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Thesis Summary 

 

Lysosomes are intracellular organelles that were considered for a long time to be 

simply an acidic and hydrolytically active end point of trafficking routes for 

degradation, in the last 20 years, light has been shed on their functional 

heterogeneity and striking role in signalling and nutrient homeostasis. While the 

dynamic nature and variety of lysosomal functions are now better appreciated, the 

mechanisms governing lysosomal fusion, reformation, signalling, and homeostasis 

remain to be fully elucidated, and are investigated here. 

In this study, endolysosomes which formed by fusion of late endosomes with 

lysosomes and are thought to be the predominant site of hydrolytic activity, were 

further characterised. Using live cell imaging and fluorescent labelling, the proportion 

of endolysosomes in the total pool of lysosomes was estimated using probes to their 

acidity and cathepsin activity, and their larger size compared to storage lysosomes 

was observed. The endolysosomal membrane was also shown to be marked by 

Rab7, Rab9, PI(3,5)P2 supporting the role of endolysosomes a highly active and 

dynamic principal site of hydrolase activity. 

The contributions of VAMP7 and VAMP8 to endolysosome fusion, measured by 

delivery of endocytosed cargo from late endosomes to endolysosomes, were 

analysed by CRISPR-Cas9 mediated knockout. Cells lacking VAMP7 and VAMP8 

had no effect on delivery to endolysosomes, however at EM level, they displayed 

extensive tethering between late endocytic organelles, and accumulated small 

tethered vesicles. YKT6 knockdown impeded delivery to endolysosomes in 

VAMP7+VAMP8 knockout cells, which was rescued by VAMP7 expression, 

suggesting YKT6 substituted for VAMP7 in lysosome fusion. 

Following the hypothesis that reversible dissociation of V1 and Vo sectors of the V-

ATPase may control the increase in pH of reforming storage lysosomes, cells 

expressing tagged V1G1 and Voa3 were generated. These markers of both sectors 

are present on endolysosomal membranes, and on the emerging endolysosomal 

tubules, suggesting the V1 and Vo sectors remain associated at this earliest stage of 

lysosome reformation, but these markers are still in development. 
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Two assays were developed to give a readout of, and assess lysosomal stress. 

Firstly, an assay measuring TFEB-GFP translocation to the nucleus gave a robust 

and quantifiable readout of lysosomal perturbation. Secondly, a qPCR assay was 

developed to measure lysosomal gene upregulation as a downstream reporter of 

TFEB-activating lysosomal perturbations, however this assay, despite being more 

lysosome-specific, lacked the consistency and dynamic range of the TFEB 

translocation quantification. 

In summary, lysosomes are a heterogeneous collection of organelles, which have 

been better characterised primarily according to their acidity and hydrolytic capacity. 

Additionally, more SNAREs appear to be involved in lysosome fusion in cells than 

suggested by cell free assays, and I have developed tools to trace the V-ATPase 

during reformation of lysosomes after fusion to form endolysosomes. Lastly, I have 

developed a robust, reporter for a range of lysosomal stress-inducing conditions, 

providing a broad indication of their effects on lysosomal signalling and homeostasis.  
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Chapter 1 - Introduction  
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1.1 Endocytic pathway summary 

The endocytic pathway is a trafficking route through which cells can internalise 

macromolecules from the plasma membrane. Many are subsequently sorted and 

recycled back to the cell surface. A proportion of endocytosed material, however, is 

destined for degradation to regulate certain cellular functions and provide the cell 

with nutrients. This degradation requires the lysosome, a membrane bound organelle 

discovered in the 1950s (de Duve, 2005) which contains a wide array of digestive 

enzymes and has been described as having a luminal pH between 4.6 and 5.0 

(MellmanFuchs and Helenius, 1986) permitting its digestion of a range of substrates. 

Intracellular membrane trafficking, including transport of macromolecules to 

lysosomes, generally occurs through a number of distinct and sequential processes, 

beginning with vesicle formation (reviewed in (Mellman and Warren, 2000; 

Bonifacino and Glick, 2004). Regions within a membrane can assemble protein 

coats, which deform the membrane while incorporating cargo proteins into a forming 

pit. This pit within the membrane eventually buds off, generating a cargo-laden 

coated vesicle. The coat is rapidly disassembled, allowing the vesicle to be directed 

to its destination by interactions of intracellular proteins with the vesicle’s Rab 

GTPase proteins. Rab proteins on the surface of the vesicle determine its destination 

by interacting with a number of Rab-specific effectors such as motor proteins, which 

drive long distance movement along cytoskeletal filaments using the energy from the 

hydrolysis of ATP. Rab proteins can undergo further specific interactions with tether 

proteins, which are long-reaching protein complexes bound to the target membrane, 

which link the two membranes together in close proximity. After being tethered to the 

target membrane, the vesicle can finally deliver its contents via membrane fusion 

which requires soluble N-ethylmaleimide-sensitive factor attachment protein receptor 

(SNARE) proteins. SNAREs are transmembrane proteins containing helical domains 

which, in specific combinations, are able to form trans-SNARE complexes between 

vesicle and target membranes (reviewed in (WangLi and Hong, 2017)). Trans-

SNARE complexes are formed between a single R-SNARE (named for the critical 

Arg residue in the helical domain) on the vesicle with three Q-SNAREs (Qa, Qb, and 

Qc, named for the critical Glu residue) on the target membrane. As these domains 

bind and zipper together into a four-helix bundle, the opposing membranes are 



3 
 

thought to be brought close enough to exclude water and mediate movement of 

lipids between the membranes before full membrane fusion (Figure 1.1).  

Figure 1.1 

 

 

Figure 1.1: SNARE-mediated fusion 

Diagram depicting the formation of trans-SNARE complexes between the R-

SNAREs (red) on an oncoming organelle, with the Qa, Qb, and Qc SNAREs on the 

target membrane (green, blue and purple). The trans-SNARE complexes zipper up, 

pulling the phospholipid bilayers of the organelle and target membrane close enough 

to promote membrane fusion. 
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Through a number of mechanisms, specific cargo-enriched regions of the plasma 

membrane can be invaginated and pinched off to generate endocytic vesicles which 

fuse with early endosomes. The Golgi apparatus can deliver proteins important to 

lysosomal function via this route, or through more direct routes whereby Golgi-

derived vesicles fuse with early endosomes, as is the case for many hydrolases, or 

with late endosomes, as has been demonstrated for lysosome-associated 

membrane proteins (LAMPs) (Pols et al., 2013b). In the lumen of early endosomes, 

the lower pH causes some ligands to dissociate from their receptors, which can 

cause a cessation of signalling, and frees the receptor to be recycled back to the 

plasma membrane or Golgi apparatus. Early endosomes mature into, or bud off, late 

endosomes which are generally marked by the switch from Rab5 to Rab7, lower pH, 

and fewer recycling proteins, and hence less tubulation. Proteins in the limiting 

membrane of the early endosome which are destined for degradation are marked by 

ubiquitination, which acts as a signal for their incorporation into intraluminal vesicles 

(ILVs) by the endosome sorting complexes required for transport (ESCRT). This 

gives rise to the characteristic numerous vesicles of the late endosome/multi-

vesicular body (MVB). Late endosomes deliver lysosomal proteins and degradation 

substrates to the lysosomes by transient exchanges of luminal content, or direct 

fusions resulting in a hybrid endolysosome compartment (Mullock et al., 1998) from 

which lysosomes may be reformed (Pryor et al., 2000). The overall architecture of 

the endocytic pathway is shown in Figure 1.2. 

  



5 
 

Figure 1.2 

 

 

Figure 1.2: The endocytic pathway 

Scheme showing the trafficking route of the endocytic pathway from plasma 

membrane through to endolysosomes. Also depicted is the recycling from early 

endosomes back to the membrane, and the bidirectional trafficking between the 

Golgi and early endosomes, late endosomes, or endolysosomes. 
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1.2 Clathrin-mediated endocytosis 

Endocytosis is a process by which receptor-bound or fluid phase macromolecules, 

larger solutes, lipids, and ions are internalised into the cell, providing substrates for 

lysosomal digestion, maintaining membrane homeostasis, and regulating the 

composition and function of the plasma membrane. This occurs at distinct regions of 

the plasma membrane where integral cargo proteins are accumulated by cytosolic 

proteins organised at the intracellular face of the membrane, leading to reshaping, 

invagination, and ultimately fission to release an endocytic vesicle. 

Clathrin-mediated endocytosis (CME) is the best studied and most predominant 

mechanism of endocytosis (Watts and Marsh, 1992; BitsikasCorrêa and Nichols, 

2014). Clathrin itself does not recognise cargo, so the endocytic process begins with 

the recruitment of adaptor proteins to the plasma membrane. Adaptor proteins for 

CME localise to the plasma membrane by interactions with PI(4,5)P2 and specific 

signals or motifs on cargo proteins which designate them for internalisation. Adaptor 

complex AP2 is the most abundant clathrin adaptor, recognising both YxxΦ and 

acidic di-leucine sequence motifs on the cytosol-accessible regions of cargo proteins 

(Kelly and Owen, 2011; Bonifacino and Traub, 2003), which together comprise the 

majority of internalisation signals in mammalian cells.  

Ubiquitination of proteins is a widely used internalisation signal in yeast, and is also 

present in mammalian cells, where it is not recognised by AP2, but is bound by 

Eps15, Eps15R, and epsin via their ubiquitin-interacting motifs (UIM) (Polo et al., 

2002; Barriere et al., 2006). These proteins in turn bind clathrin, inducing coated pit 

formation. Phosphorylation of the cytoplasmic domain of receptors represents 

another signal for CME, and is exemplified by the internalisation of G-Protein 

Coupled Receptors (GPCR). Ligand binding causes conformational changes which 

allow the GPCR to become phosphorylated. In this phosphorylated state, the 

receptor can be bound by its adaptors, β-arrestins 1 and 2 which in turn recruit AP2 

and clathrin (Traub and Bonifacino, 2013). However, it is not yet understood how 

these adaptors distinguish GPCRs from the range of other phosphorylated proteins 

at the cell surface. 

Cargo-bound adaptors bind clathrin subunits in the form of triskelia, each comprised 

of three heavy chains and three light chains (Edeling et al., 2006). Many clathrin 
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subunits polymerise together, forming a cage-like coat around a budding region of 

membrane where cargo proteins are then accumulated. For a long time it remained 

unclear whether pre-existing flat arrays of clathrin on membranes change shape to 

form the coated pits destined to become clathrin-coated vesicles (CCV) or if 

sequential recruitment of clathrin subunits helps drive the pit formation (Mousavi et 

al., 2004). Recent use of combined fluorescence microscopy and electron 

tomography has shown that during invagination the curvature of the clathrin coat 

increases, but the coated surface area remains nearly constant.  Moreover, clathrin 

rapidly exchanges at all stages of CME, so that coated vesicle budding involves 

bending of a dynamic preassembled clathrin coat (Avinoam et al., 2015). 

Simultaneous to the recruitment of clathrin, additional accessory proteins such as 

epsin, and the Bin/amphiphysin/Rvs (BAR) domain-containing proteins amphiphysin 

and endophilin, are recruited to, and induce the bending of, the membrane 

(PopovaDeyev and Petrenko, 2013). The clathrin lattice is thought to stabilise this 

curvature of the forming pit.  

The GTPase, dynamin, is recruited to the membrane by the Src Homology (SH3) 

domain of amphiphysin, self-assembles into rings around the neck of the forming pit, 

and along with endophilin, facilitates fission, releasing a clathrin coated vesicle 

(CCV) (SchmidMcNiven and De Camilli, 1998). Following scission of the coated 

vesicle from the membrane, clathrin needs to be released to recycle its subunits, and 

to expose the membrane proteins of the vesicle required for proper trafficking. This 

occurs when auxilin binds to assembled clathrin, and recruits Hsc70, the ATPase 

activity of which disrupts clathrin-clathrin interactions (Lemmon, 2001). 

1.3 Clathrin Independent Endocytosis 

Although CME can account for the majority of endocytosis and fluid-phase uptake in 

many cell types, macropinocytosis can make an important contribution (Buckley and 

King, 2017). Cells spontaneously construct circular or linear ruffles by locally 

coordinated membrane extensions, for which small GTPase Rac1 activation is 

necessary and sufficient. Rac1 must then be deactivated to allow ruffle collapse to 

enclose and capture extracellular fluid. Throughout the process of macropinocytic 

cup formation, levels of different phosphatidylinositol phosphates (PIP)s, primarily 

phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol-3,4,5-
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trisphosphate (PI(3,4,5)P3), are modulated however the timing of each peak is 

inconsistent between cell types. Patches of active Ras and PI(3,4,5)P3 recruit 

SCAR/WAVE proteins, which in turn activate Arp2/3 complex to drive actin 

polymerisation and membrane protrusion at the lip. Progressive PI(3,4,5)P2 

dephosphorylation is important for the closure of the protruded macropinocytic cup, 

possibly by PI(3)P-mediated K+-channel activation (Maekawa et al., 2014). 

Macropinosomes mature through condensation of their contents and receiving 

delivery of enzymes and V-ATPases, mediated by Rab5 recruitment, and later Rab5-

Rab7 exchange (reviewed in (Egami, 2016). The mechanisms of late maturation of 

macropinosomes are not well defined, but macropinosomes can acquire LAMP1 

through fusion with degradative/lysosomal compartments. The parallels between 

macropinosomes and endosomes, with the advantage of their larger dimensions, 

makes macropinosomes potential models for live cell studies of endosomal 

dynamics and function (Kerr and Teasdale, 2009). 

A proportion of Epidermal Growth Factor Receptor (EGFR) can be endocytosed in 

certain cell types via coat-free vesicles in a dynamin-dependent manner (Sorkin and 

Goh, 2009). EGFR can accumulate in caveolae, which are pits in the plasma 

membrane formed by association of proteins CAV1, 2, or 3, and cavins 1, 2, 3, or 4 

(depending on cell type) with phosphatidyl serine (PS), PI(4,5)P2, and cholesterol-

rich lipid rafts on the plasma membrane (Sigismund et al., 2005; PartonTillu and 

Collins, 2018). The lack of known caveolae-exclusive cargo makes their endocytic 

function difficult to trace, but it is generally accepted that they form endocytic 

vesicles, requiring dynamin, Src kinase, and protein kinase C (Parton and Simons, 

2007) and contain cargoes such as SV40 virions, cholera toxin B subunit (CTxB), 

and glycosylphosphatidylinositol (GPI)-linked proteins. Unlike clathrin, caveolae-

derived endocytic vesicles retain their cavin coat proteins through to fusion with early 

endosomes, from which they are recycled to the plasma membrane. Another 

endocytic route, which does not depend on clathrin or caveolin, is the clathrin-

independent carrier/GPI-enriched endocytic compartment (CLIC/GEEC), which 

shares some cargoes with caveolae, is cholesterol-dependent and seems to be 

regulated by cdc42 (Doherty and McMahon, 2009). It is hypothesised that enriched 

GPI-linked protein cargoes in the membrane may be sufficient to induce curvature 

which could then be recognised by proteins which facilitate budding and scission, 
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such as BAR-domain proteins and dynamin, releasing endocytic compartments 

destined for GEECs. 

1.4 Early Endosomes 

Endocytic, and Golgi-derived vesicles converge at the early endosome in the 

periphery of the cell, where they undergo SNARE-mediated fusion with the early 

endosome membrane to deliver their contents. Early endosomes undergo further 

homotypic fusions mediated by the SNAREs syntaxin 13, syntaxin 6, vti1a, and 

VAMP4, however these SNAREs alone do not confer specificity to this fusion (Rink 

et al., 2005; Brandhorst et al., 2006). The early endosome is a hub for the sorting 

and trafficking of internalised proteins to their appropriate destinations, be it recycling 

to the plasma membrane, delivery to the TGN, or to the lysosome (Jovic et al., 

2010). The functions and identity of the early endosome are largely determined by 

the presence of Rab5, its regulators, and its effectors on the organelle surface, 

including VPS34/p150 which functions as a PI 3-kinase (PI(3)K) to generate PI(3)P 

in the membrane (Zerial and McBride, 2001). The predominant trafficking route from 

the early endosome is recycling to the plasma membrane via tubular sorting 

endosomes (TSE) which concentrate membrane proteins by the nature of their 

surface area:volume ratio. This route is used to return receptors, such as low density 

lipoprotein (LDL) receptors (LDLR), to the cell surface after their internalisation and 

ligand dissociation due to the lower pH of the endosome, to allow for further rounds 

of ligand binding (Saftig and Klumperman, 2009). Cell surface recycling of these 

integral proteins is mediated by the similar but distinct coat protein complexes 

retromer, which can bind cytosolic domains directly or via adaptor protein sorting 

nexin-27 (SNX27) (Burd and Cullen, 2014), and retriever, which binds cargo via it’s 

adaptor, sorting nexin-17 (SNX17) (McNally et al., 2017). Both retromer and retriever 

associate with WASH complex to activate Arp2/3-dependent actin polymerisation 

and drive extrusion from the membrane. Similarly to LDL, acid hydrolases dissociate 

from the mannose-6-phosphate receptor (M6PR) after delivery from the TGN to the 

early endosome, constituting a major delivery route for lysosomal enzymes. M6PR is 

recycled via endosome-to-TGN carriers from the endosome body, requiring retromer 

subunit sorting nexin 1 (SNX1), or from the TSE where retromer subunit VPS26 

colocalises with clathrin (Seaman, 2004; Arighi et al., 2004; Carlton et al., 2004). 

Clathrin coated vesicles also appear to contribute to M6PR recycling to the TGN, as 
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AP-1 is required (Meyer et al., 2000) and depends on binding and vesicle 

incorporation by Golgi-localized, γ-ear-containing, Arf (ADP-ribosylation factor)-

binding proteins (GGAs) (Doray et al., 2002). Ubiquitination of membrane proteins 

acts as a signal for endosomal retention and eventual delivery to lysosomes. This 

can act as a regulatory mechanism to stop signalling of receptors which do not 

dissociate from their ligands in the endosomal pH, such as EGFR, or to down 

regulate the total amounts of available receptors at the cell surface. Ubiquitinated 

proteins are concentrated into a subdomain of the early endosome (Saftig and 

Klumperman, 2009), where they are sorted into intra-luminal vesicles (ILV) by the 

sequential actions of five cytosolic complexes: ESCRT-0, -I, -II, -III, and Vps4 

complex (Schmidt and Teis, 2012) as depicted in Figure 1.3. The constituent 

proteins of these complexes were first identified in yeast genetic screens for vacuole 

defects (Raymond et al., 1992) and their roles are conserved in mammalian cells. 

Multiple monoubiquitination or polyubiquitination of the cytosolic domains of 

membrane proteins is recognised as a signal for ILV incorporation. ILV formation is 

initiated by ESCRT-0, which is comprised of Vps27 and Hse1, and binds both 

ubiquitin and PI(3)P on the endosome membrane. ESCRT-0 recruits, and transfers 

cargo to ESCRT-I, a rod-like hetero-tetramer of Vps23, Vps28, Vps37, and Mvb12, 

also capable of binding ubiquitinated cargo. ESCRT-I in turn recruits and transfers 

cargo to ESCRT-II, which consists of Vps22, Vps36, and two Vps25 proteins, and is 

also able to bind ubiquitin moieties. Unlike ESCRT-0, -I, and –II, ESCRT-III is only 

transiently assembled onto the membrane and lacks any ubiquitin binding. The 

subunits of ESCRT-III are Vps2, Vps20, Vps24, and Snf7, with the homo-

oligomerisation of the latter thought to play an important role in the invagination of 

the membrane to form a cargo-laden ILV (Henne et al., 2012). Finally, Vps4 and 

cofactor Vta1 are recruited onto ESCRT-III where they employ energy from ATP 

hydrolysis to disassemble ESCRT-III subunits from the membrane, terminating ILV 

formation. In mammalian cells, the ESCRT-0 protein HRS recruits clathrin to form a 

flat lattice on endosomes.  This clathrin is necessary for ESCRT-0 dissociation thus 

regulating waves of ESCRT sub-complex recruitment and dissociation and playing 

an important role in efficient ILV formation (Wenzel et al., 2018). ESCRT-

independent mechanisms of ILV formation also exist, although the molecular details 

of these are less well described. These different mechanisms of ILV formation can 

give rise to different sizes of ILVs within MVBs and sub-populations of MVBs with 
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different functions (White et al., 2006; Woodman and Futter, 2008; EdgarEden and 

Futter, 2014). 
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1.5 Late Endosomes / Multivesicular Bodies 

Late endosomes are generated by maturation of early endosomes, by gradual 

changes of their morphology and function. Most strikingly, late endosomes tend to 

contain a much greater number of ILVs than early endosomes, indicating an 

enrichment of membrane proteins destined for degradation and coining the term 

multi-vesicular body (Woodman and Futter, 2008). Late endosomes also have a 

lower luminal pH, reside mostly in the perinuclear region of the cell, and exhibit less 

recycling of cargo to the plasma membrane, however recycling to the TGN remains 

intact (LuzioPryor and Bright, 2007). Perhaps the most discrete and significant 

change marking the maturation of an endosome is the switching of Rab5 to Rab7 on 

the membrane (Rink et al., 2005). On early endosomes, a complex of the Rab5-

GEF, Rabex-5 and Rab5-effector, Rabaptin-5, is recruited to the membrane, 

activating Rab5 and promoting further Rab5 recruitment (Lippé et al., 2001). 

Disrupting this feedback loop by removing the activating machinery or deactivating 

Rab5 directly is necessary to allow the transition to Rab7 recruitment. Evidence from 

C.elegans suggests that the Mon1-Ccz1 complex may play a central role in the Rab 

switch. Mon1-Ccz1 can bind to Rab5-GTP and PI(3)P, which may represent a 

mechanism through which the Rab conversion is coordinated to happen after 

sufficient time, maturation, and Rab5/PI(3)P accumulation on the early endosome 

membrane. The complex is able to displace Rabex-5, interrupting the Rab5 

recruitment feedback loop, recruit Rab7 to the membrane (Kinchen and 

Ravichandran, 2010; Poteryaev et al., 2010) and activate Rab7 by acting as a Rab7-

GEF (Nordmann et al., 2010). Identification of a Rab5 GAP has been complicated by 

differential targets of candidate GAPs between different studies or species. 

Additionally, ESCRT complex components have been shown to be involved in the 

Rab5-to-7 switch via activation of Rab7 (Karim et al., 2018). Once Rab7 is recruited 

and active on the now-late endosome, it can begin recruiting Rab7-specific effectors 

to establish late endosomal characteristics, such as fusion specificity for late 

endosomes or lysosomes, and recruitment of dynein-dynactin motor complexes via 

RILP (Jordens et al., 2001), for directed movement along microtubules toward 

lysosome-dense regions of the cell. The lipid environment also matures as a 

reduction of VPS34 association stops PI(3)P production. PIKfyve binds to, and 



14 
 

converts the pool of PI(3)P to PI(3,5)P2, which may be important for late endocytic 

fusion events.  

1.6 Late endosome-lysosome fusion 

Late endosomes/MVBs deliver their cargo to lysosomes by transient ‘kiss-and-run’ 

events or by full fusions with lysosomes (Bright Gratian and Luzio, 2005; Futter et al., 

1996; van Deurs et al., 1995). In order for a late endosome/MVB to be capable of 

fusion with a lysosome, it must have sufficiently matured by way of removing the 

majority of its recycling proteins and sorting its ubiquitinated cargo into ILVs 

(reviewed in (Metcalf and Isaacs, 2010)). A number of studies link subunits of the 

final ESCRT complex, ESCRT-III to MVB-lysosome fusion, where depletion or 

mutation of different ESCRT-III components lead to impeded fusion and altered 

endosomal morphology (Bache et al., 2006; Shim et al., 2006; Urwin et al., 2010). 

 Fusion of these compartments to form a hybrid endolysosome involves tethering 

and docking before fusion of the phospholipid bilayers. These fusions are highly 

specific, and this strict targeting is conferred by organelle-specific tethering 

complexes and SNARE proteins. 

 1.7.1 HOPS complex 

The HOPS (homotypic fusion and vacuole protein sorting) complex is comprised of a 

core of four subunits, VPS11, VPS16, VPS18, and VPS33, with two associated 

accessory subunits VPS39 and VPS41. The function of HOPS in mammalian cells 

has been less well studied than in yeast, however overexpression of VPS39 or 

VPS41 has been shown to cause clustering of late endosomes/lysosomes, and 

VPS18 depletion causes a dispersion of lysosomes (Poupon et al., 2003), providing 

early evidence of the function of HOPS in endosome-lysosome tethering. Indeed, the 

whole HOPS complex has been shown to be required for endosome-lysosome 

fusion (Wartosch et al., 2015). In yeast, HOPS is recruited directly to the Rab7 

orthologue Ypt7p (Hickey and Wickner, 2010), but in mammalian cells RILP (Lin et 

al., 2014; van der Kant et al., 2015) and the small GTPase Arl8b (Khatter et al., 

2015) are required for HOPS assembly on late endosomes/lysosomes. HOPS is 

closely related to the Class C core/vacuole tethering (CORVET) complex that 

functions on early endosomes and shares the four core subunits VPS11, VPS16, 

VPS18, and VPS33, with two different accessory subunits, VPS 8 and 



15 
 

BRAP1/TRAP1 (homolog of yeast Vps3) replacing VPS39 and VPS41 (Perini et al., 

2014). 

 1.7.2 SNAREs 

Once tethered together, the opposing late endosome and lysosome membranes 

must undergo trans-SNARE complex formation for fusion to occur. Cell free assays 

including antibody inhibition experiments identified the Qa-, Qb-, Qc-, and R-

SNAREs involved in late endosome-lysosome fusion in mammalian cells to be 

syntaxin7, VPS10 tail interactor 1b (Vti1b), syntaxin8, and vesicle associated 

membrane protein 7 (VAMP7) respectively (Pryor et al., 2004). The same Q-

SNAREs with VAMP8 constitute the SNARE complex for homotypic late endosome 

fusion. 

