedures for cross-sectional SW-CRTs. Precisely, we consider the case in which the

variance parameters required for sample size determination are to be reestimated, but the effect-size is prespecified and remains

unmodified. Accordingly, we assume that a commonly considered linear-mixed model will be utilized for data analysis, and

develop blinded estimators of the associated key variance parameters. The performance of a SSRE procedure based on these

blinded estimators is then compared to an unblinded approach, as a function of their various control parameters, and the param-

eters of the underlying model. We conclude with a discussion of possible extensions to our approach, and by detailing logistical

factors that must be considered when incorporating SSRE in to SW-CRTs.

2 METHODS

2.1 Notation, hypotheses, and analysis
We suppose that a cross-sectional SW-CRT is to be carried out in 𝐶 clusters over 𝑇 time periods, with 𝑛 individuals recruited

per cluster per time period. That is, we assume data will be accrued on new patients in each cluster in each time period. We

do not restrict our attention to “balanced” SW-CRTs however; clusters need not start in the control condition, conclude in the

experimental condition, and there does not need to be an equal number of clusters switching to the experimental intervention in

each time period.

We assume that the accumulated data will be normally distributed, and the following linear-mixed model will be utilized for

data analysis, as proposed by Hussey and Hughes (2007)

𝑌𝑖𝑗𝑘 = 𝜇 + 𝜋𝑗 + 𝜏𝑋𝑖𝑗 + 𝑐𝑖 + 𝜖𝑖𝑗𝑘. (1)

Here

• 𝑌𝑖𝑗𝑘 is the response of the 𝑘-th individual (𝑘 = 1,… , 𝑛), in the 𝑖-th cluster (𝑖 = 1,… , 𝐶), in the 𝑗-th time period (𝑗 = 1,… , 𝑇 );

• 𝜇 is an intercept term;

• 𝜋𝑗 is a fixed effect for the 𝑗-th time period (with 𝜋1 = 0 for identifiability);

• 𝜏 is a fixed treatment effect for the experimental intervention relative to the control;

• 𝑋𝑖𝑗 is the binary treatment indicator for the 𝑖-th cluster and 𝑗-th time period. That is, 𝑋𝑖𝑗 = 1 if cluster 𝑖 receives the inter-

vention in time period 𝑗. We denote by 𝑋, dim(𝑋) = 𝐶 × 𝑇 , the matrix formed from the 𝑋𝑖𝑗 . Similarly, we define 𝑋(𝑡),

dim(𝑋(𝑡)) = 𝐶 × 𝑡, to be the matrix formed from the first 𝑡 columns of 𝑋. That is, 𝑋
(𝑡)
𝑖𝑗

= 𝑋𝑖𝑗 for 𝑖 = 1,… , 𝐶 and 𝑗 = 1,… , 𝑡;
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• 𝑐𝑖 ∼ 𝑁(0, 𝜎2
𝑐
) is a random effect for cluster 𝑖;

• 𝜖𝑖𝑗𝑘 ∼ 𝑁(0, 𝜎2
𝑒
) is the individual-level error.

We denote the vector of fixed effects by 𝜽 = (𝜇, 𝜋2,… , 𝜋𝑇 , 𝜏)⊤. Moreover, we indicate the design matrix linking 𝜽 to the

vector of responses 𝒀 𝒯,𝑛, from the set of time periods 𝒯, given an allocation matrix 𝑋, and a per cluster per period sample size

of 𝑛, by 𝐷𝒯,𝑛. We similarly denote the covariance matrix of 𝒀 𝒯,𝑛, given 𝜎2
𝑐

and 𝜎2
𝑒
, by Cov(𝒀 𝒯,𝑛, 𝒀 𝒯,𝑛 ∣ 𝜎2𝑐 , 𝜎

2
𝑒
) = Σ𝒯,𝑛,𝜎2

𝑐
,𝜎2
𝑒
.

As is noted in Hussey and Hughes (2007), by the above choice of linear-mixed model, Σ𝒯,𝑛,𝜎2
𝑐
,𝜎2
𝑒

is a 𝐶|𝒯|𝑛 × 𝐶|𝒯|𝑛 block

diagonal matrix. Each block, corresponding to the responses from each cluster, is of dimension |𝒯|𝑛 × |𝒯|𝑛. Precisely, it is

given by 𝜎2
𝑒
𝐼|𝒯|𝑛 + 𝜎2

𝑐
𝐽|𝒯|𝑛, where 𝐼𝑚 and 𝐽𝑚 are the 𝑚 × 𝑚 identity and unit matrices, respectively.

We perform a one-sided hypothesis test for 𝜏

𝐻0 ∶ 𝜏 ≤ 0, 𝐻1 ∶ 𝜏 > 0,

and assume that it is desired to have a type-I error rate of 𝛼 when 𝜏 = 0, and to have power to reject 𝐻0 of 1 − 𝛽 when 𝜏 = 𝛿,

for some specified 𝛿 > 0. Note that SSRE procedures for two-sided hypotheses are also easily achievable.

Finally, we assume that hypothesized values for the variance parameters 𝜎2
𝑐

and 𝜎2
𝑒

have been provided, which we denote by 𝜎̃2
𝑐

and 𝜎̃2
𝑒
. Alternatively, a value for one of these parameters, and a value for the intracluster correlation (ICC) 𝜌, 𝜌̃ = 𝜎̃2

𝑐
∕(𝜎̃2

𝑐
+ 𝜎̃2

𝑒
),

could be specified, such that 𝜎̃2
𝑐

and 𝜎̃2
𝑒

can still be determined. Given these values, we assume a sample size calculation has been

performed (using the methods to be described shortly) and values for 𝑋 and 𝑛 (and thus also 𝐶 and 𝑇 since dim(𝑋) = 𝐶 × 𝑇 )

have subsequently been specified. For reasons to be elucidated below, we refer to this 𝑛 as 𝑛init.

With the above, a conventional SW-CRT can be conducted as follows. We recruit 𝑛init individuals per cluster per time period,

with the experimental intervention allocated according to the matrix 𝑋. On completion, we use restricted error maximum like-

lihood (REML) estimation to acquire an estimate of 𝜏, denoted 𝜏, and a value for 𝐼 = {Var(𝜏)}−1. Next, we compute the test

statistic 𝑇 = 𝜏𝐼1∕2, and reject 𝐻0 if 𝑇 > 𝑒, where 𝑒 is the solution to

𝛼 = ∫
∞

𝑒

𝜑{𝑥, 0, 1, 𝜈}d𝑥,

𝜈 = 𝑛init𝐶𝑇 − 𝐶 − 𝑇 .

Here, 𝜑{𝑥, 𝜇,Λ, 𝜈} is the probability density function of a 𝑡-distribution with mean 𝜇, covariance Λ, and degrees of freedom

𝜈, evaluated at 𝑥. Specifically, we take 𝜈 to be the degrees of freedom in a corresponding balanced multilevel ANOVA design.

Later, we will discuss the implications of this, and describe other possible ways to prescribe 𝜈.

We next detail how the above can be extended to allow SSRE to be incorporated in to the design.

2.2 Sample size reestimation procedures
A single interim analysis for SSRE is included in the SW-CRT design after a designated time period 𝑡 ∈ {1,… , 𝑇 − 1}. Precisely,

we assume that the trial is conducted as per matrix𝑋 and the value 𝑛init for time periods 1,… , 𝑡. After this, we compute estimates

for the variance parameters, 𝜎̂2
𝑐

and 𝜎̂2
𝑒
, based upon the accumulated data. Below, we detail how exactly this is achieved in the

blinded and unblinded procedures. Here, we discuss how these estimates are then used. Note that, as was discussed in Section 1,

we are reestimating only 𝜎2
𝑐

and 𝜎2
𝑒
: the effect size 𝛿 will not be reestimated.

