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Induced sensorimotor brain plasticity controls pain
in phantom limb patients
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The cause of pain in a phantom limb after partial or complete deafferentation is an important
problem. A popular but increasingly controversial theory is that it results from maladaptive
reorganization of the sensorimotor cortex, suggesting that experimental induction of further
reorganization should affect the pain, especially if it results in functional restoration. Here we
use a brain-machine interface (BMI) based on real-time magnetoencephalography signals to
reconstruct affected hand movements with a robotic hand. BMI training induces significant
plasticity in the sensorimotor cortex, manifested as improved discriminability of movement
information and enhanced prosthetic control. Contrary to our expectation that functional
restoration would reduce pain, the BMI training with the phantom hand intensifies the pain. In
contrast, BMI training designed to dissociate the prosthetic and phantom hands actually
reduces pain. These results reveal a functional relevance between sensorimotor cortical
plasticity and pain, and may provide a novel treatment with BMI neurofeedback.
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hantom limb pain describes the intractable chronic pain!

that frequently occurs in a partially or completely

deafferented body part after severe peripheral nerve
injury? or amputation®. A prominent theory is that the
underlying cause of the pain is maladaptive plasticity of the
sensorimotor cortex>™. The key evidence supporting this is
the correlation between pain and topographic reorganization of
sensorimotor cortical maps, as revealed by several methods®~3,
Furthermore, rehabilitative therapies inspired by the theory, such
as discrimination training, myoelectric prosthesis use, nerve
replantation and mirror therapy, reduce pain and show a
corresponding correlation with topographic reorganization>~12,
This underlies a widel;r held guiding principle that restoration of
function reduces pain”.

However, recent evidence has caused researchers to question
the maladaptive sensorimotor reorganization model, especially in
terms of the motor representation of the phantom limb. For
example, it has been shown that when using ‘unfolded’ brain
maps to study anatomical reorganization of the phantom hand,
shifts in the peaks of lip representations are local, do not invade
the hand area and are not correlated with pain!3. Furthermore,
functional brain activity in the area of missing hands of amputees
does not increase during lip movements!*. In the phantom
symptoms associated with nerve loss in carpal tunnel syndrome,
sensorimotor reorganization is correlated with paraesthesia, but
not pain'®, Even the efficacy of behavioural therapies designed to
target reorganization has been questioned!!l. Critically, however,
both sides of this argument lack any direct experimental
manipulation of sensorimotor plasticity that, in principle, could
be used to support or refute a causative link between
sensorimotor cortical plasticity and pain.

Recently, it has been shown that brain-machine interfaces
(BMIs) can not only reconstruct motor function in severely
paralysed patients'® but also induce plastic changes in cortical
activity!’~'°. A BMI works by first decoding neural activity
of the mental action to move the affected hand, for example,
and then by converting the decoded phantom hand movement
into that of a robotic neuroprosthesis. BMIs based on
magnetoencephalography (MEG) sensorimotor cortex signals
have been shown to be sufficient to precisely decode hand
movements in real time?®2!, even in severely paralgsed patients
simply intending to move the affected hands*>?°. Moreover,
training to use BMIs induces plastic changes in cortical
activit}§4’25 and, potentially, associated clinical symptoms?°.

Here we apply the BMI training of a neuroprosthetic (robotic)
hand using real-time MEG signals in phantom limb patients,
whose symptoms are primarily caused by nerve avulsion, and
evaluate the association between changes in their symptomatic
pain and in cortical currents during phantom hand movements.
We show that the patients partially restore the function of the

affected hand by using the prosthetic hand in its place. According
to the principle of restoration of function, it is initially
hypothesized that successful BMI training using decoded
phantom hand movements should reduce pain with concurrent
plastic changes in cortical activity. However, our results show
that, although BMI training leads to a significant increase of
movement information in the sensorimotor cortex, the training
significantly increases pain. On the other hand, BMI training to
associate the prosthetic hand with the intact hand representation
reduces pain with decreased information about phantom hand
movements. These results suggest a causative relationship
between sensorimotor cortical plasticity and pain.

Results

Experimental design of BMI training. BMI training was applied
to 10 patients with phantom limb due to brachial plexus root
avulsion (n=9) and amputation of the right forearm (n=1;
Table 1 and Supplementary Table 1)2°. All patients had phantom
limb symptoms, and the associated pain is consequently thought
to share a common mechanism with phantom limb pain due to
amputation®. All patients participated in BMI training to control
the robotic hand (Fig. 1a). Cortical plasticity was evaluated by
comparing the same offline task to move the phantom hand
before and after each training session (Fig. 1b). At the same time,
pain was evaluated with a visual analogue scale (VAS) and the
Japanese version of the short-form McGill Pain Questionnaire 2
(SE-MPQ2)%’.

Decoding of the phantom hand movement using MEG signals.
First, we performed an ‘offline’ task (pre-BMI) in which patients
were instructed to try to move their phantom hands to be
in the posture of grasping or opening according to given
instructions (Fig. 2a,b)10. The patients could not see their actual
arms during the experiment. The MEG signals from 84 selected
sensors were recorded during the task (Fig. 2c) and then time-
averaged using windows of 500 ms slid by 100 ms, in the range
from —500 to 1,000ms with respect to the timings of the
execution cues. Then, the averaged signals were converted into
z-scores using the mean and s.d. estimated from the initial 50 s of
the offline task.

A nested 10-fold cross-validation?® was performed with a
support vector machine (SVM) to evaluate the accuracy of
classifying the performed movement types using the z-scores of
the selected MEG sensors®’, The accuracy was evaluated for each
500-ms window, and the maximum value of the accuracies was
estimated as the classification accuracy. The classification
accuracy of the phantom movement during the pre-BMI task
was 65.6 £ 9.4% (mean + 95% confidence interval, n = 10), which
was significantly greater than the accuracies for classifying

Table 1 | Clinical profiles of patients.