1.7.3 Calcium 

In cell-free experiments release of Ca2+ from an intra-lysosomal pool was shown to 

be required for maximum late endosome-lysosome fusion, but the mechanistic 

reason for this requirement remains unclear (Pryor et al., 2000). It is also unclear 

which Ca2+ channel(s) in the lysosome membrane is most important in release of this 

luminal Ca2+, with evidence that mucolipins (especially transient receptor potential 

mucolipin 1, also known as transient receptor potential cation channel mucolipin 

subfamily, member 1 (TRPML1) (Dong et al., 2010), two-pore channels (especially 

TPC2) (Grimm et al., 2014), a voltage-gated calcium channel (Tian et al., 2015) 

and/or the purinergic receptor, P2X4 (Cao et al., 2015), may be involved.     

1.8 Endolysosomes and lysosome reformation 

In contrast to the molecular machinery of fusion, less is known about the 

mechanism(s) by which lysosomes are re-formed from endolysosomes and 

autolysosomes. In both cases, tubulation and fission events have been suggested to 

occur. Some of these events are likely concerned with the recycling of membrane 

components e.g. SNAREs that should not be present on the re-formed lysosomes. 

However, others are necessary in the formation and scission, along their length, of 

proto-lysosomal tubules from which mature re-formed lysosomes are generated. In 

the re-formation of lysosomes from autolysosomes, the formation of protolysosomal 

tubules is regulated by mammalian target of rapamycin complex 1 (mTORC1) (Yu et 
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al., 2010; Rong et al., 2011) and their scission/vesiculation is mediated by the 

GTPase dynamin2 (Schulze et al., 2013). Currently, the best model for re-formation 

of lysosomes from autolysosomes comes from the results of experimental 

manipulations, which suggest that localized phosphoinositide generation on the 

autolysosome membrane causes the recruitment of the sorting adaptors AP-2 and 

AP-4, clathrin and the kinesin motor KIF5B to microdomains enriched in PI(4,5)P2, 

which then results in the formation and extension of protolysosomal tubules along 

microtubules (Rong et al., 2012; Du et al., 2016). One note of caution about this 

model is that much earlier experiments showed how easy it was to mis-target AP-2 

and clathrin to intracellular compartments and away from the plasma membrane, 

where their recruitment and function is well understood, simply by adding GTPγS or 

excess Ca2+ (SeamanBall and Robinson, 1993). Recently, it has been suggested 

that it is not alterations in mTORC1 activity per se that induces lysosome 

reformation, but the delivery to the autolysosome of mitochondrial DNA, which binds 

to TLR9 (toll-like receptor 9). This triggers an increase in local PI(4,5)P2 

concentration, resulting in the recruitment of AP-2 and clathrin (De Leo et al., 2016). 

Additional clues about the machinery of lysosome re-formation have come from the 

study of cells from patients with lysosomal storage diseases. These are rare, 

inherited genetic defects, in many cases causing deficiencies in specific lysosomal 

acid hydrolases, but in others resulting in defects in lysosomal membrane proteins or 

nonenzymatic soluble lysosomal proteins. Cells from such patients contain 

membrane-bound, heterogeneous storage lesions, most probably abnormal 

endolysosomes/autolysosomes, filled with different contents in different diseases 

(PlattBoland and van der Spoel, 2012). Amongst lysosomal disease-associated 

proteins implicated in lysosome re-formation are Niemann–Pick type-C2 (Goldman 

and Krise, 2010) , LYST (lysosomal trafficking regulator) (Holland et al., 2014), the 

sorting adaptor AP-5 along with its associated proteins spatacsin and spastizin (Hirst 

et al., 2015),  and also the cation channel TRPML1 (Miller et al., 2015), but 

molecular mechanisms remain elusive. In the case of TRPML1, it has been 

proposed that this channel is responsible for the release of luminal Ca2+ and earlier 

in vitro experiments had shown that luminal Ca2+ is necessary for the reformation of 

lysosomes from endolysosomes (Pryor et al., 2000). PI(3,5)P2 is an activator, and 

PI(4,5)P2 is an inhibitor of TRPML1, which suggests tight spatiotemporal control of 

the concentrations of these phosphoinositides on the lysosomal membrane if fusion 
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events and reformation events are to be properly coordinated. Depletion or 

pharmacological inhibition of PIKfyve, the enzyme synthesizing PI(3,5)P2 results in 

the formation of enlarged endocytic compartments with many characteristics of 

endolysosomes (reviewed in (Dove et al., 2009)) and small molecule activators of 

TRPML1 can reverse the enlarged endolysosomal phenotype observed when a 

protein acting as a scaffold for PIKfyve is depleted (Zou et al., 2015). The Ca2+ 

released through TRPML1 may be required for the extension and/or scission of the 

membrane bridges connecting endolysosomes to nascent lysosomes in the 

protolysosomal tubules (Miller et al., 2015). It has been argued that a good candidate 

for a Ca2+-regulated target is actin (Miller et al., 2015), the polymerisation state of 

which can also be affected by PI(4,5)P2 (SaarikangasZhao and Lappalainen, 2010). 

 

1.9 Acidification in the endosomal-lysosomal system 

Compartmentalisation of cells allows a variety of different environments to be 

maintained within them, allowing for organised domains of specialised function. One 

particularly important environmental aspect in the endocytic pathway is the 

intraluminal pH. Starting at the early endosome, of pH ~6.5, the endocytic pathway 

compartments progressively acidify, culminating in the endolysosome, at a pH 

between 4 and 5, before reformation of lysosomes of neutral pH. 

The mild acidity of the early endosome permits the dissociation of bound ligands 

from their receptors, such as LDL being released from LDLR, which can then be 

recycled to continue signalling, or hydrolases from M6PR, allowing them to be 

trafficked to the lysosome. pH may also play a role in the regulation of PI(3)P in the 

membrane, as a recent study showed acidification of the phagosome resulted in 

dissociation of the Vps34 class III phosphatidylinositol-3-kinase (PI3K) (Naufer et al., 

2018). Reduced PI(3)P production, combined with continued conversion of 

remaining of PI(3)P to phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2) by PIKfyve 

shifts the identity of the membrane more towards that of the late 

endosome/lysosome. 

Organelle pH appears to play a role in fusion, as treatment with Bafilomycin A1 

(BafA1), an inhibitor of the vacuolar H+-ATPase (V-ATPase), has been shown to 

impede homotypic vacuole fusion in yeast (UngermannWickner and Xu, 1999) as 
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well as trafficking from early endosomes to late endosomes (Clague et al., 1994; 

Baravalle et al., 2005), or from late endosomes to lysosomes (van Weert et al., 

1995), although this latter effect may be independent of V-ATPase-mediated 

acidification (Mullock et al., 1998). The effect of pH on autophagosome-lysosome 

fusion is unclear due to some conflicting evidence. A study in Drosophila showed 

BafA1 treatment to inhibit autophagosome-lysosome fusion, independent of V-

ATPase, via inhibition of the calcium channel, sarco/endoplasmic reticulum Ca2+-

ATPase (SERCA) (Mauvezin et al., 2015). A study in mammalian cells showed 

increase of pH by BafA1 and V-ATPase independent mechanisms to block 

autophagosome-lysosome fusion (Kawai et al., 2007). The variation in reported 

effects of BafA1 may result from species differences between the studies, or from 

other indirect/off target effects of BafA1 itself. The low pH of lysosomes is crucial to 

the maturation (Richo and Conner, 1994) and function of many, but not all (Butor et 

al., 1995) lysosomal enzymes responsible for degradation, and was required for the 

reformation of lysosomes from endolysosomes in a cell free system (Bright et al., 

1997). The primary driving force behind the acidification of the endosomal-lysosomal 

system is the V-ATPase complex which is discussed below. 

1.10.1 V-ATPase complex 

The V-ATPase is a large multi-subunit complex consisting of a membrane-

embedded Vo sector, responsible for translocation of protons across the membrane, 

coupled to a peripheral V1 sector which hydrolyses ATP to provide energy for the 

structural rotation necessary for proton transport (Figure 1.4). The V1 sector is 

composed of 8 different subunits, while the Vo sector is comprised of 6, with known 

stoichiometry (Marshansky and Futai, 2008). The V1 subunits are the catalytic 

subunits A and B, V1Vo-connecting central stalk subunits D and F, and stator 

subunits C, E, G, and H which keep the V1 sector stationary relative to the Vo a 

subunit while the proteolipid ring rotates. The Vo sector subunits are c, c’, and c’’ 

which comprise the hydrophobic ring in the membrane, subunit a, which plays roles 

in complex localisation and regulation, subunit d of the central stalk, and subunit e. 

Close to half of these subunits have two or three isoforms, one of which is usually 

ubiquitously expressed, while the expression of the other isoforms is tissue/cell type 

specific. The quantity of component proteins, and its central role in the acidification 

and hence degradative function of lysosomes, implicates the V-ATPase complex in a 
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number of neurodegenerative diseases (Colacurcio and Nixon, 2016). V-ATPase 

proteins may be involved in other functions independent of acidification. It has been 

proposed that trans complexes of Vo sectors play a role in forming the initial pore in 

yeast vacuole fusion, independent of any role in acidification (Peters et al., 2001; 

Bayer et al., 2003). However, this is contested by in vivo experiments in which V-

ATPase-independent vacuole acidification permitted vacuole fusion in the absence 

of V-ATPase, suggesting that acidic pH, rather than the presence of Vo, is required 

for fusion (Coonrod et al., 2013).  
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Figure 1.4 

 

Figure 1.4 Schematic of the V-ATPase complex 

Diagram of the assembled V-ATPase complex depicting its constituent subunits A, 

B, C, D, E, F, G and H of the V1 sector, and subunits a, c’, c’’, c’’’, d and e of the V0 

sector.  
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1.10.2 V-ATPase regulation 

Given the controlled and relatively discrete pH values in early endosomes, late 

endosomes, endolysosomes, and lysosomes, as well as the importance of pH in a 

number of functions, it is unsurprising that the proton pumping ability of the V-

ATPase and the organelle proton concentration can be regulated in a number of 

ways. 

Trafficking and distribution of V-ATPase complexes to membranes affects the V-

ATPase density of organelles, and thus affects acidification. The subcellular 

localisation of V-ATPases is controlled in part by the subunit composition, and in 

particular, the isoform of the Voa subunit. Different isoforms of V-ATPase subunits, 

while retaining similar kinetics and affinities to one another (Rahman et al., 2016) 

can affect the coupling efficiency, showing significant variation in proton translocation 

per unit of ATP hydrolysis (Kawasaki-NishiNishi and Forgac, 2001). A Rab7 effector, 

Rab-interacting lysosomal protein (RILP), while bound to Rab7, was shown to 

regulate the recruitment of V1G1 to late endosomes and lysosomes, supporting V-

ATPase assembly. Unbound RILP, however, induces proteasomal degradation of 

V1G1, thus downregulating acidification (De Luca et al., 2014). Another protein 

observed to bind V-ATPase and potentially regulate activity is the interferon-induced 

protein IFITM3 (interferon-inducible transmembrane protein 3), which may be 

particularly important in regulating lysosomal acidity and function following viral 

infection (Wee et al., 2012). 

Perhaps the most dramatic means by which the V-ATPase is regulated is by 

dissociation of the Vo and V1 sectors. First observed in moulting Manduca sexta 

larvae (Sumner et al., 1995), and later in glucose-deprived yeast (Kane, 1995) the 

V1 sector is released from the Vo sector which remains on the membrane. The 

cytosolic dissociated V1 sectors are auto-inhibited by the V1H subunit, preventing 

aberrant ATP hydrolysis in the cytosol (ParraKeenan and Kane, 2000) and the 

absence of ATP-hydrolysis and rotor machinery prevents the remaining Vo sector 

from pumping protons.  This dissociation is also seen in some mammalian cell types, 

for example in baby hamster kidney (BHK) cell endosomes, where the proportion of 

V1 sectors associated with Vo correlates with their acidity (Lafourcade et al., 2008). 

An example of re-association occurs during the maturation of dendritic cells, where 
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recruitment of V1 sectors onto lysosomal membranes increases the acidification 

capacity of these organelles (Trombetta et al., 2003). This dissociation/re-association 

mechanism provides a rapid mechanism for altering the rate of acidification that 

doesn’t rely directly on protein synthesis or trafficking events. 

Some evidence suggests that the local lipid environment is another means by which 

the V-ATPase is regulated. All V-ATPase subunits in BHK cell late endosomes were 

found in a detergent-resistant membrane (DRM) fraction, suggesting their 

association with lipid-raft-like membrane domains (Lafourcade et al., 2008) although 

a caveat is that not all proteins found in DRMs are necessarily in physiologically 

relevant lipid microdomains (Munro, 2003). Lafourcade et al. also observed that 

manipulated levels of cholesterol correlated with BafA1-sensitive changes in 

endosomal pH. In yeast, the Vo subunit Vph1p was shown to interact with PI(3,5)P2 

and stabilise Vo-V1 sector assembly. Additionally, transient increase of PI(3,5)P2 

levels showed increased recruitment of the N-terminal domain of Vph1p to 

intracellular membranes (Li et al., 2014). 

Whilst the reversible dissociation of the Vo and V1 sectors of the V-ATPase may be 

the most likely way of regulating V-ATPase function during the lysosome 

regeneration cycle, other possibilities include recycling of the intact V-ATPase, as 

has been proposed for the generation of neutral post-lysosome compartments in a 

slime mould (Carnell et al., 2011). 

 

1.10.3 Counter-ion conductance 

The unidirectional nature of proton pumping by the V-ATPase generates an 

electrochemical gradient across its resident membrane. The building positive charge 

resulting from proton accumulation would, in isolation, reach a threshold where the 

voltage would inhibit further proton pumping, hence limiting acidification. In the 

context of the endolysosome/lysosome, the charge inside must be dissipated to 

allow continued acidification for proper lysosomal function. This may occur by 

counter-ion movement across the membrane, either in the form of cation egress, 

anion ingress, or a combination of both, possibly represent another mode of 

regulating organelle pH. 
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Early experiments on isolated lysosomes showed an important role of Cl- ions, as 

their removal or replacement with membrane impermeant ions of similar charge 

slowed or inhibited acidification (Dell'Antone, 1979), and were unable to reverse the 

V-ATPase-mediated positive shift in membrane potential. While experiments with 

sequentially added K+ or H+-specific ionophores demonstrated the limited 

permeability of lysosomes to K+ (OhkumaMoriyama and Takano, 1982), there is 

evidence that anions also play, in part, a role in counter-ion movement. Addition of 

K+ had a measurable effect on dissipation of membrane potential of lysosomes 

loaded with voltage sensitive dye (Harikumar and Reeves, 1983), however there is 

conflicting evidence on whether K+ ion replacement affects acidity 

(OhkumaMoriyama and Takano, 1982; Van Dyke, 1993). Analysing the effects of 

counter-ions on acidification in whole cells is difficult as it requires manipulation of 

the intracellular ionic environment while maintaining the integrity of the plasma 

membrane. Through careful application of conditions to equilibrate cells with the 

external medium, and to equilibrate the lysosomes with the cytosol, counter-ion 

effects have been studied in live macrophages (Steinberg et al., 2010). These 

experiments showed little requirement for cytosolic Cl-, and a dependence on K+ for 

lysosomal acidification, but any inferences about the role of Cl- must take into 

account the imperfect cytosolic equilibration achieved. 

Provided the strong evidence from isolated lysosomes that Cl- is the central counter-

ion involved in acidification, it is a reasonable assumption that a Cl- channel or 

transporter is responsible. One such candidate is the cystic fibrosis transmembrane 

conductance regulator (CFTR) which is a well-studied Cl- channel due to its disease 

association, and its role in counter-ion conductance and acidification is hypothesised 

to be the route through which cystic fibrosis mutations lead to pathogenesis (Deriy et 

al., 2009). Evidence for CFTR’s effect on lysosomal acidification is disputed (Haggie 

and Verkman, 2009a) and neither pharmacological nor genetic inhibition of CFTR 

could significantly affect lysosomal pH in a number of cell types (Haggie and 

Verkman, 2007; Haggie and Verkman, 2009b) using more appropriate imaging 

methods and fluorophores for lysosomes (DiCiccio and Steinberg, 2011). 

The CLC family of Cl- channels and transporters contains a likely candidate for 

counter-ion transport in the lysosome-localised 2Cl-/H+ antiporter ClC-7. ClC-7 

knock-out was shown to cause osteoclast malfunction by preventing acidification of 
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the ruffled order (Kornak et al., 2001), providing the first link between ClC-7 and 

acidification. This was supported by a study of HeLa cells in which ClC-7 siRNA-

mediated knockdown reduced LysoTracker staining, indicating reduces acidity in 

lysosomes (Graves et al., 2008) however the incomplete knockdown combined with 

the suboptimal methodology lends credence to other studies which refute this effect. 

Quantitative methods to measure pH were used to show that knockout of ClC-7 or 

Ostm1, a β-subunit responsible for the lysosomal localisation and stability of ClC-7, 

had no effect on lysosomal pH (Kasper et al., 2005; Steinberg et al., 2010; Lange et 

al., 2006). The weight of evidence against the two best Cl- transporter candidates 

may indicate a more significant contribution of cation egress from lysosomes in 

counter-ion movement, perhaps from the lysosomal Ca2+ channels described in 

sections 1.7.3 and 1.12.2. 

1.11 Lysosomal signalling 

Over the past ten years it has been increasingly recognised that in addition to its role 

in degradation of macromolecules delivered through the endocytic and autophagic 

pathways, the lysosome is a multifunctional signalling hub, which integrates the cell’s 

response to nutrient status and growth factor/hormone signaling. The cytosolic 

surface of the limiting membrane of the lysosome is the site of activation of the multi-

protein complex mTORC1, which phosphorylates numerous cell growth-related 

substrates, including transcription factor EB (TFEB) (Sancak et al., 2008; Sardiello et 

al., 2009; Settembre et al., 2012; Eltschinger and Loewith, 2016; Perera and Zoncu, 

2016). Under conditions in which mTORC1 is inhibited including starvation, TFEB 

becomes dephosphorylated and translocates to the nucleus where it functions as a 

master regulator of lysosome biogenesis.  In addition, lysosomes act as an 

intracellular Ca2+ store, which can release Ca2+ into the cytosol for local effects on 

membrane fusion, lysosome reformation and pleiotropic effects within the cell 

(Morgan et al., 2011). 

1.12.1 TFEB and the CLEAR network 

Active Rag GTPases promote recruitment of the transcription factor TFEB to the 

lysosome membrane in an amino acid-dependent manner (Martina and Puertollano, 

2013). In fully fed cells, TFEB continuously cycles between lysosomes and the 

cytosol, such that when associated with the lysosome it can be phosphorylated by 
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mTORC1 at several sites, including residue S211 (Settembre et al., 2012; Vega-

Rubin-de-Celis et al., 2017). Phosphorylation at S211 promotes interaction with the 

cytosolic chaperone 14-3-3, resulting in a steady state in which the majority of TFEB 

is in the cytosol (Roczniak-Ferguson et al., 2012). Nutrient withdrawal or other 

treatments leading to lysosomal stress e.g. V-ATPase inhibition, lead to inactivation 

of mTORC1, since it is released from the lysosomal surface, thus reducing 

phosphorylation of TFEB. Nutrient withdrawal/lysosomal stress also cause the 

dephosphorylation of TFEB by the calcium-dependent phosphatase calcineurin, 

dissociation from 14-3-3 and transport into the nucleus (Figure 1.5). Activation of 

calcineurin results from the release of luminal Ca2+ from the lysosome via TRPML1 

(Medina et al., 2015). TFEB is a basic helix-loop-helix transcription factor which 

binds to a palindromic 10-bp (base pair) nucleotide motif, GTCACGTGAC, present 

(often in multiple copies) in the promoter region of many genes encoding lysosomal 

enzymes. The palindromic nucleotide motif has been named the CLEAR 

(coordinated lysosomal expression and regulation) element (Sardiello et al., 2009) 

and the extensive number of genes affected, the CLEAR network (Palmieri et al., 

2011). This network provides a system that regulates the expression, import and 

activity of lysosomal enzymes, which control the degradation of proteins, 

glycosaminoglycans, sphingolipids and glycogen, is involved in the regulation of 

autophagy, exo- and endocytosis, phagocytosis and the immune response, as well 

as regulating some non-lysosomal enzymes/proteins involved in protein degradation 

and lipid metabolism (Palmieri et al., 2011; Settembre et al., 2013). Other members 

of the members of the MiTF/TFE transcription factor family, in particular TFE3 which 

also binds CLEAR elements, are regulated in a very similar way to TFEB (reviewed 

in (Raben and Puertollano, 2016; Napolitano and Ballabio, 2016)). TFEB and TFE3 

are partially redundant in their ability to induce lysosome biogenesis in response to 

starvation and both are necessary for a maximal response. However, overall 

MiTF/TFE transcription factors appear to have limited redundancy and some specific 

functions. Their ability to heterodimerize with each other has been a complication in 

studies of their function. 

It should be noted that lysosome biogenesis is also affected by mTORC1 

independent mechanisms. Thus, protein kinase C couples activation of TFEB with 

inactivation of the transcriptional repressor ZKSCAN3 via parallel signaling cascade 

(Li et al., 2016) and an mTORC1-independent pathway mediated via PERK (protein 
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kinase RNA-like endoplasmic reticulum kinase), has been shown to regulate 

TFEB/TFE3 translocation to the nucleus in response to ER stress (Martina et al., 

2016). Recently, it has been demonstrated that AKT modulates TFEB activity by 

phosphorylation at S467 and that trehalose, an mTOR-independent autophagy 

enhancer, promotes nuclear translocation of TFEB by inhibiting AKT (Palmieri et al., 

2017). These observations are especially interesting because they have suggested 

that AKT control of TFEB activity may be a useful mTORC1-independent target for 

pharmacological treatment of neurodegenerative lysosomal storage diseases to 

stimulate cellular clearance of the storage material. 
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Figure 1.5 

 

Figure 1.5 Schematic of TFEB dynamics in the cell 

This schematic depicts the fed-cell state of TFEB undergoing phosphorylation by 

mTORC1, leading to its cytosolic sequestration by 14-3-3, compared to in lysosomal 

stress conditions, in which mTORC1 is no longer active or on the lysosomal 

membrane, and TFEB is no longer phosphorylated. TFEB dephosphorylation by 

TRPML1/MCOLN1-activated calcineurin is also depicted. 
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1.12.2 Calcium 

Mammalian, acidic lysosomes/endolysosomes contain a significant store of 

intracellular free Ca2+, measured as being ~0.5mM (ChristensenMyers and 

Swanson, 2002; Lloyd-Evans et al., 2008; Ronco et al., 2015). This is within the 

range of estimates of the steady state luminal free concentration in the ER, and is >3 

orders of magnitude higher than the cytosolic Ca2+ concentration. Thus, release of 

Ca2+ through any of the identified lysosomal channels has the potential to affect a 

range of cytosolic functions. As described above, regulated release of lysosomal 

Ca2+ is implicated in both fusion and fission events, as well as the activation of 

calcineurin to dephosphorylate TFEB and upregulate genes with CLEAR elements. 

However, the effect of releasing lysosomal Ca2+ on cytosolic Ca2+ concentration can 

be amplified by stimulation of ER Ca2+ release, facilitating its involvement in a range 

of other cellular processes including muscle contraction, neurite extension and 

differentiation (reviewed in (Morgan et al., 2011; Penny et al., 2015)). Ca2+ release 

from the endolysosomal system has also been implicated in metastasis (Nguyen et 

al., 2017) and in Ebola virus entry into host cells (Sakurai et al., 2015). Defects in 

lysosomal Ca2+ signaling and homeostasis have been suggested to play a role in 

lysosomal storage disease pathogenesis (Lloyd-Evans and Platt, 2011). One of the 

most significant developments in understanding a role for lysosomes in intracellular 

signalling came from the discovery that release of Ca2+ from acidic lysosome related 

organelles (LROs) in sea urchin eggs is stimulated by the pyridine nucleotide 

metabolite Nicotinic acid adenine dinucleotide phosphate (NAADP) (Clapper et al., 

1987). Whilst the physiological production and degradation of NAADP is not fully 

understood, it clearly functions as an intracellular second messenger in mammalian 

cells (Yamasaki et al., 2005), not just in sea urchin eggs, and a major intracellular 

target activated by NAADP is the lysosomal two pore channel TPC2 (Pitt et al., 

2010). The regulation of the release of Ca2+ through TPC2 is also be affected by 

lysosomal Ca2+ concentration and lysosomal pH. As discussed above, the acidic 

lysosomal pH is generated through the activity of the lysosomal V-ATPase, with 

charge compensation provided via unspecified cation channels, the lysosomal Cl-/H+ 

antiporter ClC-7/Ostm1 and/or alternative counter-ion pathways (Steinberg et al., 

2010). In some cell types lysosomal pH can be regulated by signaling pathways 

affecting V-ATPase trafficking or charge compensation e.g. pathways involving a cell 
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surface G protein-coupled receptor, cyclic AMP and protein kinase A (Lassen et al., 

2016; Folts et al., 2016), thus potentially also affecting lysosomal Ca2+ release. Re-

filling of lysosomal Ca2+ stores may also play a role in signaling. The lysosomal 

Ca2+/H+ exchanger CAX has been shown to play a role in cell migration during frog 

development, but does not appear to have an ortholog in placental mammals 

(Melchionda et al., 2016). In mammalian cells the ER is the primary source of Ca2+ 

for the lysosome (Garrity et al., 2016) and it has been proposed that selective 

accumulation of Ca2+ released from the ER may allow lysosomes to play a role in 

shaping cytosolic Ca2+ signals caused by release of ER Ca2+ (López-Sanjurjo et al., 

2013). The functional relationship(s) between lysosomal and ER Ca2+ stores are 

likely affected by the close physical proximity of these organelles and the formation 

of ER-lysosome contact sites (Penny et al., 2015; López-Sanjurjo et al., 2013; Ronco 

et al., 2015; Sbano et al., 2017). Membrane contact sites (MCSs) between 

intracellular organelles, especially those involving the ER, are currently the subject of 

much investigation (Gatta and Levine, 2017; Zhang and Hu, 2016; Hariri et al., 2016; 

Raffaello et al., 2016; Kilpatrick et al., 2013)), since they enable nonvesicular 

communication, for example for the transfer of cholesterol between endolysosomes 

and the ER (Du et al., 2011), as well as marking sites of organelle fission of both 

mitochondria (Friedman et al., 2011) and endosomes (Rowland et al., 2014) and 

regulating the final steps of autophagy (Wijdeven et al., 2016). In the context of 

lysosomal signaling, one especially interesting observation was the induction of 

NAADP-dependent microdomains of high Ca2+ concentration between lysosomes 

and the sarcoplasmic reticulum in response to beta-adrenoceptor activation in 

cardiac myocytes (Capel et al., 2015). 

