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Abstract

The thermal stability of proteins can be altered when they interact with small

molecules, other biomolecules or are subject to post-translation modi�cations. Thus

monitoring the thermal stability of proteins under various cellular perturbations can

provide insights into protein function, as well as potentially determine drug targets and

o�-targets. Thermal proteome pro�ling is a highly multiplexed mass-spectrommetry

method for monitoring the melting behaviour of thousands of proteins in a single ex-

periment. In essence, thermal proteome pro�ling assumes that proteins denature upon

heating and hence become insoluble. Thus, by tracking the relative solubility of proteins

at sequentially increasing temperatures, one can report on the thermal stability of a

protein. Standard thermodynamics predicts a sigmoidal relationship between tempera-

ture and relative solubility and this is the basis of current robust statistical procedures.

However, current methods do not model deviations from this behaviour and they do

not quantify uncertainty in the melting pro�les. To overcome these challenges, we

propose the application of Bayesian functional data analysis tools which allow com-

plex temperature-solubility behaviours. Our methods have improved sensitivity over

the state-of-the art, identify new drug-protein associations and have less restrictive as-

sumptions than current approaches. Our methods allows for comprehensive analysis of

proteins that deviate from the predicted sigmoid behaviour and we uncover potentially

biphasic phenomena with a series of published datasets.

∗
ksl23@cam.ac.uk

†
omc25@cam.ac.uk

1

ksl23@cam.ac.uk
omc25@cam.ac.uk


Introduction

Thermal proteome pro�ling (TPP [104], also referred to as MS-CETSA) is a multiplexed

mass-spectrometry extension of the cellular thermal shift assay (CETSA [83, 65]). The

guiding principle of these experiments is that heating generally causes proteins to denature

and become insoluble. This heating can be performed at various temperatures and the

remaining soluble protein quanti�ed by mass-spectrometry (MS). This allows a temperature-

solubility relationship to be determined and this is frequently called a melting curve [104].

The melting curve for each proteins is context speci�c and can be modulated upon binding

to small molecules [45, 61, 22]. Thus by determining this melting curve for a large number

of proteins in di�erent contexts, for example in the presence of a drug, one can �nd targets

and o� targets of these molecules [104].

There are numerous applications of TPP and it is most commonly used to decipher

drug-protein behaviours [104, 105, 61, 100, 4, 5, 78, 79]. Moreover it can be applied to

study interactions with metabolites, nucleotides and nucleic acids [103, 37, 117, 5]. Authors

have shown that proteins in complex with each other are more likely to have concordant

in vivo melting curves [121] and others have demonstrated that phosphorylation can alter

thermal stability [59, 93, 114]. Thermal proteome pro�ling has also been complemented

with extensive structural analysis [41, 74, 107, 92]. Furthermore, TPP is not just applicable

in human cells but can be applied in bacteria in vivo [79], in the apicomplexan parasite

Plasmodium falciparum [37, 38], and in tissue or blood [91]. Extensive work has recently been

presented characterising the melting behaviour of proteins across 13 species, demonstrating

similarities and di�erence for protein orthologues [66].

Thermodynamic theory predicts that the melting curve of proteins should have a sigmoid

behaviour [106]. Melting curves of a protein may then be compared to determine context

speci�c behaviours. Statistical analysis can then follow a number of directions. For example,

one approach involves summarising melting curves into a Tm - the temperature at which rel-

ative solubility has halved [104, 61]. This is then followed by comparison of Tm values across

the two contexts using the appropriate z-score. This approach assumes that the melting

curve is a bijection, else there might be multiple candidates for Tm. It also assumes that

Tm is de�ned, which need not be the case if relative solubility has never halved. Another

approach is to compare the relative solubility at a �xed temperature [3]. However, sum-

marising curves to a single value results in loss of information, loss of sensitivity and does

not account for the quality of the �t of the parametric model [24]. A more powerful approach

is to employ techniques from functional data analysis [97, 96, 125] and use the whole melting

curve for statistics [24].

[24] introduced the method non-parametric analysis of response curves (NPARC) for

powerful analysis of melting curves. In brief, the method assumes a sigmoid model for the

data and then proceeds to perform an analysis of variance (ANOVA). Since typically TPP

data involves measurement of melting curves for a great many proteins per experiment,

the appropriate null distribution can be directly estimated from the data [39, 40]. NPARC
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allowed thousands more proteins to be analysed that the original Tm centric analysis and

demonstrated a signi�cant improvement in statistical power. However, this method still

assumes a parametric sigmoid model and the method used to estimate the null distribu-

tion assumes that it is unimodal. Moreover, large-scale testing frameworks assume that the

large majority of observations are samples from the null distribution, which can be problem-

atic if the context of interest a�ects many proteins. Furthermore, there is no uncertainty

quanti�cation in the melting curves or the key model parameters.

To overcome these limitations, here we develop a Bayesian version of the sigmoid model,

which allows uncertainty quanti�cation. Furthermore, in the Bayesian framework one does

not need to estimate the null distribution and multiplicity control is automatic via the prior

model probabilities [108, 109, 9, 23]. In addition, including prior information on the model

parameters has a number of bene�ts; such as, allowing the shrinkage of residuals towards

0, the regularisation of the inferred parameters and improved algorithmic stability [50].

Through exploratory data analysis and model criticism, we �nd evidence for model expan-

sion. We show that the standard sigmoid model is insu�cient to model the relationship be-

tween temperature and relative solubility for some proteins. This motivates the development

a semi-parametric model [94]. A semi-parametric model is one that includes both parametric

terms, in our case the sigmoid, and unknown non-parametric terms. A Gaussian Process

prior (GP prior, [119]) is used to infer the non-parametric terms. Gaussian processes are

highly �exible and have been used extensively in other molecular biology applications, such

as gene-expression time courses [72, 71, 118, 28, 2], single-cell transcriptomics [99, 12, 120]

and spatial proteomics [30, 111].

Here we begin with exploratory data analysis of �ve datasets which motivates the cre-

ation of more �exible models. We then carefully analyse published data to demonstrate the

improved sensitivity our method, as well as the value of uncertainty quanti�cation. Our

proposed model can be applied more generally and we demonstrate, through simulations,

that our approach has improved power and robustness to miss-speci�cation of the parametric

model. We identify putative protein-drug interactions that have been overlooked in previous

TPP studies, including the protein HDAC 7 in studies designed to determine targets of the

chemotherapeutic drug, Panobinostat. We proceed to characterise the proteins that deviate

from sigmoid behaviour and uncover functional, as well as localisation, enrichments.