Patient ID Age (y)/sex Diagnosis JART FSIQ/VIQ/PIQ Disease duration (y) Mirror therapy

1 50/M Right BPRA of C6-8 100/100/90 34 Effective only for a short period
2 51/M Left BPRA of C5-Th1 96/96/96 6 Not effective

3 58/M Right BPRA of C6-Th2 12/114/108 40 No experience

4 48/M Amputation below right elbow 104/105/102 1.5 Not effective

5 49/M Right BPRA of C7-Th1 102/102/101 29 No experience

6 56/M Right BPRA of C7-8 1n4/16/110 38 Not effective

7 51/M Right BPRA of C6-Thl 110/112/107 il No experience

8 56/M Left BPRA of C7-Th1 83/82/87 13 Not effective

9 38/M Right BPRA of C6-8 85/84/89 21 No experience

10 60/M Right BPRA of C6-8 14/16,/110 20 No experience

BPRA, brachial plexus root avulsion; FSIQ: full-scale intelligence quotient; JART, Japanese Adult Reading Test; M, male; PIQ, performance intelligence quotient; VIQ, verbal intelligence quotient; y, year.
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Figure 1 | BMI training and experimental design. (a) BMI training. Patients
were instructed to control the prosthetic hand by moving their phantom
hands in each experiment. (b) A diagram of the tasks in each experiment.
First, the patients performed the offline phantom hand task to move their
phantom hand according to the instructions. Then, after evaluation of their
pain, BMI training was performed for 10 min. Here three types of decoders
were used to control the prosthetic hand, each for three experiments. After
evaluation of their pain, the same offline phantom hand task was
performed. *'For the experiment with the real hand decoder, the patients
also performed the offline task with their intact hand after the task with
their phantom hand.

the same signals with randomly relabelled movement types
(50.9+4.3%, P=0.0012, Bonferroni-corrected, t(18)=2.79,
two-tailed Student’s t-test, n = 10; Fig. 2d).

For comparison, the patients performed actual movements of
their intact hands according to the same instructions during
another experiment. The classification accuracy was evaluated by
the same method. For the intact hand movements before the BMI
training, the classification accuracy was 75.3 £ 7.5% (mean * 95%
confidence interval, n=10), which exceeded the accuracies
of randomized movement types (46.0+%6.3%, P=0.000016,
Bonferroni-corrected, #(18)=5.83, two-tailed Student’s t-test,
n=10; Fig. 2d). Notably, the classification accuracies were
comparable between the phantom movements and the intact
hand movements (n=10, P=0.13, Bonferroni-corrected,
1(18) =1.57, two-tailed Student’s t-test), although the electro-
myographic signals of the affected hands were not comparable to
those of the intact hands (Supplementary Fig. 1).

Estimated cortical currents. We evaluated the cortical
representation during the offline task using cortical current
source estimation and decoding accuracy. First, the cortical
currents were estimated from the obtained MEG signals usin§
variational Bayesian multimodal encephalography (VBMEG)?.
Next, the estimated cortical currents were averaged using a
500-ms time window from the execution cue and z-scored by the
estimated cortical currents of the initial 50-s period of the offline
session. The z-scored cortical currents were averaged for the
10 patients and colour-coded on the normalized brain surface.
The right hand was designated as the affected hand; for those two
patients with affected left hands, the cortical activation was
switched. Figure 3a shows the cortical currents activated on the
sensorimotor cortex contralateral to the phantom hand when the
patients attempted to move their phantom hands.

The z-scored cortical currents were compared between two
types of movements with a one-way analysis of variance
(ANOVA) for each vertex. The F-value of the ANOVA was
averaged for the 10 patients and colour-coded on the normalized
brain surface. Figure 3b shows that cortical currents on the
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Figure 2 | Offline evaluation of movements of real hands and phantom
hands. (a) Schematic figure representing the offline task. The patients
intended to move their phantom hand according to the instruction
presented on the screen in front of them. (b) Experimental paradigm. An
epoch began with a 3-s visual presentation of a black cross. A Japanese
word was shown for 1s to instruct the subjects which movement to
perform. After two 1-s timing cues, the execution cue of the cross sign was
presented for 0.5s with a sound. The patients performed the instructed
movements once when the execution cue was presented. These cues with
sounds were repeated four times for each instruction. Each of the
movement types was assigned in random order 10 times each. (¢) We
recorded the MEG signals of the 84 selected sensors, which are shown as
red points on the picture of the sensor location. (d) The average
classification accuracy of movement types using the z-scored MEG sensor
signals (mean and 95% confidence interval). Real hand (black), phantom
hand (red) and the randomly relabelled data of the real hand (grey) and
phantom hand (orange; n=10). **P<0.01, Bonferroni-corrected, two-tailed
Student's t-test.

contralateral sensorimotor cortex varied between movement
types with high F-values (see also Supplementary Fig. 2).

Similarly, for the intact hand movements, the cortical currents
were activated on the sensorimotor cortex contralateral to the
moved hand, depending on the movement types, with high
F-values (Fig. 3c,d). The cortical currents on the contralateral
sensorimotor cortex varied according to the movement types for
both the real and the phantom hand.

Next, the decoding method was applied for the z-scored
cortical currents to quantify how accurately the cortical currents
represent the two types of phantom movements. A total of 126
vertices were selected on the sensorimotor cortex of each
hemisphere (Fig. 3e). The z-scored cortical currents were
estimated at the selected vertices from —500 to 1,000ms for
each 100ms. Using the same method for the z-scored MEG
sensor signals, the z-scored cortical currents were evaluated to
determine the accuracy for classifying the movement types.