We search numerically as follows to determine the required per cluster per period sample size for the remainder of the trial,

𝑛reest, to convey the desired power if 𝜎2
𝑐
= 𝜎̂2

𝑐
and 𝜎2

𝑒
= 𝜎̂2

𝑒
. Thus, the number of clusters remains fixed throughout the trial; it is

the per cluster per period sample size that is adjusted. We consider possible alternatives to this in the discussion.

Firstly, suppose 𝑛reest has been chosen, then time periods 𝑡 + 1,… , 𝑇 of the trial are conducted using the matrix𝑋 for treatment

allocation, and recruiting 𝑛reest individuals per cluster per period. At the end of the trial the linear-mixed model (1) with REML

estimation are utilized to acquire 𝜏 and 𝐼 as above. The test statistic 𝑇 = 𝜏𝐼1∕2 is again determined, and 𝐻0 rejected if 𝑇 > 𝑒,

but 𝑒 is now the solution to

𝛼 = ∫
∞

𝑒

𝜑{𝑥, 0, 1, 𝜈𝑛reest
}d𝑥,

𝜈𝑛reest
= 𝑛init𝐶𝑡 + 𝑛reest𝐶(𝑇 − 𝑡) − 𝐶 − 𝑇 .

Here, 𝜈𝑛reest
is the degrees of freedom in a balanced multilevel ANOVA design if a sample size of 𝑛init is used per cluster per

period in time periods 1,… , 𝑡, and a sample size of 𝑛reest is used per cluster per period in time periods 𝑡 + 1,… , 𝑇 .
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The power to reject 𝐻0 when 𝜏 = 𝛿, for a particular 𝑛reest, can thus be estimated at the interim as

P(Reject 𝐻0 ∣ 𝑛reest) = ∫
∞

𝑒

𝜑{𝑥, 𝛿𝐼1∕2, 1, 𝜈𝑛reest
}d𝑥,

where 𝐼 is given by the inverse of element [𝑇 + 1, 𝑇 + 1] of the following matrix(
𝐷𝑇

{1,…,𝑡},𝑛init
Σ−1
{1,…,𝑡},𝑛init,𝜎̂

2
𝑐
,𝜎̂2
𝑒

𝐷{1,…,𝑡},𝑛init
+

+𝐷𝑇
{𝑡+1,…,𝑇 },𝑛reest

Σ−1
{𝑡+1,…,𝑇 },𝑛reest,𝜎̂

2
𝑐
,𝜎̂2
𝑒

𝐷{𝑡+1,…,𝑇 },𝑛reest

)−1
.

This matrix arises as the theoretical covariance matrix of the maximum likelihood estimator of 𝜽 when a sample size of 𝑛init

is used per cluster per period in time periods 1,… , 𝑡, and a sample size of 𝑛reest is used per cluster per period in time periods

𝑡 + 1,… , 𝑇 (see, e.g. Fitzmaurice, Laird, & Ware (2011) for details on how this form of covariance matrix is constructed).

Therefore, we can compute the required value for 𝑛reest by searching for the minimal integer solution to the following equation

P(Reject 𝐻0 ∣ 𝑛reest) ≥ 1 − 𝛽.

In fact, to make our SSRE procedures more applicable in practice, and to guard against unrealistically large values for 𝑛reest, we

carry out the remaining periods of the trial recruiting 𝑛final individuals per cluster per time period, where

𝑛final =
⎧⎪⎨⎪⎩
𝑛min ∶ 𝑛reest < 𝑛min,

𝑛reest ∶ 𝑛min ≤ 𝑛reest ≤ 𝑛max,

𝑛max ∶ 𝑛max < 𝑛reest.

Here, 𝑛min ∈ ℕ+ and 𝑛max ∈ ℕ+, with 𝑛min < 𝑛max, are designated values for the minimal and maximal allowed number of

patients per cluster per period following the reestimation. There are various possible approaches to how values for 𝑛min and 𝑛max

can be specified. Wittes and Brittain (1990) advocated for the initially planned sample size to never be reduced. Here, this would

correspond to 𝑛min = 𝑛init. In contrast, Birkett and Day (1994) proposed that the initially planned sample size should be reduced.

Gould (1992) recommended that a realistic maximum sample size should be specified. In practice, the values of 𝑛min and 𝑛max

may need to be chosen based upon the potentially attainable values of 𝑛 in a particular trial scenario.

Finally, following determination of 𝑛final, the remainder of the trial and ensuant analysis is conducted as described above, to

determine whether to reject 𝐻0.

Note that the sample size required by a classical fixed sample SW-CRT design, given an allocation matrix 𝑋, can be deter-

mined using the above by treating 𝑛init as a variable rather than a fixed parameter, and searching for the minimal 𝑛init such that

P(Reject 𝐻0 ∣ 0) ≥ 1 − 𝛽 when 𝑡 = 𝑇 . Alternatively, 𝑛init could be specified and the matrix 𝑋 determined for the desired power.

All that remains to be elucidated in the above procedure is the means of determining the estimates 𝜎̂2
𝑐

and 𝜎̂2
𝑒
. As discussed,

we describe both blinded and unblinded approaches to their specification.

The unblinded procedure is as follows. After time period 𝑡, we fit the following model to the accumulated data using REML

estimation

𝑌𝑖𝑗𝑘 =

⎧⎪⎪⎨⎪⎪⎩

𝜇 + 𝑐𝑖 + 𝜋𝑗 +𝑋𝑖𝑗𝜏 + 𝜖𝑖𝑗𝑘 ∶ if 𝟏⊤
𝑡
𝑋(𝑡)𝟏𝑡 > 0 and 𝑡 > 1,

𝜇 + 𝑐𝑖 + 𝜋𝑗 + 𝜖𝑖𝑗𝑘 ∶ if 𝟏⊤
𝑡
𝑋(𝑡)𝟏𝑡 = 0 and 𝑡 > 1,

𝜇 + 𝑐𝑖 +𝑋𝑖𝑗𝜏 + 𝜖𝑖𝑗𝑘 ∶ if 𝟏⊤
𝑡
𝑋(𝑡)𝟏𝑡 > 0 and 𝑡 = 1,

𝜇 + 𝑐𝑖 + 𝜖𝑖𝑗𝑘 ∶ if 𝟏⊤
𝑡
𝑋(𝑡)𝟏𝑡 = 0 and 𝑡 = 1.

.

Here, 𝟏𝑡 = (1,… , 1)⊤, with dim(𝟏𝑡) = 𝑡 × 1. In the above, 𝟏⊤
𝑡
𝑋(𝑡)𝟏𝑡 > 0 is included as a qualifier to indicate the term𝑋𝑖𝑗𝜏 should

appear in our model as at least one cluster has been administered the experimental intervention in some time period. Similarly,

𝑡 > 1 indicates period effects should be accounted for in the model. Following REML estimation, we attain our values for 𝜎̂2
𝑐

and 𝜎̂2
𝑒

immediately, and use them in the above algorithm to determine 𝑛final.