 

1.13 Pharmacological agents and lysosomal health 

As described above, TFEB translocates to and functions in the cell nucleus to 

upregulate lysosomal and autophagic genes in response to conditions of lysosomal 

stress or dysfunction. This often occurs in cells treated with cationic amphiphilic 

drugs, including chloroquine, which accumulate in the acidic lumen of lysosomes 

(Kazmi et al., 2013; Settembre et al., 2012). Over half of all commercially available 

drugs contain at least one basic amine (Goldman et al., 2009). These basic 

amphipathic compounds can freely diffuse into acidic endolysosomal compartments 
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where they become protonated, preventing their diffusion out. The accumulation of 

weak basic drugs in the endolysosome sequesters them away from their target, 

over-distributes them in lysosome-rich tissues (DanielBickel and Honegger, 1995; 

Daniel and Wójcikowski, 1999; Kazmi et al., 2013), and is linked to the development 

of phospholipidosis; an acquired lysosomal storage disease (Shayman and Abe, 

2013). This concentration of weak basic drugs in lysosomes and its impact on 

phospholipid homeostasis represents a common side effect that must be considered 

in drug development. 
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1.14 Thesis Aims 

My overarching aim was to gain a better insight into the mechanisms and proteins 

involved in maintaining the dynamic endo-lysosomal system. 

The specific aims of the experiments described in this thesis were: 

1. To test the hypothesis that endolysosomes are the principal intracellular sites 

of acid hydrolase activity (Chapter 3): 

2. To determine the role of the R-SNAREs VAMP7 and VAMP8 in delivering 

endocytosed cargo to lysosomes in cultured cells (Chapter 4): 

3. To develop tools to study the dynamics and function of V-ATPase throughout 

the lysosome fusion/regeneration cycle (Chapter 5): 

4. To assess whether lysosomal signalling to the cell nucleus could be used to 

assess lysosomal health in cells treated with toxins, drugs, or drug precursors. 
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Chapter 2 – Materials and Methods  

  



33 
 

 

2.1 Cell culture 

HeLa M epithelial cells and Phoenix cells were cultured in Roswell Park Memorial 

Institute medium (RPMI 1640), Normal rat kidney (NRK) fibroblasts and MCF7 

human breast adenocarcinoma cells were cultured in Dulbecco’s Modified Eagle’s 

Medium (DMEM), and HEK293 cells were cultured in Minimum Essential Medium 

(MEM) GlutaMAX™. RPMI and DMEM media were supplemented with 4.5 g/l 

glucose and 2mM L-glutamine. All media was supplemented with 10% (v/v) foetal 

calf serum (FCS), 100 IU/ml penicillin, and 100µg/ml streptomycin. NRK cells 

expressing TFEB-GFP, V1G1-GFP, or V1G1-mOrange2 M163K, HeLa cells 

expressing TFEB-GFP, or V1G1-GFP, and MCF7 cells expressing TFEB-GFP were 

cultured in medium supplemented additionally with 0.5 mg/ml Geneticin (G418). 

HEK293 cells expressing TFEB-GFP were cultured in medium supplemented 

additionally with 2.0 mg/ml Geneticin (G418). NRK cells expressing Voa3-GFP, or 

Voa3-RFP were cultured in medium supplemented additionally with 0.2 mg/ml 

hygromycin B. All cells were incubated at 37ºC and 5% CO2.  

2.2 Transient transfection 

HeLa M and NRK cells were transiently transfected with plasmid DNA using 

Lipofectamine® 2000 (Invitrogen). For HeLa M cells, 4µg of DNA, or for NRK cells, 

3µg of DNA was added to 250µl Opti-MEM™ (Gibco) and incubated for 5 minutes at 

room temperature. Simultaneously, 10µl of Lipofectamine® 2000 was added to 250µl 

Opti-MEM™ and incubated for 5 minutes at room temperature. After incubation, the 

two solutions were combined in one tube, gently mixed, and incubated for 20 

minutes at room temperature. The DNA-lipid complex solution was then added 

dropwise to >80% confluent cells in 2ml of serum-free culture medium in 6 well 

plates, and the cells were incubated at 37ºC in 5% CO2 overnight. The next day, the 

media was replaced with 2ml of normal culture medium. Cells were harvested or 

processed between 24 and 36 hours post-transfection. 

2.3 Generating stable cell lines 

All stable cells lines (Table 2.1) were generated using the Phoenix cell packaging 

system (Swift et al., 2001) with either a modified pLXIN or a pBMN construct, 
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resulting in overexpression levels not far from endogenous due to the relatively weak 

promoter (Gordon et al., 2009). 

Day 1: ~5.0 x 106 Phoenix cells were seeded in a 10cm dish in 10ml antibiotic-free 

RPMI and incubated at 37ºC in 5% CO2 for 4 hours to settle. 10µg of pLXIN or 

pBMN construct plasmid DNA was added to 1.5ml Opti-MEM™ and incubated at 

room temperature. Simultaneously, 25µl of Lipofectamine® 2000 was added to 1.5ml 

Opti-MEM™ and incubated for 5 minutes at room temperature. After incubation, the 

two solutions were combined in one tube, gently mixed, and incubated for 20 

minutes at room temperature. The DNA-lipid complex solution was then added 

dropwise to the 10ml of RPMI in the dish of Phoenix cells, which were then 

incubated at 37ºC in 5% CO2 overnight. 

Day 2: The media on the Phoenix cells was replaced with 12ml antibiotic-free RPMI 

and the cells were incubated at 32ºC in 5% CO2 overnight to produce virus. 

Day 3: ~3x106 NRK or HeLa M cells were trypsinized, resuspended in normal culture 

medium, pelleted at 900rpm for 3 minutes in a swinging-bucket rotor, and the 

supernatant aspirated off. The entirety of the media from the Phoenix cells was 

passed through a 0.45µm filter to remove loose Phoenix cells, and added alongside 

12µl of 5mg/ml polybrene to the cell pellet to resuspend the cells. The cells and 

retrovirus resuspension was seeded into a T75 cell culture flask and incubated at 

37ºC in 5% CO2 overnight.  

Day 4: The media in the flask was replaced with 12ml fresh RPMI, and returned to 

incubate at 37ºC in 5% CO2 overnight.  

Day 5: The cells were trypsinized and divided equally into 4 flasks containing 12ml 

culture medium with either G418 (using pLXIN) or HygroB (using pBMN) to begin 

selection of successfully transduced cells. 

Selection medium was replaced every two days until there was no further observable 

cell death, leaving a mixed-population stable cell line. Clonal lines were generated by 

single cell fluorescence-activated cell sorting (FACS) using a Becton Dickinson Influx 

cell sorter, and the stably expressed fluorophore as a positive marker and wild type 

cells as a negative control. 
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Table 2.1 Stable cell lines 

Stable cell line generated Contruct used Cell line used 

NRK TFEB-GFP pLXIN TFEB-GFP NRK 

HeLa TFEB-GFP pLXIN TFEB-GFP HeLa 

MCF7 TFEB-GFP pLXIN TFEB-GFP MCF7 

HEK TFEB-GFP pLXIN TFEB-GFP HEK293 

NRK V1G1-GFP pLXIN V1G1-GFP NRK 

HeLa V1G1-GFP pLXIN V1G1-GFP HeLa 

NRK Voa3-GFP pBMN Voa3-GFP NRK 

NRK V1G1-TagRFP pLXIN V1G1-TagRFP NRK 

NRK Voa3-TagRFP pBMN Voa3-TagRFP NRK 

NRK Voa3-GFP V1G1-TagRFP pLXIN V1G1-TagRFP NRK Voa3-GFP 

NRK Voa3-TagRFP V1G1-GFP pBMN Voa3-TagRFP NRK V1G1-GFP 

NRK Voa3-GFP V1G1-mOrange2 
M163K 

pLXIN V1G1-
mOrange2 M163K 

NRK Voa3-GFP 

 

2.4 RNA interference 

All siRNA oligonucleotides (Table 2.2) were purchased as either ON-TARGET plus 

pools, or custom synthesised oligos from GE Healthcare Dharmacon. All siRNA had 

3’ UU modification, a 5’phosphate modification, and were made up to a final 

concentration of 50nM in siRNA buffer (Dharmacon). VPS33A SMARTpool: ON-

TARGETplus oligonucleotides were used previously (Wartosch et al., 2015). 

VAMP7, VAMP8 and YKT6 target sequences were a gift from Andrew Peden. 

2.4.1 Five-day double hit siRNA knockdown 

Day 1: 3.0 x 105 cells were seeded in a 6-well plate in 2ml normal culture medium 

and incubated at 37ºC in 5% CO2 for 4 hours to settle. 4µl of siRNA solution was 

added to 160µl Opti-MEM™ and incubated at room temperature. Simultaneously, 

10µl of Oligofectamine® (Invitrogen) was added to 20µl Opti-MEM™ and incubated 

for 5 minutes at room temperature. After incubation, the siRNA solution was added 

dropwise to the Oligofectamine® solution gently mixed, and incubated for 20 minutes 

at room temperature. The media on the settled cells was aspirated off, and a further 

800µl Opti-MEM™ was added to the siRNA-Oligofectamine® solution before applying 

directly to the cells. An additional 1ml of antibiotic-free medium was added to the 

wells before returning the cells to the incubator at 37ºC in 5% CO2 overnight. 

Day 2: The media on the cells was replaced with 2ml normal culture media before 

returning the cells to the incubator at 37ºC in 5% CO2 overnight. 
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Day 3: The cells were trypsinized, resuspended in 4ml normal culture medium, 

seeded into a 6cm dish and incubated at 37ºC in 5% CO2 for 4 hours to settle. The 

cells were then transfected exactly as on Day 1, but with 2x the volumes of siRNA, 

Oligofectamine®, Opti-MEM™, and antibiotic-free medium. 

Day 4: The media on the cells was replaced with 4ml normal culture media before 

returning the cells to the incubator at 37ºC in 5% CO2. At the end of the day, cells 

were trypsinized, resuspended in normal culture medium, and seeded into plates 

with or without coverslips for cell lysates or microscopy respectively. 

Day 5: The cells were harvested for lysates, or prepared for microscopy. 

2.4.2 Five-day single hit siRNA knockdown 

Cells were treated the same as the five-day double hit siRNA knockdown, except the 

Day 3 transfection is omitted. 

Table 2.2 siRNA oligonucleotides  

Gene Oligo type Target Sequence Accession number Dharmacon 
catalogue 
number 

VPS33A SMARTpool: 
ON-
TARGETplus 

Pool of oligos 1-4 
Sequences listed 
below 

NM_001351019 L-013339-01 

VPS33A ON-TARGET 
plus oligo 1 

GGGCGUAACC
UUCGCUGAA 

NM_001351019 J-013330-09 

VPS33A ON-TARGET 
plus oligo 2 

GAAGAAACGUC
AACCGGGA 

NM_001351019 J-013330-10 

VPS33A ON-TARGET 
plus oligo 3 

AGGAGAAUGC
GCUCGGCAA 

NM_001351019 J-013330-11 

VPS33A ON-TARGET 
plus oligo 4 

UUACCCAACUA
UACGGAAA 

NM_001351019 J-013330-12 

VAMP7 
oligo B 

Custom siRNA AACGTTCCCGA
GCCTTTAATT 

N/A N/A 

VAMP8 
oligo B 

Custom siRNA AAGCCACATCT
GAGCACTTCA 

N/A N/A 

YKT6 
oligo A 

Custom siRNA GCUCAAAGCCG
CAUACGAU 

N/A N/A 

YKT6 
oligo C 

Custom siRNA AUACCAGAACC
CACGAGAA 

N/A N/A 
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2.5 CRISPR-Cas9 knockout 

2.5.1 Cloning CRISPR-Cas9 Constructs 

Guides for CRISPR were generated by finding the target gene on the Ensembl 

genome database (Human genome assembly GRCh38.p12), searching the first 5’ 

constitutively expressed exon for appropriate guide sequences, as is targetted in 

CRISPR-Cas9 knockout screening (Shalem et al., 2014), using the Zhang lab 

CRISPR design tool (crispr.mit.edu). Guides were selected largely by the off-target-

dependent score, with preference for targets earlier in the coding sequence. 

Complementary guide oligo pairs were designed to include the selected guide 

sequence flanked by overhangs that, after oligo dimerization, resemble a BbsI 

restriction cut site. Complementary guide oligo pair duplexing reaction was set up as 

follows: 

CRISPR Guide Oligo-Pair Duplexing Reaction 

1.0µl 10X T4 DNA ligase Buffer (New England Biolabs) 

10µM Oligo 1 

10µM Oligo 2 

0.5µl T4 Polynucleotide Kinase (PNK) (New England Biolabs) 

H2O up to 10µl 

The reaction was incubated at 37ºC for 30 minutes, followed by 95ºC for 5 minutes, 

and cooled at approximately -0.5ºC/minute down to room temperature. The CRISPR-

Cas9 vector was digested at 37ºC for 3 hours as follows: 

pX330 BbsI Restriction Digest Reaction 

2µl 10X Buffer 2.1 (New England Biolabs) 

500ng pX330 vector plasmid DNA 

1µl BbsI (New England Biolabs) 

H2O up to 20µl 

The restriction digest reaction was run on a 0.8% agarose gel and BbsI-cut pX330 

was isolated from the gel (as detailed in chapter 2.8.1). The duplexed guide oligos 
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were then ligated into the BbsI-cut pX330 with complementary sticky ends at 37ºC 

for 1 hour as follows: 

pX330 Guide Oligo Duplex Ligation Reaction 

1µl 10X T4 DNA ligase buffer (New England Biolabs) 

1µl [1/200 diluted in H2O] Guide oligo duplex 

1µl BbsI-cut pX330 vector 

1µl T4 DNA ligase (New England Biolabs) 

H2O up to 10µl 

Next, 2.5µl of the ligation reaction was transformed into competent bacteria, plated 

on selection medium, colonies were picked, cultured overnight, and sequenced (as 

detailed in chapter 2.8.2). 

 

Table 2.3 CRISPR-Cas9 guide oligos 

Guide Sequence 

VAMP7_Exon2 sense 5’-CAC CGA ACA AAC TAA CGT ACT CAC A-3’ 
 

VAMP7_Exon2 antisense 5’-AAA CTG TGA GTA CGT TAG TTT GTT C-3’ 
 

VAMP8_Exon2 sense 5’-CAC CGT GGA GGA AAT GAT CGT GTG-3’ 
 

VAMP8_Exon2 antisense 5’-AAA CCA CAC GAT CAT TTC CTC CAC-3’ 
 

 

 

2.5.2 Generating CRISPR-Cas9 Knockout Cells 

HeLa M cells were transiently transfected (as described in section 2.2) with guide-

incorporated pX330 construct and pIRES-GFP-Puro selection reporter construct at a 

ratio of 5:1. 48 hours post-transfection, individual successfully transfected GFP-

positive cells were sorted by FACS into 96 well plates to grow into clonal 

populations. 



39 
 

2.6 Immunofluorescence 

2.6.1 Fixation 

Cells were grown on 13mm glass coverslips in 24-well plates to 40-60% confluency. 

The wells were rinsed with phosphate buffered saline (PBS) before fixing either in 

chilled methanol at -20ºC for 5 minutes immediately before staining, or in PBS with 

4% PFA (w/v) at room temperature for 20 minutes followed by quenching in PBS 

with 30mM glycine. 

2.6.2 Permeabilisation 

Paraformaldehyde-fixed cells were permeabilised by incubating coverslips for 5 

minutes at room temperature in either PBS with 0.1% Triton X-100 and 3% BSA, or 

in PBS with 0.05% saponin (w/v) and 3% BSA. Cells permeabilised with saponin 

maintained 0.05% saponin in every staining solution. 

2.6.3 Staining 

Methanol-fixed cells were rinsed with PBS, and incubated for 1 hour at room 

temperature with primary antibodies diluted in PBS with 3% BSA (w/v). Following 

permeabilisation, paraformaldehyde-fixed cells were incubated for 1 hour at room 

temperature with primary antibodies (Table 2.4) diluted in the same buffer used for 

permeabilisation. Primary antibody solutions were aspirated off, and the coverslips 

were washed three times in PBS for 5 minutes at room temperature. The coverslips 

were then incubated with AlexaFluor-conjugated secondary antibodies (Table 2.5) 

diluted in the same solution as the primary antibodies for 1 hour at room 

temperature. The coverslips were then washed three times in PBS for 5 minutes at 

room temperature, nuclei were stained by incubation for 10 minutes at room 

temperature in 1µg/ml Hoechst 33342 (ThermoFisher Scientific) then coverslips were 

rinsed in distilled water and mounted onto glass slides with ProLong™ Gold Antifade 

Mountant (ThermoFisher Scientific). Mountant was left to set overnight at room 

temperature then slides were stored at 4ºC in the dark. 
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Table 2.4 Primary antibodies for immunofluorescence microscopy 

Antigen Antibody 

I.D. 

Host species Source Dilution 

Human LC3 4E12 Mouse monoclonal MBL International 1:400 

Human LAMP1 H4A3 Mouse monoclonal AbCam 1:1000 

LBPA 6C4 Mouse monoclonal Merck Millipore 1:1000 

Human EEA1 C45B10 Rabbit polyclonal Cell Signalling 

Technology 

1:1000 

Human TGN46 GB2 Rabbit polyclonal Gift from George 

Banting (Bristol) 

1:400 

Human YKT6 N/A Rabbit polyclonal Gift from Andrew 

Peden (Sheffield) 

1:500 

Rat lgp120 GM10 Mouse monoclonal Gift from Ken Siddle 

(Cambridge) 

1:500 

Mouse Voa3 N/A Rabbit polyclonal Gift from Thomas 

Jentsch (Berlin) 

1:250 

 

 

Table 2.5 Secondary antibodies for immunofluorescence microscopy 

Antigen Antibody I.D. Host species Source Dilution 

Rabbit IgG Donkey anti-rabbit 

Alexa-488 

Donkey 

polyclonal 

ThermoFisher 

Scientific 

1:1000 

Rabbit IgG Donkey anti-rabbit 

Alexa-594 

Donkey 

polyclonal 

ThermoFisher 

Scientific 

1:1000 

Mouse IgG Donkey anti-

mouse Alexa-488 

Donkey 

polyclonal 

ThermoFisher 

Scientific 

1:1000 

Mouse IgG Donkey anti-

mouse Alexa-488 

Donkey 

polyclonal 

ThermoFisher 

Scientific 

1:1000 

Guinea pig IgG Goat anti-guinea 

pig Alexa-594 

Goat 

polyclonal 

ThermoFisher 

Scientific 

1:1000 
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2.7 Western blotting 

2.7.1 Generating cell lysates 

Whole cell lysates were prepared by first rinsing the cells in 6-well plates twice with 

ice cold PBS. The PBS was removed before adding 100µl of lysis buffer (50mM Tris 

pH 7.4, 50mM NaCl, 2% sodium dodecyl sulfate (SDS), 1X cOmplete™ Protease 

Inhibitor Cocktail (Roche)) to each well. Cells were then scraped off the plate, 

resuspended in the lysis buffer, and transferred to a QIAshredder (QIAGEN) column 

which was centrifuged at 16,000g for 2 minutes at room temperature. The lysate in 

the collection tube was passed through the QIAshredder column a second time at 

16,000g for 2 minutes at room temperature 

Cell lysate protein concentration was measured by Pierce BCA (bicinchoninic acid) 

assay in a 96-well plate using a standard curve of BSA dilutions (Table 2.6). 

Table 2.6 BSA standard curve 

 

Each lysate was diluted 1:20 in H2O, in triplicate wells. Every well of the protein 

standard curve and samples was incubated with 200µl Pierce BCA protein assay 

solution (BCA Protein Assay Reagent A (Thermo) with 4% CuSO4*5H2O at 50:1) for 

30 minutes at 37ºC. The plate was read at 562nm on an Anthos HT II plate reader to 

calculate the lysate protein concentration (mg/ml per well). Each cell lysate was then 

diluted 2:1 with 3X sample buffer (200mM Tris pH 6.8, 5mM EDTA 

(Ethylenediaminetetraacetic acid), 0.1% bromophenol blue, 1M sucrose, 4% SDS, 

300mM DTT (dithiothreitol) to run on self-cast gels, or 3:1 with 4X TruPAGE™ LDS 

Sample Buffer (Sigma-Aldrich) to run on TruPAGE™ Precast gels (Sigma-Aldrich). 

Diluted lysates were denatured by incubation at 95ºC for 5 minutes before gel 

loading alongside 5µl PageRuler™ Prestained Protein Ladder (26616, Thermo). 

2.7.2 SDS-PAGE 

Polyacrylamide gels were either purchased precast (TruPAGE™, Sigma-Aldrich) or 

resolving gels were made as follows (Table 2.7) 

BSA 1mg/ml (µl) 0 1 2 5 10 15 20 

H2O (µl) 20 19 18 15 10 5 0 

[BSA] (mg/ml) 0.00 0.05 0.10 0.25 0.50 0.75 1.00 
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Table 2.7 SDS-PAGE resolving gels 

Resolving gel 8% gel 10% gel 15% gel 

30% Acrylamide stock (ml) 1.6 2.0 3.0 

1.68M Tris pH 8.8 (ml) 1.5 1.5 1.5 

H2O (ml) 2.9 2.5 1.5 

20% w/v SDS (µl) 30.0 30.0 30.0 

10% w/v Ammonium persulfate (APS) (µl) 24.0 24.0 24.0 

Tetramethylethylenediamine (TEMED) (µl) 4.8 4.8 4.8 

 

The top of the gel mix was covered with 100µl isopropanol to exclude air and allow 

the gel to set. Once set, the resolving gel was rinsed to remove isopropanol and 

unpolymerised resolving gel mix before casting a stacking gel with a comb to form 

appropriate number and volume of wells as follows (Table 2.8) 

Table 2.8 SDS-PAGE stacking gels 

 

 

 

 

 

 

 

 

Once the stacking gel has set, wells were washed with running buffer to remove 

unpolymerised acrylamide, samples were loaded, and the gel run with running buffer 

(H2O with 6g/litre Trizma® base (Sigma-Aldrich), 383mM glycine, 0.1% SDS) at 

200V in a vertical electrophoresis gel tank (Sigma). 

2.7.3 Transfer 

Proteins were transferred to Immobilon®-P (Merck-Millipore) PVDF membranes for 

chemiluminescence detection, or Immobilon®-FL PVDF membranes for fluorescence 

Stacking gel 5% gel 

30% Acrylamide stock (µl) 415.0 

1M Tris pH 6.8 (µl) 175.0 

60% w/v Sucrose (µl) 625.0 

H2O (µl) 1285.0 

20% w/v SDS (µl) 12.5 

10% w/v Ammonium persulfate (APS) (µl) 25.0 

Tetramethylethylenediamine (TEMED) (µl) 2.5 
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detection. The PVDF membrane was first activated by incubating in methanol for 5 

minutes at room temperature. The PVDF membrane was then rinsed in H2O and 

briefly incubated in transfer buffer (H2O with 3g/litre Trizma® base (Sigma-

Aldrich),191.5mM glycine, 20% (v/v) methanol) before being placed on a stack of 

three pieces of filter paper and a sponge, all saturated with transfer buffer and 

flattened to remove air pockets. The protein gel was briefly washed in transfer buffer 

before being placed on top of the PVDF membrane, and flattened to remove air 

pockets and ensure complete contact with the membrane. Another transfer buffer-

saturated stack of filter paper, followed by a sponge were placed on top of the gel, 

and the whole stack was held together in a locked cassette before loading into a 

transfer tank (BioRad) with an ice pack and filled with transfer buffer. Protein transfer 

was run at 100V for 1 hour. 

2.7.4 Immunoblotting 

After the transfer was complete, the membrane was blocked in TBS-T (20mM Tris, 

pH 7.4, 0.9% NaCl, 0.1% tween 20) with 5% skimmed milk powder (w/v) for either 1 

hour at room temperature, or overnight at 4ºC. Membranes were probed for proteins 

of interest by incubating with primary antibodies (Table 2.9) diluted in 5% milk TBS-T 

overnight at 4ºC. The antibody solution was then removed, membranes washed 

three times for 10 minutes each with TBS-T, then incubated with species-appropriate 

anti-IgG secondary antibodies (Table 2.9), tagged with horse radish peroxidase 

(HRP) for chemiluminescence or fluorescent dyes for fluorescence detection, diluted 

in 5% milk TBS-T for 1 hour at room temperature, protected from light. The 

membranes were washed three times for 10 minutes each with TBS-T then rinsed in 

PBS. For blots with HRP, membranes were incubated in enhanced 

chemiluminescent (ECL) solution (ECL reagent A with ECL reagent B at 1:1) for 2 

minutes at room temperature before exposing to film initially for 1 minute, then 

developing the film. Blots with fluorescent dyes were scanned in a shallow pool of 

PBS using an Odyssey® CLx imaging system (LI-COR Biosciences). Blots were 

quantified using Image Studio software tools, with background correction based on 

the median background in regions above and below the selected band region, to 

avoid signal from adjacent lanes. 
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Table 2.9 Primary and secondary antibodies for immunoblotting 

Antigen Antibody 

I.D. 