In all patients, the classification accuracies varied significantly
between each side of the sensorimotor cortex for the movements
of the real and phantom hands (n=10 each, P=0.0032,
F(3, 36) =5.52, one-way ANOVA; Fig. 3f). The accuracy for
classifying the phantom movement was significantly higher using
the currents on the sensorimotor cortex contralateral to the
phantom hand compared with the currents on the ipsilateral
cortex (n=10, P=0.007, Bonferroni-corrected, #(18)=3.06,
two-tailed Student’s t-test; Fig. 3f). Thus, the classifier clearly
distinguished the information on the ipsilateral and contralateral
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Figure 3 | Estimated cortical currents and the decoding of movements.
(a) The mean z-scored cortical currents during grasping and opening of the
phantom hand were colour-coded on a normalized brain surface at the time
of movement onset (the side of the phantom hand is shown on the right,
n=10). (b) The mean F-values of ANOVA of the z-scored cortical currents
between the two movements were colour-coded on the normalized brain
surface (the side of the phantom hand is shown on the right, n=10).

(¢) The mean z-scored cortical currents during grasping and opening of the
real hand (n=10). (d) The mean F-values of ANOVA of the z-scored
cortical currents between the two movements of the real hand (n=10).
(e) The 126 vertices were selected in the sensorimotor cortex contralateral
(red) and ipsilateral (blue) to the phantom hand. (f) The classification
accuracy of movement types using the z-scored cortical currents on the
sensorimotor cortex is shown with the 95% confidence interval for each
hemisphere of each hand (n=10; black, real hand; red, phantom hand).
The asterisks denote significant differences (*P<0.05, **P<0.01,
Bonferroni-corrected, two-tailed Student's t-test). The dashed, grey line
indicates the accuracy by chance (50%).

hemispheres. Moreover, the accuracy of the real hand movement
with the contralateral sensorimotor cortex was significantly
higher than the accuracy of the phantom movement with the
same hemisphere, ipsilateral to the phantom hand (n=10,
P=0.00017, Bonferroni-corrected, #(18)=4.72, two-tailed
Student’s t-test; Fig. 3f). This indicates the specificity of motor
information represented in the sensorimotor cortex.

The classification accuracy using the cortical currents
contralateral to the moved hand was not significantly different
between the phantom hand and real hand (n=10, P=0.37,
Bonferroni-corrected, t(18) =0.93, two-tailed Student’s t-test).

4

Moreover, the classification accuracies of the phantom
movements before BMI training were not significantly different
in any experiment (n=10 each, P=0.75, F(2, 27)=0.29,
one-way ANOVA; Supplementary Fig. 3). Thus, in summary,
the representation of the hand’s movement was preserved in the
contralateral sensorimotor cortex, even for phantom movements.

BMI training with a neuroprosthetic hand. The BMI training
to control the robotic hand was performed as a randomized
crossover trial consisting of two training sessions on two different
days (Fig. 1b). Each training session was performed with two
different decoders to control the robotic hand: a phantom
decoder and a random decoder. Using the z-scored MEG
sensor signals of the offline tasks to move the phantom hand,
we constructed the phantom decoder to infer phantom hand
movements at an arbitrary time in order to control the robotic
hand in real time?®. In contrast, the random decoder was
constructed from the MEG signals of the same task with
randomly relabelled movement types.

For training with either decoder, the patients were instructed to
freely control the neuroprosthetic hand for grasping and releasing
a ball by trying to move their phantom hands while watching the
movement of the prosthetic hand in closed-loop conditions
(Supplementary Movie 1 and Fig. 1a). The neuroprosthetic hand
was controlled according to the movements inferred by a selected
decoder with the z-scored MEG sensor signals obtained online.
The patients performed the experiments twice with each decoder
selected randomly for the crossover portion of the trial without
knowing the type of the decoder.

After each experiment we asked the patients about their
feelings during controlling the neuroprosthesis. Nine patients
reported improvement of their control after training with the
phantom decoder (Supplementary Table 2).

Effects of BMI training on cortical currents and pain. For each
offline task, the F-values of the z-scored cortical currents at the
execution cue were averaged across the 10 patients (Fig. 4a—c).
After BMI training with the phantom decoder, the F-values
increased in the contralateral sensorimotor cortex (Fig. 4a).
Surprisingly, the pain scores also significantly increased from
38.2+£18.5 (mean+95% confidence interval) to 45.8+18.4 in
VAS (1/100; n=10, P=0.0066, uncorrected, #(9) =3.51, paired
Student’s t-test), whereas the total scores of the SFE-MPQ2 did not
significantly increase, changing from 20.4+152 to 23.8+17.1
(n=10, P=0.086, uncorrected, Wilcoxon signed-rank test).

On a different day, the same patients were trained with a
random decoder. Using this decoder, the classification accuracies
of the phantom movements were similar to chance (47.5 £ 4.46%,
n=10). After BMI training, the F-value of the contralateral
sensorimotor cortex did not increase, although the patient was
instructed in the same way as during the first experiment
(Fig. 4b). Moreover, the pain scores were not significantly altered,
changing from 31.9%15.9 (mean*95% confidence interval)
to 32.9+159 in VAS (1/100; n=10, P=0.46, uncorrected,
t(9)=0.77, paired Student’s t-test) and from 2121199 to
23.1+20.8 in total scores of the SF-MPQ2 (n=10, P=0.063,
uncorrected, Wilcoxon signed-rank test). Notably, the order of
the two experiments was random (Supplementary Table 3).