For the blinded procedure, it is first useful to note precisely what we mean by “blinded.” Here, it refers to the fact that the

treatment indicator of an observation is not known, but that it is known which observations belong to the sample cluster and
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time period. With this, define

𝑆̄2
𝐶𝑡−𝑡 =

𝑛

𝐶𝑡 − 𝑡

𝐶∑
𝑖=1

𝑡∑
𝑗=1

(𝑌𝑖𝑗. − 𝑌.𝑗.)2,

𝑆2
𝐶𝑡

= 1
𝑛𝐶𝑡 − 𝐶𝑡

𝐶∑
𝑖=1

𝑡∑
𝑗=1

𝑛init∑
𝑘=1

(𝑌𝑖𝑗𝑘 − 𝑌𝑖𝑗.)2,

where

𝑌.𝑗. =
1

𝑛init𝐶

𝐶∑
𝑖=1

𝑛init∑
𝑘=1

𝑌𝑖𝑗𝑘,

𝑌𝑖𝑗. =
1
𝑛init

𝑛init∑
𝑘=1

𝑌𝑖𝑗𝑘.

In the Supplementary Material we derive that

E(𝑆̄2
𝐶𝑡−𝑡) = 𝜎2

𝑒
+ 𝑛init𝜎

2
𝑐
+
𝑛init𝜏

2

𝐶𝑡 − 𝑡
𝟏⊤
𝑡
𝑋(𝑡)𝟏𝑡 −

𝑛init𝜏
2

𝐶(𝐶𝑡 − 𝑡)
(𝟏⊤

𝑡
𝑋(𝑡)) ⋅ (𝟏⊤

𝑡
𝑋(𝑡)),

E(𝑆2
𝐶𝑡
) = 𝜎2

𝑒
.

Given a particular choice for 𝜏 in the above, which we shall denote 𝜏∗, these equations are used to estimate 𝜎2
𝑐

and 𝜎2
𝑒

as follows

• Compute 𝑆̄2
𝐶𝑡−𝑡 and 𝑆2

𝐶𝑡
using the formulae above and the accrued data.

• Define 𝑓 (𝑆̄2
𝐶𝑡−𝑡, 𝜎

2
𝑒
, 𝑋(𝑡), 𝑛, 𝜏) as

𝑓 (𝑆̄2
𝐶𝑡−𝑡, 𝜎

2
𝑒
, 𝑋(𝑡), 𝑛, 𝜏) = 1

𝑛

{
𝑆̄2
𝐶𝑡−𝑡 − 𝜎2

𝑒
− 𝑛𝜏2

𝐶𝑡 − 𝑡
𝟏⊤
𝑡
𝑋(𝑡)𝟏𝑡 +

+ 𝑛𝜏2

𝐶(𝐶𝑡 − 𝑡)
(𝟏⊤

𝑡
𝑋(𝑡)) ⋅ (𝟏⊤

𝑡
𝑋(𝑡))

}
.

• Set 𝜎̂2
𝑒
= 𝑆2

𝐶𝑡
and

𝜎̂2
𝑐
=
⎧⎪⎨⎪⎩
𝑓 (𝑆̄2

𝐶𝑡−𝑡, 𝜎̂
2
𝑒
, 𝑋(𝑡), 𝑛init, 𝜏∗) ∶ if 𝑓 (𝑆̄2

𝐶𝑡−𝑡, 𝜎̂
2
𝑒
, 𝑋(𝑡), 𝑛init, 𝜏∗) > 0,

𝑓 (𝑆̄2
𝐶𝑡−𝑡, 𝜎̂

2
𝑒
, 𝑋(𝑡), 𝑛init, 0) ∶ if 𝑓 (𝑆̄2

𝐶𝑡−𝑡, 𝜎̂
2
𝑒
, 𝑋(𝑡), 𝑛init, 𝜏∗) < 0 < 𝑓 (𝑆̄2

𝐶𝑡−𝑡, 𝜎̂
2
𝑒
, 𝑋(𝑡), 𝑛init, 0),

0 ∶ otherwise.

Here, our specification of 𝜎̂2
𝑐

allows us to make use of 𝜏∗ when it will give rise to a value of 𝜎̂2
𝑐

such that 𝜎̂2
𝑐
> 0,

but assists against overcorrection for a nonzero treatment effect by specifying 𝜎̂2
𝑐
= 𝑓 (𝑆̄2

𝐶𝑡−𝑡, 𝜎̂
2
𝑒
, 𝑋(𝑡), 𝑛init, 0) when

𝑓 (𝑆̄2
𝐶𝑡−𝑡, 𝜎̂

2
𝑒
, 𝑋(𝑡), 𝑛init, 𝜏∗) < 0 < 𝑓 (𝑆̄2

𝐶𝑡−𝑡, 𝜎̂
2
𝑒
, 𝑋(𝑡), 𝑛init, 0).

We then utilize the algorithm from earlier to determine the value of 𝑛final.

Note that if 𝜏∗ = 𝜏, the above are unbiased estimators for the variance parameters 𝜎2
𝑐

and 𝜎2
𝑒
.

For further clarity, the full unblinded and blinded SSRE procedures are detailed algorithmically in the Supplementary Mate-

rial. In addition, we also discuss in the Supplementary Material possible alternative methods for reestimating the between cluster

and residual variances in a blinded manner, and why we believe our chosen approach should be preferred.

2.3 Simulation study
With the above considerations, a SSRE trial design scenario is fully specified given 𝒟, where

𝒟 = {𝑋, 𝑡, 𝜎2
𝑐
, 𝜎2

𝑒
, 𝜎̃2

𝑐
, 𝜎̃2

𝑒
, 𝛼, 𝛽, 𝛿, 𝜇,𝝅, 𝜏, 𝑛min, 𝑛max, 𝐵} ∪ 𝕀{𝐵=1}{𝜏∗}.
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Here, 𝝅 = (𝜋2,… , 𝜋𝑇 )𝑇 is the vector of period effects, and 𝐵 is a binary indicator variable that takes the value 1 if blinded SSRE

is utilized, and the value 0 if unblinded SSRE is utilized. Finally, 𝕀𝐴 is the indicator function on event A.

Given 𝒟 we can simulate a SW-CRT utilizing this SSRE procedure by generating random multivariate normal observations.

From this, the empirical rejection rate (ERR) of a particular scenario can be estimated by performing a large number of replicates

simulations. To this end, define 𝑅𝑠(𝒟) to be 1 if the result of replicate 𝑠 of a trial simulated according to scenario 𝒟 is to reject

𝐻0, and 0 otherwise. For any number of replicates 𝑟, the ERR for scenario 𝒟 is

𝐸𝑅𝑅(𝒟) = 1
𝑟

𝑟∑
𝑠=1

𝑅𝑠(𝒟).

Similarly, we record the values of 𝑁̂𝑠(𝒟) = 𝑛s,init𝐶𝑡 + 𝑛s,final𝐶(𝑇 − 𝑡), the total sample size required in replicate 𝑠, computed

using 𝑛s,init and 𝑛s,final, the initial and reestimated per cluster per period sample sizes for this replicate. This allows us to examine

the distribution of the total required sample size, which we denote from here by 𝑁̂ = 𝑁̂(𝒟). In this article, 𝑟 = 105 for all

considered scenarios.

In what follows, we consider performance in a wide variety of scenarios. However, many of the parameters in 𝒟 remain fixed.

In particular, they are set based on two motivating trial design scenarios.