Results

Exploratory data analysis motivates model extension

First, we interrogated data from �ve TPP experiments that were performed on the K562

human erythroleukemia cell line. The �rst experiment explored the e�ects of detergents on

ATP-binding pro�les. Then two other experiments explored the e�ects of di�erent concen-

trations of the ABL inhibitor Dasatinib. In one of the experiments the histone deacetylase
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(HDAC) inhibitor Panobinostat was used to determine its e�ects on the behaviour of pro-

teins. The �nal experiment explored the e�ects of the pan-kinase inhibitor Staurosporine.

A summary of the experiments is given in table 1.

Dataset Treatment Concentration number of proteins Reference Intact or Lysate

ATP data MgATP 2 µM 4177 [100] Lysate

Dasatinib 0.5 data Dasatinib 0.5 µM 4625 [104] Intact

Dasatinib 5 data Dasatinib 5 µM 4154 [104] Intact

Panobinostat data Panobinostat 1 µM 3649 [42] Intact

Staurosporine data Staurosporine 20 µM 4505 [104] Lysate

Table 1: Summary of the datasets and the respective reference used in this manuscript.

We applied the NPARC pipeline to each of these experiments and carefully explored

the results. The NPARC analysis approach makes a number of assumptions. Firstly, when

estimating the null distribution, it assumes that the distribution is unimodal and thus a single

F distribution is appropriate to approximate the null distribution. Secondly, it assumes that

a large majority of the observed data are samples from the null distribution, which might

not be the case for some contexts. For example, some highly indiscriminate ligands or

perturbations that a�ected an entire organelle would violate these assumptions. Finally, it

assumes that the sigmoid model is appropriate. To clarify, the 3-parameter sigmoid model

of interest is the following:

Sa,b,p(T ) =
1− p

1 + exp(b− a
T
)
+ p. (1)

The parameter p is interpreted as a plateau, whilst a and b are shape parameters. This

sigmoid model, and more generally sigmoid functions, makes the assumption of monotonicity,

a single in�exion point, rotational symmetry around the in�exion point, a bell-shaped �rst

derivative and horizontal asymptotes (at p and 1 − p). In many cases, such assumptions

are appropriate and this behaviour is widespread in the TPP datasets we examined (see

�gure 1 C and E). However, we did observe proteins which deviated from this behaviour and

violated these assumptions (between 3 and 20% depending on the dataset), beyond what

could be attributed to measurement error. These include examples of a hyper-solubilisation

phenomena; that is, proteins reproducibly increasing in relative solubility as temperature

increases, which is not predicted by thermodynamics [106]. Maximum solubility would be

expected at physiological pH and temperatures. We speculate that increase solubility with

temperature might arise for various reasons. Firstly, some proteins may have insoluble sub-

populations which are perturbed during the heating process. Indeed, we might be observing

temperature dependent phase transitions on a system-wide scale as noted previously by [117].

Secondly, organeller membranes will be compromised in intact cells at higher temperatures

resulting in some proteins undergoing conformational changes where the new conformation

has higher thermal stability. Investigating these relationships further will require additional

experimentation and is outside the scope of our study. Finally, technical issues such a variable
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co-isolation of TMT labelled peptides could also lead to an apparent increase in solubility of

proteins with increased temperature, but we anticipate that this e�ect is minor.

After �tting a sigmoid model to each protein in each condition, we computed the resid-

uals for every protein at each temperature. Classical analysis of variance assumes that the

residuals are independently and normally distributed with homoscedasticity. We observed

that none of these conditions are true for these data (see �gure 1 A for an example). [24] also

noted this fact by comparing the empirically derived F distributions to those which would

be obtained under classical assumptions and by also analysing the corresponding p-value

histograms [58]. Signi�cant departure of the F distributions from the theoretical behaviour

was observed and so they used large scale data analysis tools to approximate the null. This

results in di�erent e�ective degrees of freedom for the F test and analysis of variance pro-

ceeds as usual. For sake of pedagogy, we state that bootstrapping or permutation methods,

amongst others, could also have been used [40].

To perform residual analysis, we computed the sample Spearman correlation matrix for

the residuals and observed that di�erent datasets have di�erent correlation structures (see

�gures 1 B and C, as well as Supplementary Note 1) and that residuals for closer temperatures

are, in general, more correlated. The presence of correlated residuals usually suggests data

structure that has not been correctly modelled [53, 54, 31].

To avoid estimating the null distribution, we recast the analysis of TPP data by proposing

a Bayesian sigmoid model. This has the further bene�t of allowing expert prior information

to be included for the parameters. The Bayesian framework also allows us to quantifying the

uncertainty in our parameter estimates and as a result the uncertainty in the �tted function.

Given that we observed deviations from the sigmoid model and strongly correlated residuals,

we proposed to include an additional functional term in our model. Given no suitable

parametric candidate for this additional term, we sought inspiration from the Bayesian non-

parametric literature and placed a Gaussian process prior on this additional term, allowing

a more �exible set of functions to be modelled and the uncertainty in this function to be

quanti�ed [36, 98, 52]. We refer to the methods section for a precise description of our model.

In the following sections, we focus more closely on the Staurosporine and Panobinostat

datasets. The former is useful because Staurosporine is a pan-kinase inhibitor and we expect

a large number of kinases amongst the true positive cases. As with previous authors we

use this as a pseudo-ground truth. For the other datasets true and false positive are poorly

de�ned and we draw upon complementary literature in our discussions. We discuss all the

datasets in collection in the �nal section and results are included as part of the supplement

(see supplementary data 1).
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Figure 1: Residual analysis of Thermal Proteome Pro�ling datasets (A) Scatter

plots of residuals for the sigmoid model at di�erent temperatures applied to the ATP dataset

[100]. Orthogonal regression line shown in dark red and contours shown in yellow. Residuals

are strongly correlated. (B) Sample Spearman correlation matrix of the the residuals for

the ATP dataset. (C) Example melting curves for some proteins from the ATP dataset.

LOESS curves shown for visualisation. (D) as for B, but for the Staurosporine dataset [104].