Host species Source Dilution 

Human β -Actin A2066 Rabbit polyclonal Sigma-Aldrich 1:6000 

Human LC3 NB100-2220 Rabbit polyclonal Novus Biologicals 1:1000 

Human VAMP7 N/A Mouse monoclonal Gift from Andrew 

Peden (Sheffield) 

1:1000 

Human VAMP8 N/A Rabbit polyclonal Gift from Andrew 

Peden (Sheffield) 

1:1000 

Human YKT6 N/A Rabbit polyclonal Gift from Andrew 

Peden (Sheffield) 

1:1000 

Human SEC22b N/A Rabbit polyclonal Gift from Andrew 

Peden (Sheffield) 

1:500 

Human V1G1 16143-1-AP Rabbit polyclonal ProteinTech 1:500 

Rabbit IgG Anti-rabbit-

HRP 

Goat polyclonal Sigma-Aldrich 1:8000 

Mouse IgG Anti-mouse-

HRP 

Rabbit polyclonal Sigma-Aldrich 1:8000 

Rabbit IgG Anti-rabbit-

IRDye 680 

Goat polyclonal LI-COR 

Biosciences 

1:8000 

Mouse IgG Anti-mouse-

IRDye 800 

Goat polyclonal LI-COR 

Biosciences 

1:8000 

Rabbit IgG Anti-rabbit-

IRDye 800 

Goat polyclonal LI-COR 

Biosciences 

1:8000 

 

 

2.8 Molecular biology 

2.8.1 Cloning 

All constructs were cloned from pre-existing constructs containing the cDNA of 

interest, or from an integrated molecular analysis of genomes and their expression 

(IMAGE) clone. Primers were designed to have at least 15 base pairs 

complementary to the target cDNA before incorporating a desired restriction site, and 
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were used to incorporate modifications into, and amplify the target cDNA. PCR 

reaction was set up as follows: 

PCR Reaction 

5µl 10X Buffer for KOD Hot Start DNA Polymerase 

200µM of each deoxynucleotide triphosphate (dNTP) 

1.5mM MgSO4 

300nM Forward primer 

300nM Reverse primer 

2µl DMSO 

1µl KOD Hot Start DNA Polymerase 

10ng Plasmid DNA template 

H2O up to 50µl 

 

PCR Programme 

1. 95ºC for 2 minutes 

2. 95ºC for 20 seconds 

3. (Tm-5)ºC for 10 seconds 

4. 70ºC for  10 seconds/kilobase [<500bp product] 

  15 seconds/kilobase [500-1000bp product] 

  20 seconds/kilobase [1000-3000bp product] 

5. Go to 2. x29 

6. 70ºC for 3 minutes 

7. 4ºC indefinitely 
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PCR products were mixed with 9:1 with 10X sample buffer (0.4% Xylenol orange 

(Sigma-Aldrich), 1mM EDTA pH 8.0, 50% (v/v) glycerol) and run by gel 

electrophoresis on a gel of 0.8%, 1.0% or 1.2% agarose (Fisher Bioreagents) (w/v) in 

Tris pH 8.0, acetic acid, EDTA (TAE), alongside GeneRuler 1kb DNA ladder 

(Thermo) at 60V. DNA was extracted from gels by cutting out bands and using a 

QIAquick gel extraction kit (QIAGEN) to purify the DNA. Vectors and PCR products 

were restriction digested at 37ºC for 3 hours as follows: 

Restriction Digest Reaction 

2µl 10X NEBuffer™ or CutSmart® buffer (New England Biolabs) 

500ng DNA 

1µl Restriction enzymes (New England Biolabs) 

H2O up to 20µl 

Restriction digested vectors were run on a 1% agarose gel then purified using a 

QIAquick gel extraction kit as before. Restriction digested PCR products were 

directly purified using a QIAquick kit, taking the reaction volume as a proxy for gel 

volume. DNA concentrations were measured using a nano-drop, then ligations 

performed at room temperature for 1 hour as follows: 

Ligation reaction 

1µl 10X T4 DNA ligase buffer (New England Biolabs) 

~25ng vector DNA 

3:1 molar ratio of insert:vector DNA 

1µl T4 DNA ligase (New England Biolabs) 

H2O up to 10µl 

2.8.2 Transformation 

2.5µl of the ligation product was added to 50µl of DH5α-T1 competent E. coli cells 

and incubated on ice for 20 minutes. The competent cells were then heat shocked in 

a 42ºC water bath for 45 seconds before returning to ice for 3 minutes. 200µl super 

optimal broth with catabolite repression (SOC) was added to the cells which were 
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then incubated at 37ºC for 1 hour in a shaker. Separately, 50µl and 200µl of the cell 

suspension was plated on lysogeny broth (LB) agarose plates with the appropriate 

antibiotic (ampicillin 100µg/ml, kanamycin 40µg/ml) to select for the vector. The 

plates were incubated at 37ºC overnight, resultant colonies were picked with sterile 

20ul pipette tips and used to inoculate 5ml LB cultures with appropriate antibiotics, 

which were grown for 16 hours at 37ºC in a shaker. Overnight cultures were pelleted 

by centrifuging at 3,000g for 10 minutes, the supernatants were removed, and DNA 

isolated using a QIAprep® Spin Miniprep Kit (QIAGEN). Constructs were analysed by 

restriction digest as detailed above, and successful ligations were sequenced by 

Source BioScience. 

 

2.8.3 Mutagenesis 

Mutations were introduced into DNA using QuikChange (Agilent) site-directed 

mutagenesis PCR. Forward and reverse primers were designed to have at least 15 

base pairs complementary to the target cDNA surrounding the target sequence, and 

to include the desired mutation in between the regions of homology. The PCR 

reaction was set up as follows: 

Mutagenesis PCR Reaction 

5µl 10X PfuTurbo Buffer 

200µM of each deoxynucleotide triphosphate (dNTP) 

300nM Forward primer 

300nM Reverse primer 

50ng Plasmid DNA template 

1µl PfuTurbo DNA Polymerase OR 1µl H2O (negative control) 

H2O up to 50µl 

The reaction mix was divided equally into three tubes to reduce the risk of 

unintended mutation contamination, and run as follows: 
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Mutagenesis PCR Programme 

1. 95ºC for 45 seconds 

2. 95ºC for 45 seconds 

3. 55ºC for 60 seconds 

4. 68ºC for 60 seconds/kilobase of template  

5. Go to 2. X17 

6. 4ºC indefinitely 

After PCR, the PCR product was pooled together, and 10µl was run on a 1% 

agarose gel as detailed before. The remaining 40µl of PCR product was incubated 

with 2µl DpnI enzyme (New England Biolabs) at 37ºC for 2 hours to digest 

methylated template DNA, while leaving PCR product intact. 2µl of DpnI-digested 

PCR product was then transformed into 50µl competent bacteria as detailed before. 

2.9 Drugs, reagents, and constructs 

For amino acid and serum starvation conditions, cells were washed with PBS 3 times 

before incubation with EBSS (Sigma). For amino acid starvation cells were washed 

with PBS 3 times before incubation with amino acid-free DMEM (US Biological) 

supplemented with dialysed FBS (Gibco). For sucrose uptake, cultured cells’ 

medium was replaced with their regular culture medium further supplemented with 

sucrose to make a 30mM solution. Dextran loading was performed with 0.5mg/ml 

fluorescently conjugated dextran in solution in supplemented DMEM described in 

section 2.1. LysoTracker® Green DND-26 or Red DND-99 was made to 50nM in 

CO2-independent medium supplemented with FCS (10% v/v). Magic Red™ 

cathepsin substrates were made to 1:2600 from stock (solid dissolved in 50µl 

DMSO) in CO2-independent medium supplemented with FCS (10% v/v). Poly-L-

lysine (Sigma-Aldrich) was made to 0.1mg/ml in PBS. The following drugs were 

used: Torin1 (Tocris Bioscience), BafA1 (Alfa Aesar), CQ (Sigma-Aldrich), ML-SA1 

(Tocris Bioscience), Acetaminophen (Sigma-Aldrich), Leptomycin B (LKT 

Laboratories). 

TFEB-GFP construct in pEGFP was a gift from Andrea Ballabio (Telethon Institute of 

Genetics and Medicin, Pozzuoli, NA, Italy). TFEB-GFP was subcloned into a 
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modified version of pLXIN retroviral expression vector (Clontech, Mountain View, 

CA, USA). TFEB is attached to GFP by a linker: CCGGTCGCCACC. 

An IMAGE clone of V1G1 (accession number NM_004888) was amplified by PCR 

incorporating an AgeI site for cloning into pEGFP with the same linker as for TFEB-

GFP. V1G1-GFP was subcloned into a modified pLXIN vector. mOrange2 vector 

was purchased from Addgene. 

Table 2.10 PCR primers 

Primer Sequence Function 

V1G1 FOR ATGGCTAGTCAGTCTCAGGG PCR out V1G1 IMAGE 

clone 

V1G1 REV CTATCCATTTATGCGGTAGTT PCR out V1G1 IMAGE 

clone 

V1G1 GFP FOR ATATATGTCGACGCCACCATGGCTA

GTCAGTCTCAGGGG 

Cloning into pEGFP-N1 

V1G1 GFP REV AAATTTACCGGTCCTCCATTTATGCG

GTAGTTTTCATGG 

Cloning into pEGFP-N1 

mOr M163K quickchange 

FOR 

GAAGGGCAAGATCAAGAAGAGGCTG

AAGCTGAAGG 

M163K mutagenesis 

mOr M163K quickchange 

REV 

CCTTCAGCTTCAGCCTCTTCTTGATC

TTGCCCTTC 

M163K mutagenesis 

 

2.10 Assessing autophagy and TFEB translocation in cultured cells 

 2.10.1 Assessing LC3 accumulation 

To assess autophagy by immunofluorescence, cells were seeded on to 13mm glass 

coverslips, fixed after treatment in 4% PFA, and permeabilised in PBS with 0.1% 

Triton X-100 and 3% BSA before staining with primary LC3 antibody (MBL) followed 

by AlexaFluor488-conjugated secondary antibody and Hoechst 33342 as described 

in section 2.6.3. Images were acquired on a Zeiss LSM880 confocal microscope with 

Zeiss ZEN software. Mean LC3 fluorescence intensity from at least 10 fields (≥5 cells 

per field) for each of three independent experiments was measured using IMAGEJ 

software and normalized to cell area. 

To assess autophagy by Western blotting, cell lysates were ran on a 15% 

polyacrylamide gel before transferring to PVDF membrane, blocking, and probing 
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with primary LC3 antibody (Novus Biologicals) followed by washes and incubation 

with an IRDye-conjugated secondary antibody as described in section 2.7.4. LC3 

bands were quantified using Image Studio software to measure the signal of the 

band and subtract local background levels. The fluorescence output (arbitrary units) 

is then normalised to either β-actin band intensity or REVERT™ Total Protein Stain 

intensity. 

 2.10.2 Quantifying nuclear translocation of TFEB 

Cells stably expressing TFEB-GFP were seeded at 1x104 cells per well for fixing in 2 

days, or 3x104 cells per well for fixing the subsequent day, into glass-bottom black-

wall 96-well plates (Perkin Elmer). To promote the adhesion of HEK293 cells, plates 

were coated with 0.1 mg/ml poly-L-lysine for 1 hour, washed twice with PBS and left 

to air dry before seeding cells. After treatment conditions, cells were washed once 

with PBS, fixed in 4% PFA for 10 minutes at room temperature, incubated in 1µg/ml 

Hoechst 33342 for 10 minutes at room temperature, washed with PBS twice and 

finally imaged in PBS. To quantify nuclear translocation, I used a modified version of 

the default nuclear translocation protocol in HCS Studio software used to operate a 

Cell Insight CX7 High Content Screening microscope (Thermo). This programme 

detects cells and autofocusses using the Hoechst channel which reveals stained 

nuclei. The area of the nucleus is mapped and outlined producing an area referred to 

as Nuc (nucleus). The region just outside of Nuc, extending outward by an 

adjustable number of pixels is referred to as the Cyt (cytoplasm). The amount of 

fluorophore being detected is recorded on a pixel-by-pixel scale, giving an intensity 

value per pixel in each of the Nuc, representing the nucleus, and the Cyt, 

representing a significant portion of the cytoplasm. Nuclear translocation data is 

presented as the mean intensity of pixels in the Circ region after subtracting the 

mean intensity of pixels in the Ring region, representing the difference between 

nuclear and cytoplasmic concentrations of fluorophore in arbitrary units (A.U.). All 

data are presented as mean ± SEM of 3 experiments, each with >750 cells per 

condition. 

 

2.11 Measuring delivery of endocytosed cargo to endolysosomes/lysosomes 

To measure the extent of delivery of endocytosed cargo from endosomes to 
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endolysosomes, a content mixing assay was performed on cells, essentially as 

described by Wartosch et al., Traffic 2015. In brief this assay was based on the 

visualization and quantification of delivery of endocytosed fluorescent-labelled 

dextran to enzymatically active endolysosomal/lysosomal compartments. The latter 

were identified with Magic Red™ which is a membrane permeable substrate for the 

lysosomal acid hydrolase Cathepsin B (ImmunoChemistry Technologies) The bi‐

substituted cresyl violet groups in Magic Red™ are non‐fluorescent until they are 

cleaved at one or both arginine amide linkage sites by Cathepsin B in lysosomes. 

After cleavage mono‐ and non‐substituted cresyl violet emits red fluorescence when 

exited at 550–590nm. In the assay described below Magic Red™  cathepsin 

substrates were made to 1:2600 from stock (solid dissolved in 50l DMSO) in CO2-

independent medium with FCS (10% v/v). Cells were incubated with Magic Red™ 

substrates for a minimum of 2 minutes, to a maximum of 30 minutes to minimise 

imaging of cleaved fluorophore after trafficking to non-active compartments. Previous 

work by Nick Bright (Bright, Davis and Luzio, 2016) showed overlap of Magic Red™ 

Cathepsin-B substrate with pre-loaded dextran to not change between 2 minutes and 

2 hours Magic Red™ incubation. 

To perform the assay, cells were first seeded sparsely onto 25mm glass coverslips in 

normal growth medium and left to adhere and grow overnight at 37ºC and 5% CO2. 

The cells were loaded by incubation for 2 hours at 37ºC and 5% CO2 in DMEM with 

0.5mg/ml dextran Alexa Fluor® 488 10,000 molecular weight (MW), anionic, fixable 

(Life Technologies). The cells were then chased for 1 hour in dextran-free normal 

growth medium, rinsed in CO2-independent medium (Gibco), then the coverslips 

were mounted in a cell chamber and transferred to an incubated microscope stage. 

The cells were incubated in CO2-independent medium (Gibco) with 673nM Magic 

Red™ Cathepsin B substrate (ImmunoChemistry Technologies) for at least 2 

minutes at 37ºC and 5% CO2 in the incubated stage chamber. After this incubation 

with Magic Red™ substrate, and the cell chamber acclimatising to the incubated 

stage chamber temperature, confocal images were captured. Cells were randomly 

selected and 1-2 cells were imaged per field using a Zeiss LSM780 confocal 

microscope, with a pinhole of 1 Airy unit, and digital gain adjusted such that both 

channels were just below saturation. Three independent experiments were 

performed with 20 fields captured per condition. These images were then analysed 
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to determine the colocalisation of dextran Alexa Fluor® 488 and Magic Red™ as a 

measure of the proportion of endolysosomes to which dextran has been delivered 

from endosomes. Colocalisation was measured by Manders colocalisation 

coefficients using Zen software (ZEISS). 

 

2.12 pH clamping of cultured cells 

Ionophores nigericin and monensin were reconstituted in ethanol as 10mM stock 

solutions and stored at -20ºC. pH clamping was performed using modification of a 

previously described method (Lange et al., 2006). A pH5 clamping solution was 

prepared using 25mM sodium acetate buffer pH5, containing 5mM NaCl, 1mM 

CaCl2, 115mM KCl, 1.2mM MgSO4, 10mM glucose, 10µM nigericin and 10µM 

monensin. For fluorescence confocal microscopy, cells were incubated with the pH 5 

clamping for 5 minutes before imaging. 

2.13 Quantitative polymerase chain reaction 

To analyse changes in gene regulation at the transcript level, mRNA was isolated 

from cells, converted to cDNA by reverse transcription, then amplified using 

quantitative PCR. Gene-specific probes bind the cDNA, and upon extension of the 

polymerase up to the bound-probe, a reporter dye is cleaved and released into the 

reaction solution. Through repeated cycles, the increasing intensity of the released 

dye is measured and used to calculate the original number of mRNA transcripts. 

2.13.1 RNA isolation 

After treatment, cells were washed with PBS, aspirated, and lysed using SV RNA 

isolation kit (Promega). The cells are lysed in 175µl SV RNA Lysis Buffer, and 

transferred to a fresh tube before adding 350µl SV RNA Lysis Dilution Buffer and 

inverting 4 times. The solution was then incubated at 70ºC for no longer than 3 

minutes, and centrifuged at 14,000 x g for 10 minutes at room temperature. The 

supernatant of the lysis solution was transferred to a fresh tube, 200µl 95% ethanol 

was added, mixed, and the whole solution was transferred to a Spin Column 

Assembly which was centrifuged at 14,000 x g for 1 minute at room temperature. 

The column was then washed with 600µl SV RNA Wash Solution, and centrifuged at 

14,000 x g for 1 minute at room temperature. The column was then incubated in 50µl 

DNase Incubation mix (40µl Yellow Core Buffer, 5µl 0.09M MnCl2, and 5µl DNase I 
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enzyme) for 15 minutes at room temperature. 200µl of SV DNase Stop Solution was 

added to the column and incubated for 1 minute before centrifuging at 14,000 x g for 

1 minute. The column was washed with 600µl, and again with 250µl of SV RNA 

Wash Solution before centrifuging at 14,000 x g for 2 minutes to remove residual 

wash buffer. The RNA was eluted by adding 100µl nuclease-free water to the column 

which was placed in an elution tube and centrifuged at 14,000 x g. RNA 

concentration was determined using a NanoDrop™ Microvolume Spectrophotometer 

(Thermo Scientific) and stored at -70ºC. 

2.13.2 Reverse transcription 

All RNA samples were diluted to 50ng/µl before undergoing reverse transcription 

with a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) set up 

per reaction as follows: 

2.50µl 10X RT Buffer 

1.00µl 25X dNTP Mix (100nM) 

2.50µl 10X RT random primers 

1.25µl MultiScribe Reverse Transcriptase 

2.75µl H2O 

The 10µl reverse transcription master mix was added to 15µl RNA sample in 96-well 

TaqMan optimal plates then the wells were sealed with a thermal seal, centrifuged at 

1000 rpm for 1 minute to bring the contents to the bottom of the wells, and run on a 

Tetrad PCR thermal cycler with the following steps: 

Reverse transcription programme 

1. 25ºC for 10 minutes 

2. 37ºC for 120 minutes 

3. 85ºC for 5 minutes 

4. 4ºC indefinitely 

The resulting 30ng/µl cDNA samples are diluted down with molecular grade water to 

2ng/µl for use in TaqMan array cards, or to 6ng/µl for TaqMan custom arrays. 
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2.13.3 TaqMan real time PCR 

For TaqMan array cards, the PCR reaction mix was made by mixing 50µl of 2ng/µl 

cDNA sample, or 50µl H2O for a non-template control, with 50µl 2X TaqMan 

Universal PCR Master Mix with AmpErase® UNG. This 100µl reaction mix was 

pipetted into the fill port on the array card, and centrifuged at 1200 rpm for 2 minutes 

to distribute the PCR reaction mix to every reaction well before sealing the array 

card. For custom arrays, PCR master mix was made by combining 12.5µl 2X 

TaqMan Universal PCR Master Mix with AmpErase® UNG with 1.25µl individual 

gene assay solution and 6.25µl H2O. This 20µl master mix was added to 5µl of 

6ng/µl cDNA sample, or 5µl of H2O for a non-template control, in wells of a 96-well 

TaqMan optimal plate, and sealed with a thermal seal. Array cards and custom 

arrays were run on a QuantStudio 7 Flex Real-Time PCR System (ThermoFisher). 

2.13.4 Transcript quantification 

The amount of transcript was quantified using the standard curve-based relative 

quantification method (LarionovKrause and Miller, 2005). The number of cycles each 

reaction requires to reach a fluorescence threshold (CT), and the CT values of a 

standard curve generated by serial dilution of cDNA, are plotted as a function of 

Log10(Relative Quantity) against CT. From this plot, the CT values, the gradient, and 

the Y-intercept values were then used to normalise CT values, using the equation: 

(1^10*gradient*CT) / Y-intercept. For each experimental sample, the transcript value 

is divided by the endogenous/untreated control. All samples were measured in 

triplicate, allowing mean and SEM to be calculated, which was presented as fold 

change from the control condition in bar graphs to allow easy comparison between 

conditions. 

2.14 Confocal microscopy 

Live-cell confocal microscopy was performed with an incubated stage Zeiss LSM780 

microscope, using a x63 1.4 NA Plan Apochromat oil-immersion lens. A 488nm 

Argon laser was used to excite eGFP, a 543nm HeNe laser was used to excite 

cresyl violet, and a 633nm HeNe laser was used to excite Alexa647. Laser power 

was kept at 2% to reduce photobleaching of samples, and the detector pinhole 

diameter was adjusted to image an optical slice of 0.7-1.2µm depth. Images were 
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taken with 4x line averaging. Fixed-cell confocal microscopy was performed with a 

Zeiss LSM880 microscope using the same settings as described for the LSM780.  

2.15 Colocalisation analyses 

Colocalisation data used to estimate proportions of lysosomes which are Magic 

Red™- or LysoTracker®-positive were generated through Imaris software using its 

automated thresholding algorithm on confocal images with detectors adjusted such 

that the peak intensity in each channel was just below saturation. Pearson’s 

colocalisation coefficient gives a single-value measure of colocalisation between two 

fluorophores/channels ranging from -1 (complete separation of signals) to +1 

(complete colocalisation of signals). Manders’ overlap coefficient gives values 

representing the proportion of each channel’s signal which is overlapped by signal 

from the other channel being compared (DunnKamocka and McDonald, 2011). In the 

experiments described here, Manders’ overlap coefficient was used for estimations 

of lysosomes with or without staining, as the directionality of the overlap values 

provides useful information in these experiments with organelle-confined punctate 

signals. 

In the quantification of delivery of endocytosed cargo to endolysosomes/lysosomes, 

the extent of colocalisation of dextran Alexa Fluor 488 with Magic Red™ was 

measured by calculating Manders’ M1/M2 coefficients (Manders EMM, Verbeek FJ, 

Aten JA. Measurement of colocalization of objects in dual‐color confocal images. J 

Microsc (Oxf) 1993;169:375–382) using ZEN software (ZEISS). These data were all 

presented as fold change in the colocalisation of dextran Alexa Fluor 488 with Magic 

Red™. 

2.16 Statistics 

The statistical significance of variations between population means was determined 

using unpaired T-tests. The unpaired T-test is applicable when, and works on the 

assumption that, the data fit a normal distribution, and the compared groups have 

equal variance. The unpaired T-test was applied as independent, unrelated sets of 

samples with the same distribution are generally being compared, for example 

untreated vs knockdown cells. To assess statistical significance between treatment 

conditions in qPCR quantification, one-way Analysis of variance (ANOVA) 
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calculation was performed, with subsequent Dunnett’s multiple comparisons tests, 

comparing treatment conditions to the vehicle control. 

2.17 Cell viability assay 

To ensure conditions of lysosomal perturbation were not causing more than 20% cell 

death, after treatments of HEK293 cells in 96-well plates, an equal volume of 

PrestoBlue™ Cell Viability Reagent (ThermoFisher) was added to the medium in the 

wells containing cells, and wells without cells as a control, then incubated for 15 

minutes at 37ºC before reading absorbance at 570nm. The average reading from 

medium-only cells is subtracted as background from all wells, and the resulting 

absorbance represents cell survival, which is compared to untreated cells.  
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Chapter 3 – Endolysosomes are the principal sites of acid 

hydrolase activity   
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3.1 Introduction 

Since their discovery in the 1950s, lysosomes were largely considered to simply be 

degradative termini of the endocytic and autophagic pathways, despite the relatively 

early establishment of the morphological heterogeneity of lysosomes (reviewed in 

Holtzman, E. (1989) Lysosomes, Plenum Publishing Co., New York). It is only in the 

last 20 years that the dynamics and diverse range of functions of lysosomes have 

begun to be fully appreciated, and that they play important roles in nutrient sensing 

and signalling. The heterogeneity of lysosomes may represent the continuum of 

organelles in a lysosome regeneration cycle. In this model, late endosomes/MVBs 

deliver endocytic cargo for degradation by fusion with lysosomes (reviewed in 

(LuzioPryor and Bright, 2007)), forming late endosome-lysosome hybrid organelles, 

now called endolysosomes (Huotari and Helenius, 2011) from which lysosomes can 

be reformed. 

The dynamic nature of the relationship between lysosomes and endolysosomes in 

mammalian cells can often be demonstrated and manipulated by incubating cells 

with sucrose. This manipulation was first introduced almost 50 years ago (Cohn and 

Ehrenreich, 1969).  The sucrose is taken up by fluid phase endocytosis and, in the 

absence of any enzyme to degrade it, causes the cells to form osmotically swollen 

sucrosome compartments. Subsequent endocytosis of invertase, which degrades 

the sucrose, reverses the phenotype. Using electron microscopy (EM), it was later 

shown in NRK cells that the formation of sucrosomes can be explained by the 

swelling of compartments which can be morphologically defined as endolysosomes 

(with markers from both late endosomes and lysosomes) (Bright et al., 1997). During 

their formation over several hours, the sucrosomes continue to grow as the result of 

further fusions, resulting in a greatly reduced number of lysosomes in the cell. 

Adding invertase to the cells breaks down the sucrose, which eventually permits 

tubules to extend from the collapsing sucrosomes, leading to continued lysosome 

reformation (Bright et al., 1997). 

When I started my PhD work, the extent to which endolysosomes, or more terminal 

lysosomal compartments were involved in hydrolysis of macromolecules had not 

been established.  Clearly the differences in morphology between endolysosomes 

and lysosomes, and the selective/regulated reformation of nascent lysosomes 
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suggested that there could be differences in the functions of these related 

organelles. Earlier EM and cell-free experiments had also led to the idea that the 

organelles identified in both NRK cells and hepatocytes as dense-core lysosomes, 

with condensed contents, could be storage compartments for hydrolytic enzymes 

that are delivered to the endolysosome during fusion of lysosomes with late 

endosomes to enable the commencement of hydrolysing endocytosed 

macromolecules (LuzioBright and Pryor, 2007). The availability of synthetic, 

membrane-permeable cathepsin substrates (commercially available as Magic Red™ 

compounds), which liberate fluorescent cresyl violet that remains within acidic 

organelles upon proteolytic cleavage, allowed the development of assays to identify 

the principal sites of cathepsin activity in cultured mammalian cells. In initial 

experiments, using NRK cells in which all of the lysosomes and endolysosomes had 

been pre-loaded with fluorescent dextran (4h fluid phase uptake, followed by 20h 

chase of Oregon green-dextran, DexOG), Dr Nick Bright demonstrated that only 

some of the organelles contained active cathepsin B (Figure 3.1A and 3.1B).  