As expected, BMI training with the phantom decoder increased
the discriminability of the cortical activity representing the
phantom hand movements. However, contrary to the naive
hypothesis, pain significantly increased after training with the
phantom decoder. Therefore, we added a subsequent training
experiment with a real hand decoder to reduce the discrimin-
ability. The real hand decoder was constructed from MEG signals
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Figure 4 | Sensorimotor plasticity induced by BMI training. (a-c) Among
10 patients, the F-value for the two phantom movements was averaged at
each vertex and colour-coded on the normalized brain surfaces for the
pre-BMI (upper panel), post-BMI (middle panel) and the difference
between the pre-BMI and post-BMI (lower panel). Each raw image
corresponds to each experiment: (@) phantom hand decoder; (b) random
decoder; and (¢) real hand decoder. (d,e) The difference in the F-value
between pre-BMI and post-BMI compared with that of the random decoder.
(d) AF of the phantom hand decoder — AF of the random decoder; (e) AF of
the real hand decoder — AF of the random decoder (uncorrected paired
Student's t-test).

obtained while moving the intact hand. During training with the
real hand decoder, the patients were similarly instructed to freely
control the neuroprosthetic hand by trying to move their
phantom hand, not the intact hand. Therefore, the patients
intended to associate their phantom hand movements with the
movements of the prosthetic hand, which was actually controlled
by a decoder to classify the MEG signals based on the intact
hand’s movement. As a result, the patients were expected to
unknowingly associate the phantom movements with the cortical
representation of the intact hand’s movements, which were
different from the cortical representation of the phantom
movements in pre-BMI training. We expected that BMI training
with the real hand decoder would accelerate the dissociation of
the link between the phantom hand and the original cortical
representation by creating a new link to the real hand. The
association of the different neural representation might dissociate
the prosthetic hand and the original neural representation of
phantom movements even more so than the association of the
randomly moved prosthetic hand and the neural representation.

Consistent with this prediction, after BMI training with the real
hand decoder, the F-values of the phantom hand movements
decreased for the sensorimotor cortex contralateral to the
phantom hand (Fig. 4c). Moreover, the pain scores decreased
significantly from 38.3 £15.5 (mean+ 95% confidence interval)
to 34.6+14.8 in VAS (1/100; n=10, P=0.029, uncorrected,
£#(9) =2.60, paired Student’s t-test). Similarly, the total scores of
the SF-MPQ2 significantly decreased from 26.0+£21.0 to
20.7+16.3 (n=10, P=0.016, uncorrected, Wilcoxon signed-
rank test). The F-values of the intact hand movements decreased
for the sensorimotor cortex contralateral to the intact hand
(Supplementary Fig. 4).

To statistically evaluate plastic changes of the discriminability
in cortical currents, the differences in the F-values before and
after training (post-pre) were compared among the training
sessions (also see Supplementary Fig. 5 for the alteration in
cortical currents). The increases in the F-values on the
contralateral sensorimotor cortex were significantly larger for
the phantom hand decoder than the random decoder (Fig. 4d). In
contrast, the decreases in the F-values were significantly larger for
the real hand decoder than the random decoder (Fig. 4e). Thus,
the F-values on the contralateral sensorimotor cortex varied
significantly after BMI training depending on the decoders.

According to their reports, patients noticed a difference in their
ability to control the robotic hand. They attributed the ability to
use the robotic hand to themselves; however, they were not aware
of the experimental manipulations (Supplementary Table 2).
Moreover, no patients reported any subjective feelings of being in
control of the prosthetic hand as a part of their body.

Pain and discriminability of cortical currents. The above
analyses showed that the increases in the pain VAS scores were
significantly changed depending on the decoder type (n=10
each, P=0.0002, F(2, 27) =11.5, one-way ANOVA; Fig. 5a).
After training with the real hand decoder, the VAS scores
decreased significantly compared with those of the random
decoder and the phantom decoder (n =10, P=0.025 and 0.0003,
uncorrected, #(18)=2.45 and 4.36, respectively, two-tailed
Student’s t-test). In contrast, the VAS scores increased
significantly after training with the phantom decoder compared
with the random decoder (n=10, P=0.017, uncorrected,
#(18) =2.62, two-tailed Student’s t-test). Notably, these increased
scores from the phantom decoder spontaneously returned to the
previous state after more than 2 weeks and were not significantly
different from the scores before the training (n=10, P=0.55,
uncorrected, #(9) = 0.63, paired Student’s t-test).

The alteration in the F-value was evaluated with respect to
pain. For all three experiments, the increase in the F-value after
BMI training (AF) was compared with the increase in the VAS
scores (AVAS). The correlation coefficients between AF and
AVAS at each of the vertices were colour-coded on the
normalized brain (n=30, Pearson correlation coefficient;
Fig. 5b). Interestingly, AVAS was positively correlated with AF
on the sensorimotor cortex contralateral to the phantom hand.
That is, pain increased as the discriminability in cortical currents
representing phantom movements increased.

In contrast, the alteration in the mean cortical currents was not
significantly correlated with the alteration in pain. The z-scored
cortical currents were averaged among all trials of grasping and
opening for each patient. The increase in the mean cortical
currents after BMI training (Acurrent) was compared with the
increase in VAS scores (AVAS). No significant correlation was
found between AVAS and Acurrent for the sensorimotor cortex
(n=30, Pearson’s correlation coefficient; Fig. 5c, also see
Supplementary Fig. 6).
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Figure 5 | Alteration in pain correlates with alteration in F-values for the sensorimotor cortex. (a) The averaged differences in VAS scores (post-pre)
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(d) The averaged differences in total scores of SF-MPQ2 (post-pre) are shown with the 95% confidence interval for three experiments (n=10). The

asterisks denote significant differences (n=10, **P<0.01, uncorrected, Mann-Whitney U-test). (e) The averaged differences in subscores of the SF-MPQ2
(post-pre) are shown with the 95% confidence interval for three experiments (n=10). The asterisks denote significant differences (n=10, *P<0.05,