(E) Example melting curves from the Panobinostat dataset [42]. LOESS curves shown for

visualisation. Concentration refers to Panobinostat concentration in µM
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Analysis of Staurosporine dataset

Having developed sigmoid and semi-parametric Bayesian models, we applied these approaches

to the Staurosporine dataset [104]. Staurosporine is a pan-kinase inhibitor, where the in-

hibition is achieved by a having high a�nity to the ATP-binding site of kinases [69]. How

Staurosporine a�ects the cell is not completely understood and has been shown to induce

apoptosis [20] and cell cycle arrest [14]. The Staurosporine dataset that we consider reports

relative solubility of proteins in the presence of 20µM of Staurosporine for 2 control repli-

cates and 2 treatment replicates. A total of 4505 proteins were measured using quantitative

multiplexed TMT LC-MS/MS measurements at temperatures ranging from 37 degrees to 67

degrees in 10 even increments of 3 degrees [104].

One advantage of this dataset is that we expect a large number of kinases to be the

target of Staurosporine. Hence, we might expect such proteins to have shifts in their thermal

pro�les upon Staurosporine treatment. Hence, as in previous analysis [24], we curate a set

of proteins with the annotation "protein kinase activity" from ensembl.db [129]. We then

compute the sensitivity, the proportion of correctly identi�ed positive cases, for the NPARC

and two Bayesian, sigmoid and semi-parametric, approaches (taking the p-value threshold

as 0.01 and, similarly, a posterior probability threshold as 0.99). The NPARC approach

achieves a sensitivity of 33.7, whilst the Bayesian sigmoid model a sensitivity of 36.7 and the

Bayesian semi-parametric model achieves 39.6 (see �gure 2 B). This suggests that avoiding

estimation of the null and expanding the model �exibility can improve the sensitivity of the

analysis. Unfortunately, in such cases speci�city (the true negative rate), is not well de�ned,

since proteins that are not kinases may also have their melting curve perturbed, perhaps

due to changes in their phosphorylation state as a result of ablated kinase function [93]. We

see similar improvements for sensitivity when considering other datasets (see Supplementary

Note 2) and a simulation study is also included in the supplement (see Supplementary Note

3,4 and 6)demonstrating that the two Bayesian approaches outperform the NPARC method.

Improved sensitivity results in �nding new proteins that are putative targets of Stau-

rosporine. For example, DYRK1A, a dual-speci�city kinase with both serine and tyrosine

kinase activities [112, 89], which is essential for brain development [88, 116], was overlooked

by the NPARC analysis. Our Bayesian analysis is able to determine DYRK1A as a ki-

nase which is stabilised by Staurosporine (posterior probability > 0.99). This observation

is supported by kinobeads competition-biding experiments, where DYRK1A demonstrated

a Staurosporine dependent e�ect (pIC50 = 6.58) [126] and an isothermal shift assay (iTSA)

also demonstrated a Staurosporine dependent e�ect on DYRK1A at 52◦C [3]. Figure 2 A

demonstrates other bene�ts of the Bayesian analysis, where we visualise uncertainty in the

inferred sigmoid mean function. There is clear separation between the sigmoid curve between

the two conditions. However, it also highlights the potential limitations of the sigmoid model,

with rotational symmetry imposed around the point of in�exion.

An even clearer example were the sigmoid model fails is the case of AP4S1, a component

of the adaptor protein complex which is involved in vesicle tra�cking from the trans-Golgi
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to the endosome [56, 33]. Figure 2 C shows the sigmoid model cannot model the multiple

in�exion points of the melting curve of AP4S1. The limitation being the single in�exion

point. Figure 2 D shows the inferred mean function and associated uncertainty estimates.

Clearly the semi-parametric model is more appropriate for such cases. The full list of results

is in the supplementary material.

To compare these models more formally, we performed a posterior predictive check (see

section ). From the posterior predictive distributions, we examined the credible bands. To

be precise, given a model, an observed value is predicted to fall in the credible band of

size β with probability β. Hence, if the observed data fall outside the credible bands, it is

indicative of the model being insu�cient. From �gure 2 E we see the data frequently lies

outside the 50% credible band and occasionally outside the 95% credible band. Whilst for

the semi-parametric model, visualised in �gure 2 F, the data never falls outside the 95%

credible band and is more frequently contained in the 50% credible band. This suggests that

the semi-parametric is more appropriate, in the this case. Kernel density estimate based

posterior predictive checks make a similar conclusion and are included in the supplement

(see supplementary Note 7).

For a more quantitative treatment, we examine the out-of-sample predictive accuracy

from the �tted Bayesian models (see section ). We use leave-one-out cross validation (LOO-

CV) with the log-predictive density as the utility function. Higher scores indicate better

out-of-sample predictive performance. The LOO-CV estimate for the sigmoid model is

26.7 ± 5.4(SE), whilst for the semi-parametric model it is 41.1 ± 6.5(SE). We conclude,

for this protein (AP4S1), the semi-parametric model is superior. As a result of the im-

proved modelling, our analysis was able to determine that AP4S1 was destabilised upon

Staurosporine treatment (posterior probability > 0.99), which we could not determine from

NPARC or the Bayesian sigmoid model. AP4S1 is not a kinase, thus its change in behaviour

upon Staurosporine treatment is not straightforward to interpret. In any case, we would

expect kinases to be stabilised, rather than destabilised. This destabilisation might be an

e�ect of not being correctly localised or not being able to correctly form a complex. AP4S1

localisation is dependent on the small G protein ARF1 [128], whose function, it turn, de-

pends on several kinases [102, 84]. Thus, the destabilisation is likely a downstream e�ect of

Staurosporine as a pan-kinase inhibitor.
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Figure 2: Analysis of Staurosporine dataset Condition A denotes the control and

Condition B denotes 20 µM of Staurosporine (A) Melting pro�le for the DYRK1A with

inferred mean sigmoid model function plotted, along with 95% credible bands for the inferred

mean function. (B) Sensitivity for the di�erent methods applied to the Staurosporine dataset

(C) Melting pro�le for AP4S1 using the sigmoid model, with uncertainty estimates in mean

function (D) Melting pro�le for AP4S1 using the semi-parametric model, including inferred

mean function and 95% credible bands. (E,F) Posterior predictive checks for AP4S1 using

the two Bayesian models: (E) sigmoid (F) semi-parametric. The red line correspond to

the observed data. Whilst the black line is the posterior predictive mean function and

the credible bands correspond to 50% and 95% credible bands of the posterior predictive

distribution, respectively. Statistics derived from two biological replicates, for each of two

conditions each with 10 measure temperatures.
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Proteins with altered thermal stability upon Panobinostat treatment