Correlative light and electron microscopy (CLEM) showed that the cathepsin-active 

organelles had heterogeneous morphology. These were subsequently, identified as 

endolysosomes and contained the pre-lysosomal endosome marker cation-

independent M6PR. CLEM also identified fluorescent dextran loaded lysosomes, 

which did not contain active cathepsin B (Figure 3.1). Subsequent immuno-EM of 

MCF7 cells, carried out by Dr Bright showed that both Magic Red™-positive 

endolysosomes and Magic Red™-negative lysosomes contain cathepsins (Bright, 

Davis and Luzio, 2016). I set out to extend these observations to test the hypothesis 

that endolysosomes are the principal sites of acid hydrolase activity in mammalian 

cells.  Data from these experiments are published in Bright et al., 2016.  
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A 

  

B 

 

Figure 3.1: Endolysosomes are the principal sites of cathepsin B catalytic 

activity in NRK cells (Images from Dr Nick Bright, (Bright, Davis and Luzio, 

2016)) 

Terminal endocytic compartments of NRK cells were loaded with DexOG for 4 

hours followed by a 20 hour chase in DexOG-free medium. 

(A) DexOG- and Magic Red™ Cathepsin B substrate (MRB)-positive organelles 

were identified by confocal microscopy then processed for transmission electron 

microscopy (TEM) to show their ultrastructure. The boxed region of the light 

microscopy (LM) image and corresponding section in the TEM shows the 
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ultrastructure of four cathepsin B-active endolysosomes. The enlargements show 

that these organelles contain multi-lamellar intralumenal membranes and electron 

dense content. Scale bars represent 5µm (light microscopy (LM)), 1µm (TEM), 

and 500nm (TEM enlargements). 

(B) An image from an adjacent confocal plane to that shown in (A) with 

enlargements and corresponding TEM image of the boxed region identifying a 

DexOG-positive, MRB-negative terminal endocytic organelle (arrowhead) 

amongst endolysosomes. The TEM image of this organelle reveals it to be a 

granular dense core lysosome. Scale bars represent 5µm (LM), 1µm (TEM), and 

200nm (TEM inset).  
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3.2 Results 

3.2.1 Endolysosomes are the principal sites of Cathepsin L catalytic 

activity and are acidic in mammalian cells 

To address the different characteristics of lysosomes and endolysosomes, NRK cells 

were first loaded with Alexa-647 Dextran (DexA) using a 4 hour pulse, 20 hour chase 

protocol, as previously described (BrightGratian and Luzio, 2005), to label all 

terminal endocytic organelles. The cells were then incubated with membrane-

permeable cathepsin L Magic Red™ substrate (MRL), which after cleavage by active 

cathepsin L, releases membrane-impermeable cresyl violet fluorophore which 

accumulates in the compartment where cathepsin L is active. Next, the cells were 

incubated with LysoTracker Green (LTG) which is a membrane-permeable 

acidotropic probe which accumulates and fluoresces in acidic compartments. Live 

cell confocal microscopy of these cells showed only a subpopulation of dextran-

loaded terminal endocytic compartments to be marked by cresyl violet and 

lysotracker, revealing a population of lysosomes which were neither acidic nor 

cathepsin L-active (Figure 3.2 A). Using the same method, distinct populations of 

dextran-loaded terminal endocytic compartments which are positive or negative for 

Magic Red™ and LysoTracker were observed in HeLa cells (Figure 3.2 B) and 

MCF7 cells (Figure 3.2 C), indicating that this is not a species- or cell line-specific 

characteristic. Together with the data from CLEM using cathepsin B Magic Red™ 

substrate (Figure 3.1), as well as immunofluorescence and immuno-EM data from Dr 

Nick Bright (Bright, Davis and Luzio, 2016),  my data were consistent with the Magic 

Red™-marked compartments being endolysosomes. Moreover, my data with LTG 

showed that these compartments, but not Magic Red-negative lysosomes, were 

acidic. My data also showed that the distinction between the hydrolytically active 

endolysosomes and hydrolytically inactive lysosomes could be shown with a 

substrate for cathepsin L, just as it had been shown initially for cathepsin B. 

To measure the proportion of dextran-loaded terminal endocytic compartments that 

are cathepsin-active and acidic endolysosomes, colocalisation of Dextran and Magic 

Red™ or LysoTracker® was analysed in confocal microscopy images using 

Pearson’s and Manders’ coefficients. Manders’ values were used to estimate the 

proportion of dextran-loaded organelles that were Magic Red™-positive 
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endolysosomes to be 67.4% ± 4.6% in NRK cells, 46.8% ± 8.7% in HeLa cells, and 

64.1% ± 3.3% in MCF7 cells (M1, Figure 3.2 D). Using the same method, the 

proportion of dextran-loaded organelles that are acidic was estimated to be 47.4% ± 

0.057% in NRK cells, 46.4% ± 0.043% in HeLa cells, and 58.8% ± 0.002% in MCF7 

cells (M1, Figure 3.2 E). The remaining proportion of dextran-loaded organelles in 

both instances may be considered to represent the proportion of reusable terminal, 

acid hydrolase-storage lysosomes.  
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Figure 3.2: Endolysosomes are the principal sites of Cathepsin L catalytic 

activity and are acidic in NRK cells 

Terminal endocytic compartments were loaded with DexA as for Figure 3.1. 

(A) Confocal fluorescence microscopy representative images of NRK cells preloaded 

with DexA, to label terminal endocytic compartments, and incubated for 2 min with 

MRL followed by addition of 50nM LTG for 5 min. Enlargements of the boxed region 

in the cell show DexA-positive terminal endocytic organelles that were negative for 

both MRL and LTG (arrowheads). Scale bars represent 5µm. 

(B) Confocal fluorescence microscopy image of a HeLa cell preloaded with DexA, 

and incubated with MRL and LTG as for (A) showing DexA-positive terminal 

endocytic organelles that were negative for both MRL and LTG (arrowheads). Scale 

bars represent 5µm. 

(C) Confocal fluorescence microscopy image of a MCF7 cell as per (B). Scale bars 

represent 5µm. 

(D) Pearson’s (R(r); gray) and Mander’s (M1, blue, DexA:MRL and M2, red, 

MRL:DexA) correlation coefficients for colocalisation of pre-loaded DexA and 2 min 

incubated MRL in NRK, HeLa and MCF7 cells. Error bars represent the mean ± SEM 

of 3 experiments. 

(E) Pearson’s (R(r); gray) and Mander’s (M1, blue, DexA:LTG and M2, green, 

LG:DexA ) correlation coefficients for colocalisation of pre-loaded DexA and 5 min 

incubated LTG in NRK, HeLa or MCF7 cells. Error bars represent the mean ± SEM 

of 3 experiments. 
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3.2.2 Further characterisation of endolysosomes 

Using Magic Red™ as a marker of endolysosomes, live-cell confocal microscopy 

was used to further characterise the compartment. Confocal slices of NRK cells pre-

loaded with fluorescent dextran and incubated with the Magic Red™ cathepsin B 

substrate were analysed using an automated spot detection programme to measure 

the areas of all visible dextran- or Magic Red™-positive organelles (Figure 3.3). 

Given that dextran-positive compartments represent the total of all endolysosomes 

and terminal lysosomes, the similarity to the size distribution of Magic Red™-positive 

endolysosomes is unsurprising. To estimate the sizes of terminal lysosomes, 

dextran-positive organelles with Magic Red™ fluorescence below 2x background 

levels were isolated (Black bars) showing a simultaneous decrease in the proportion 

of larger organelles, and increase in the proportion of smaller organelles, compared 

to endolysosomes. This difference is in agreement with Dr Bright’s qualitative TEM 

observations of the relative sizes of endolysosomes and terminal/dense core 

lysosomes (Figure 3.1, (Bright, Davis and Luzio, 2016). 

As discussed in chapter 1, Rab proteins confer identity and largely determine 

functions of organelles. HeLa cells stably expressing EGFP-tagged Rab5, Rab7, or 

Rab9 were a gift from Dr Matthew Seaman, and were incubated with MRB then 

imaged using live-cell confocal microscopy. Rab5 was distributed throughout the 

cytosol and in puncta around the periphery of the cell, seemingly separate from the 

Magic Red™-positive endolysosomes (Figure 3.4A). Rab7 and Rab9 were also 

partially cytosolic, and concentrated in puncta clustered in the perinuclear region, 

overlapping with almost all Magic Red™-positive endolysosomes. To quantify the 

observed absence of Rab5, and presence of Rab7 and Rab9 on endolysosomes, the 

colocalisation of each EGFP-tagged Rab with Magic Red™ was analysed using 

Pearson’s correlation coefficient (Figure 3.4B). Rab5 showed an almost complete 

lack of colocalisation, whereas both Rab7 and Rab9 showed a strong positive 

colocalisation with Magic Red™, indicating that the endolysosome membrane is 

marked by Rab7 and Rab9, but not Rab5, consistent with the identity of the 

endolysosome as a hybrid of late endosomes and lysosomes. 

The low abundance phosphoinositide PI(3,5)P2 is predicted to localise to yeast 

vacuoles, endosomes, and lysosomes, based on the localisation of PI(3,5)P2-

generating PIKfyve (reviewed in (HasegawaStrunk and Weisman, 2017)). PI(3,5)P2 
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plays an important role in endolysosomal trafficking through its activation of TRPML1 

(Dong et al., 2010) and the subsequent release of lysosomal Ca2+. To investigate 

whether Magic Red™-positive endolysosomes are marked by this phosphoinositide, 

NRK cells were transiently transfected with ML1Nx2-GFP, a proposed PI(3,5)P2-

specific probe, based on the cytosolic N-terminal region of TRPML1 (Li et al., 2013). 

Transfected cells were incubated with MRB before imaging, and showed almost 

complete colocalisation between ML1Nx2-GFP and MRB (Figure 3.4C). This 

suggests that all endolysosomal membranes contain PI(3,5)P2, which may be 

expected given the localisation of PIKfyve to both late endosomes and lysosomes. 

However, results obtained using this probe should be interpreted with caution given 

the reported concerns over the specificity and off rate of the probe (Hammond et al., 

2015). 

 

Figure 3.3 

 

Figure 3.3 Characterisation of endolysosome and lysosome size 

NRK cells were pre-loaded with DexA, as for figure 3.1, and incubated with MRB for 

2 minutes. Size distribution of DexA-positive MR-positive, and DexA-positive MRB-

negative organelles from 15 confocal slices containing 1927 DexA +ve spots, in NRK 

cells (single experiment).  
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Figure 3.4 

A 

 

B 
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C 

   

 

Figure 3.4: Further characterisation of endolysosomes 

(A) Confocal fluorescence microscopy representative images of HeLa cells stably 

expressing either GFP-labelled Rab5, Rab7 or Rab9 after 2 min incubation with 

MRL. Scale bar represents 10µm. 

(B) Pearson’s colocalisation analysis for colocalisation of GFP-labelled Rab5, Rab7, 

or Rab9 with MRL after 2 min incubation (single experiment, ≥17 cells). Error bars 

represent the mean ± SEM. 

(C) Confocal fluorescence microscopy representative image of NRK cells transiently 

transfected with ML1Nx2-GFP, after 2 min incubation with MRB. Scale bar 

represents 5µm.  

MRB ML1Nx2-GFP Merge 
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3.2.3 Sucrosomes are cathepsin-active endolysosomes which do not 

upregulate TFEB signalling or autophagy in NRK cells 

In NRK cells incubated with sucrose, then with MRB, it was observed that the 

swollen sucrosome compartments, which form after prolonged fluid phase uptake of 

indigestible sucrose, accumulated cresyl violet, confirming their identity as a swollen 

endolysosome with retained hydrolytic activity (Figure 3.5). 

3.2.4 The formation of sucrosomes in NRK cells does not upregulate 

autophagy or TFEB signalling in NRK cells 

To confirm that the effect of sucrosome formation on the equilibrium of 

endolysosomes and terminal lysosomes was not being affected by the autophagic 

pathway, LC3 levels were analysed by immunofluorescence. NRK cells were 

incubated with sucrose or Bafilomycin A1 (BafA1) as a positive control before 

fixation, immunostaining for LC3, and imaging by confocal microscopy (Figure 3.6A). 

The pixel intensity of LC3 staining was quantified in each condition and no change 

was measured between untreated and sucrose-incubated cells (Figure 3.6B), 

showing that sucrosome formation did not upregulate autophagy after 24 hours of 

sucrose uptake. To further ensure that the equilibrium of endolysosomes and 

terminal lysosomes was not being impacted by lysosome biogenesis signalling, NRK 

cells stably expressing TFEB-GFP were incubated with or without sucrose for 24 

hours, with or without torin1 as a positive control. These cells were then incubated 

with Magic Red™ to mark sucrosomes, and imaged by live-cell confocal microscopy, 

showing negligible translocation of TFEB to the nucleus in cells incubated with 

sucrose alone (Figure 3.7A). The degree of TFEB translocation was quantified by 

incubating NRK cells stably expressing TFEB-GFP with or without sucrose before 

imaging using an automated high-throughput widefield microscope and analysing the 

difference between nuclear and cytosolic TFEB-GFP fluorescence in each condition. 

Incubation with sucrose had no effect on the translocation of TFEB-GFP to the 

nucleus (Figure 3.7B) suggesting that sucrosome formation in NRK cells does not 

activate lysosomal signalling or upregulate lysosome biogenesis. This is not the case 

for all mammalian cells, as MCF7 cells stably expressing TFEB-GFP were treated as 

per the NRK cells in Figure 3.7A, and showed dramatic translocation of TFEB-GFP 

to the nucleus (Figure 3.8). 
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Figure 3.5 

 

Figure 3.5: Sucrosomes are swollen cathepsin-active endolysosomes in NRK 

cells 

Sucrosomes were formed in all cells by endocytosis of 30mM sucrose for 24 hours. 

Incubation of NRK cells with MRB for 2 min showed that the swollen vacuoles seen 

by differential interference contrast (DIC) microscopy were cathepsin B-active. Scale 

bar represents 10um. 
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Figure 3.6 

A 

 

B 

 

 

Figure 3.6: The formation of sucrosomes does not upregulate autophagy in 

NRK cells 

Sucrosomes were formed in all cells by endocytosis of 30mM sucrose for 24 hours. 

(A) Confocal immunofluorescence microscopy images of NRK cells using anti-LC3 

immunoreactivity as a marker of autophagosome accumulation following sucrosome 
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formation. 400nM BafA1 for 8 hr was used as a positive control for autophagosome 

accumulation. Nuclei were identified by Hoechst 33342 staining. 

(B) Quantification of mean LC3 immunofluorescence intensity in NRK cells treated 

as in (B). Error bars represent the mean ± SEM of 3 experiments. ∗∗∗p < 0.001, NS, 

not significant (Two tailed unpaired t test). 
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Figure 3.7 

A 

 

B 
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Figure 3.7: The formation of sucrosomes does not upregulate TFEB 

translocation or autophagy in NRK cells 

(A) Confocal fluorescence microscopy images of NRK cells stably expressing TFEB-

GFP which were incubated with or without 30mM sucrose for 24 hr and subsequently 

with or without 250nM Torin 1 for 90 min (used as a positive control for TFEB-GFP 

translocation to the nucleus). The cells were then incubated with MRB for 2 min prior 

to imaging to mark cathepsin B- active organelles. Scale bar represents 10um. 

(B) Quantification of the translocation of stably expressed TFEB-GFP to the nucleus 

of NRK cells which were incubated with sucrose and Torin 1 as in (A). TFEB 

translocation is presented as NucCyt difference, which is the mean pixel 

fluorescence intensity in the nuclei (Nuc) after subtracting the mean pixel intensity of 

the cytoplasm (Cyt) in a.u. Error bars represent the mean + SEM of 3 experiments. 
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Figure 3.8 

 

Figure 3.8: The formation of sucrosomes upregulates TFEB translocation in 

MCF7 cells 

Confocal fluorescence microscopy images of MCF7 cells stably expressing TFEB-

GFP, which were incubated with or without 30mM sucrose for 24 hr and 

subsequently with MRB for 2 min prior to imaging to mark cathepsin B- active 

organelles. Scale bar represents 10um 
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3.3 Discussion 

Taken together with data generated by Dr Nick Bright (Bright, Davis and Luzio, 

2016), the experiments reported in this chapter provide evidence that in mammalian 

cells endolysosomes are the principal sites of intracellular acid hydrolase activity and 

can be distinguished from acid-hydrolase-inactive terminal lysosomes, which likely 

act as a store of acid hydrolases. My experiments demonstrated that Dr Bright’s 

initial observations on NRK cells with a Magic Red™ cathepsin B substrate could be 

extended to other cell types (HeLa and MCF7) and the use of a Magic Red™ 

cathepsin L substrate.  Further, I was able to quantitate, using fluorescence light 

microscopy, the proportion of the total endolysosomal/lysosomal pool which was 

cathepsin-active endolysosomes and that which was cathepsin-inactive terminal 

lysosomes. In addition, it was observed that the cathepsin-active endolysosomes 

were LysoTracker®-positive i.e. acidic, whereas the terminal lysosomes were not.  

This was not due to lack of cathepsins, since Dr Bright showed by immuno-EM that 

in human, MCF-7 cells, for which a usable anti-cathepsin D antibody was available, 

both the endolysosomes and lysosomes contained cathepsin (Bright, Davis and 

Luzio, 2016). 

A recent study showed cresyl violet to be a lipophilic weak base capable of 

permeating membranes in its unprotonated state, and accumulating in acidic 

compartments (Ostrowski et al., 2016) Given this potent ability of cresyl violet to act 

as an acidotropic dye, the accuracy of cresyl violet accumulation as a marker of 

cathepsin activity, following treatment of cells with Magic Red™ cathepsin 

substrates, is brought into question. Following cleavage of Magic Red™ substrates, 

cresyl violet is released into the cathepsin-active compartment, but is only trapped 

within the membrane if it is in a protonated state. If a fraction of liberated cresyl violet 

could potentially evade protonation, it would be capable of diffusing out of the 

compartment it was generated in, and into other acidic compartments where it could 

accumulate as a result of protonation and trapping. This could hypothetically cause 

an under-representation of cathepsin activity in less acidic endolysosomes where 

cresyl violet is less rapidly protonated, and an over- or mis-representation of 

cathepsin activity in any sufficiently acidic compartments. Two observations made by 

Dr Bright make this unlikely (Bright, Davis and Luzio, 2016). Firstly, following 

formaldehyde fixation and incubation with antibodies in the presence of mild 
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detergent for immunofluorescence localisation of markers, the Magic Red™-positive 

compartments were still visible for 45-60min after fixation, despite the expected loss 

of pH gradients. Secondly, in live cell experiments in which endosome-lysosome 

fusions were followed by measuring the mixing of two fluorescent dextrans, the 

appearance of the cresyl violet fluorescence occurred after initial mixing and 

developed within the new endolysosomal compartment over time. It is therefore 

thought unlikely that unprotonated cresyl violet would escape in any detectable 

quantity in the experiments described and would preferentially diffuse away and 

accumulate in other acidic compartments, rather than where it was generated. 

The experiments shown in this chapter also expanded the characterization of 

endolysomes and terminal lysosomes. Using the fluorescent probes in live cells, the 

endolysosomes were measurably larger in size than terminal lysosomes, consistent 

with Dr Bright’s qualitative observations by TEM. The Magic Red™-positive 

endolysosomes were also observed to be positive for the late endosomal small 

GTPases Rab7, Rab9, but negative for the early endosomal GTPase Rab5. Use of 

the ML1Nx2 probe also showed that endolysosomes were positive for the 

phosphoinositide PI(3,5)P2. This observation was consistent with the same probe 

being previously reported to identify a rapid increase in the concentration of 

PI(3,5)P2 on the membranes of LAMP1-positive compartments immediately before 

they fuse (Li et al., 2013). However, it should be noted that the specificity of this 

PI(3,5)P2 probe has been questioned, because its subcellular localisation is largely 

unchanged following pharmacological or genetic interventions blocking PI(3,5)P2 

synthesis (Hammond et al., 2015). 

Although it has been known for over 30 years that lysosomes exhibit a wide range of 

pH (Yamashiro and Maxfield, 1987; Butor et al., 1995), it wasn’t until recently that 

Johnson et al., (2016) showed that less acidic lysosomes are preferentially 

distributed closer to the cell periphery. The subcellular localization of lysosomes is 

determined by the balance between the small GTPases Rab7 and Arl8 which 

interact with kinesin and dynein microtubule motors via different effectors (Jordens et 

al., 2001; Rosa-Ferreira and Munro, 2011; Pu et al., 2015; Guardia et al., 2016; 

Fujiwara et al., 2016), as well as an ER-located ubiquitin ligase system that 

contributes to their immobilisation in the perinuclear region (Jongsma et al., 2016). 

Johnson et al. (2016) showed that if cells were experimentally manipulated to drive 
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more lysosomes to the periphery, there was a reduction in their acidity. Conversely, 

if lysosomes were driven towards the microtubule organising centre/nucleus, there 

was an increase in acidity. Whereas Johnson et al (2016) concluded that lysosome 

position within the cell determines acidity, my work together the experiments of Dr 

Bright suggests that it is the stage of the lysosome fusion/regeneration cycle that is 

important, but the different conclusions are not incompatible. Thus, more acidic 

endolysosomes are likely to be closer to the microtubule organising centre/nucleus 

and less acidic, reusable terminal lysosomes, more peripheral. Johnson et al. (2016) 

also provided evidence that the reduced acidity of some lysosomes is due to an 

increased passive (leak) permeability to protons together with reduced V-ATPase 

activity (a subject discussed further in Chapter 5). 

A further important observation from my experiments was that sucrosomes formed in 

NRK cells, which had previously been shown to be endolysosomes (i.e hybrid 

organelles formed as a result of late endosome-lysosome fusion;(Bright et al., 

1997)), were Magic Red™-positive. This provides further evidence that 

endolysosomes rather than terminal lysosomes are acid hydrolase-active. An 

interesting feature of these experiments was that the sucrose treatment of NRK cells 

necessary to form sucrosomes appeared to have no effect on autophagy or the 

translocation of TFEB to the nucleus. Others have previously reported that sucrose 

treatment of mouse embryonic fibroblasts stimulates autophagy in a time- and 

sucrose concentration-dependent manner, causing an accumulation of 

autophagosomes (HiguchiNishikawa and Inoue, 2015). In HeLa cells sucrose 

treatment has been shown to cause nuclear translocation of TFEB (Sardiello et al., 

2009), just as I showed in MCF7 cells. At present, the molecular mechanisms 

underlying these differences in the effects of sucrose treatment on different cell types 

are unknown.  

The data shown in this chapter, together with the additional data presented and 

discussed in Bright et al., 2016 have led me, together with my colleagues Professor 

Luzio (my supervisor) and Dr Bright to propose the lysosome regeneration cycle 

shown in Figure 3.9.  In this cycle, what we call terminal, re-usable, acid hydrolase-

storage lysosomes fuse with late endosomes to form endolysosomes, which become 

more acidic and in which acidic hydrolysis of endocytosed macromolecules 

commences. Further fusions of both late endosomes and lysosomes with the 
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endolysosomes can occur (BrightGratian and Luzio, 2005). Terminal, re-usable, 

storage lysosomes can then be re-formed from endolysosomes. This likely occurs 

via tubulation, loss of endosomal markers, recycling of SNARE proteins and 

condensation of content. It clearly involves loss of luminal acidity. The re-formation 

process is a maturation process and it is likely that macromolecule digestion 

continues as the pH increases. Indeed, lysosomal enzymes that are more active at 

less acidic pH, such as some enzymes involved in oligosaccharide degradation 

(Butor et al., 1995), are predicted to be more effective as the pH rises during 

lysosome re-formation. 

Figure 3.9 

 

Figure 3.9 The lysosome regeneration cycle 

Schematic showing the fusion of terminal storage lysosomes with late endosomes to 

form endolysosomes, which can undergo further fusions with late endosomes and 

with terminal storage, or undergo tubulation and content condensation in the process 

of reforming terminal storage lysosomes. The pink to red colour gradient represents 

the change from endosomal to endolysosomal (∼5) pH, and gray regions represent 

electron-dense matter. 
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Chapter 4 – The mechanism of endosome-lysosome fusion 

in cultured mammalian cells   
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4.1 Introduction 

Delivery of endocytosed macromolecules and cargo destined for degradation 

through the endosomal system to lysosomes requires kiss-and-run or full fusion 

events to occur between late endosomes and lysosomes, as discussed in Chapter 1. 

The fusion between late endosomes and lysosomes requires the sequential steps of 

tethering, trans-SNARE complex formation, and the merging of the opposing 

phospholipid bilayers. The SNAREs Vti1b, Syntaxin7, Syntaxin8 with either VAMP8 

or VAMP7 were shown to be required for homotypic late endosome fusion or late 

endosome-lysosome fusion respectively by antibody inhibition studies (Antonin et al., 

2000; Ward et al., 2000; Pryor et al., 2004). Despite these data, knockout mice 

lacking VAMP7 or VAMP8 show no significant defects in their endosomal/lysosomal 

systems (Wang et al., 2004; Sato et al., 2011; Danglot et al., 2012). This negligible 

effect of VAMP7 depletion is mirrored in cultured cells where siRNA-mediated 

knockdown of VAMP7 does not affect delivery of endocytosed cargo to lysosomes 

(Pols et al., 2013a). The differences between the cell-free and whole cell studies 

may indicate that an alternative R-SNARE is compensating for the lack of VAMP7. 