**P<0.01, uncorrected, Mann-Whitney U-test).

Moreover, the total scores of the SF-MPQ2 varied significantly
depending on the decoders (n =10, P=0.0077, F(2, 27) =5.86,
one-way ANOVA; Fig. 5d). These scores decreased significantly
after training with the real hand decoder compared with the
random decoder and phantom decoder (n=10, P=0.001
and 0.0034, uncorrected, respectively, Mann-Whitney U-test).
However, the alterations of scores were not significantly different
between the phantom decoder and random decoder (n=10,
P=0.59, uncorrected, Mann-Whitney U-test). Among the four
types of subscores in the SF-MPQ2, only the continuous
pain scores varied significantly among the decoders (n=10,
continuous, P=0.0033, F(2, 27) =7.12; intermittent, P=0.15,
F(2, 27) =2.07; neuropathic, P=0.090, F(2, 27) = 2.63; affective,
P=0.064, F(2, 27)=3.04, one-way ANOVA; Fig. 5e). This
score decreased significantly after training with the real hand
decoder compared with the random decoder and phantom
decoder (n=10, P=0.001 and 0.045, uncorrected, respectively,
Mann-Whitney U-test). The alterations of the continuous scores
were not significantly different between the phantom decoder and
random decoder (n=10, P=0.12, uncorrected, Mann-Whitney
U-test).

BMI training altered decoding accuracy of phantom movements.
In addition to the univariate analyses, we evaluated the alteration
in the cortical currents using the decoding method (multivariate
analysis). For all patients, we compared the accuracies for
classifying the phantom movements using the estimated currents
in the sensorimotor cortex contralateral and ipsilateral to the
phantom hand. The differences in accuracies varied significantly
among the three conditions using the currents contralateral to the
phantom hand (#=10 each, P=0.00001, F(2, 27)=17.52,
one-way ANOVA; Fig. 6a). The accuracy decreased significantly
after training with the real hand decoder compared with the
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phantom decoder and random decoder (n= 10, P=0.00004 and
0.006, Bonferroni-corrected, #(18) =7.44 and 3.59, respectively,
two-tailed Student’s t-test). Moreover, the classification accuracy
increased significantly after training with the phantom decoder
compared with the random decoder (n=10, P=0.006,
Bonferroni-corrected, #(18) = 3.60, two-tailed Student’s t-test). In
contrast, the accuracies using the currents for the sensorimotor
cortex ipsilateral to the phantom hand did not significantly
change among the three types of decoders (n =10 each, P=0.25,
F(2, 27)=1.45, one-way ANOVA; Fig. 6b). In addition, the
accuracy in classifying the intact hand movements was not
significantly changed after the BMI training with the real hand
decoder for the cortical currents of the contralateral or ipsilateral
sensorimotor cortex (n=10, P>0.05 for each, Bonferroni-
corrected, two-tailed Student’s ¢-test; Supplementary Fig. 4).

Pain changes with accuracy of classifying phantom movements.
The changes in the VAS scores were significantly correlated with
the changes in classification accuracy using the currents for the
sensorimotor cortex contralateral to the phantom hand (n =30,
R=0.66, P=0.0001, Pearson’s correlation coefficient; Fig. 6c),
but not with the changes in accuracy using the currents ipsilateral
to the phantom hand (n=30, R=0.037, P=0.76, Pearson’s
correlation coefficient; Fig. 6d). In addition, the changes in the
total SF-MPQ2 scores were significantly correlated with the
changes in accuracy using the contralateral currents (n= 30,
R=0.51, P=0.0044, Spearman’s rank correlation coefficient), but
not with accuracy using ipsilateral currents (n =30, R= —0.14,
P=0.47, Spearman’s rank correlation coefficient).

Discussion
Our data show that MEG-based BMI training to control a
neuroprosthetic hand induces significant changes in pain, and
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Figure 6 | Alterations in classification accuracies among the three experiments were correlated with alterations in pain. (a,b) The accuracies for
classifying two types of phantom movements were evaluated using the currents on the motor cortex contralateral (a) and ipsilateral (b) to the phantom
hand. Each bar shows the average difference in the accuracy with 95% confidence intervals for each experiment. The asterisks denote significant
differences (n=10, **P<0.01, Bonferroni-corrected, two-tailed Student’s t-test). (¢, d) The increase in VAS scores was significantly correlated with the
increase in the accuracy for classifying the phantom movement types using the z-scored cortical currents on the sensorimotor cortex contralateral to the
phantom hand (n=30; ¢), although the increase in VAS scores was not correlated with that for the cortex ipsilateral to the phantom hand (d).

this was directly associated with plasticity of the cortical
representation of phantom movements in the contralateral
sensorimotor cortex. Specifically, we found that the induced
changes in the motor information content (movement discrimin-
ability) of the sensorimotor cortex underlaid the effect on the
pain. Pain increased significantly in direct proportion to the
decoded information content of phantom hand movements; in
turn, subsequent training of phantom hand movements based on
the intact hand disrupted the information content of the
contralateral sensorimotor cortex and led to an improvement in
pain. These results are consistent with a probable causal
relationship between cortical sensorimotor plasticity and
phantom limb pain.

Notably, our results demonstrated that pain was not reduced
by the reconstruction of motor function; instead, it was
changed by plastic changes in the cortical representation. The
reconstruction of motor function does not necessarily reverse a
putatively maladaptive cortical representation, which was
expected from the naive hypothesis. By selecting the decoded
information to control the BMI neuroprosthesis, we induced
plasticity in the cortical information representation of phantom
hand movements (as opposed to simple topographic plasticity)
and explored the relationship with pain®C.

It is well established that cortical activity representing phantom
hand movements is preserved in the sensorimotor cortex!®1°,
However, it has remained unclear whether and how pain might
depend on altered representations within this region!!. Most
previous studies examined the topography of sensorimotor
function, for instance, showing that cortical representations
of phantom hand movements overlap the adjacent cortical
representation of mouth movements’, with a larger overlap
corresponding to greater pain. However, recent data have
contradicted this'® and are not completely consistent with other

evidence showing that greater pain is associated with higher
cortical activation representing phantom hand movements'®31,
These seemingly conflicting results have left open the question of
whether and how phantom pain might depend on the cortical
plasticity of phantom hand representations.