The analysis of the Staurosporine dataset demonstrated the improved sensitivity of our

method and the ability of our approaches to model complex behaviours, whilst also quanti-

fying uncertainty. We next applied our method to the Panobinostat dataset where, in the

original analysis, only a handful of hits were identi�ed [42]. Panobinostat is a non-selective

histone deacetylase inhibitor (pan-HDAC inhibitor) that is approved for use in patients with

multiple myeloma [73]. Thermal proteome pro�ling was applied to K562 cells treated with

a vehicle (control) or 1µM of Panobinostat. 2 replicates in each context were produced and

a total of 3649 proteins were measured [42]. These panobinostat experiments are cell-based

rather than lysates and so we expect our approach to be sensitive to non-canoncial melting

curves that may be due to e�ects on solubility.

We applied the NPARC pipeline and identi�ed 7 proteins as having their melting curve

signi�cantly altered (p < 0.01), which included the known Panobinostat targets HDAC

1, 6, 8, 10. The HDAC proteins are responsible for deacetylation of lysine residuse of the

N-terminal of the core histones, as well as other proteins [55, 60, 110, 1, 76]. To quantify

uncertainty, we applied the Bayesian sigmoid approach, also avoiding estimation of the null

distribution. The Bayesian sigmoid model was able to identify 34 proteins whose melting

pro�le was treatment dependent (posterior probability > 0.99). 16 of these proteins are

plotted in �gure 3 and these putative hits included all of the proteins discovered by the

NPARC approach.

We also observed several proteins whose melting behaviour was not previously known to

depend on Panobinostat; such as, NCBP1 whose behaviour appears to be destabilised upon

Panobinostat treatment. NCBP1 is a nuclear cap-binding protein that is dual localised to

the cytosol and nucleus, as well as being an integral component of the cap-binding complex

[63, 64]. Given the role of acetylation in formation of protein complexes [26], as well as

NCBP1 having been shown to have two lysine residues that are substrates for acetylation

[26] it possible that the observed melting behaviour is a downstream result of the ablated

function of the HDAC proteins.

We have already demonstrated that non-sigmoidal behaviour is not unusual in the Panobi-

nostat dataset (see �gure 1 E). Hence, we applied our Bayesian semi-parametric model to

these data. We identi�ed 85 proteins whose melting pro�le was panobinostat dependent

with posterior probability greater than 0.99. These included HDAC 7, one of the core mem-

bers of the histone deacetylation complex, which was not identi�ed by either NPARC or

the Bayesian sigmoid model (Figure 4). In this case, however, HDAC 7 is not stabilised

but, rather, destabilised suggesting indirect regulation downstream of Panobinostat targets.

This �nding is consistent with a recent report showing that HDAC7 abundance is regulated

through activity of the known Panobinostat targets HDAC 1 and 3 [19] and with HDAC 7

not being enriched in pull-down experiments with the Panobinostat [4].

Another protein which we identi�ed with Panobinostat dependent behaviour was RU-

VBL1. RUVBL1 is a well studied protein involved in histone acetylation and is a component
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of several complexes, has multiple localisations and many interaction partners [34, 16, 127,

62, 27, 87]. RUVBL1 displays curious behaviour with both hypersolubilsation and destabil-

isation upon treatment with Panobinostat (Figure 4). Since RUVBL1 has multiple states

and is involved in multiple di�erent complexes, it is possible that the e�ects of Panobinostat

are interrupting only a certain pool of RUVBL1 proteins, leading to biphasic behaviour.

Certain functional units of RUVBL1 might be more thermally stable than others, leading

to complex temperature-solubility behaviours. The extent to which the behaviours are re-

�ected in the melting curves will depend on many factors. Two dimensional thermal pro�ling

experiments in lysate HepG2 cells show that RUVBL1 is highly thermal stable and did not

display sigmoidal behaviour at several concentrations of Panobinostat (5, 1, 0.143, 0.02)µM

at a temperature range of 42− 63.9◦C [4].
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Figure 3: Example melting curves for Panobinostat dataset. Melting pro�les for 16

protein with posterior probability > 0.99 in favour of a condition dependent model using

the Bayesian sigmoid model. Points are observed protein measurements. The inferred mean

function from the sigmoid model is plotted as a line and the 95% credible band is given

by the shaded region. Purple denotes the drug treated context, whilst yellow denotes the

control. Statistics derived from two biological replicates, for each of two conditions each with

10 measure temperatures.
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Figure 4: Example model �ts using semi-parametric model. Melting pro�les for

HDAC 7 and RUVBL1 using the Bayesian semi-parametric model. The points are observed

protein data. The line represents the inferred mean function and the shaded region is the

95% credible band for the inferred mean function. Purple denotes the drug treated context,

whilst yellow denotes the control. Statistics derived from two biological replicates, for each

of two conditions each with 10 measure temperatures.
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Characterising proteins that deviate from sigmoid behaviour

Having established the utility of our Bayesian models, in particular the ability of our semi-

parametric approach to model deviations from sigmoid behaviour. We next considered those

proteins that were better modelled by the semi-parametric approach to see if they have any

physical, functional or otherwise de�ning features. We began our investigation by selecting

a set of proteins where the semi-parametric model explains at least 5% more variance [51]

than the sigmoid model does alone (see supplementary data 2 and supplementary note 5).

We performed functional enrichment testing of these proteins using UniprotKB an-

notations (see supplementary data 3). We found that the posttranslation modi�cations

acetlyation and phosphoprotein are enriched in these proteins across the 5 human datasets

(∀i, pi < 10−8 Fisher exact BH corrected), as well as RNA binding (∀i, pi < 10−6 Fisher exact

BH corrected). The pattern of enrichment can be visualised in �gure 5 A and is reproducible

across all the datasets. Whilst the e�ect of phosphorylation on protein thermal stability is

well appreciated [93], the role of acetylation on thermal stability has not been characterised,

despite well established in�uence on protein stability [26]. Enrichment of acetylated proteins

could suggest a mechanistic e�ect of acetylation on thermal stability.