Indeed, it has been reported that concomitant knockdown of both VAMP7 and 

VAMP8 impedes delivery of endocytosed cargo suggesting that there may be some 

functional redundancy between VAMP7 and VAMP8. Another SNARE that may 

potentially compensate for depletion of VAMP7 is YKT6, which like VAMP7, is a 

longin domain-containing R-SNARE. YKT6 is a promiscuous SNARE, localising to a 

number of intracellular compartments due to its lipid anchor-mediated membrane 

attachment rather than proteinaceous transmembrane domain. YKT6 has been 

shown to play a role in a number of different fusion events in yeast including vacuole 

homotypic fusion, in which Ykt6p can replace the VAMP7-orthologue Nyv1. 

(Thorngren et al., 2004). Recently, the R-SNARE YKT6 has also been shown to be 

involved in autophagosome-lysosome fusion in human cultured cells (Matsui et al., 

2018) and fruit fly cells (Takáts et al., 2018) where it replaces VAMP7/VAMP8 in the 

trans SNARE complex. Together, these data suggest that the current understanding 

of the roles of R-SNAREs in late endocytic pathway fusions is incomplete.  
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4.2 Results 

4.2.1 Knockout of R-SNAREs VAMP7 and VAMP8 in HeLaM cells 

Given the viability and only minor defects in VAMP7 or VAMP8 knockout mice, HeLa 

cells were knocked out for VAMP7 or VAMP8 using CRISPR-Cas9 technology for 

analysis of the effects of full depletion rather than siRNA mediated knockdown which 

can leave functional residual amounts of SNAREs as observed for endosome fusion 

(Bethani et al., 2009). Using guide RNAs targeted to the first protein encoding exons 

of each sequence, the VAMP7 and VAMP8 were knocked out of HeLa cells, clonal 

lines were selected, and protein expression was analysed by Western blot (Figure 

4.1A). The genotypes of VAMP7-knockout clone 2 and VAMP8-knockout clone A 

were determined by sequencing, and all allele variations are shown compared to the 

wild type gene (Figure 4.1B). VAMP7-knockout clone 2 cells contain either an 11-

base or 25-base deletion, while VAMP8-knockout clone A cells contain only a single 

base insertion.  
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Figure 4.1 
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Figure 4.1: Knockouts of VAMP7 and VAMP8 in HeLa cells 

(A) HeLa cells were co-transfected with the SpCas9 and guide RNA-containing 

plasmid and a GFP reporter plasmid in a 1:5 ratio. After 48 hours, single cells of 

successful transfectants were sorted by FACS for clonal populations. Six clonal lines 

of VAMP7 or VAMP8 knockout cells were analysed by Western blot to confirm 

knockout of protein expression. Cell lysates were run on a 15% polyacrylamide SDS 

gel, and transferred to PVDF membrane before immunoblotting with antibodies to 

VAMP7 and VAMP8. Anti-β-actin antibody was used to assess the levels of protein 

loading of each clonal line. 
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(B) The genomic region targeted by guide RNAs to human VAMP7 and VAMP8, 

aligned with the mutations introduced by CRISPR-Cas9 in the clonal lines used for 

further experiments. Genomic DNA was isolated from cells, amplified by PCR, and 

TA cloned into pCR2.1 vector before Sanger sequencing. 
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4.2.2 The effect of VAMP7 or VAMP8 depletion on endolysosome 

dynamics 

To address the relative impacts of VAMP7 or VAMP8 depletion on the integrity of the 

endolysosomal system, particularly the balance of lysosomes and endolysosomes, 

the proportions of dextran pre-loaded lysosomes containing LysoTracker Green or 

Magic Red™ Cathepsin B were analysed. Colocalisation of dextran and LysoTracker 

or Magic Red™ was analysed in confocal microscopy images using Manders’ 

coefficient. Neither VAMP7 knockout nor VAMP8 knockout had a significant effect on 

the proportion of lysosomes that were marked with either LysoTracker or Magic 

Red™ (Figure 4.2A). As a measure of late endosome-lysosome fusion, the delivery 

of endocytosed fluorescent dextran to catalytically active endolysosomes was 

analysed in each knockout cell line compared to wild type cells. Again, no significant 

effect was seen in either knockout cell line (Figure 4.2 B), indicating that there is no 

major impediment to late endosome-lysosome fusion. 
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Figure 4.2 

A 

 

 

 

Figure 4.2: The effect of VAMP7 or VAMP8 depletion on endolysosome 

dynamics 

(A) Cells were preloaded with DexA for 4 hours, chased with dextran-free medium 

for 20 hours and incubated with Magic Red™ Cathepsin B for 2 minutes before 

capturing confocal images which were analysed for colocalisation analysis. Mander’s 

(green, DexA:LTG and red, DexA:MRB) correlation coefficients for colocalisation of 

preloaded DexA and LTG or MRB in HeLa, HeLa VAMP7-knockout, and HeLa 

VAMP8-knockout cells are shown for a single experiment. 

(B) Cells were pulsed with 2 hours uptake of Dex488 followed by 1 hour chase in 

dextran-free medium, and incubated with Magic Red™ Cathepsin B for 2 minutes 

before capturing confocal images which were analysed for colocalisation analysis. 

Mander’s (Dex488: MRB) correlation coefficients for colocalisation of pulsed Dex488 

and MRB in HeLa, HeLa VAMP7-knockout, and HeLa VAMP8-knockout cells are 

shown for a single experiment. 

 

  

B 
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4.2.3 Localisation of intracellular markers are unaffected after knockout 

of VAMP7 or VAMP8 

To assess if the knockout of VAMP7 and VAMP8 had caused any major disruptions 

to organelles of the endocytic or biosynthetic pathways, their morphology and 

localisation were analysed by confocal microscopy. Imaging reagents and antibodies 

to key markers of early endosomes, late endosomes, lysosomes, and trans Golgi 

network were used to stain the compartments. The size and distribution of each 

marker seemed unaffected by either VAMP7 or VAMP8 knockout (Figure 4.3) 

indicating that the compartments remain largely unaffected by depletion of each R-

SNARE. 
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Figure 4.3 
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Figure 4.3: Immunofluorescence of intracellular markers after knockout of 

VAMP7 or VAMP8 

(A) Anti-LAMP1, anti-LBPA, anti-EEA1, and anti-TGN46 immunoreactivity in fixed 

HeLa cells was used to mark lysosomes, late endosomes, early endosomes, and 

trans Golgi network respectively. Magic Red™ was used in live cells to mark 

endolysosomes. Nuclei were identified by Hoechst 33342 staining. Scale bar 

represents 10µm. 
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4.2.4 Generation of VAMP7 and VAMP8 double knockout HeLa cells 

The combination of the lack of effect seen in the individual R-SNARE knockout cells, 

and the potential complication of insufficient SNARE knockdown by siRNA to affect 

fusion (Bethani et al., 2009) provided the basis to study the simultaneous depletion 

of VAMP7 and VAMP8 by generating a double-knockout cell line. VAMP7 was 

knocked out of VAMP8-knockout clone A background cells using CRISPR-Cas9. 

Clonal lines of double VAMP7 and VAMP8 knockout were selected and VAMP7 and 

VAMP 8 protein expression was analysed by Western blot (Figure 4.4). 

 

Figure 4.4 

 

 

 

Figure 4.4: Double knockout of VAMP7 and VAMP8 in HeLa cells 

HeLa VAMP8-knockout clone A cells were co-transfected with the SpCas9 and guide 

RNA-containing plasmid and a GFP reporter plasmid in a 1:5 ratio. After 48 hours, 

single cells of successful transfectants were sorted by FACS for clonal populations. 

Six clonal lines of VAMP7+VAMP8 double knockout cells were analysed by western 

blot to confirm knockout of protein expression. Cell lysates were run on a 15% 

polyacrylamide SDS gel, and transferred to PVDF membrane before immunoblotting 

with antibodies to VAMP7 and VAMP8. Anti-β-actin antibody was used to assess the 

levels of protein loading of each clonal line. 
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4.2.5 Delivery of endocytosed cargo to endolysosomes is unaffected in 

VAMP7 and VAMP8 double knockout cells 

Given the possibility that VAMP8 compensates for the lack of VAMP7 in VAMP7-

knockout cells, the effects of the double knockout on fluid phase cargo delivery of 

endocytosed dextran to Magic Red™-positive lysosomes was analysed as in Figure 

4.2. No significant change was observed between wild type cells and 

VAMP7+VAMP8 double knockout cells (Figure 4.5A and B). siRNA-mediated 

knockdown of VPS33A was used as a positive control, showing that it is possible to 

block delivery of dextran to endolysosomes in wild type and double knockout cells 

(Figure 4.5A and B). These data indicate that either VAMP8 does not play a 

significant role in the compensation for VAMP7 depletion, or that the presence of 

another R-SNARE is capable of facilitating late endosome-lysosome fusion events. 
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Figure 4.5 
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Figure 4.5: Endocytosed cargo delivery to endolysosomes in VAMP7 and 

VAMP8 double knockout cells  

(A) Cells were pulsed with 2 hours uptake of Dex488 followed by 1 hour chase in 

dextran-free medium, and incubated with Magic Red™ Cathepsin B for 2 minutes 

before capturing confocal images which were analysed for colocalisation analysis. 

Mander’s (MRB: Dex488) correlation coefficients for colocalisation of pulsed Dex488 

and MRB in wild type and VAMP7+VAMP8 double knockout cells are shown. Error 

bars represent the mean ± SEM of 3 experiments. 

(B) Live cell confocal image sections of cells analysed for colocalisation in (A), 

showing Dex488 in green and MRB in red. Scale bar represents 2.5µm. 

  

B 
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4.2.6 Immunofluorescent staining of LAMP1 and not of other 

intracellular markers is affected by double knockout of VAMP7 and VAMP8 

To address the state of intracellular organelles after VAMP7+VAMP8 double 

knockdown, markers of organelles of the endocytic and biosynthetic pathways were 

analysed by immunofluorescence as in Figure 4.3. While markers for endolysomes 

and trans Golgi network appeared to be unaffected, there was a mild effect on 

LAMP1 staining (Figure 4.6). In VAMP7+VAMP8 double knockout cells, there 

appeared to be fewer LAMP1-positive puncta per cell, and the puncta seemed to be 

larger on average than those in wild type cells.   
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Figure 4.6 
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Figure 4.6: Immunofluorescence of intracellular markers after knockout of 

VAMP7 and VAMP8 in HeLa cells 

Anti-LAMP1 and anti-TGN46 immunoreactivity in fixed cells was used to mark 

lysosomes and trans Golgi network respectively. Magic Red™ was used in live cells 

to mark endolysosomes. Nuclei were identified by Hoechst 33342 staining. Scale bar 

represents 10µm. 
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4.2.7 The appearance of LAMP1-positive organelles in control, 

individual, and double knockout of VAMP7 and VAMP8 

While the individual knockdowns of VAMP7 and VAMP8 had little effect on the 

immunofluorescent labelling of the endosomal and biosynthetic organelles, the 

VAMP7+VAMP8 double knockout cells presented fewer and larger LAMP1 stained 

puncta. The LAMP1-positive puncta in double knockout cells also appeared less 

rounded or uniform in shape, possibly indicating a minor aberration in morphology, or 

a clustering of LAMP1-containing organelles (Figure 4.7A). To quantify and measure 

this perceived difference in LAMP1 staining, wild type, VAMP7-knockout, VAMP8-

knockout, and VAMP7+VAMP8 double knockout cells were immunolabelled for 

LAMP1 as before, and confocal images were taken and analysed to determine the 

diameter of LAMP1-positive puncta in each condition. This revealed a slight upward 

shift in the size distribution of LAMP1-positive puncta in VAMP7-knockout cells, and 

a greater shift in VAMP7+VAMP8 double knockout cells (Figure 4.7B). The data also 

showed the mean number of LAMP1-positive puncta per cell to be similar between 

wild type cells and individual knockout cells, whereas double knockout cells showed 

a steep decline in the mean number of puncta per cell (Figure 4.7C). 
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Figure 4.7 
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Figure 4.7: LAMP1-positive organelles in control, individual, or double 

knockout of VAMP7 and VAMP8 

(A) Confocal fluorescence images of anti-LAMP1 immunolabelling in fixed cells of 

wild type or VAMP7+VAMP8 double knockout cells. Scale bar represents 10µm. 

(B) Confocal images of 10 LAMP1-stained cells were processed using Imaris 

software to analyse the number and size of LAMP1-positive puncta. Histograms 

show the percentage of puncta in each bin for diameter, increasing in increments of 

0.05µm. 

(C) Number of lysosomes per cell, mean lysosome diameter and standard deviation 

of the diameter, derived from the Imaris analysis of spot size in each condition. 
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4.2.8 Increased tethering between late endocytic organelles and with 

peripheral vesicles in double knockout of VAMP7 and VAMP8 

To better understand the morphological effects observed by LAMP1-

immunofluorescence in the VAMP7+VAMP8 double knockout cells, EM was 

performed by Nick Bright to analyse the ultrastructure of late endocytic organelles in 

thin sections. In these sections of double knockout cells, there was an unusual 

degree of filamentous tethering and pore formation between late endocytic 

organelles (Figure 4.8A) and which was not observed in wild type cells. Additionally, 

VAMP7+VAMP8 double knockout cells showed an abnormal number of small 

vesicles accumulating around the periphery of late endocytic organelles (Figure 

4.8B) which also does not usually occur in wild type HeLa cells. 
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Figure 4.8 
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Figure 4.8: EM of late endocytic organelles in double VAMP7 and VAMP8 

knockout cells (Images from Dr Nick Bright) 

VAMP7+VAMP8 double knockout cells were incubated with colloidal gold stabilised 

with BSA for 4 hours and chased with gold-free medium for 20 hours before fixation 

and processing for EM as described in (Bright, Davis and Luzio, 2016). 

(A) EM of a thin section from a VAMP7+VAMP8 KO cell, showing extensive tethering 

between organelles of the late endocytic pathway (arrowhead). 

(B) EM of a thin section from a VAMP7+VAMP8 KO cell showing abnormal 

accumulation of small vesicles around the periphery of a late endocytic organelle 

(arrowheads). 
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4.2.9 Alternative R-SNAREs do not change in abundance after double 

knockout of VAMP7 and VAMP8 in HeLa cells 

Provided that concurrent depletion of VAMP7 and VAMP8 had little effect on delivery 

of endocytosed cargo to endolysosomes, it may be assumed that another alternative 

SNARE may be compensating for the lack of VAMP7. Potential alternative R-

SNAREs (Figure 4.9 B) were analysed by western blot to assess if there was any 

measurable upregulation at the protein level. There were no significant changes in 

the protein levels of YKT6 or SEC22b between wild type and VAMP7+VAMP8 

knockout cells. 

Figure 4.9 
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Figure 4.9: Alternative R-SNAREs do not change in abundance in individual or 

double knockout of VAMP7 and VAMP8 

(A) HeLa WT and VAMP7+VAMP8 KO cells were analysed by Western blot to 

measure protein abundance of YKT6 or SEC22b. Cell lysates were run on a 15% 

polyacrylamide SDS gel, and transferred to PVDF membrane before measuring 

protein loading with REVERT™ Total Protein Stain. The membrane was 

immunoblotted with antibodies to YKT6 and SEC22b. Bands were quantified using 

Image Studio, and normalised to Total Protein Stain signal. 

(B) A diagram depicting the domain similarities between VAMP7, YKT6 and 

SEC22b, as members of the longin group of R-SNAREs. 
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4.2.10 Endocytosed cargo delivery to endolysosomes is impeded in 

YKT6-depleted cells 

As discussed in chapter 4.1, YKT6 represents a strong candidate for the 

replacement of VAMP7 in late endosome-lysosome fusion. Using siRNA mediated 

knockdown of YKT6 in both wild type and VAMP7+VAMP8 double knockout cells, 

the extent of endocytosed dextran delivery to lysosomes was analysed as for figure 

4.2B. Using two different oligos, >85% YKT6 knockdown (Figure 4.10B) had a very 

mild inhibitory effect on delivery to lysosomes in wild type cells, however when YKT6 

was knocked down in VAMP7+VAMP8 double knockout cells, there was a much 

greater inhibition of delivery of dextran to endolysosomes (Figure 4.10A and C). This 

shows that VAMP7+VAMP8 double knockout cells are more sensitive to YKT6 

depletion than wild type, suggesting some specific involvement of YKT6 in 

endosome-lysosome fusion, and that the effect is not simply a consequence of 

reduced YKT6 function in other pathways affecting the whole cell. 
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Figure 4.10 
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Figure 4.10: The effect of Ykt6 knockdown on dextran delivery to late 

endocytic compartments in VAMP7 and VAMP8 double knockout cells 

(A) Wild type and VAMP7+VAMP8 double knockout cells were transfected with 

either non-targetting siRNA, YKT6-targetting siRNA oligo A, or YKT6-targetting 

siRNA oligo C. 96 hours post-transfection, cells were pulsed with 2 hours uptake of 

Dex488 followed by 1 hour chase in dextran-free medium, and incubated with Magic 

Red™ Cathepsin B for 2 minutes before capturing confocal images which were 

analysed for colocalisation analysis. Mander’s (MRB: Dex488) correlation 

coefficients for colocalisation of pulsed Dex488 and MRB in wild type and 

VAMP7+VAMP8 double knockout cells are shown. Error bars represent the mean ± 

SEM of 3 experiments 

(B) Representative blots of YKT6 knockdown in cells transfected with non-targetting 

or YKT6-targetting siRNA analysed by Western blot. Cell lysates were run on a 12% 

TruPAGE polyacrylamide SDS gel, and transferred to PVDF membrane before 

immunoblotting with antibodies to YKT6 and β-actin. Bands were quantified using 

Image Studio, and normalised to β-actin band signal. 

(C) Live cell confocal image sections of cells analysed for colocalisation in (A), 

showing Dex488 in green and MRB in red. Scale bar represents 2.5µm. 
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4.2.11 The distribution of YKT6 is unaltered in VAMP7 and VAMP8 

double knockout cells 

Given that late endosome-lysosome fusion in VAMP7+VAMP8 double knockout cells 

appears to be more sensitive to YKT6 depletion, it could be assumed that in these 

cells, YKT6 is fulfilling the role of the R-SNARE in late endosome-lysosome trans 

SNARE complexes. In such a case, double knockout cells may display an increased 

distribution of YKT6 to lysosomes. To test this, wild type and VAMP7+VAMP8 double 

knockout cells were immunostained for YKT6, however in both cell lines YKT6 

retained its predominantly perinuclear and partially cytoplasmic staining (Figure 

4.11A) as previously reported (Fukasawa et al., 2004). To quantify the YKT6 

distribution relative to lysosomes, cells were co-stained for YKT6 and lysosomal 

marker LAMP1 then confocal images were taken and analysed to calculate 

Pearson’s coefficients. This showed no significant difference in the colocalisation of 

YKT6 and LAMP1 between wild type or VAMP7+VAMP8 double knockout cells 

(Figure 4.11 B). 
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Figure 4.11 
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Figure 4.11: The distribution of Ykt6 in VAMP7 and VAMP8 double knockout 

cells 

(A) Anti-YKT6 immunoreactivity in fixed wild type or VAMP7+VAMP8 double 

knockout cells showing endogenous YKT6 distribution. Nuclei were identified by 

Hoechst 33342 staining. Scale bar represents 10µm. 

(B) Pearson’s colocalisation analysis for colocalisation of YKT6 and LAMP1 

immunofluorescence in fixed cells (single experiment). Error bars represent the 

mean ± SD. 
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4.2.12 Autophagy is not upregulated in VAMP7 and VAMP8 double 

knockout cells 

In order to assess if the VAMP7 and VAMP8 double knockouts are impeding 

autophagic flux, whole cell lysate of HeLa VAMP7 and VAMP8 double knockout 

clone A1 cells was immunoblotted for LC3. The double knockout cell line showed no 

significant difference in LC3 accumulation relative to wild type HeLa cells, indicating 

normal levels of autophagy. 

 

Figure 4.12 

 

 

 

Figure 4.12: Immunoblotting of LC3 in R-SNARE depleted cells 

HeLa VAMP7+VAMP8 double knockout cells were lysed and analysed by western 

blot to assess LC3 accumulation. Cell lysates were run on a 15% polyacrylamide 

SDS gel, and transferred to PVDF membrane before immunoblotting with an 

antibody to LC3. Anti-β-actin antibody was used to assess the levels of protein 

loading of each cell line. 
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4.2.13 The effect of YKT6 depletion on delivery to endolysosomes in 

VAMP7 and VAMP8 double knockout cells is rescued by VAMP7 reconstitution 

The enhanced susceptibility of VAMP7+VAMP8 double knockout cells to YKT6 

knockdown suggests that YKT6 may be replacing either VAMP7 or VAMP8 as the R-

SNARE for late endosome-lysosome fusion. To further assess this, a 

VAMP7+VAMP8 double knockout cell line overexpressing HA-tagged VAMP7 was 

generated. In wild type, VAMP7+VAMP8 double knockout, and VAMP7-rescue 

double knockout cells, delivery of endocytosed dextran to endolysosomes was 

analysed with or without depletion of YKT6. While VAMP7+VAMP8 double knockout 

cells showed a significant impediment of delivery to lysosomes after YKT6 depletion, 

the knockout cells overexpressing VAMP7 showed a much less pronounced effect, 

very similar to wild type cells (Figure 4.13 A). The capacity of VAMP7 to reverse the 

sensitivity of double-knockout cells to YKT6 knockdown lends credence to the idea 

that these two R-SNAREs are to some extent interchangeable in their roles in late 

endosome-lysosome fusion.   
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Figure 4.13 

A 

    

VAMP7 + + -- -- ++ ++ 

VAMP8 + + -- -- -- -- 

YKT6 + - + - + - 
 

B 

 

C 

  

NS 

P<0.01 

NS 
P<0.005 



112 
 

Figure 4.13: The effect of YKT6 depletion on delivery to endolysosomes in 

VAMP7 and VAMP8 double knockout cells is rescued by VAMP7 

(A) Wild type HeLa cells, VAMP7+VAMP8 double knockout HeLa cells, and 

VAMP7+VAMP8 double knockout VAMP7-overexpressing HeLa cells were 

transfected with either non-targetting siRNA, or YKT6-targetting siRNA oligo C. 96 

hours post-transfection, cells were pulsed with 2 hours uptake of Dex488 followed by 

1 hour chase in dextran-free medium, and incubated with Magic Red™ Cathepsin B 

for 2 minutes before capturing confocal images which were analysed for 

colocalisation analysis. Fold change of Mander’s (MRB: Dex488) correlation 

coefficients for colocalisation of pulsed Dex488 and MRB relative to wild type non-

targetting siRNA are shown. Error bars represent the mean ± SEM of 3 experiments. 

P values determined by unpaired t-test. NS = not significant. 

+: endogenous protein present 

++: stably overexpressed protein present 

- : siRNA mediated knockdown of protein 

- - : complete knockout of protein 

(B) WT, VAMP7+VAMP8 KO, and VAMP7+VAMP8 KO HA-VAMP7-expressing cells 

transfected with non-targetting (-) or YKT6-targetting (+) siRNA were analysed by 

Western blot. Cell lysates were run on a 10% TruPAGE polyacrylamide SDS gel, 

and transferred to PVDF membrane before immunoblotting with antibodies to YKT6 

and β-actin. Bands were quantified using Image Studio, and normalised to β-actin 

band signal. 

(C) The same cell lysates were ran as in (B) and immunoblotted with antibodies to 

YKT6 and VAMP7 to show the levels of VAMP7 expression of each cell line. 
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4.3 Discussion 

While it has been reported that concurrent depletion of VAMP7 and VAMP8 in cells 

may have a significant impact on late endosome-lysosome fusion, the data 

presented here show that not necessarily to be the case. Consistent with published 

data in cultured cells and knockout mice, this study showed little effect of VAMP7 or 

VAMP8 individual knockouts on late endosome-lysosome fusion. VAMP7 knockout 

cells did however show a very subtle increase in diameter of LAMP1-positive puncta, 

suggestive of slight lysosomal swelling, or some extent of clustered/tethered LAMP1-

positive membrane structures. Simultaneous depletion of VAMP7 and VAMP8 did 

not appear to impede endosomal trafficking, as there was no major defects in 

distribution or morphology of intracellular compartments, and delivery of 

endocytosed cargo to endolysosomes remained intact. This challenges the role of 

VAMP8 as a sole compensatory R-SNARE after loss of VAMP7, and contrasts with 

the reported block of lysosomal delivery when cells are depleted of VAMP7 and 

VAMP8. These different outcomes may be a product of the timeframe of SNARE 

depletion, with knockout cell lines having a longer time to adapt and redistribute 

SNAREs compared to the short duration of siRNA-mediated knockdown. The greater 

effect of YKT6 depletion on late endosome-lysosome fusion in double knockout cells 

compared to wild type cells, and the reversal of this effect after VAMP7 rescue 

suggests that YKT6 is compensating for the loss of VAMP7. This is in line with the 

recent study showing Ykt6 to localise to lysosomes and compete with VAMP7 to join 

a trans-SNARE complex between autophagosomes and lysosomes in drosophila 

(Takáts et al., 2018). Further investigation of the contribution of YKT6 to the SNARE-

mediated fusion of late endosomes and lysosomes should address whether 

expression of siRNA-resistant YKT6 rescues the knockdown effect, however YKT6 

expression is complicated by the mostly cytoplasmic localisation after 

overexpression (Gordon et al., 2017). Indeed, the post-Golgi role of YKT6 reported 

by Gordon et al. (2017) further urges caution when interpreting results of YKT6-

knockdown due to its widespread functions in the cell. 

The extensively tethered late endocytic organelles observed in VAMP7+VAMP8 

double knockout cells by EM may be a result of slowed or frustrated fusion between 

these organelles, such as occurs after knockdown of CHMP6 (Parkinson et al., 

2015). The unimpeded ability to deliver dextran to endolysosomes in 
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VAMP7+VAMP8 knockout cells suggests that there is some degree of late 

endosome-lysosome fusion still occurring despite the frustrated fusion observed in 

some of these organelles. While the identity of the small vesicles that accumulate 

and tether around the periphery of endolysosomes in VAMP7+VAMP8 double 

knockout cells remains unknown, a subpopulation of them match the reported sizes 

of LAMP-carriers (Pols et al., 2013b). The apparent lack of ability of these vesicles to 

fuse with organelles of the late endocytic pathway, as indicated by the clustering and 

tethering, is in line with the requirement of VAMP7 for LAMP-carrier fusion with 

lysosomes. The questions of whether the extensive inter-organellar tethering is 

comprised of HOPS complexes could be addressed with further immuno-EM study of 

these cells, however the lack of EM-compatible antibodies to HOPS subunits would 

necessitate genetically-encoded tagging. To this end, I am in the process of 

generating CRISPR-Cas9-mediated knock-in of a 2xHA tag to the endogenous locus 

of VPS18, to increase the ability of antibody-based detection of HOPS complex in 

the tethers, while leaving the protein expression at endogenous levels. Immuno-EM 

may also be employed to detect whether the vesicles clustered around late endocytic 

organelles are marked by LAMP proteins, however this approach is inhibited by the 

density of LAMP proteins on such small structures. 