Our approach provides an interventional method to induce
localized changes in cortical representations and to directly and
reversibly study the relationship with pain. The MEG signals
during the offline task were decoded with accuracy comparable to
that of previous work, demonstrating the successful online
control of a robotic hand with accuracy greater than that of
chance?®. BMI training with the robotic hand was shown to
induce robust changes in cortical activity and pain according to
the type of the decoder. Cortical plasticity was demonstrated by
two different analysis approaches. Univariate analysis showed
that alterations in pain were significantly correlated with
alterations in discriminability of cortical currents between
movement types, as opposed to the mean (absolute) cortical
current magnitude. Multivariate analysis based on motor
decoding showed clear modulation of information content
pertaining to phantom hand movements, which was shown to
be strongly correlated with the modulation of pain. Notably, the
proportional relations were significant both with VAS and the
total SE-MPQ2 scores. Although the increases in total SF-MPQ2
scores were not significant after training with the phantom
decoder, the VAS presumably more sensitively captured moment-
by-moment pain than the SF-MPQ2 did. Thus, it is likely that it is
primarily the functional information content of cortical phantom
limb representations that is causally related to pain: pain increases
with the enhancement of information about phantom hand
movements.

As the patients were unaware of the experimental manipulation
in each case, it is unlikely that placebo effects were dominant.
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Other potential aspects of BMI neuroprosthetic control, such as a
nonspecific training effect or emotional pain modulation by
perceived task difficulty®32, are not likely confounders because
these were broadly equivalent across task conditions
(Supplementary Table 2). In addition, although mismatches
between expected and actual movements of the robotic hand were
different among task conditions, the mismatches did not explain
the alterations among the task conditions. The random decoder
should be the most difficult and cause the largest mismatches;
however, this did not change pain. Therefore, our results strongly
suggest that the induced plasticity on the phantom limb
representation could be the cause of the alteration in pain. It
should be noted, however, that the training with the real hand
decoder was performed as the last experiment. One limitation of
this study is that the order of three experiments was not
counterbalanced.

The estimation of cortical currents from the MEG signals and
the decoding method applied to the estimated cortical currents
revealed that the information about hand movements was
evaluated differentially in both hemispheres. The information
of the phantom hand was significantly lateralized to the
sensorimotor cortex contralateral to the affected hand. In
addition, the alteration of information due to the BMI training
was significant only in the contralateral hemisphere. Moreover,
for the same contralateral hemisphere, the information of the
hand movements was significantly different among the phantom
hand and intact hand. The information of intact hand movement
was not significantly different after training with the real hand
decoder. These results strongly suggest that the BMI training in
this study altered the information of the phantom hand
movement in the contralateral hemisphere significantly enough
to change the pain. However, a recent study suggested the that
ipsilateral hemisphere may affect the pain®?. In addition, the real
hand decoder might affect the contralateral hemisphere through
some plastic changes in the ipsilateral hemisphere. Thus, further
investigation is necessary to reveal the relationship between both
hemispheres to control the pain.

Researchers have proposed an incongruence hypothesis of
pain®* based on prediction errors between actual and predicted
somatosensory feedback estimated by an internal model in the
brain®>~37, A mismatch between the actual experience and the
predicted experience might be a causative component of chronic
pain®®. This hypothesis was proposed as a mechanism for the
noted success of mirror therapy to reduce pain (that is, by
restoring consistency between motor intention and visual input).
In our experiment, BMI training with a phantom decoder might
have increased pain by enhancing the cortical representation that
was associated with the internal model generating inconsistency
in sensorimotor functions. However, BMI training with the
real hand decoder might have dissociated the intention to move
the phantom hand and the cortical representation, resulting
in deteriorated information of phantom representation and
reducing pain.

Our results show that BMI training may be useful as a novel
interventional tool to study functional anatomy in the brain.
It induces functionally specific plastic changes in the targeted
cortex based on the information represented in the activity.
Moreover, this method can be easily applied to patients in
non-invasive, randomized and blinded studies. These features
distinguish this method from other non-invasive interventional
tools, such as transcranial direct current stimulation’* and
transcranial magnetic stimulation®. Although these modalities
change cortical activity and excitability to relieve pain*l, it is
difficult to control the information represented in the patterns of
cortical activity. Therefore, if the information of the phantom
hand is the cause of the phantom limb pain, then the simple
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application of the transcranial direct current stimulation and
transcranial magnetic stimulation might not be enough for full
recovery. However, cortical stimulations have been demonstrated
to modulate cortical activities to relieve pain®!. With this in mind,
it is potentially interesting to combine cortical stimulation and
online neural decoding®?. The novel neurofeedback of cortical
stimulation based on the neural information might reveal the
cause of phantom limb pain and allow a full recovery.

BMI neurofeedback might be a potential novel therapy for
phantom limb pain. A previous study showed that the effective
rate of mirror therapy was limited*®. Five patients in this study
had some experience with mirror therapy (Table 1), but the
treatment was effective for only one patient during the limited
period. However, we observed that appropriate BMI training
reduced pain even in these patients (Supplementary Table 3),
suggesting that it could be an alternative to mirror therapy.
Moreover, some patients in this study had also undergone
lesioning of the dorsal root entry zone (DREZotomy)** and
reported residual pain after surgery. The BMI training
significantly reduced the scores for continuous pain in the
residual pain. By combining decoding® and neurofeedback, BMI
could be applied to other chronic pain conditions.