Non-canonical melting behaviour may represent di�erent pools of the same protein be-

having di�erently within the cell. Non-canonical proteins are enriched for RNA-binding

proteins and so the di�erent species of protein, i.e the RNA-bound form or the entities not

bound to RNA, might have di�erent temperature-solubility relationships, as well as di�erent

drug induced behaviours. Hence, what we may be observing in TPP datasets is a mixture

of these behaviours being re�ected in di�erent ways. The extent to which one observes such

behaviours will depend on the relative number of copies of each protein in each state and also

on the the particular way the modi�cation e�ects the thermal stability of the protein. Hence,

exactly which protein display this behaviour will be cell line and context speci�c, and so re-

quires further investigation. This interpretation would explain both the hypersolubilisation

and biphasic behaviour we have observed.

We continued to characterise the subcellular localisations of these proteins, with the

hypothesis that these protein might come from a single or perhaps multiple localisations.

As we see from �gure 5 B, the pattern for subcellular localisation is much less consistent

than the pattern for functional enrichment and only the nucleolus and the ribonucleoprotein

complex are enriched annotations for protein with non-sigmoidal behaviour in all the human

datasets.

The nucleolus is a phase-separated sub-nuclear compartment and is the site of ribosome

biogenesis [11]. Furthermore, during heat stress molecular chaperones accumulate in the

nucleolus to protect unassembled ribosomal proteins against aggregation [43]. This e�ect is

readily seen within 2 hours at 43 degrees. Despite TPP experiments usually only heating

for minutes, we hypothesised that functional role of the nucleolus thus guards against the

phenomena that TPP is attempting to induce. To test this hypothesis further, we �ltered

to proteins that are classed as non-sigmoidal and have known nucleolus annotation. We
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found that several proteins of the exosome complex EXOSC[2,5-9] fall into this class and

are measured completely in all experiments. Figure 5 shows the reproducible non-sigmoidal

behaviour. Remarkably, all members of this complex show hypersolublisation and increasing

stabilisation until roughly 50 degrees. After 50 degrees the proteins destabilised. Without

further experiments, we cannot deduce whether this e�ect is representative of the whole

nucleolus or solely these EXOSC proteins. One alluring explanation could be that RNA dis-

sociates from the EXOSC complex at 50 degrees. Furthermore, we de not observe signi�cant

co-aggregation of EXOSC protein in Thermal Proximity CoAggregation (TPCA) data [121].

However, TPCA analysis derives curve similarity from an inverse euclidean distance, which

may not be a su�ciently sensitive measure of curve similarity in this case.

Continuing our investigation into subcellular localisation, we integrated our analysis with

spatial proteomics data from hyperLOPIT experiments [85]. We used hyperLOPIT data

from U-2 OS cells, providing information on 4883 proteins to 11 sub-cellular compartments

([122, 46] and re-analysed in [29] to reveal 14 compartments). We projected the proteins

that deviate from sigmoid behaviour onto the PCA coordinate of the hyperLOPIT data

(�gure 6). In all datasets, we observed enrichment for nuclear, ribosomal and cytosolic

regions, in agreement with our GO enrichment analysis. Furthermore, also in support of the

GO enrichment results, we saw strong enrichment for mitochondrial annotations in the two

Dasatinib datasets and the Panobinostat dataset. To understand the functional relevance of

these proteins, we strati�ed to the proteins that have mitochondrial annotations according

to the hyperLOPIT data.

In the Dasatinib 0.5 dataset, we saw enrichment for cofactor binding (p < 10−13), coen-

zymee binding (p < 10−9), NAD binding domains (p < 10−7), small-molecule binding

(p < 10−9), FAD binding domains (p < 0.0001), nucleotide binding (p < 10−9), ATP-binding

and RNA-binding (p < 0.05). We see similar results in the Dasatinib 5 dataset: cofactor

binding (p < 0.001), co-enzyme binding (p < 0.001), NAD binding (p < 0.001), nucleotide

binding (p < 0.001), small molecular binding (p < 0.01). Almost identical results are seen for

the Panobinostat dateset: cofactor binding (p < 10−8), NAD binding (p < 10−6), co-enzyme

binding (p < 10−6), small molecule binding (p < 0.01), nucleotide binding (p < 0.01), FAD

binding domain (p < 0.01). Taken as a whole, these results support our interpretation of

biphasic behaviour where di�erent functional copies of a protein behave di�erently from each

other and that we observe a mixture of these behaviours in TPP experiments.

Given the functional and localisation enrichments we have observed, we sought to further

characterise these proteins by examining their intrinsic disorder. Indeed aggregation-prone

proteins, after non-lethal heatshock, are enriched for intrinsically disordered regions [77].

Using the D2P2 database [86], we �rst obtained the length of the predicted intrinsically dis-

order regions (IDRs) for every protein. For stringency, we required that at least a minimum

of 4 prediction tools were in agreement. To correct for length bias, we computed the pro-

portion of the protein that was intrinsically disordered. We then tested if the set of proteins

with non-canonical melting behaviour were enriched for proteins which had at least 5% of

regions predicted to be intrinsically disordered. No such enrichment was observed (Fisher's
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exact test). We further �ltered to proteins in our analysis that had nucleus annotations

and despite nuclear annotated non-canonical proteins having a large proportion of IDRs

(80 − 95%), there was no statistical enrichment beyond what one would have expected for

nuclear proteins.

A further consideration is whether the experiment was performed in intact or lysed cells.

Indeed, for the 3 experiments that were performed on intact cells (Dasatinib 0.5 and 5 and

Panobinostat) the non-sigmoidal proteins showed an enrichment for mitochondrial localisa-

tion whilst the lysate-based experiments did not. In lysate-based experiments the mitochon-

drial membrane will break down and the local concentration of NAD will decrease. Hence,

the drug has easier access to mitochondrial proteins in lysate-based experiments. Since cellu-

lar physiology is preserved for intact cells, we might believe that non-sigmoidal behaviour is

indicative of downstream e�ects. However, some non-sigmoidal behaviours are reproducible

and independent of whether the experiment was in lysed or intact cells. Thus, we cannot

completely attribute these e�ects to whether the experiments were performed in intact cells

or not.
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Figure 5: Enrichment analysis of protein deviating from sigmoid behaviour. (A)

Uniprot key term enrichment analysis. A tile plot show −log10 of the p-values for each of

the terms for the 5 human datasets. (B) GO CC enrichment analysis. A tile plot showing

−log10 of the p-values for each of the terms for the 5 human datasets. (C-G) Melting pro�les

of the proteins from the EXOSC complex, across the 5 human datasets, (C) ATP dataset

(D) Dasatinib 5 dataset (E) Staurosporine dataset (F) Panobinostat dataset (G) Dasatinib

0.5 dataset. Statistics derived from two biological replicates, for each of two conditions each

with 10 measure temperatures.
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Figure 6: Subcellular localisations of proteins deviating from sigmoid behaviour.