  



115 
 

 

 

 

 

 

 

 

 

Chapter 5 – Developing tools to study the dynamics of V-

ATPase during lysosome reformation from endolysosomes   
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5.1 Introduction 

In the lysosome regeneration cycle proposed in Chapter 3 (Section 3.3, Figure 3.9, 

(Bright, Davis and Luzio, 2016)), the organelles involved span a wide range of pH 

values. There is a decrease in pH as endosomes and acid hydrolase-storage 

lysosomes fuse to form endolysosomes, and conversely there is an increase in pH 

when lysosomes are reformed from endolysosomes. Luminal acidification is critical 

for a number of functions of both endosomes and endolysosomes, and is largely 

controlled by the membrane-embedded V-ATPase complex. Manipulations of the V-

ATPase complex represents a major route of regulating organelle acidity by fine-

tuning the influx of protons across the membrane, as discussed in Chapter 1 (section 

1.10.2). This can occur through incorporation of different subunit isoforms, or on a 

larger scale, differential recruitment of whole V1 sectors onto membrane-resident Vo 

sectors. The controlled loss of acidity and increase of pH from ~4.5 to ~7 seen in 

reforming storage lysosomes is poorly understood. As discussed in Chapter 1, V-

ATPases can be negatively regulated by reversible V1 dissociation, and this 

mechanism has been observed in mammalian cells. To address the mechanism by 

which the reformed lysosomal lumen is neutralised, we need to test the hypothesis 

that the reforming storage lysosome employs this mechanism, and that dissociation 

of the V1 sectors from the V-ATPase complexes occurs on the limiting membrane of 

the reforming lysosome, thereby inhibiting inward proton pumping while passive 

proton leakage continues to occur. 

In order to study the integrity and dynamics of the V-ATPase complex, I attempted to 

use commercially available antibodies (Table 5.1) to assess V-ATPase subunit 

localisation by immunofluorescence, but found that none of those tried gave good 

signals. This has also been the experience of others. Generating stable cell lines 

expressing fluorescently tagged V-ATPase subunits at close to endogenous levels 

seemed a more promising approach, despite a previous report that in slime mould, 

co-expressing GFP-tagged V1 and RFP-tagged Vo was impossible (Carnell et al., 

2011). In NRK cells, the co-expression of differently tagged subunits of the V1 and 

Vo sectors should allow the use of the sucrosome/invertase system described in 

Chapter 3 (section 3.1) to investigate the dynamics of the V-ATPase sectors (Figure 

5.1) during lysosome reformation, using live cell fluorescence microscopy. The 

applications of this method are, however, limited by the ease with which cells can 
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form sucrosomes, and the complications associated with upregulation of TFEB 

translocation to the nucleus. In the experiments described below, I aimed to tag a V1 

subunit that did not constitute part of the rotor, and to tag the cytosolic side of the Vo 

sector. The V1G1 stator subunit was selected as an appropriate reporter for the V1 

sector due to its peripheral and static position outside of the rotor, reducing the 

likelihood that a fluorescent protein tag impedes function. V1G1 is also important in 

V-ATPase regulation via binding to the Rab7 effector RILP (De Luca et al., 2014). In 

this context it is interesting to note that whereas acidic juxtanuclear 

lysosomes/endolysosomes are Rab 7-positive, less acidic and more peripheral 

lysosomes are Rab7-negative (Chapter 3, section 3.2.2, (Johnson et al., 2016). The 

Voa3 subunit isoform was selected for tagging the Vo sector as both termini of the a-

subunit are thought to be cytosolic (Kartner et al., 2013), allowing the tag to avoid the 

degradation or quenching effects of the acidic lysosomal lumen. Additionally, the a3 

isoform is reported to be more endolysosomal/lysosomal in localisation than a1, a2, 

or a4 (Toyomura et al., 2003) and it has in the past been successfully tagged with 

fluorescent proteins on its C-terminus in cultured cells (Bhargava et al., 2012) and in 

whole mice (Sun-Wada et al., 2009). 

Table 5.1 V-ATPase Subunit Antibodies assessed for Immunofluorescence 

Antigen Antibody I.D. Host species Source Dilution 

Human V1A 17115-1-AP Rabbit polyclonal Proteintech 1:100 

Human V1D D-4 Mouse monoclonal Santa Cruz 

Biotechnology 

1:100 

Human V1G1 16143-1-AP Rabbit polyclonal Proteintech 1:100 

Human V1G1 D-5 Mouse monoclonal Santa Cruz 

Biotechnology 

1:100 

Human Voa1 E-8 Mouse monoclonal Santa Cruz 

Biotechnology 

1:100 
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Figure 5.1

 

 

Figure 5.1: Schematic of the V-ATPase regulation by sector dissociation 

Diagram illustrating the separation of the V1 and V0 sectors of V-ATPase complexes 

as a method of regulating V-ATPase function. Where the V-ATPase is fully 

assembled, the fluorescently tagged V1G1 and V0a3 subunits should remain in 

close proximity and their respective fluorophores should colocalise. Under conditions 

where the V1 sector dissociates from the V0 sector, the fluorescently tagged V1G1 

sector may hypothetically diffuse away, resulting in reduced proximity and 

colocalisation with tagged V0a3.  
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5.2 Results 

5.2.1 Stably over-expressed GFP-tagged V1G1 distributes to acidic, 

cathepsin-active intracellular compartments and the cytosol 

In order to trace V1 sectors of the V-ATPase complex in both live and fixed cells, 

clonal cell lines overexpressing V1G1-GFP were generated in both HeLa and NRK 

cells. In both cell lines, V1G1-GFP marked puncta which colocalised with 

LysoTracker (Figure 5.2A, Figure 5.2B, top rows) as well as Magic Red™ (Figure 

5.2A, Figure 5.2B, bottom rows). V1G1-GFP also displayed a dispersed cytosolic 

distribution in both cell types which matches the largely cytosolic distribution of the 

wild type subunit. Due to the high cytosolic signal of the V1G1-GFP, accurate 

colocalisation analyses could not be performed. 

The degree of overexpression of GFP-tagged V1G1 relative to endogenous V1G1 in 

the clonal NRK cell line was analysed by Western blot (Figure 5.2C). V1G1-GFP was 

identified by the band shift of ~25kDa, and was found to be 3.3-fold more abundant 

in whole cell lysate than endogenous V1G1. 

 

5.2.2 Stably overexpressed V1G1-GFP localises to the cytosol and 

limiting membrane of sucrosomes in NRK cells 

To test further how stably overexpressed V1G1- GFP distributes, and to determine 

its suitability as a marker of the V1 sector after manipulating the endolysosomal 

system, clonal NRK V1G1-GFP expressing cells were incubated with sucrose to 

form sucrosomes, depleting the cells of terminal/storage lysosomes in the process. 

After sucrosome formation, V1G1-GFP was clearly seen to mark the limiting 

membrane of the swollen endolysosomes, while retaining a cytosolic pool (Figure 

5.3). This indicates that the V1G1-GFP expressed in these cells is successfully 

labelling the cytosolic facing endolysosomal membrane, and is capable of tracing V-

ATPase complexes on endolysosomes and swollen sucrosomes. 
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C 

 

Figure 5.2: V1G1-GFP colocalises with LysoTracker and Magic Red™ 

(A) Confocal fluorescence microscopy images of live clonal HeLa cells stably 

expressing V1G1-GFP, after 5 min incubation with LysoTracker Red DND-99 (top 

row), or after 2 min incubation with MRB (bottom row). 

(B) Confocal fluorescence microscopy images of live clonal NRK cells stably 

expressing V1G1-GFP, after 5 min incubation with LysoTracker Red DND-99 (top 

row), or after 2 min incubation with MRB (bottom row). 

All scale bars represent 5µm. 

(C) WT and V1G1-GFP-expressing clonal NRK cells were lysed and analysed by 

western blot to assess V1G1 overexpression. Cell lysates were run on a 15% 

polyacrylamide SDS gel, and transferred to PVDF membrane before immunoblotting 

with an antibody to V1G1. V1G1-GFP overexpression levels were calculated by 

measuring the ratio between the ~15kDa anti-V1G1 band (present in both wild type 

and V1G1-GFP cells) and the ~25kDa-shifted band (present exclusively in V1G1-

GFP cells, in line with the size of the GFP tag). Blot fluorescence was scanned using 

an Odyssey CLx and band intensities were measured with background correction 

using Image Studio™. 
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Figure 5.3 

   

   

 

Figure 5.3: V1G1-GFP localisation in NRK cell sucrosomes 

Confocal fluorescence microscopy images of clonal NRK cells stably expressing 

V1G1-GFP which were incubated with or without 30mM sucrose for 24 hr. The cells 

were then incubated with MRB for 2 min prior to imaging to mark cathepsin-active 

organelles. Scale bars represent 5µm.  
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5.2.3 The localisation of V1G1-GFP compared to lgp120 (rat LAMP1) and 

Voa3 

If the hypothesis that V1/Vo sector dissociation occurs during lysosome reformation 

is correct, it is predicted that there should be a population of likely more peripheral 

lysosomes lacking V1 sector relative to more juxtanuclear, acidic endolysosomes. To 

test this, I first compared the overexpressed V1G1-GFP distribution against 

immunofluorescently-labelled endogenous lgp120 (rat LAMP1) in methanol-fixed 

clonal NRK V1G1-GFP cells (Figure 5.4). Lgp120 is an abundant lysosomal 

membrane glycoprotein, representing a suitable marker for all 

endolysosomes/lysosomes. In methanol-fixed cells, overexpressed V1G1-GFP 

shows a good degree of overlap with lgp120 nearer the perinuclear region of cells, 

however towards the cell periphery there appear to be more lgp120-positive (red) 

puncta with less V1G1-GFP (green) present (Figure 5.4A, arrowheads). The 

monoclonal antibody used to detect lgp120 in these experiments only gives a good 

signal in methanol-fixed cells. In cells fixed in this way, a ‘background’ of V1G1-GFP 

in the nuclei was often observed (Figure 5.4A), unlike the situation in live (Figures 

5.2A, 5.3) or paraformaldehyde-fixed (Figure 5.4B) cells.   

To address whether these peripheral lysosomes represent organelles with fewer V-

ATPase complexes, or complexes with dissociated V1 sectors, clonal NRK V1G1-

GFP cells were immunostained for Voa3 using an antibody raised against a 

mouse/rat Voa3 peptide (a gift from Dr. T. Jentsch, Berlin, see Chapter 2). In the 

PFA-fixed, saponin-permeabilised cells, Voa3 staining showed a similar distribution 

to that of lgp120, colocalising with V1G1 more centrally in the cell, but also marking 

peripheral organelles which had less or no V1G1-GFP present (Figure 5.4B). This 

provides preliminary evidence that there may exist a population of lysosomes with 

limiting membranes containing Vo sectors of the V-ATPase, but lacking the V1 

sector.  
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Figure 5.4: The localisation of V1G1-GFP compared to lgp120 and Voa3 

(A) Anti-lgp120 immunoreactivity in methanol-fixed clonal NRK V1G1-GFP cells was 

used to mark all endolysosomes/lysosomes. Stably overexpressed V1G1 was used 

to mark V-ATPase complexes with associated V1 sectors. The boxed region in the 

bottom-left panel is enlarged and shown in the bottom-right panel.  

(B) Anti-Voa3 immunoreactivity in PFA-fixed, saponin-permeabilised clonal NRK 

V1G1-GFP cells was used to mark Vo sectors of the V-ATPase complex. Stably 

overexpressed V1G1 was used to mark V-ATPase complexes with associated V1 

sectors. Part of a single representative cell is shown. The boxed regions are 

enlarged and inlaid in the corner of each panel. 

Scale bars represent 5µm.  

V1G1-GFP Voa3 
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5.2.4 Voa3-GFP localisation in NRK cell sucrosomes, and the 

localisation of V1G1-GFP and Voa3-GFP during lysosome reformation 

Due to the very limited availability of an anti-Voa3 antibody which could be used for 

immunofluorescence, and to allow for future live-cell experiments, a stable NRK cell 

line expressing Voa3-GFP was generated to track the dynamics of the Vo sector of 

the V-ATPase complex in cells. Stably overexpressed Voa3-GFP in NRK cells 

almost exclusively localised to puncta, mostly those marked by Magic Red™ in the 

juxtanuclear region, while also localising to more peripheral smaller puncta which are 

less marked by Magic Red™, indicative of terminal/storage lysosomes (Figure 5.5A, 

arrowhead). These cells were also assessed after incubation with sucrose and 

subsequent sucrosome formation. Like V1G1-GFP, stably overexpressed Voa3-GFP 

localised to the limiting membranes of sucrosomes, suggesting that Voa3-GFP was 

successfully marking V-ATPase Vo sectors on the cytosolic face of the lysosomal 

membrane after sucrosome formation and terminal/storage lysosome depletion 

(Figure 5.5B). 

The results from the cell lines expressing tagged V1G1 and Voa3 established that 

these subunits were successfully localising to endolysosome and sucrosome 

membranes. To address whether either or both of these V-ATPase subunits are also 

trafficked onto newly formed proto-lysosomal tubules, cells which had formed 

sucrosomes were allowed to uptake invertase, inducing tubulation of the 

sucrosomes. Both V1G1-GFP and Voa3-GFP could be seen along the length of 

tubules extending out of sucrosomes after invertase uptake (Figure 5.5C, 

arrowheads), suggesting that V1 and Vo sectors are associated together, and that 

whole V-ATPase complexes are sorted onto the forming protolysosomal tubule 

membrane.   
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Figure 5.5 
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Figure 5.5: Voa3-GFP localisation in NRK cell sucrosomes, and the localisation 

of V1G1-GFP and Voa3-GFP during lysosome reformation  

(A) Confocal fluorescence microscopy images of live clonal NRK cells stably 

expressing Voa3-GFP, after 2 min incubation with MRB. 

(B) Confocal fluorescence microscopy images of live clonal NRK cells stably 

expressing Voa3-GFP which were incubated with or without 30mM sucrose for 

24 hours. The cells were then incubated with MRB for 2 min prior to imaging to mark 

cathepsin-active organelles.  

(C) Confocal fluorescence microscopy images of live clonal NRK cells expressing 

V1G1-GFP or Voa3-GFP which were incubated with 30mM sucrose for 24 hours 

before incubating with 0.5mg/ml invertase for 1 hour before imaging. 

Scale bars represent 5µm. 
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5.2.5 Localisation of Coexpressed Fluorescently-Tagged V1G1 and Voa3 

in NRK Cells With or Without Sucrosomes 

Given that fluorescently tagged V1G1 and Voa3 have individually been shown to be 

traceable on endolysosomes, and on sucrosomes through to protolysosomal tubules, 

the next step to study their dynamics in relation to each other is to generate a cell 

expressing both subunits with spectrally separated fluorescent tags to allow 

simultaneous imaging of both sectors in real time. To this end, a clonal line of NRK 

cells expressing V1G1-GFP was further modified to express Voa3-TagRFP, allowing 

both subunits to be visualised simultaneously in the same cells. The co-expressed 

Voa3-TagRFP showed a very similar localisation to that seen with Voa3-GFP, in 

untreated cells (Figure 5.6A, top row). After sucrosome formation, however, Voa3-

TagRFP could be seen on the sucrosome limiting membrane, but a significant 

proportion of the TagRFP signal was also seen in the sucrosome lumen (Figure 

5.6A, bottom row). NRK cells stably overexpressing V1G1-TagRFP also displayed 

TagRFP fluorescence in the sucrosome lumen (Figure 5.6B). The degree of 

fluorescence in the lumen inhibits colocalisation analysis from providing meaningful 

data regarding V1-Vo association on the limiting membranes of 

endolysosomes/lysosomes.
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Figure 5.6: Localisation of Coexpressed V1G1-GFP and Voa3-TagRFP in NRK 

Cells With or Without Sucrosomes 

(A) Confocal fluorescence microscopy images of representative single live clonal 

NRK cells stably co-expressing V1G1-GFP and Voa3-TagRFP which were incubated 

with (bottom row) or without (top row) 30mM sucrose for 24 hours. 

(B) Confocal fluorescence microscopy images of live clonal NRK cells stably co-

expressing V1G1-TagRFP which were incubated with or without 30mM sucrose for 

24 hours. 

Scale bars represent 5µm. 
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5.2.6 Localisation of V1G1 Tagged with Acid Sensitive-mOrange2 M163K 

Fluorescent Tag, and Voa3-GFP in NRK Cells With or Without Sucrosomes 

Because the difference in localisation between GFP- and TagRFP-tagged subunits 

was independent of which subunit the tag was associated with, and occurred even in 

cells only overexpressing a single tagged subunit, it is likely that differences between 

the fluorescent proteins themselves are responsible for the discrepancy. Additionally, 

the aberrant TagRFP fluorescence occurs in the lumen of sucrosomes which are 

swollen endolysosomes, and hence acidic (Bright, Davis and Luzio, 2016). GFP has 

a pKa (pH at which fluorescence is 50% of maximum) value of ~5.6 (Patterson et al., 

1997) to ~5.8 (Haupts et al., 1998) and as such its fluorescence would be quenched 

if present in the acidic sucrosome lumen. This is not the case for TagRFP, which has 

a pKa of ~3.8 (Merzlyak et al., 2007), so in its place, a more acid sensitive mutant 

(M163K) of mOrange2, with a reported pKa ~7.4 (Shaner et al., 2008) was used to 

tag V1G1. When expressed in NRK cells, V1G1-mOrange2 M163K showed a very 

similar localisation to V1G1-GFP and V1G1-TagRFP, and extensively colocalised 

with the stably co-expressed Voa3-GFP (Figure 5.7A, top row). However, after 

sucrosome formation, V1G1-mOrange2 M163K also gave significant signal in the 

lumens of sucrosomes. To compare the acid sensitivity of the two fluorophores 

expressed in these cells under imaging conditions, cells expressing V1G1-

mOrange2 M163K and Voa3-GFP were incubated with sucrose and imaged before 

and after clamping at pH5 with monensin and nigericin-containin pH5-buffered 

medium. After acidifying the cytosol, Voa3-GFP which previously marked the 

cytosolic face of endolysosomal/lysosomal membranes was nearly completely 

quenched, however V1G1-mOrange2 M163K fluorescence was relatively unaffected 

(Figure 5.7B) which was unexpected, given its reported pKa ~7.4.    
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Figure 5.7 
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Figure 5.7: Localisation of Coexpressed V1G1-mOrange2 M163K and Voa3-

GFP in NRK Cells With or Without Sucrosomes 

(A) Confocal fluorescence microscopy images of representative single live clonal 

NRK cells stably co-expressing V1G1-mOrange2 M163K and Voa3-GFP which were 

incubated with (bottom row) or without (top row) 30mM sucrose for 24 hours. 

(B) Confocal fluorescence microscopy images of representative single live clonal 

NRK cells stably co-expressing V1G1-mOrange2 M163K and Voa3-GFP which were 

incubated with 30mM sucrose for 24 hours, followed by imaging before (top row) or 

after (bottom row) 5 minutes incubation with pH5 clamping solution. 

Scale bars represent 5µm. 
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5.3 Discussion 

The dynamics and regulation of the V-ATPase, in particular the reversible 

dissociation of the V1 and Vo sectors during lysosome reformation in mammalian 

cells, is poorly understood. In this study, tools to independently and simultaneously 

visualise V1 and Vo sector subunits in real time were developed. Cells stably 

expressing fluorescently tagged candidate subunits V1G1 and Voa3 were generated 

to act as reporters of dynamics of the V1 and Vo sectors respectively, without 

impeding the function of the assembled V-ATPase complex. Both tagged V1G1 and 

Voa3 subunits localised to the limiting membranes of acidic and cathepsin B-active 

compartments, indicative of incorporation into, and normal function of, V-ATPase 

complexes. Both subunits, when tagged with GFP, decorated the limiting membrane 

of endolysosomes before and after the recruitment of terminal lysosomes to form 

sucrosomes, and both marked protolysosomal tubules extending from sucrosomes 

after invertase uptake. These tagged subunits, while expressed at relatively low 

levels (~3.3 fold endogenous V1G1) allowed the localisation of V1 and Vo sectors to 

be studied throughout manipulations of the endolysosomal-lysosomal equilibrium. 

Immunofluorescence experiments also generated preliminary evidence that V1G1 

may localise to more peripheral lysosomes to a lesser degree when compared to 

lgp120 (rat LAMP1) or Voa3. Given that V1G1-GFP entered the tubules emanating 

from sucrosomes after invertase uptake, the preliminary data suggest that 

dissociation of the V1 and Vo sectors of the V-ATPase occurs at a later stage in the 

reformation and maturation of lysosomes. Co-expression of V1G1 and Voa3 with 

spectrally separable fluorescent tags revealed TagRFP- and mOrange2 M163K-

tagged subunits to exhibit fluorescence in the lumens of sucrosomes, which has so 

far inhibited the use of sensitive colocalisation experiments to estimate the degree of 

V1-Vo association. 

Results from cells overexpressing tagged V-ATPase subunits need to be interpreted 

with caution, even with the relatively low overexpression achieved in this study with 

retroviral methods of stable cell line generation. Overexpression of individual V-

ATPase subunits can have measurable effects on cellular function, such as 

overexpression of V1C1 in fruit fly cells increasing endolysosomal acidity and 

affecting the levels of other V-ATPase subunits (Petzoldt et al., 2013) or 

overexpression of VoB increasing V-ATPase activity and increasing mTORC1 
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activation (Meo-Evoli et al., 2015). In addition, overexpression of V1G1 itself was 

shown to inhibit maturation of cathepsin D (De Luca et al., 2014). With regards to 

expression levels, perhaps a better method to produce cells expressing fluorescently 

tagged V-ATPase subunits would be CRISPR-Cas9-mediated knock-in. Recently, a 

CRISPR-Cas9-mediated, homology-independent, PCR-product integration approach 

has been developed by Paul Manna (personal communication) in Margaret 

Robinson’s laboratory and provides a fast and cloning-free strategy for genomic 

editing of mammalian cells. Using this method, I am currently generating cells with 

an Emerald-GFP tag knocked in to the C-terminus of V1G1 to achieve expression of 

the tagged protein at endogenous levels, under the control of the endogenous 

promoter. Alongside the advantages that come with studying proteins at endogenous 

levels, there are potential drawbacks such as microscopy applications being limited 

because the fluorescence is produced at endogenous tagged-protein quantities, 

particularly in monoallelic knock-ins. 

The localisation of the overexpressed tagged V-ATPase subunits to intracellular 

membranes was indicative of their successful incorporation into whole V-ATPase 

complexes. Additionally, the organelles to which the tagged subunits were recruited 

are positive for LysoTracker® and Magic Red™ which shows that the 

endolysosomes they marked were successfully acidifying and catalytically active. 

Assuming incorporation into V-ATPase complexes reflects the approximate 3:1 ratio 

of abundance between tagged and endogenous V1G1, this suggests tagged 

subunits were able to form functional V-ATPase complexes. Future experiments 

could employ co-immunoprecipitation to confirm that tagged subunits are associated 

with other complex components. To address the function of the V-ATPase 

complexes with tagged subunits, a comparison of whole cell LysoTracker® 

fluorescence between wild type and these stable cell lines would provide a 

qualitative measure of any impact on acidification. For a more quantitative study of 

the effect on V-ATPase function, lysosomal reacidification could be measured using 

ratiometric fluorescence after the uptake of appropriate fluorescent dextrans together 

with addition and removal of a protonophore (Johnson et al., 2016). 

The sucrosome lumenal fluorescence exhibited by the TagRFP- and mOrange2 

M163K-tagged subunits was possibly a product of the steady state turnover of V-

ATPase components, reflecting unquenched tagged subunits in the process of 
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lysosomal degradation. In any case, such aberrant fluorescence presents a major 

obstacle to colocalisation-based studies as the intraluminal fraction of total 

fluorescence will confound the interpretation of any colocalisation coefficient applied. 

Given the successful membrane localisation of the GFP-tagged subunits in live cells, 

and the demonstrable pH-sensitivity of GFP by pH clamping, a spectrally viable 

second fluorescent tag with a greater pH-sensitivity than mOrange2 M163K should 

be sought. A particularly good candidate fluorophore is mApple-derived pHuji, which 

has a higher pKa value than mOrange M163K, of 7.7, and exhibits a 22-fold change 

in fluorescence between pH 5.5 and 7.5 (Shen et al., 2014) which approaches the 

range between cytosolic and endolysosomal pH. The next experiments will involve 

the generation of NRK Voa3-GFP cells stably expressing V1G1-pHuji and analysing 

the distribution of pHuji fluorescence after generating sucrosomes. If there is 

insignificant pHuji in the sucrosome lumen, the degree of colocalisation of Voa3-GFP 

and V1G1-pHuji can be measured to give an estimation of V1-Vo association after 

reversibly manipulating the endolysosome-terminal lysosome equilibrium using 

sucrose and invertase. 
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Chapter 6 – Lysosome signalling to the cell nucleus and 

the assessment of lysosomal stress  
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6.1 Introduction 

Over the last decade, there have been a great number of studies on the emerging 

role of lysosomes in signalling and homeostasis, enacted through the mTORC1-

TFEB signalling hub on the lysosomal membrane, as detailed in Chapter 1.12.1. The 

dynamics of TFEB itself are easily observed, not least because TFEB is amenable to 

tagging, including with fluorescent proteins, with nuclear translocation reporting its 

activation (Sardiello et al., 2009; Settembre et al., 2012; Roczniak-Ferguson et al., 

2012). However, the machinery and mechanism governing the movement of TFEB is 

not fully understood. TFEB activation and transfer to the nucleus to activate CLEAR 

network genes occurs as a response to a number of conditions of lysosomal stress, 

including starvation (Settembre et al., 2011), lysosomal damage (Jia et al., 2018), 

and lysosome neutralisation (Roczniak-Ferguson et al., 2012) including that 

occurring as a result of V-ATPase inhibition (Settembre et al., 2011). Neutralisation 

of lysosomes can occur by accumulation of cationic amphiphilic drugs (CADs) which 

freely diffuse across the membranes of lysosomes into the acidic lumen, where their 

basic amine groups become protonated, simultaneously trapping the CAD in the 

lysosome, and cumulatively quenching the acid in the lysosome. This lysosomal 

trapping and neutralising effect is associated with the development of 

phospholipidosis, an aberrant over-accumulation of phospholipids within lysosomes 

(Anderson and Borlak, 2006; Shayman and Abe, 2013; Glock et al., 2016), predicted 

to be caused by inhibition of lysosomal phospholipase A2 (Glukhova et al., 2015). 