In addition, the results clearly indicate that we should consider
pain as a potential complication when using BMIs for paralysed
patients. That is, we must consider the fact that true decoding that
increases pain creates a problem for those patients using
BMI-controlled robotic prostheses. One possible solution,
according to the incongruence hypothesis, would be BMI training
accompanied bI sensory feedback (for example, artificial-real
nerve coupling®®), which might mitigate pain by providing an
intact sensorimotor loop.

In summary, neurofeedback training using MEG-based BMI
provides a novel method to directly change the information
content of motor representations by induced plasticity in the
sensorimotor cortex. Here we showed that BMI training to
enhance phantom limb representation was associated with
increased pain, and that BMI training to deteriorate the
representation reduced pain. This suggests a direct and causative
link between sensorimotor cortical plasticity and pain in phantom
limb patients, and that BMI training may be a novel and clinically
useful treatment.

Methods

Subjects. Nine brachial plexus root avulsion (BPRA) patients and one amputee
(all males; mean age, 51.7 years; range, 38-60 years) all of whom had pain in their
phantom limb participated in this study (Table 1 and Supplementary Table 1).
We had 12 patients with pain in their phantom limb at the Department of
Neurosurgery at Osaka University Hospital from January 2012 to July 2015.
Among these patients, we selected 10 who met all of the following inclusion
criteria: (1) pain and phantom sensation in the upper limb; (2) no hand or no
sensation in the residual hand; (3) severe paresis with manual muscle testing score
0-1; and (4) normal comprehension and intellectual capacity according to the
Japanese Adult Reading Test25. The total number of patients was chosen to be
comparable to that of previous studies and was based on our preliminary results for
healthy controls trained by the same BMI prosthesis®1?. Notably, 9 of the 10 were
the same patients who also took part in our previous study?3. The study adhered to
the Declaration of Helsinki and was performed in accordance with protocols
approved by the Ethics Committee of Osaka University Clinical Trial Center
(no. 12107, UMIN000010180). All patients were informed of the purpose and
possible consequences of this study, and written informed consent was obtained.
In figures, the photo of the patient was used with the patient’s permission for
publication.

Our patient group included one amputee and nine BPRA patients with
complete avulsion of roots from C5 to Th2. According to Flor et al.?, phantom limb
pain belongs to a group of neuropathic pain syndromes that is characterized by
pain in the amputated limb or pain that follows partial or complete deafferentation.
Although the amputation and the BPRA were largely different regarding the
existence of the residual arms, we included them as phantom limb pain when the
patient met all the aforementioned criteria. Notably, the affected hands of all the
BPRA patients had no sensation and were plegic because of the complete avulsion
of their roots (as definitively confirmed through magnetic resonance imaging
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(MRI) and computed tomography with myelogram). Although some of them were
able to slightly contract the muscles in their upper arms because of intercostal
nerve transplantation, they were not aware of the contraction without observing
the arm. Moreover, without observing the physical hand, they complained of the
existence of their hand, which they felt was slightly movable in their mind, and
suffered from intractable pain in the insensible hand. These properties are the same
as those described for the phantom limb due to amputation. However, it should be
also noted that the pain after BPRA may not be precisely the same as the phantom
limb pain after amputation. Pain after BPRA is caused by several factors, as is the
pain after amputation®. In particular, the paroxysmal pain after BPRA is
hypothesized to originate from the affected spinal cord and is often relieved by
DREZotomy**. Moreover, in BPRA patients, some motor and sensory functions of
the arm partially remain. Therefore, not all pain after BPRA are necessarily
phantom limb pain. We hypothesized that a part of the pain in the insensible and
plegic hand of BPRA patient originated from the same mechanism causing a part of
the pain in the amputee, which was affected by the cortical plasticity in the
sensorimotor cortex representing the phantom hand movements. To characterize
the properties of the pain, we analysed the subscores of SE-MPQ2.

MEG recording. For the MEG recording, subjects were in the supine position
with the head centred in the gantry. A projection screen in front of the face
presented visual stimuli using a visual stimulus presentation system (Presentation;
Neurobehavioral Systems, Albany, CA, USA) and a liquid crystal projector
(LVP-HC6800; Mitsubishi Electric, Tokyo, Japan; Fig. 1a). MEG signals were
measured by a 160-channel whole-head MEG equipped with coaxial-type
gradiometers housed in a magnetically shielded room (MEGvision NEO;
Yokogawa Electric Corporation, Kanazawa, Japan).

The MEG signals were sampled at 1,000 Hz with an online low-pass filter at
200 Hz and acquired online by FPGA DAQ boards (PXI-7854R; National
Instruments, Austin, TX, USA) after passing through an optical isolation circuit.
The signals for the 84 selected channels were used for offline analysis and online
control of the prosthesis. Subjects were instructed not to move their head to avoid
motion artefacts. A cushion was placed under the intact elbows to reduce motion
artefacts.

Five head marker coils were attached to the subject’s face before beginning the
MEG recording to provide the position and orientation of MEG sensors relative to
the head. The positions of the five marker coils were measured to evaluate the
differences in the head position before and after each MEG recording. The
maximum acceptable difference was 5 mm.

We also recorded electromyograms of the face and forearm to monitor muscle
activities (Supplementary Fig. 1). Subjects were monitored by two video cameras to
confirm their arousal.

Experimental design. All patients participated in a crossover trial consisting of
three experiments on different days. Each experiment consisted of three tasks:
offline task (pre-BMI), BMI training and offline task (post-BMI; Fig. 1b). First, in
the offline task, the patients attempted to move their phantom hands or their intact
hands (grasping and opening) at the presented times'® while the MEG signals of
selected channels were recorded. The acquired MEG signals were used to construct
the decoder to control the robotic hand. Then, the subjects were instructed to
control the prosthetic hand in real time using the trained decoder.