(A-E) PCA plots of U-2 OS hyperLOPIT data [46], showing the top two principal compo-

nents. Each pointer is a protein and marker proteins for each subcellular niche are coloured.

Dark red diamonds denote proteins that were deemed to have non-sigmoid behaviour from

TPP data. Each panel represents a di�erent TPP dataset for the projected proteins. Hy-

perLOPIT experiments are from biological triplicates with using a total of 57 fractions.
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Discussion

We have presented Bayesian approaches to the analysis of thermal proteome pro�ling data.

Our Bayesian sigmoid model quanti�es uncertainty and avoids empirical estimation of the

null distribution. The resulting model shows improved sensitivity and, as a result, we iden-

ti�ed new putative targets and o�-targets in 5 human TPP experiments. Uncertainty quan-

ti�cation provides useful additional information and, by inspecting the con�dence bands, we

can carefully select the temperatures at which to perform validation experiments.

Many proteins exhibit non-sigmoid behaviour and we observed strong correlation be-

tween residuals in all the datasets we analysed, motivating an expanded model. Thus, we

introduced a semi-parametric Bayesian model that further improved sensitivity, had better

out-of-sample predictive properties for some proteins and had con�dence bands with im-

proved coverage. This improved analysis allowed us to identify HDAC 7 as having altered

thermal stability on Panobinostat treatment, which previous analysis could not identify.

We probed the proteins that deviated from non-sigmoid behaviour and our analysis sug-

gests that these proteins are enriched for proteins that contain known phosphorylation and

acetylation sites, as well as RNA-binding proteins. These proteins also displayed concerted

subcellular localisations with enrichments for nucleolus across all datasets and mitochodrion

in particular contexts. This reinforces our interpretation that for proteins with non-sigmoid

behaviour, we are observing a mixture of behaviours from di�erent functional copies of those

proteins. This motivates expansion of the TPP method to deconvolute these behaviours,

for example phosphoTPP [59, 93, 114] and other PTMs. The RNA-binding behaviour could

be examined with high-throughput RNA-protein enrichment methods [95] and further de-

convolution could be obtained by combining TPP with spatial proteomics methods [85, 46].

Though we observed non-sigmoidal behaviour in all datasets, more proteins were found to

deviate in data generated from live cells (as compared to cell extracts).

As mentioned before, protein thermal stability can be a�ected by compound binding,

PTMs and protein complex formation. In addition, protein solubility in cells might be af-

fected by PTMs and other treatment-dependent e�ects, and even by ATP levels. Similar

to protein solubility, compound treatment and other perturbations may a�ect the extent to

which a protein is extracted in the applied experimental conditions leading to temperature

dependent and temperature independent components that manifest themselves in thermal

denaturation pro�les. Whilst most referenced studies have been directed at identifying di-

rect targets of small molecule inhibitors in live cells or in cell extracts, there is an increasing

recognition of the potential of TPP as a methodology to pro�le molecular phenotypes (e.g.

[68]) as it integrates multiple dimensions of regulation on proteome level into a single ana-

lytical approach. Such phenotyping could not only be informative for compound mechanism

of action studies and to detect opportunities for combination treatments, but also to study

e�ects of gene deletions, genetic variants and external stimuli and combinations thereof. As a

consequence proteins can be a�ected in multiple ways and in di�erent sub-cellular compart-

ments resulting in more complex thermal denaturation behaviour than what can be robustly
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assessed with established computational approaches.

As demonstrated above our semi-parametric Bayesian approach is sensitive to detect

protein e�ects that do not strictly follow the thermal denaturation-induced aggregation ex-

pected from isolated proteins and uniquely adds by identifying proteins a�ected by multiple

parameters at once. Whilst not without challenges, the careful analysis of features in com-

plex thermal denaturation curves is expected not only to facilitate hit calling but also to

inform causality. This will be subject of future directions of our approach.

There are potential extensions of our methods to other TPP-based experimental designs

[80], to simultaneous joint modelling of multiple organisms [66] and to include prior infor-

mation derived from other experiments. We could also use expected gain in information to

optimise the drug concentration and temperatures used in the TPP experiments [21]. Sum-

marising and normalisation to protein-level could also be avoided by modelling the data at

peptide spectrum match (PSM) level. We have also used a default global prior for the prior

model probabilities - these might be better speci�ed using known prior properties about the

drug being used.

As with all methods, our approach is not without limitations, for example increased com-

putational cost could be a burden. However, if we are willing to sacri�ce uncertainty quan-

ti�cation, we could simply use optimisation based inference instead. Our implementation

is extensible with prior and model components easily change within our stan (probabilistic

programming language [18]) implementation (see supplementary code).

Methods

Non-parametric analysis of response curves

We brie�y describe the NPARC method for completeness [24]. Let yijk be the relative

solubility of protein i at temperature Tj for replicate measurement k. The null hypothesis

states that the relative solubility of protein i at temperature Tj is modelled as a single mean

function regardless of the treatment condition or context:

E(yijk) = µi(tj). (2)

The alternative model allows for treatment e�ects or the mean function to change for each

context

E(yijkc) = µic(tj) (3)

where c denotes the context. The mean function is modelled using the 3-parameter sigmoid

model:

Sa,b,p(T ) =
1− p

1 + exp(b− a
T
)
+ p. (4)
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To clarify, under H0 the parameters a, b, p are �xed for both contexts, whilst under the

alternative H1 the parameters a, b, p are allowed to be context speci�c. For hypothesis

testing, the F statistic is computed

F =
d2
d1

RSS0 − RSS1
RSS1

, (5)

where RSS0/1 denotes the sum of the squared residuals when �tting the null (0) or the

alternative (1) model and d1/2 are referred to as degrees of freedom. Large values of the

F statistic represents reproducible changes thermal stability. If the residuals were i.i.d

normally distribution then we could perform an F -test using the null distribution F (d1, d2),

where the degrees of freedom are computed from simple parameter and observation counting.