Firstly, Bashour et al. (2013) conducted a SW-CRT to assess the effect of training doctors in communication skills on women's

satisfaction with doctor-woman relationship during labour and delivery. The trial utilized a balanced complete block SW-CRT

design, enrolling four hospitals, and gathering data over five time periods. The final analysis estimated the between cluster and

residual variances to be 𝜎2
𝑐
= 0.02 and 𝜎2

𝑒
= 0.51, respectively. For these variance parameters, the utilised design would have

required 70 patients per cluster per time period for the trials desired type-I and type-II error rates of 0.05 and 0.1, respectively,

when powering for a clinically relevant difference of 0.2, using the methods above. Thus in Trial Design Setting (TDS) 1 we fix

𝜎2
𝑐
= 0.02, 𝜎2

𝑒
= 0.51, 𝛼 = 0.05, 𝛽 = 0.1, and 𝛿 = 0.2. Moreover, 𝐶 = 4, 𝑇 = 5, and 𝑋 is such that a single cluster switches to

the experimental intervention in time periods two through five.

The parameters of TDS2 are based upon the typical characteristics of SW-CRTs according to a recent review (Grayling et al.,

2017a). Precisely, adapting Grayling et al. (2017b), we set 𝜎2
𝑐
= 1∕9 and 𝜎2

𝑒
= 1, in order to consider a more modest value for

the ICC of 𝜌 = 0.1. In addition, we set 𝛼 = 0.025, 𝛽 = 0.2, 𝛿 = 0.267, 𝐶 = 20, 𝑇 = 9, and 𝑋 such that three clusters switch to

the experimental intervention in time periods two through five, and two clusters in time periods six through nine. This implies

that the actual total sample size required by this trial is approximately that accrued on average in SW-CRTs completed to date.

For simplicity, in both TDSs we take 𝜇 = 𝜋2 = ⋯ = 𝜋𝑇 = 0. We therefore consider the effect of different choices for 𝑡, 𝜎̃2
𝑐
,

𝜎̃2
𝑒
, 𝑛min, 𝑛max, 𝜏, 𝜏∗, and𝐵. We in general assume that (𝜎̃2

𝑐
, 𝜎̃2

𝑒
) ∈ {0.5𝜎2

𝑐
, 𝜎2

𝑐
, 1.5𝜎2

𝑐
} × {0.5𝜎2

𝑒
, 𝜎2

𝑒
, 1.5𝜎2

𝑒
}. That is, each variance

component is either underspecified by 50%, correctly specified, or overspecified by 50%. Moreover, we consider three possible

combinations of values for 𝑛min, 𝑛max

• When 𝑛min = 1 and 𝑛max = 1,000, so there is no practical limit on 𝑛final.

• When 𝑛min = 𝑛init and 𝑛max = 1,000, so there is no practical upper limit on 𝑛final, but it must be at least as large as the initially

specified per cluster per period sample size.

• When 𝑛min = 1 and 𝑛max = 𝑛init, so there is no lower limit on 𝑛final, but it cannot be larger than the initially specified per cluster

per period sample size.

The upper limits of 1,000 are retained simply for computational reasons, as memory allocation issues can occur when 𝑛final

is extremely large. Note that given 𝑛min ≥ 1 in all instances, the trial will never be terminated at the reestimation point, with all

clusters recruiting at least one participant in the subsequent time periods. Moreover, results are presented here only for the first

scenario with 𝑛min = 1 and 𝑛max = 1,000. Our findings for the other two scenarios are provided in the Supplementary Material.

Software to perform our simulations is available from https://github.com/mjg211/article_code.

3 RESULTS

3.1 Performance for varying 𝝈̃
𝟐
𝒄

and 𝝈̃
𝟐
𝒆

To begin, we consider how the SSRE procedures perform as 𝜎2
𝑐

and 𝜎2
𝑒

are misspecified to varying degrees. Precisely, we set

𝑡 = 3 and 𝑡 = 5 for TDS1 and TDS2, respectively, and explore (𝜎̃2
𝑐
, 𝜎̃2

𝑒
) ∈ {0.5𝜎2

𝑐
, 𝜎2

𝑐
, 1.5𝜎2

𝑐
} × {0.5𝜎2

𝑒
, 𝜎2

𝑒
, 1.5𝜎2

𝑒
}, with 𝜏 = 0;

https://github.com/mjg211/article_code
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T A B L E 1 Empirical type-I error rates (𝜏 = 0) and power (𝜏 = 𝛿) of the blinded (𝜏∗ = 0) and unblinded reestimation procedures, along with the

corresponding fixed sample SW-CRT design are shown

𝝉 = 𝟎 𝝉 = 𝜹

𝝈̃
𝟐
𝒄

𝝈̃
𝟐
𝒆

Blinded Unblinded Fixed Blinded Unblinded Fixed
Trial Design Setting 1

0.5𝜎2
𝑐

0.5𝜎2
𝑒

0.0581 0.0576 0.0646 0.8812 0.8799 0.6922

0.5𝜎2
𝑐

𝜎2
𝑒

0.0589 0.0601 0.0585 0.8859 0.8858 0.8929

0.5𝜎2
𝑐

1.5𝜎2
𝑒

0.0632 0.0641 0.0569 0.8935 0.8963 0.9700

𝜎2
𝑐

0.5𝜎2
𝑒

0.0568 0.0563 0.0627 0.8817 0.8788 0.7051

𝜎2
𝑐

𝜎2
𝑒

0.0593 0.0619 0.0600 0.8848 0.8843 0.9034

𝜎2
𝑐

1.5𝜎2
𝑒

0.0643 0.0630 0.0567 0.8957 0.8968 0.9736

1.5𝜎2
𝑐

0.5𝜎2
𝑒

0.0583 0.0564 0.0621 0.8825 0.8804 0.7084

1.5𝜎2
𝑐

𝜎2
𝑒

0.0594 0.0587 0.0594 0.8862 0.8864 0.9067

1.5𝜎2
𝑐

1.5𝜎2
𝑒

0.0630 0.0642 0.0567 0.8974 0.8954 0.9736

Trial Design Setting 2

0.5𝜎2
𝑐

0.5𝜎2
𝑒

0.0254 0.0270 0.0266 0.8282 0.8002 0.5875

0.5𝜎2
𝑐

𝜎2
𝑒

0.0260 0.0261 0.0255 0.8284 0.8068 0.8024

0.5𝜎2
𝑐

1.5𝜎2
𝑒

0.0269 0.0261 0.0259 0.8284 0.8094 0.9125

𝜎2
𝑐

0.5𝜎2
𝑒

0.0260 0.0263 0.0271 0.8295 0.8006 0.5910

𝜎2
𝑐

𝜎2
𝑒

0.0271 0.0274 0.0257 0.8283 0.8059 0.8021

𝜎2
𝑐

1.5𝜎2
𝑒

0.0262 0.0274 0.0253 0.8301 0.8123 0.9333

1.5𝜎2
𝑐

0.5𝜎2
𝑒

0.0266 0.0273 0.0258 0.8261 0.8026 0.5903

1.5𝜎2
𝑐

𝜎2
𝑒

0.0258 0.0258 0.0255 0.8288 0.8053 0.8486

1.5𝜎2
𝑐

1.5𝜎2
𝑒

0.0269 0.0268 0.0254 0.8287 0.8095 0.9348

Results are given for Trial Design Settings 1 (𝑡 = 3) and 2 (𝑡 = 5), for a selection of possible values for the assumed variance parameters, with 𝑛min = 1 and

𝑛max = 1,000.

giving the empirical type-I error rate (ETI), or 𝜏 = 𝛿; giving the empirical power (EP). For the blinded procedure, we take 𝜏∗ = 0,

and here we consider only the case where 𝑛min = 1 and 𝑛max = 1,000. Our findings are presented in Table 1, which displays the

ERRs of the reestimation procedures and the corresponding fixed sample SW-CRT design. Furthermore, in Table 2 the median

value of 𝑁̂ in each case is listed. Additionally, Supporting Information Figures 1, 2, 4, and 5 together depict the distributions of

𝜎̂2
𝑒

and 𝜎̂2
𝑐

when employing blinded or unblinded reestimation, when 𝜏 = 0 and 𝜏 = 𝛿. Similarly, Supporting Information Figures

3 and 6 display the corresponding distributions of 𝑁̂ .