The experiment was performed three times with different decoders. Each
experiment was performed after more than 2 weeks had passed since the previous
experiment. For the experiments with the phantom decoder and random decoder,
the order of the experiments was randomly assigned to the patients to balance
group sizes. The experimenter was not blinded to the group allocation. After two
experiments, the experiment with the real hand decoder was performed; that is, the
real hand decoder experiment was always performed last. At first, we designed the
experiments to compare the phantom decoder and random decoder according to
the naive hypothesis. The third experiment with the real hand decoder was added
to decrease the pain. We selected this study design for ethical considerations of not
increasing the patient’s pain.

At the time of enrolment in this trial, we instructed the patients to use their
brain activity to control the robotic hand; however, they were not informed of
changes in the decoders throughout the experiments.

Offline task. In the offline task, the patients were instructed to attempt to move
their phantom hand or to move their intact hand (Fig. 2b). The patients were
visually instructed regarding the movement type to perform with the Japanese
word for ‘grasp’ or ‘open.’ After the movement-type instruction, four execution
cues were given to the subject every 5.5s. The execution cue was given both visually
and aurally, and was presented 40 times for each movement type. The order of the
requested movement type was random. Before the phantom hand task, we
instructed the patients to attempt to slightly move the phantom hand once at the
cued time without moving other parts of their bodies. It should be noted that the
attempt to move the phantom hand is different from the motor imagery of the
phantom hand®”48, Before the first experiment, we explained this difference and
explicitly instructed them to attempt to move the phantom hands. For the intact

hand task, we instructed the patients to slightly move the intact hand once at the
cued time, without moving other parts of their bodies.

The subjective confidence in moving the phantom hand was different among
patients (Supplementary Table 1). Although the speed with which the phantom
hand was moved differs among patients*’, all patients in this study were able to
grasp and open the phantom hand slightly within 2.3 s, which was sufficient to
complete the instructed task before the cue for the next trial.

BMI training. During BMI training, a monitor in front of each subject showed a
picture of the prosthetic hand in real time for visual feedback (Fig. 1a). Patients
were instructed to control the prosthetic hand freely for 10 min to improve their
ability to control it by intending to grasp or open the phantom hand. At the
beginning of the training, the experimenter changed the threshold to detect the
onset. Because the optimal threshold estimated from the offline task was sometimes
lower than the estimated values of the onset detector during resting in the online
task, we changed the threshold values to not detect the onset during the resting
state in the online task, although the other parameters estimated from the offline
task were not changed?®. The selected parameters were fixed for the 10 min of
training.

Decoder to control the prosthetic hand. MATLAB R2013a (Mathworks,
Natwick, MA, USA) was adopted to calculate the decoding parameters and for
online prosthetic hand control. First, MEG signals from the 84 selected sensors in
the offline session were averaged in a 500-ms time window and converted to the
z-score using the mean and s.d. estimated from the initial 50 s of data during the
offline session. The time-averaged MEG signals were calculated for the period from
—2,000 to 1,000 ms, at 100-ms intervals according to the execution cue.

The z-scored signals in the offline session were used to train the online decoder,
which consisted of an onset detector and class decoder to control the prosthetic
hand online in the following BMI training session. The class decoder was trained at
the peak classification accuracy of the offline task. The onset detector was trained
using the time-averaged signals of 500-ms windows slid by 100 ms from — 500 to
1,000 ms, with respect to the timing of the instruction to move. The details of the
construction of the decoder are available in our previous report?’.

Here we constructed three types of online decoders depending on the data used
to train the decoder. The phantom decoder was trained by the MEG signals of the
offline task to move the phantom hand. The random decoder was trained by the
MEG signals of the same offline task with randomized types of movements.

The real hand decoder was trained by the MEG signals of the offline task to move
the intact hand.

Classification of movement types in the offline task. Classification accuracy of
the movement type was estimated by 10-fold nested cross-validation, which was
adopted so that hyperparameters for the SVM and time window were always
selected independently from the testing data set (also see our previous report®’).
To optimize the hyperparameters and the time window, training data sets were
classified by 10-fold cross-validation 10 times, and the parameters with the highest
average classification accuracy of the repeated cross-validations were selected. The
classification accuracy was calculated from the classification result of each testing
data set, which was tested by the decoder trained with the optimized
hyperparameters and time window. All decoding analyses were performed with
MATLAB R2013a using radial basis function kernel SVM.

Cortical current estimation by VBMEG. A polygonal model of the cortical
surface was constructed based on structural MRI (T1-weighted; Signa HDxt Excite
3.0 T; GE Healthcare UK Ltd, Buckinghamshire, UK) using the Freesurfer software
(Martinos Center Software)*’. To align MEG data with individual MRI data,

we scanned the three-dimensional facial surface and 50 points on the scalp

of each participant (FastSCAN Cobra; Polhemus, Colchester, VT, USA).
Three-dimensional facial surface data were superimposed on the anatomical facial
surface provided by the MRI data. The positions of five marker coils before each
recording were used to estimate cortical current with VBMEG.

VBMEG is a free software for estimating cortical currents from MEG data
(ATR Neural Information Analysis Laboratories, Kyoto, Iapan)51’52‘ VBMEG
estimated 4,004 single-current dipoles that were equidistantly distributed on and
were perpendicular to the cortical surface. An inverse filter was calculated to
estimate the cortical current of each dipole from the selected MEG sensor signals.
The hyperparameters m0 and y0 were set to 100 and 10, respectively. The inverse
filter was estimated by using MEG signals in all trials from 0 to 1's in the offline
task, with the baseline of the current variance estimated from the signals from
—1.5to —0.5s. The filter was then applied to sensor signals in each trial to
calculate cortical currents.

Code availability. The code used in this study is available by contacting the
corresponding author (T.Y.).
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Data availability. The data that support the findings of this study are available on
request from the corresponding author (T.Y.). The data are not publicly available
because they contain information that could compromise research participants’
privacy and/or consent.
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