However, the i.i.d assumption do not hold and so [24] estimate the null distribution using new

e�ective degrees of freedom d̃1, d̃1. Approximating the null distribution assumes a unimodal

null distribution and that the majority of observations are samples from the null distribution.

We refer to [24] for detailed formulae. Once the approximate null has been obtained p-values

can be computed as usual and multiple hypothesis testing correction applied [6].

Bayesian inference and model selection

Bayes' theorem and hypothesis testing

In this section, we summarise Bayesian inference and model selection. The advantage of the

Bayesian framework is that we no longer need to estimate a null distribution and multiplic-

ity is automatically controlled via the prior model probabilities. This avoids making any

assumptions about the properties of the null distribution. Furthermore, prior information is

included on the parameters, which has a number of bene�ts, including allowing the shrinkage

of residuals towards 0, regularising the inferred parameters and improving algorithmic stabil-

ity. Furthermore, in a Bayesian analysis, we obtain samples from the posterior distribution

of the parameters and hence the posterior distribution of the mean function can be obtained

to quantify uncertainty.

Bayesian inference begins with a statistical model M of the observed data y with the

parameters of the model denoted by θ. Given a prior distribution for the parameters, denoted

p(θ|M), and observed data y, Bayes' theorem tells us we can update the prior distribution

to obtain the posterior distribution using the following formula:

p(θ|y) = p(y|θ)p(θ|M)

p(y|M)
. (6)

p(y|M) is referred to as the marginal likelihood, since it is obtained by marginalising θ:

p(y|Mj) =

∫
θ

p(y|θ)p(θ|M) dθ. (7)

The task of hypothesis testing can be cast as a model selection problem. Indeed, the null

hypothesis is associated with a model M0, whilst the alternative hypothesis is associated
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with a model M1. Thus, the task of hypothesis testing is that of selecting between two

competing models.

To perform model selection, we are interested in the following posterior quantity [7],

p(M1|y) =
p(y|M1)p(M1)

p(y|M1)p(M1) + p(y|M0)p(M0)
, (8)

that is the posterior model probability, given the data. The relative plausibility of two

model is quanti�ed through the posterior odds, which is the prior odds multiplied by the

Bayes factor [70].
p(M1|y)
p(M0|y)

=
p(M1)

p(M0)
× p(y|M1)

p(y|M0)
(9)

The challenging of computing these equations is obtaining the marginal likelihood (equa-

tion 7). We note that because of the integration with respect to the prior there is automatic

penalisation of additional model complexity. The marginal likelihood is challenging to com-

pute and is only available in analytic form for a small number of relatively simple models.

A number of sampling based approach are available to compute marginal likelihoods,

such as bridge sampling [82, 81], path sampling [49], importance sampling [101], harmonic

mean sampling [47], nested sampling [113, 25, 67] (see also [17]). Though these sampling

based approaches produce highly accurate marginal likelihoods, these approaches require

excessive computation in our case. Instead, we approximate the marginal likelihood using

the Metropolis-Laplace estimator. Brie�y, the log of the marginal likelihood (equation 7) is

estimated as [75]:

log(p(y|Mj)) ≈
P

2
log(2π) +

1

2
log |Ĥ|+ log(p(θ̂|Mj)) + log(p(y|θ̂)), (10)

where θ̂ a Monte-Carlo estimator of the parameters, P is the number of parameters and Ĥ

is estimated by the sample covariance of the posterior samples. This approach is used for

both the Bayesian sigmoid model and the semi-parametric model.

Finally, we have yet to specify the prior model probabilities p(Mj) for j = 0, 1. To control

for multiplicity, we can adjust the prior model properties to assume that the null model is

more likely that the alternative [108]. Hence, we set p(M0) = 0.99 and p(M1) = 0.01 .

Posterior predictive checks and out-of-sample predictive performance

Formal model selection via the marginal likelihood can be used to select between two or

more competing models. However, models can also be assessed and criticised using measures

of predictive performance. Here, we consider posterior predictive checks, as well as out-of-

sample predictive performance. A posterior predictive check begins with simulating from

the posterior predictive distribution:

p(ỹ|y) =
∫
θ

p(ỹ|θ, y)p(θ|y) dθ. (11)
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This is the distribution obtain by marginalising the distribution of ỹ given θ over the posterior

distribution of θ given y. The rationale is that simulated data from the posterior predictive

should look similar to the observed data [50]. We simulate these datasets yrep and compute

the 50% and 95% credible bands, for the models of interest. Though other posterior predictive

summaries can be used, such as Kernel Density Estimate posterior predictive checks (see

supplement).

Another approach is to examine the out-of-sample predictive accuracy from the �tted

Bayesian models. We use (approximate) leave-one-out cross validation (LOO-CV) with the

log predictive density as the utility function (equivalently the log-loss) [124]:

ELPDLOO =
n∑
i=1

log

∫
p(yi|θ)p(θ|y−i) dθ. (12)

Equation 12 is the leave-one-out predictive density given the observed data without the

ith observation, summed over the observations. This process is intensive so the expected

log pointwise predictive density (ELPD) is estimated using Pareto smoothed importance

sampling (PSIS) [124].
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Bayesian sigmoid model

In this section, we develop our Bayesian sigmoid model. For our proposed Bayesian sigmoid

model, we assume the aforementioned sigmoid model. As before, underM0 a single sigmoid

model is posited irrespective of any treatment e�ects or contexts. While the competing model

M1 allows the sigmoid parameters to be context speci�c. Thus under the null hypothesis,

we assume

yijk|M0 ∼ N (Sa,b,p(Tj), σ
2
i ) (13)

whilst for the competing model

yijkc|M1 ∼ N (Sac,bc,pc(Tj), σ
2
ic) for c = 1, 2, (14)

where again c denotes the context or treatment e�ect. To complete the speci�cation of our

model, we need to declare the priors. The sigmoid shape parameters a, b are required to be

positive and thus we place a Gamma distribution on these parameters. The right tail of the