In general, for the fixed design, assuming larger values for the variance parameters leads to an increased EP, a decreased ETI,

and larger requisite final sample sizes, as would be expected. While this appears to be true for the EP in the SSRE designs, it is not

always the case for the ETI. However, assuming larger values for the variance parameters does lead to improved performance of

the SSRE procedures in terms of estimating 𝜎2
𝑐

and 𝜎2
𝑒

at the interim analysis. This is true both in terms of the median reestimated

values, and the observed variability in the estimates (Supporting Information Figures 1, 2, 4, and 5).

It should be noted that, as we would expect, the blinded reestimation procedure tends to perform worse at estimating 𝜎2
𝑐

when 𝜏 = 𝛿 than 𝜏 = 0 (Supporting Information Figures 1, 2, 4, and 5), as the blinded estimator is only unbiased when 𝜏∗ = 𝜏.

Moreover, for 𝜏 = 𝛿 the unblinded procedure tends to underestimate the value of 𝜎2
𝑐
, while the blinded procedure overestimates

its value.

In TDS1, for certain values of the assumed variance parameters there is large inflation of the ETI above the nominal level.

This is an issue common to both the SSRE procedures and the fixed design, with the maximal inflation observed for 𝜎̂2
𝑐
= 0.5𝜎2

𝑐
,

𝜎̂2
𝑒
= 𝜎2

𝑒
in the unblinded reestimation design, where the ETI is 0.0653. Finally, for TDS1, the blinded and unblinded procedures

have similar values for the EP. However, from Table 2 we can say that the blinded procedure routinely requires a larger number

of measurements than its unblinded analog.

In contrast, for TDS2 there is only small inflation to the ETI, with the blinded and unblinded methods displaying similar ETIs.

In this case, the blinded procedure always has a larger EP than the unblinded procedure. Examining Table 2, it is clear why this

is the case, as the blinded procedure has a higher median value for 𝑁̂ , which is in turn a consequence of our observation above
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T A B L E 2 Median values of the final total required sample size (𝑁̂) are shown for 𝜏 = 0 and 𝜏 = 𝛿 using the blinded (𝜏∗ = 0) and unblinded

reestimation procedures, along with the corresponding fixed sample SW-CRT design

𝝉 = 𝟎 𝝉 = 𝜹

𝝈̃
𝟐
𝒄

𝝈̃
𝟐
𝒆

Blinded Unblinded Fixed Blinded Unblinded Fixed
Trial Design Setting 1

0.5𝜎2
𝑐

0.5𝜎2
𝑒

1,556 1,556 700 1,612 1,556 700

0.5𝜎2
𝑐

𝜎2
𝑒

1,364 1,356 1,340 1,396 1,356 1,340

0.5𝜎2
𝑐

1.5𝜎2
𝑒

1,376 1,376 2,040 1,408 1,376 2,040

𝜎2
𝑐

0.5𝜎2
𝑒

1,552 1,544 720 1,600 1,544 720

𝜎2
𝑐

𝜎2
𝑒

1,352 1,352 1,400 1,392 1,352 1,400

𝜎2
𝑐

1.5𝜎2
𝑒

1,384 1,384 2,120 1,416 1,384 2,120

1.5𝜎2
𝑐

0.5𝜎2
𝑒

1,540 1,532 740 1,596 1,532 740

1.5𝜎2
𝑐

𝜎2
𝑒

1,348 1,348 1,420 1,388 1,348 1,420

1.5𝜎2
𝑐

1.5𝜎2
𝑒

1,388 1,388 2,140 1,420 1,388 2,140

Trial Design Setting 2

0.5𝜎2
𝑐

0.5𝜎2
𝑒

1,440 1,440 720 1,600 1,440 720

0.5𝜎2
𝑐

𝜎2
𝑒

1,260 1,260 1,260 1,340 1,260 1,260

0.5𝜎2
𝑐

1.5𝜎2
𝑒

1,240 1,240 1,800 1,320 1,240 1,800

𝜎2
𝑐

0.5𝜎2
𝑒

1,440 1,440 720 1,600 1,440 720

𝜎2
𝑐

𝜎2
𝑒

1,260 1,260 1,260 1,340 1,260 1,260

𝜎2
𝑐

1.5𝜎2
𝑒

1,260 1,260 1,980 1,340 1,260 1,980

1.5𝜎2
𝑐

0.5𝜎2
𝑒

1,440 1,440 720 1,600 1,440 720

1.5𝜎2
𝑐

𝜎2
𝑒

1,280 1,280 1,440 1,360 1,280 1,440

1.5𝜎2
𝑐

1.5𝜎2
𝑒

1,260 1,260 1,980 1,340 1,260 1,980

Results are given for Trial Design Settings 1 (𝑡 = 3) and 2 (𝑡 = 5), for a selection of possible values for the assumed variance parameters, with 𝑛min = 1 and 𝑛max = 1,000.

on the blinded procedures propensity to overestimate 𝜎2
𝑐
. Given that the unblinded procedure always attains the desired power,

this is arguably a disadvantage of the blinded approach.

Overall, it is clear that when the value of 𝜎2
𝑒

is underspecified, the SSRE procedures generally have a far higher EP than the

corresponding fixed SW-CRT design, with comparable if not preferable ETIs. For example, when 𝜎̃2
𝑐
= 0.5𝜎2

𝑐
and 𝜎̃2

𝑒
= 0.5𝜎2

𝑒

in TDS2, the blinded procedure has an EP of 0.8282, while the corresponding conventional SW-CRT design has an EP of only

0.5875; an increase of 41%. The reason for this is clear from Table 2, as we can see the blinded procedure is able to effectively

utilize the interim estimates of the variance parameters to increase the final requisite sample size.

Similarly, when the variance parameters are overspecified, the SSRE procedures are able to reduce the total requisite sample

size by taking 𝑛final < 𝑛init, and bring the EP closer to the desired level.

3.2 Performance for varying 𝒕

Next, we assess the impact upon the ETI and EP of the choice of the SSRE point 𝑡. As above, we set 𝜏∗ = 0 for the

blinded procedure, and take 𝑛min = 1 and 𝑛max = 1,000. However, we now focus only on the cases where (𝜎̃2
𝑐
, 𝜎̃2

𝑒
) ∈

{0.5(𝜎2
𝑐
, 𝜎2

𝑒
), (𝜎2

𝑐
, 𝜎2

𝑒
), 1.5(𝜎2

𝑐
, 𝜎2

𝑒
)}.