Gamma distribution discourages posterior mass on excessively large values of a and b. To

obtain reasonable defaults for these priors, we examined the �tted values found by previous

analysis [24], as well as performing a prior predictive check [13]. Thus priors are speci�ed

for a, b as follows

a ∼ G(7, 0.01) (15)

b ∼ G(7, 0.4). (16)

The parameter p is restricted between 0 and 1 and thus a Beta prior is appropriate for this

parameter. Given that the plateau is generally close to 0 and rarely above 0.5 we specify the

following prior

p ∼ B(1, 20). (17)

For the standard deviation of the residuals σ, we desire these to be considerably smaller

than the scale of the data and shrunk towards 0. This has two purposes: the �rst is that we

want the data to be explained by variations in the mean function not simply by wide errors;

secondly smaller residuals allow us to discriminate between small but reproducible shifts in

melting pro�les. We opt for the folded-normal distribution on σ [48]. We specify the prior

as follows

σ ∼ FN (0, 0.05), (18)

which puts signi�cant mass around 0 to encourage shrinkage, whilst residuals up to 0.4

are not considered surprising. There is no conjugacy between our prior and likelihood,

which makes obtaining samples from the posterior distribution challenging. We employ

Hamiltonian Monte-Carlo [35], in particular a variant of the no-u-turn sampler [57, 10] with

an implementation in Stan [15, 18].
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Bayesian semi-parametric model

Our Bayesian sigmoid model allowed us to remove the assumptions relating to the estimating

the null distribution, but still assumes a sigmoid functional form and uncorrelated residuals.

To relax these assumptions, we propose a semi-parametric model. We assume the parametric

sigmoid function and introduce an additional term so that the melting curves for protein i

are modelled according the following (suppressing notation on the condition)

yik(Tj) = Sa,b,p(Tj) + µi(Tj) + εij, (19)

where µ is some deterministic function of temperature and εij = N(0, σ2
i ) is a noise variable.

Without any suitable parametric assumptions for µi, we perform inference for µi by specifying

a Gaussian process prior, so that:

µi ∼ GP (m(T ), C(T, T ′)). (20)

A Gaussian process (GP) prior is uniquely determined by its mean and covariance function,

which determine the mean vectors and covariance matrices of the associated multivariate

Gaussians. We do not have any prior believe about the symmetry or periodicity of our

functions (beyond what is already encoded by Sa,b,p) and thus we specify a centred GP with

a squared exponential covariance function

C = v2 exp

(
−‖Ti − Tj‖

2

2l2

)
, (21)

where v2 is a marginal variance parameter and l, a length-scale parameter, encodes the

distance at which observations are correlated. The adopted GP prior of µi tells us that the

relative solubility for protein i is modelled as follows

yik|Sa,b,p, µi, σi ∼ N (Sa,b,p + µi, σ
2
i ID), (22)

where D denotes the number of measured temperatures. Note that we can make ni repeated

measurement (or replicates) of protein i at temperature Tj. We denote yi = {yi1, .., yini
} to

be the concatenation of replicate measurements. Hence, the above implies that

yi(T1), ..., yi(TD)|µi, Sa,b,p, σi ∼N (fi(T1), ..., fi(TD), ..., fi(T1), ..., fi(TD), σ
2
i IniD), (23)

where fi(T1), ..., fi(TD) is repeated ni times and fi(Tj) = Sa,b,p(Tj) + µi(Tj). Our GP prior

tell us that

µi(T1), ..., µi(TD), ..., µi(T1), ..., µi(TD)|v, l ∼ N (0, Ci), (24)

where Ci is an niD× niD matrix. Note that the above means that we can marginalise µi to

avoid inference of this unknown function and obtain:

yi|Sa,b,p, v, l ∼ N (Sa,b,p, Ci + σ2
i IniD). (25)
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Reintroducing the context or treatment e�ect, we allow the parameters to vary between

them. Thus, under the null hypothesis, we assume

yijk|M0 ∼ N (Sa,b,p(Tj) + µi(Tj), σ
2
i ) (26)

whilst for the competing model

yijkc|M1 ∼ N (Sac,bc,pc(Tj) + µic(Tj), σ
2
ic) for c = 1, 2. (27)

To complete our model, we need to specify the prior distributions. For parameters in common

with the sigmoid model we make the same prior choices. Thus, it remains to make prior

choices for v and l. The challenges of specifying priors for the hyperparameters of the

Gaussian process are well documented [8, 90, 32, 123, 44]. To obtain a sensible prior it

is important to note that our model is weakly non-identi�able. This is because the non-

parametric part can explain the parametric components. However, this is not, in general,

an issue for Bayesian analysis. To advert problems this can cause for inference, we have to

make judicious prior choices.

The �rst step is to encourage the marginal variance parameter to be on the scale of

the residuals rather than that of the data. We already placed a folded-normal prior on

the measurement error σ. For the marginal variance v2, we impose even stronger shrinkage

towards 0 by using a folded-student-t prior. This prior also has heavy tails allowing the non-

parametric term to explain complex variations, if supported by the data. To summarise, we

specify

v ∼ FT (3, 0, 0.5), (28)

where FT (ν,m, σ) denotes a folded-student-t density with degrees of freedom ν, mean m

and scale σ. On the other hand, for the length scale parameter l, we wish to avoid excessively

small values. Short length-scales allow the Gaussian process simply to interpolate the data

and over�t. Thus, we propose a log-normal prior for l, which has a sharp left tail and heavy

right tail, discouraging small length scales and really large length scales, respectively. We

�nd that the following prior works well in practice (sensitivity is tested in the supplement):

l ∼ LN (−0.5, 0.5). (29)

Inference for Bayesian models that incorporate Gaussian processes priors can be computa-

tionally intensive and so we make use of reduced-rank Gaussian process methods by approxi-

mating the covariance function [115]. As with the sigmoid model our semi-parametric model

is implemented in Stan [18].

Data availability

All data used in this manuscript are made available as part of the supplementary material.

Spatial proteomics data is available as part of the Bioconductor package pRolocdata. Python
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2.7.15 was used to collect IDR data. String version 11.0 was used to collect enrichment data,

which is available as supplementary data 3. The remain data to reproduce the �gures is

provided as supplementary data 4 .

Code availability

The following version of R was used: r-3.6.1-gcc-5.4.0-zrytncq to analyse the data. Custom

stan code was generate using version 2.21.2 and is provided as part of the supplementary

data 5.
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