Table 3 displays the ETI and EP of the blinded and unblinded SSRE procedures when 𝜏 = 0 and 𝜏 = 𝛿, respectively, for

𝑡 ∈ {2, 3, 4} in TDS1 and 𝑡 ∈ {3, 5, 7} in TDS2. In addition, Table 4 displays the corresponding median values of 𝑁̂ . Finally,

Supporting Information Figures 7– 12 display the distributions of 𝜎̂2
𝑐
, 𝜎̂2

𝑒
, and 𝑁̂ , for these scenarios.

We observe no clear trend to the ETI as 𝑡 is increased in either TDS. In TDS2, the ETI is comparable for each 𝑡, for each of

the different assumed combinations of variance parameters. However, in TDS1, the ETI is more sensitive to the choice of 𝑡. As

in Section 3.1, this is likely a consequence of the smaller number of clusters for this TDS.

In TDS2, each of the values of 𝑡 confers the largest EP for some combination of the variance parameters. While in TDS1,

𝑡 = 3 or 𝑡 = 4 provide the largest power in at least one considered case. Nonetheless, in some instances, it is clear that placing

the reestimation point later in to the trial can cause a substantial loss of power. For example, when 𝜎̃2
𝑐
= 0.5𝜎2

𝑐
and 𝜎̃2

𝑒
= 0.5𝜎2

𝑒

in TDS1, the unblinded procedure has an EP of 0.8799 when 𝑡 = 3, but this drops to 0.8165 for 𝑡 = 4. In addition, Table 4 and
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T A B L E 3 Empirical type-I error rates (𝜏 = 0) and power (𝜏 = 𝛿) of the blinded (𝜏∗ = 0) and unblinded reestimation procedures are shown

𝝉 = 𝟎 𝝉 = 𝜹

Trial Design Setting 1

Procedure 𝜎̃2
𝑐

𝜎̃2
𝑒

𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 2 𝑡 = 3 𝑡 = 4
Blinded 0.5𝜎2

𝑐
0.5𝜎2

𝑒
0.0592 0.0581 0.0512 0.8702 0.8812 0.8151

Blinded 𝜎2
𝑐

𝜎2
𝑒

0.0597 0.0593 0.0617 0.8851 0.8848 0.8971

Blinded 1.5𝜎2
𝑐

1.5𝜎2
𝑒

0.0570 0.0630 0.0618 0.8878 0.8974 0.9541

Unblinded 0.5𝜎2
𝑐

0.5𝜎2
𝑒

0.0629 0.0604 0.0503 0.8693 0.8799 0.8165

Unblinded 𝜎2
𝑐

𝜎2
𝑒

0.0599 0.0652 0.0643 0.8840 0.8843 0.8966

Unblinded 1.5𝜎2
𝑐

1.5𝜎2
𝑒

0.0594 0.0641 0.0624 0.8866 0.8955 0.9551

Trial Design Setting 2

Procedure 𝜎̃2
𝑐

𝜎̃2
𝑒

𝑡 = 3 𝑡 = 5 𝑡 = 7 𝑡 = 3 𝑡 = 5 𝑡 = 7
Blinded 0.5𝜎2

𝑐
0.5𝜎2

𝑒
0.0263 0.0254 0.0249 0.8140 0.8282 0.8146

Blinded 𝜎2
𝑐

𝜎2
𝑒

0.0261 0.0271 0.0266 0.8159 0.8283 0.8271

Blinded 1.5𝜎2
𝑐

1.5𝜎2
𝑒

0.0254 0.0269 0.0262 0.8181 0.8287 0.8883

Unblinded 0.5𝜎2
𝑐

0.5𝜎2
𝑒

0.0268 0.0270 0.0258 0.8038 0.8002 0.8003

Unblinded 𝜎2
𝑐

𝜎2
𝑒

0.0274 0.0268 0.0267 0.8130 0.8059 0.8030

Unblinded 1.5𝜎2
𝑐

1.5𝜎2
𝑒

0.0256 0.0262 0.0262 0.8127 0.8095 0.8891

Results are given for Trial Design Settings 1 and 2, for a selection of possible values for the assumed variance parameters, and as a function of the reestimation time

point 𝑡, when 𝑛min = 1 and 𝑛max = 1,000.

T A B L E 4 Median values of the final total required sample size (𝑁̂) required by the blinded (𝜏∗ = 0) and unblinded reestimation procedures are

shown

𝝉 = 𝟎 𝝉 = 𝜹

Trial Design Setting 1

Procedure 𝜎̃2
𝑐

𝜎̃2
𝑒

𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 2 𝑡 = 3 𝑡 = 4
Blinded 0.5𝜎2

𝑐
0.5𝜎2

𝑒
1,312 1,556 4,560 1,348 1,612 4,560

Blinded 𝜎2
𝑐

𝜎2
𝑒

1,352 1,352 1,336 1,376 1,392 1,392

Blinded 1.5𝜎2
𝑐

1.5𝜎2
𝑒

1,456 1,388 1,716 1,468 1,420 1,716

Unblinded 0.5𝜎2
𝑐

0.5𝜎2
𝑒

1,300 1,556 4,560 1,300 1,556 4,560

Unblinded 𝜎2
𝑐

𝜎2
𝑒

1,352 1,352 1,328 1,352 1,352 1,332

Unblinded 1.5𝜎2
𝑐

1.5𝜎2
𝑒

1,456 1,388 1,716 1,456 1,388 1,716

Trial Design Setting 2

Procedure 𝜎̃2
𝑐

𝜎̃2
𝑒

𝑡 = 3 𝑡 = 5 𝑡 = 7 𝑡 = 3 𝑡 = 5 𝑡 = 7
Blinded 0.5𝜎2

𝑐
0.5𝜎2

𝑒
1,320 1,440 1,960 1,320 1,600 2,160

Blinded 𝜎2
𝑐

𝜎2
𝑒

1,260 1,260 1,260 1,380 1,340 1,380

Blinded 1.5𝜎2
𝑐

1.5𝜎2
𝑒

1,380 1,260 1,580 1,380 1,340 1,580

Unblinded 0.5𝜎2
𝑐

0.5𝜎2
𝑒

1,320 1,440 2,000 1,320 1,440 2,000

Unblinded 𝜎2
𝑐

𝜎2
𝑒

1,260 1,260 1,260 1,260 1,260 1,260

Unblinded 1.5𝜎2
𝑐

1.5𝜎2
𝑒

1,380 1,260 1,580 1,380 1,260 1,580

Results are given for Trial Design Settings 1 and 2, for a selection of possible values for the assumed variance parameters, and as a function of the reestimation time

point 𝑡, when 𝑛min = 1 and 𝑛max = 1,000.

Supporting Information Figures 9 and 12 provide a clear warning as to the possible issues with utilizing larger values of 𝑡: when

the variance parameters are underspecified this can lead to far larger sample sizes being required, as extremely large values of

𝑛final are required to attempt to attain the desired power.

Finally, examining Supporting Information Figures 7, 8, 11, and 12, we can see that, as would be anticipated, the reestimation

procedures are generally able to more accurately estimate the variance components as 𝑡 is increased. The exception to this rule

is the blinded procedure when 𝜏 = 𝛿. In this case, larger values of 𝑡 increase the median bias in 𝜎̂2
𝑐
.
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T A B L E 5 Empirical type-I error rates (𝜏 = 0) and power (𝜏 = 𝛿) of the blinded reestimation procedures are shown

𝝉 = 𝟎 𝝉 = 𝜹

𝝈̃
𝟐
𝒄

𝝈̃
𝟐
𝒆

𝝉∗ = 𝟎 𝝉∗ = 𝜹 𝝉∗ = 𝟎 𝝉∗ = 𝜹

Trial Design Setting 1

0.5𝜎2
𝑐

0.5𝜎2
𝑒

0.0581 0.0581 0.8812 0.8739

0.5𝜎2
𝑐

𝜎2
𝑒

0.0589 0.0596 0.8859 0.8779

0.5𝜎2
𝑐

1.5𝜎2
𝑒

0.0632 0.0634 0.8935 0.8905

𝜎2
𝑐

0.5𝜎2
𝑒

0.0568 0.0573 0.8817 0.8739

𝜎2
𝑐

𝜎2
𝑒

0.0593 0.0609 0.8848 0.8798

𝜎2
𝑐

1.5𝜎2
𝑒

0.0643 0.0626 0.8957 0.8961

1.5𝜎2
𝑐

0.5𝜎2
𝑒

0.0583 0.0563 0.8825 0.8736

1.5𝜎2
𝑐

𝜎2
𝑒

0.0594 0.0584 0.8862 0.8801

1.5𝜎2
𝑐

1.5𝜎2
𝑒

0.0630 0.0642 0.8974 0.8944

Trial Design Setting 2

0.5𝜎2
𝑐

0.5𝜎2
𝑒

0.0254 0.0262 0.8282 0.7876

0.5𝜎2
𝑐

𝜎2
𝑒

0.0260 0.0254 0.8284 0.7996

0.5𝜎2
𝑐

1.5𝜎2
𝑒

0.0269 0.0260 0.8284 0.8026

𝜎2
𝑐

0.5𝜎2
𝑒

0.0260 0.0263 0.8295 0.7880

𝜎2
𝑐

𝜎2
𝑒

0.0271 0.0263 0.8283 0.7995

𝜎2
𝑐

1.5𝜎2
𝑒

0.0262 0.0269 0.8301 0.8096

1.5𝜎2
𝑐

0.5𝜎2
𝑒

0.0266 0.0258 0.8261 0.7881

1.5𝜎2
𝑐

𝜎2
𝑒

0.0258 0.0251 0.8289 0.7991

1.5𝜎2
𝑐

1.5𝜎2
𝑒

0.0269 0.0269 0.8287 0.8071

Results are given for Trial Design Settings 1 (𝑡 = 3) and 2 (𝑡 = 5), for a selection of possible values for the assumed variance parameters, and as a function of 𝜏∗, when

𝑛min = 1 and 𝑛max = 1,000.

3.3 Performance for varying 𝝉∗

In this section, we consider the effect the value of 𝜏∗ has on the blinded re-estimation procedure. We set 𝑡 = 3 and 𝑡 = 5 for TDS1

and TDS2, respectively, and explore (𝜎̃2
𝑐
, 𝜎̃2

𝑒
) ∈ {0.5𝜎2

𝑐
, 𝜎2

𝑐
, 1.5𝜎2

𝑐
} × {0.5𝜎2

𝑒
, 𝜎2

𝑒
, 1.5𝜎2

𝑒
}, with 𝜏 = 0 and 𝜏 = 𝛿, when 𝑛min = 1

and 𝑛max = 1,000. Two values of 𝜏∗ are considered: 𝜏∗ = 0 and 𝜏∗ = 𝛿. Our results are presented in Table 5, which contains the

ERRs, and in Supporting Information Figures 13– 16, which display the distributions of 𝜎̂2
𝑐

and 𝑁̂ .

We can see that the value of 𝜏∗ appears to have little influence on the ETI for either TDS. However, in some cases the

choice of 𝜏∗ has a notable effect on the EP, with specifically 𝜏∗ = 𝛿 reducing the EP. This is especially evident in TDS2. From

Supporting Information Figures 13–16 we can see why this is the case. When 𝜏∗ = 𝛿, on average, reduced values for 𝜎̂2
𝑐

are

obtained compared to choosing 𝜏∗ = 0. Thus 𝜏∗ = 0 results in larger final requisite sample sizes, which provides an increase to

the EP.

4 DISCUSSION

In this article, we have presented blinded and unblinded SSRE procedures for cross-sectional SW-CRTs. These methods should

assist with scenarios in which there is difficultly in determining a trial's required sample size because of the need to specify values

for several nuisance parameters. We were able to demonstrate that, at least for the considered scenarios, the SSRE procedures

could increase power substantially over a conventional SW-CRT design when the variance parameters were underspecified.

Unfortunately, in TDS1 there were instances of substantial inflation to the ETI rate using our SSRE procedures (Table 1).

This was not surprising given the extremely low number of clusters in this scenario, with past research highlighting issues in

such settings (Taljaard, Teerenstra, Ivers, & Fergusson, 2016; Grayling et al., 2017b). Additionally, it follows results observed

for parallel-group CRTs (van Schie & Moerbeek, 2014). To address this, one could look to use the Kenward-Roger correction

for performing a hypothesis test on a fixed effect in a linear-mixed model (Kenward & Roger, 1997). In practice this would be

expected to be useful, as it was indeed recently demonstrated to be for parallel group CRTs (Kahan et al., 2016). However, it is
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extremely computationally intensive to examine the utility of this within the context of a large scale SSRE simulation study. We

thus omit such considerations here. Alternatively, an alpha-level adjustment procedure, as considered for example by Golkowski

et al. (2014) and Friede and Stammer (2010), among others, could assist in controlling the type-I error rate more accurately.

This approach seeks to identify the largest possible inflation that could occur, and lowers the value of 𝛼 used in the final test

accordingly to control to the nominal level for this worst case scenario. Of course, when utilizing either of these approaches one

must bare in mind that a penalty to the EP would likely be observed.

Moreover, in TDS1 the SSRE procedures routinely did not display an EP above the nominal level (Table 1). To combat this,

one could employ a sample size inflation factor, as proposed by Zucker, Wittes, Schabenberger, and Brittan (1999). This has

been demonstrated to be highly effective in a range of trial design settings (e.g., Friede & Kieser, 2013; Golkowski et al., 2014).

Nonetheless, it was clear that though the SSRE procedure did not in many instances precisely meet the desired operating

characteristics, their performance in comparison to the fixed sample design was often impressive. When the variance parameters

were overspecified, setting 𝑛min < 𝑛init allowed the SSRE procedures to reduce the group size and attain a power closer to the

nominal level. Similarly statements hold in regard to when the variance parameters were underspecified having set 𝑛max > 𝑛init.

Thus the SSRE designs may have real utility in combating issues of uncertainty over 𝜎2
𝑐

and 𝜎2
𝑒

at the design stage, especially

if an adjustment procedure (like those described above) is incorporated to enhance their ability to attain the desired type-I and

type-II error rates. Choosing between the blinded and unblinded procedures may be more challenging however. As seen in

Table 2, the blinded procedure typically requires a larger sample size for only a small gain in power over an unblinded option.

This, in particular, would need to be taken into account to choose the preferred reestimation approach on statistical grounds.

Of course, in practice, there are further important operational details that must be taken into account in order to make a

choice between the blinded and unblinded procedures. For example, utilizing unblinded reestimation can induce additional

complexities. In particular, an independent data monitoring committee may then be required, in order to ensure that study

personnel remain blinded.

In my opinion, it is important to highlight that this is not only a choice between statistical operating characteristics, but also

a decision for which operational aspects have to be taken into account. An unblinded sample size reestimation needs careful

planning, and potentially an independent data monitoring committee, to assure that the study personnel stays blinded.

From Table 1 and Supporting Information Table 1 in particular, it is clear that altering the value of 𝜎̃2
𝑐
, for fixed 𝜎̃2

𝑒
, has little

effect on the performance of the reestimation procedures. As noted by one of the anonymous reviewers, it is possible, however,

that this may not be the case when 𝜎2
𝑐
≈ 𝜎2

𝑒
. We explore such scenarios in the Supplementary Material. Ultimately, we find that

the performance of the reestimation procedures is insensitive to the values of 𝜎̃2
𝑐

and 𝜎̃2
𝑒

even when 𝜎2
𝑐
≈ 𝜎2

𝑒
.

In addition, given the fact that 𝜎̂2
𝑐

will likely in general be biased for 𝜎2
𝑐

when using the blinded procedure, it is reasonable

to ask how well the blinded procedure could perform if we simply assume that 𝜎2
𝑐
= 0. We also consider such scenarios in the

Supplementary Material. From this, we caution against assuming the between cluster variance is not of importance, as the trial

operating characteristics can be severely effected if this is not the case.

We observed that the ETI and EP were similar for several choices of 𝑡, particularly in TDS1, but the EP was sometimes

substantially lower if the reestimation point was late in the trial (Table 3). This should not be surprising. There is clearly a trade-

off to be made in terms of how late in the trial one places the reestimation point. The longer we wait, the more accurately we are

in general able to estimate the variance parameters. However, we then have less time to readjust for any pretrial misspecification.

Indeed, this point is a complex one, related to recent research on the value of each cluster-period in a SW-CRT (Kasza & Forbes,

2017), and how horizontal and vertical components contribute to the treatment effect estimate in a SW-CRT (Matthews & Forbes,

2017). As an example, consider the choice 𝑡 = 4 in TDS1. This leaves a single time period left in which to carry out the trial

with a modified sample size. However, with our choice of 𝑋, in this final time period all of the clusters receive the experimental

intervention. The implication of this is that the majority of the cluster-periods in time period five actually contribute little to

estimating the treatment effect. Consequently, even taking 𝑛final = 1,000 may not allow the desired power to be attained if the

preceding time periods were conducted with too small a sample size. Accordingly, one may therefore suggest an intermediate

value for 𝑡, such as 𝑡 = 3 in TDS1, to be preferable in most cases.

From Section S.M.7 in the Supplementary Material, it is clear that when specifying a SSRE procedure, it is important to

choose the values of 𝑛min and 𝑛max carefully. In particular, while it may be preferable to have 𝑛min < 𝑛init, this could have

negative consequences upon the EP. However, this does confer an advantage that when 𝜎̃2
𝑒
= 1.5𝜎2

𝑒
the SSRE procedures were

able to reduce the power to closer to the nominal level. Likewise, increasing the value of 𝑛max may seem beneficial, but one

then needs both to be able to find more patients to recruit in the later periods, and also to be able to logistically handle a larger

sample size. This may be a problem particularly for scenarios where the SW-CRT design is being utilized because of resource

constraints.
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Similarly, if using the blinded SSRE procedure, the value for 𝜏∗ should be chosen with care. From Table 5, it was evident that

this can have consequences on, in particular, the EP. As has been previously noted for conventional parallel arm trials (Kieser

& Friede, 2003), the bias introduced into the estimate of 𝜎2
𝑐

when 𝜏 = 𝛿, may make the choice 𝜏∗ = 0 preferable. However, one

should be careful not to automatically assume this is the case. Specifically, the choice 𝜏∗ = 0 will likely often provide greater

power than the choice 𝜏∗ = 𝛿. But, in certain cases 𝜏∗ = 𝛿 may in its own right provide the desired power, as is approximately the

case for TDS2 by Table 5. In this instance, the increased power attained by choosing 𝜏∗ = 0 could be disadvantageous because

of the associated increased required sample sizes. As general guidance, one may anticipate that 𝜏∗ = 0 would be preferable for

settings with small numbers of clusters, where attaining the desired power may be more challenging, as seen for TDS1.

An additional point of note is our method for specifying 𝜎̂2
𝑐

in the blinded re-estimation procedure. Explicitly, we choose to

set 𝜎̂2
𝑐
= 𝑓 (𝑆̄2

𝐶𝑡−𝑡, 𝜎̂
2
𝑒
, 𝑋(𝑡), 𝑛init, 0) when 𝑓 (𝑆̄2

𝐶𝑡−𝑡, 𝜎̂
2
𝑒
, 𝑋(𝑡), 𝑛init, 𝜏∗) < 0 < 𝑓 (𝑆̄2

𝐶𝑡−𝑡, 𝜎̂
2
𝑒
, 𝑋(𝑡), 𝑛init, 0). It may appear more logical

to set 𝜎̂2
𝑐
= 0 in this instance. We made our choice based on the fact that it would be rare for one to truly believe that 𝜎2

𝑐
= 0.

Consequently, 𝑓 (𝑆̄2
𝐶𝑡−𝑡, 𝜎̂

2
𝑒
, 𝑋(𝑡), 𝑛init, 𝜏∗) < 0we felt would more likely indicate that an overly large value for 𝜏∗ had been chosen.

In practice though, this specification would likely have little influence on the performance of the blinded reestimation procedure

unless the magnitude of 𝜏 − 𝜏∗ is large.

Note also that throughout this work we considered only cases with 𝝅 = 𝟎. However, the SSRE procedures considered here

are only asymptotically invariant to the value of the period effects. It would thus in general be important to assess the effect of

nonzero period effects on the SSRE procedures, though it is reasonable to anticipate that it will be small.

There are several practical factors that must be considered before SSRE is incorporated into a SW-CRT design. Primarily,

our methodology is dependent upon data from all clusters being available for analysis immediately following period 𝑡. The

efficiency of the procedures would suffer if this were not the case. Therefore, it would be important for measures to be put in

place for efficient data collection, storage, and analysis. In addition, there may be some instances where SSRE is not realistic. For

example, if the intervention was a planned roll-out that is part of a larger programme implementation. A trialist must consider

their scenario carefully before utilizing SSRE.

Several possible extensions to our procedures are possible. Firstly, we here only addressed cross-sectional SW-CRT designs

analyzed with the Hussey and Hughes model. Though the majority of SW-CRT research has been set in this domain, it would

be beneficial to also establish methods to incorporate SSRE in to cohort designed SW-CRT, different endpoints of interest, or

indeed different analysis models. While it would be relatively simple to explore the performance of an unblinded procedure in

these settings, methodology for blinded reestimation would be more complex. Similar statements also hold for allowing variable

cluster sizes, and also incorporating the interim estimated value for 𝜏 in to the re-estimation procedure.

Additionally, we considered here a scenario in which the number of clusters remained fixed throughout the trial; adjusting only

the per cluster per period sample size following the reestimation point. One could also explore the performance of a procedure

that increases the value of 𝐶 following reestimation, creating an incomplete-block SW-CRT. For scenarios in which patients are

hard to come by, but clusters are not, this would be a useful extension.

It is worth noting that our procedures are actually applicable to any cross-sectional CRT design to be analyzed with the Hussey

and Hughes model. This means, for example, that it would allow also the incorporation of SSRE in to a cluster randomised

crossover trial, which is being increasingly acknowledged in the trials community as a useful design (Arnup et al., 2014).

Regardless of the practical considerations discussed above, and the possible future avenues of extension to our methods, it is

clear that the ability to include a SSRE point in to SW-CRT designs is a useful addition to the methodologists toolbox.
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