Given that over half of all commercially available drugs contain at least one basic 

amine group (Goldman et al., 2009), the association of basic amine-containing drugs 

with phospholipidosis represents a potential obstacle in the development of small 

molecule pharmaceutical compounds. Knowing that TFEB is translocated to the 

nucleus, and upregulates CLEAR element-containing genes in response to the 

lysosome acid-quenching effects of CADs, I have attempted to develop robust high 

throughput assays to assess the lysosome stress response to a number of stimuli 

including, but not limited to, CADs.  
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6.2 Results 

6.2.1 Localisation of stably overexpressed TFEB-GFP in cells 

Transiently over-expressed C-terminally GFP-tagged TFEB was previously used and 

shown to function correctly (Settembre et al., 2012). Cell lines of HeLa and NRK 

cells were generated to stably express TFEB-GFP using the pLXIN and Phoenix 

packaging cell system. To confirm that GFP-tagged TFEB was responding correctly 

in these cell lines, they were imaged with or without incubation with torin1, a potent 

and selective inhibitor of mTOR. Untreated stable cell lines of both HeLa and NRK 

exhibited an almost exclusively cytoplasmic pool of TFEB-GFP, while torin1-treated 

cells showed a significant translocation of TFEB-GFP to the nucleus, indicating a 

functional response to the inhibition of mTOR.  Whilst most of the TFEB-GFP in the 

untreated HeLa and NRK cell lines was cytosolic, a small proportion localised to 

punctate structures, and after releasing the cytosolic pool of TFEB-GFP by Saponin-

permeabilisation of the plasma membrane, these have been shown to be 

endolysosomes and lysosomes (Bright, Davis and Luzio, 2016). Following torin1 

treatment, some TFEB-GFP remained associated with punctate structures (Figure 

6.1A) which have been previously identified as endolysosomes and lysosomes 

(Settembre et al., 2012; Bright, Davis and Luzio, 2016). Settembre et al. (2012) 

suggested that in the torin1 treated cells, this TFEB was bound to inactive mTORC1 

on the lysosomal membrane. A proportion of TFEB-GFP is localised to lysosomes in 

fed unperturbed cells, but can only be visualised by removing the cytosolic pool. In 

NRK cells preloaded with dextran and incubated with MRL, cytosolic TFEB-GFP was 

washed out of cells using Saponin incubation before fixation (Figure 6.1B). TFEB-

GFP showed much more widespread punctate localisation than MRL, indicating that 

its localisation is not limited to endolysosomes. The colocalisation of TFEB-GFP with 

preloaded DexA and MRL was analysed using Manders’ colocalisation coefficient 

(Figure 6.1C). The difference between the proportion of DexA-loaded lysosomes and 

MRL-marked endolysosomes that colocalised with TFEB-GFP was not significant.  
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Figure 6.1: Stable cell lines expressing TFEB-GFP 

(A) Confocal fluorescence microscopy images of mixed population HeLa (top row) or 

NRK (bottom row) cells stably expressing TFEB-GFP, which were incubated with or 

without 250nM torin1 for 90 minutes. 

(B) Confocal fluorescence microscopy images of NRK cells stably expressing TFEB-

GFP, pre-loaded with DexA to label terminal endocytic compartments, incubated with 

MRL for 3 min and fixed after cytosol washout by incubating the cells in 0.05% 

Saponin for 30 seconds prior to PFA fixation. Scale bar represents 10µm. 

(C) Mander’s correlation coefficients for colocalisation of pre-loaded DexA with MRL 

or TFEB-GFP, or for colocalisation of 3 minutes-incubated MRL with DexA, or TFEB-

GFP in NRK cells. Error bars represent the mean ± SEM of 3 experiments, each 

measuring >15 cells. 
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6.2.2 Nuclear translocation of TFEB-GFP is a quantifiable reporter for 

lysosomal stress 

To quantify the degree of nuclear translocation of TFEB under different conditions, a 

high-throughput automated widefield microscopy assay was used. An automated 

programme was designed to image cells and analyse the fluorescence data to give a 

readout of the difference in mean GFP signal, and hence difference in TFEB-GFP 

concentration, between the nucleus and a sampled region of the cytoplasm (Figure 

6.2A). Increases in NucCyt difference represent increased TFEB translocation. 

A number of known TFEB-activating conditions were applied to clonal NRK TFEB-

GFP cells to quantify the effects on TFEB translocation and validate the system. 

torin1 treatment caused a significant degree of TFEB nuclear translocation, and 

hence could be used as a positive control (Figure 6.2B). Cell starvation by incubation 

in Earle’s Balanced Salt Solution (EBSS) for 1-4 hours caused approximately one 

third of the nuclear translocation of TFEB when compared to the effect of torin1 

(Figure 6.2B). TFEB translocation in response to manipulations of lysosomal pH 

were also quantified. Inhibition of the V-ATPase by incubating cells overnight with 

BafA1 produced approximately one quarter of the response to torin1, while 

neutralising lysosomes by incubating with weak basic chloroquine overnight resulted 

in approximately half the translocation in response to torin1 (Figure 6.2C). 
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Figure 6.2: Nuclear translocation of TFEB-GFP as a reporter for lysosomal 

stress 

(A) A schematic illustrating the cell regions measured during the automated TFEB-

translocation quantification assay (Chapter 2.10). The blue, inner circle represents 

the nuclear region as determined by Hoechst staining, and the red, outer ring 

represents the cytoplasmic sample region. The NucCyt difference value is calculated 

by the nuclear GFP fluorescence intensity after subtracting the cytoplasmic GFP 

fluorescence intensity. 

(B) Clonal NRK TFEB-GFP cells were untreated, incubated with 250nM torin1 for 90 

minutes, or washed with, then incubated in EBSS for up to 4 hours. Cells were then 

fixed and processed for automated scanning. Error bars represent mean ± SEM of 3 

experiments. >750 cells were measured per condition in each experiment. 

(C) Clonal NRK TFEB-GFP cells were untreated, incubated with 100nM BafA1 for 15 

hours, or incubated with 100µM chloroquine (CQ) for 15 hours. Cells were then fixed 

and processed for automated scanning. Error bars represent mean ± SEM of 3 

experiments. >750 cells were measured per condition in each experiment.
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  6.2.3 TFEB-GFP acts as a dose-dependent reporter for R. equi VapA 

protein required for virulence 

Some pathogens and their proteins can cause dysfunction of the host cell’s 

lysosomal system. Once such pathogen, Rhodococcus equi (R. equi) is a foal-

infecting bacterium capable of expressing a number of virulence-associated proteins 

(Vaps), including VapA which allows the bacterium to survive inside macrophages by 

perturbing endolysosomal function. In particular, VapA causes some lysosomal 

swelling and reduces the fusion of R. equi-containing phagosomes with lysosomes 

(Fernandez-Mora et al., 2005; von Bargen and Haas, 2009; Rofe et al., 2017). VapA 

is necessary for R. equi virulence and it alone can restore virulence to VapA, C, D, 

E, or F depletion mutants (JainBloom and Hondalus, 2003). R. equi can infect NRK 

cells but at a lower efficiency than macrophage cell lines (Rofe et al., 2017). To 

investigate whether TFEB was activated in response to the lysosome-perturbing 

effects of R. equi Vaps, NRK TFEB-GFP cells were incubated with recombinant 

VapA (provided by Dr Adam Rofe and Dr Paul Pryor, University of York), which 

entered the cells by fluid phase endocytosis and caused a concentration-dependent 

increase in TFEB translocation. This reached approximately one quarter of the 

response to torin1 (250nM for 90 minutes) when cells were incubated for 24 hours 

with 200µg/ml VapA (Figure 6.3A). Incubation with recombinant virulence proteins 

VapD and VapG, despite the high degree of sequence homology of their core 

regions with that of VapA (Rofe et al., 2017), showed no effect on TFEB 

translocation compared to untreated cells (Figure 6.3A). 

To further investigate the timescale of the VapA-mediated activation of TFEB, and to 

determine the domain of VapA that is important in such activation, a timecourse 

experiment was performed. NRK TFEB-GFP cells were incubated with recombinant 

VapA, VapD, VapG, chimeric VapA (N-terminal)-VapD (core), or chimeric VapD (N-

terminal)-VapA (core) proteins. TFEB nuclear translocation was only observed in 

VapA-incubated cells, and VapD (N-terminal)-VapA (core) chimera-incubated cells, 

which both reached a peak response after 16 hours incubation (Figure 6.3B). The 

fact that the VapD-VapA chimera, and not the VapA-VapD chimera, induced TFEB 

translocation indicates that the core region of VapA is specifically responsible for 

lysosome perturbation.  
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Figure 6.3: TFEB-GFP nuclear translocation after incubation with R. equi 

virulence proteins 

(A) Clonal NRK TFEB-GFP cells were untreated, incubated with 250nM torin1 for 90 

minutes, or incubated with increasing concentrations of recombinant VapA, VapD, or 

VapG for 24 hours. Cells were then fixed and processed for automated scanning. 

Error bars represent mean ± SEM of 3 experiments. >750 cells were measured per 

condition in each experiment. 

 

(B) Clonal NRK TFEB-GFP cells were untreated, incubated with 250nM torin1 for 90 

minutes, or incubated with 100µg/ml of recombinant VapA, VapD, VapG, chimeric 

VapA-VapD, or chimeric VapD-VapA for 8-72 hours. Cells were then fixed and 

processed for automated scanning. Error bars represent mean ± SEM of 3 

experiments. >750 cells were measured per condition in each experiment. 
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6.2.4 Using HEK293 cells stably expressing TFEB-GFP to determine 

optimal conditions to trigger TFEB translocation 

Human embryonic kidney (HEK293) cells are a widely used human cell line for 

toxicity studies (see for example (Shukla et al., 2010)). In order to study TFEB 

translocation in these cells in response so a variety of CADs and other drugs/drug 

precursors and in preparation for downstream analyses of TFEB-upregulated gene 

transcription using qPCR, clonal HEK293 cell lines stably expressing TFEB-GFP 

were generated. These cells were used in dose response and time course 

experiments with multiple TFEB-activating conditions to determine the temporal 

dynamics of TFEB translocation and to inform on the optimal conditions to treat cell 

samples for later qPCR applications. Maximum concentrations and durations where 

cell viability still exceeded 80% by resazurin-based assays were used. HEK293 

TFEB-GFP cells were incubated with increasing concentrations of the CAD CQ for 1-

18 hours, resulting in a peak in TFEB translocation between 3 and 6 hours with 

100µM CQ (Figure 6.4A). After incubation with the V-ATPase inhibitor BafA1, 

HEK293 TFEB-GFP cells showed the greatest TFEB translocation after 18 hours 

incubation, with little difference between 25nM, 50nM, and 100nM concentrations 

(Figure 6.4B).  ML-SA1 is an agonist which activates the TRPML1 lysosomal Ca2+ 

channel. This causes release of intra-lysosomal Ca2+ and resultant activation of 

calcineurin which dephosphorylates TFEB and allows it to be translocated into the 

nucleus (Medina et al., 2015). ML-SA1 (Tocris Bioscience) demonstrated very potent 

concentration-dependent activation of TFEB in a short timescale, strongly inducing 

TFEB translocation when used at 200µM for 2 hours (Figure 6.4C). 

  



152 
 

Figure 6.4 

A    CQ 

 

B    BafA1 

 

C    ML-SA1 



153 
 

Figure 6.4: Using HEK293 cells stably expressing TFEB-GFP to determine 

optimal conditions to trigger TFEB translocation  

(A) Clonal HEK293 TFEB-GFP cells were incubated with 1:1000 (v/v) DMSO vehicle, 

or increasing concentrations of CQ for 1, 3, 6, or 18 hours. Cells were then fixed and 

processed for automated scanning. Error bars represent mean ± SEM of 3 

experiments. >750 cells were measured per condition in each experiment. 

(B) Clonal HEK293 TFEB-GFP cells were incubated with 1:1000 (v/v) DMSO vehicle, 

or increasing concentrations of BafA1 for 1, 4, or 18 hours. Cells were then fixed and 

processed for automated scanning. Error bars represent mean ± SEM of 3 

experiments. >750 cells were measured per condition in each experiment. 

(C) Clonal HEK293 TFEB-GFP cells were incubated with 1:100 (v/v) DMSO vehicle, 

or increasing concentrations of ML-SA1 for 15, 30, 60, or 120 minutes. Cells were 

then fixed and processed for automated scanning. Error bars represent mean ± SEM 

of 3 experiments. >750 cells were measured per condition in each experiment. 
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Table 6.1 Applied Biosystems™ TaqMan® Gene Assays 

Assay 
ID 

Gene 
Symbol 

Gene Name(s) RefSeq(s) GenBank mRNA(s) Amplicon 
Length 

Hs01
06066
5_g1 

ACTB actin, 
beta;hCG15971 
Celera Annotation 

NM_001101.3 AK223055.1;BC013380.2;
AK130062.1;DQ471327.1;
BC002409.2;X00351.1;AK
304552.1;BC012854.1;AK0
58019.1;BC001301.1;AK13
0157.1;AK223032.1;BC016
045.1;BC004251.1;X63432
.1;AK025375.1;AK309997.
1;AK222925.1;BC014861.1
;BC008633.1;BC013835.1;
AK225414.1;EF095209.1 

63 

Hs04
18562
9_g1 

ARSA arylsulfatase 
A;hCG16870 Celera 
Annotation 

NM_00108542
5.2;NM_00108
5428.2;NM_00
1085427.2;NM
_001085426.2;
NM_000487.5 

BM818814.1;AK315011.1;
CA423492.1;AK092752.1;
CR456383.1;X52151.1;AB
448736.1;AK098659.1;BX6
48618.1;BC014210.2 

60 

Hs00
94096
8_m1 

ARSB arylsulfatase 
B;hCG37743 Celera 
Annotation 

NM_000046.3;
NM_198709.2 

BC029051.1;M32373.1;AK
290865.1;AK314903.1;J05
225.1 

125 

Hs01
37725
4_m1 

ATG9B autophagy related 
9B;hCG2039570 
Celera Annotation 

NM_173681.5 AY515311.1;AY316116.1 72 

Hs00
89528
0_g1 

ATP6V
1G1 

ATPase, H+ 
transporting, 
lysosomal 13kDa, V1 
subunit 
G1;hCG29854 
Celera Annotation 

NM_004888.3 CR542237.1;CR456971.1;
BC008452.1;AF038954.1 

78 

Hs00
97753
0_m1 

ATP6V
1H 

ATPase, H+ 
transporting, 
lysosomal 50/57kDa, 
V1 subunit 
H;hCG27354 Celera 
Annotation 

NM_213619.2;
NM_213620.2;
NM_015941.3 

AK098305.1;AK308204.1;A
F112204.1;AF113222.1;AK
022345.1;AF125105.1;BC0
25275.1;AF298777.1;AK30
3229.1;AK094839.1 

72 

Hs01
12646
2_m1 

CLCN7 chloride channel, 
voltage-sensitive 
7;hCG42716 Celera 
Annotation 

NM_001287.5;
NM_00111433
1.2 

AK291404.1;AK304796.1;A
K292136.1;AF224741.1;Z6
7743.1;AK056551.1;BC012
737.2 

69 

Hs00
26490
2_m1 

CTSA cathepsin 
A;hCG38374 Celera 
Annotation 

NM_00116759
4.1;NM_00112
7695.1;NM_00
0308.2 

AK307701.1;AB209705.2;A
K097786.1;BC093009.1;A
K312898.1;M22960.1;AK1
72808.1;BC000597.2;AK30
4536.1 

65 

Hs00
94743
3_m1 

CTSB hCG1990887 Celera 
Annotation;cathepsin 
B 

NM_147783.2;
NM_147782.2;
NM_147781.2;
NM_147780.2;
NM_001908.3 

BX647952.1;L16510.1;AK2
96845.1;BX647765.1;AL54
3654.3;AK075393.1;BC095
408.1;BG770805.1;AK1301
84.1;AK092070.1;BC01024
0.1;CB997355.1;AK290239
.1;M14221.1;BM008741.1 

73 

Hs00
15720
5_m1 

CTSD cathepsin 
D;hCG49857 Celera 
Annotation 

NM_001909.4 BC001574.1;CR456947.1;
BT020155.1;X05344.1;BT0
06910.1;AK130178.1;BC01
6320.2;M11233.1 

103 
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Hs00
18690
1_m1 

CTSF hCG20245 Celera 
Annotation;cathepsin 
F 

NM_003793.3 AF088886.2;AF071748.1;A
L137742.1;AF071749.1;BC
036451.1;CR541680.1;AJ0
07331.1;BC011682.2;AF13
6279.1;AK313657.1 

105 

Hs00
97573
2_m1 

GALNS hCG19109 Celera 
Annotation;galactosa
mine (N-acetyl)-6-
sulfate sulfatase 

NM_000512.4 AY129021.1;AK294390.1;A
K308269.1;BC056151.1;B
C050684.1;AK312655.1;A
K131096.1 

115 

Hs02
75899
1_g1 

GAPD
H 

glyceraldehyde-3-
phosphate 
dehydrogenase;hCG
2005673 Celera 
Annotation 

NM_002046.4;
NM_00125679
9.1 

BU155402.1;BC004109.2;
BC013310.2;BC025925.1;
BC020308.1;AF261085.1;B
C009081.1;DQ403057.1;C
R407671.1;M33197.1;EF0
36498.1;BC029340.1;BC02
3632.2;X53778.1;AY00713
3.1;BC001601.1;BC029618
.1;BC026907.1;BT006893.
1;AB062273.1;AK026525.1
;BC083511.1;AK308198.1;
X01677.1;M17851.1;AY63
3612.1 

93 

Hs00
98683
6_g1 

GBA glucosidase, beta, 
acid;hCG1996349 
Celera Annotation 

NM_000157.3;
NM_00117181
2.1;NM_00100
5742.2;NM_00
1171811.1;NM
_001005741.2 

BC003356.1;AK291911.1;
AK302000.1;AK300876.1;B
X648487.1;AK312502.1;AK
300829.1;K02920.1;M1928
5.1;D13286.1;AK300186.1;
AK301374.1;M16328.1 

89 

Hs00
60923
8_m1 

GLA galactosidase, 
alpha;hCG20401 
Celera Annotation 

NM_000169.2 AK297148.1;BC002689.2;
X05790.1;X16889.1;BT006
864.1;D00039.1;AK291095
.1 

80 

Hs00
15774
1_m1 

GNS hCG1640559 Celera 
Annotation;glucosam
ine (N-acetyl)-6-
sulfatase 

NM_002076.3 AK223484.1;AK302443.1;B
C012482.1;AK291771.1;B
X537363.1;Z12173.1;AK30
4158.1;AK300350.1 

60 

Hs00
16684
3_m1 

HEXA hexosaminidase A 
(alpha 
polypeptide);hCG404
59 Celera Annotation 

NM_000520.4 DC356933.1;BC084537.1;
AK222502.1;M13520.1;AK
301138.1;AK296528.1;BP3
56349.1;CR627386.1;BC0
18927.2;AK307770.1 

91 

Hs00
17476
6_m1 

LAMP1 hCG27880 Celera 
Annotation;lysosomal
-associated 
membrane protein 1 

NM_005561.3 BC021288.2;J04182.1;BC0
25335.1;BC093044.1;BU84
9686.1;AK301584.1;AK092
398.1 

93 

Hs01
54881
5_m1 

LIPA lipase A, lysosomal 
acid, cholesterol 
esterase;hCG24574 
Celera Annotation 

NM_00112760
5.1;NM_00023
5.2 

AK091558.1;AK314665.1;
U08464.1;Z31690.1;AK290
241.1;AK125193.1;M74775
.1;AK096406.1;BC012287.
1;AK222760.1;X76488.1 

118 

Hs01
10065
3_m1 

MCOL
N1 

mucolipin 
1;hCG22254 Celera 
Annotation 

NM_020533.2 AK222673.1;AK294330.1;A
K026102.1;AF249319.1;BC
005149.2;AF287269.1;AJ2
93659.1;AJ293970.1;AF17
1088.1 

86 

Hs00
16535
6_m1 

NAGL
U 

N-
acetylglucosaminidas
e, alpha;hCG16571 
Celera Annotation 

NM_000263.3 L78464.1;U40846.1;BC053
991.1;U43573.1 

80 
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Hs00
90254
3_g1 

NEU1 sialidase 1 
(lysosomal 
sialidase);hCG43692 
Celera Annotation 

NM_000434.3 X78687.1;AF040958.1;AB2
09011.1;AK313006.1;U842
46.1;BC000722.2;BC01190
0.2;CR541916.1;AK290966
.1;BT007206.1 

108 

Hs00
23459
2_m1 

PPAR
G 

peroxisome 
proliferator-activated 
receptor 
gamma;hCG26772 
Celera Annotation 

NM_015869.4;
NM_005037.5;
NM_138711.3;
NM_138712.3 

U63415.1;BC006811.1;U7
9012.1;AB451486.1;AB472
042.1;AB307692.1;AB4513
37.1;X90563.1;AB565476.
1;D83233.1;BT007281.1;A
K290581.1;AK223528.1;H
Q692866.1 

77 

Hs01
01671
9_m1 

PPAR
GC1A 

hCG1811770 Celera 
Annotation;peroxiso
me proliferator-
activated receptor 
gamma, coactivator 1 
alpha 

NM_013261.3 AB061325.1;AF159714.1;J
Q772116.1;JQ772117.1;AF
106698.1;AF186379.1;JQ7
72118.1;HQ695733.1;JQ77
2119.1;JQ772120.1 

74 

Hs01
55109
6_m1 

PSAP prosaposin;hCG1787
837 Celera 
Annotation 

NM_002778.2;
NM_00104246
5.1;NM_00104
2466.1 

AK057878.1;J03015.1;BT0
06849.1;AK293672.1;M322
21.1;M60255.1;M60257.1;J
03077.1;CR456746.1;AK12
9790.1;AK299184.1;BC001
503.2;M60258.1;BC007612
.1;M81355.1;AB209776.1;
D00422.1;AK223290.1;BC
004275.1 

74 

Hs00
22210
8_m1 

SCPEP
1 

serine 
carboxypeptidase 
1;hCG33381 Celera 
Annotation 

NM_021626.2 AF282618.1;AK298161.1;D
C344612.1;AY358559.1;AF
113214.1;BC072405.1;AK0
27373.1 

66 

Hs00
16492
4_m1 

SGSH N-sulfoglucosamine 
sulfohydrolase;hCG2
8568 Celera 
Annotation 

NM_000199.3 DC319407.1;AK309927.1;
BC047318.1;AK095969.1;
AK222890.1;AK291257.1;
U30894.1;AB209900.1 

94 

Hs00
99075
1_m1 

TCIRG
1 

T-cell, immune 
regulator 1, ATPase, 
H+ transporting, 
lysosomal V0 subunit 
A3;hCG19345 
Celera Annotation 

NM_006053.3;
NM_006019.3 

U45285.1;BC018133.1;AF
025374.1;BC032465.1 

95 

Hs01
56544
4_g1 

TMEM
55B 

hCG40483 Celera 
Annotation;transmem
brane protein 55B 

NM_144568.2;
NM_00110081
4.1 

AK314021.1;BC020947.1;
BX248025.1;BC002867.1;
BX161490.1 

60 

Hs00
16609
9_m1 

TPP1 hCG22005 Celera 
Annotation;tripeptidyl 
peptidase I 

NM_000391.3 AK312388.1;AK295801.1;A
K293741.1;AY358502.1;AF
017456.1;AK300998.1;AK2
22538.1;AK293518.1;BP27
9860.1;AK222499.1;BC014
863.1;AY268890.1 

82 

Hs00
74867
3_s1 

ATP6V
0E1 

ATPase, H+ 
transporting, 
lysosomal 9kDa, V0 
subunit 
e1;hCG41251 Celera 
Annotation 

NM_003945.3 BF691381.1;Y15286.1 136 
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6.2.5 Lysosomal gene regulation in HEK293 cells after treatment with 

chloroquine 

To investigate the effects of TFEB-activating conditions on gene regulation, a qPCR 

study was performed using a list of lysosomal genes with CLEAR elements (Table 

6.1, modified from (Sardiello et al., 2009)). Wild type HEK293 cells were treated with 

CQ or with acetaminophen as a non-lysosomotropic control compound before 

isolating RNA. TaqMan gene expression array card qPCR analysis showed very low 

levels of modulation of the selected lysosomal genes (Table 6.1) relative to untreated 

control conditions, with only 7 genes’ expression increasing by >1.2 fold under any 

CQ treatment duration (Figure 6.5). ATP6V1H showed the greatest response with 

consistent 1.3-1.5 fold upregulation at all CQ treatment durations. For most genes, 

the greatest increase in mRNA copy number occurred after 16-18 hours treatment 

with CQ, suggesting that the time course of peak gene upregulation might be longer 

than investigated in this study. Acetaminophen consistently produces negligible 

effects on gene expression as anticipated. 

6.2.6 Measuring gene regulation of a subset of CQ-responding genes 

using alternative TFEB-activating conditions 

The 6 genes with the highest peaks in mRNA copy number upregulation from the 

initial qPCR study, together with RRAGD (Table 6.2) which has recently been 

reported to be capable of very high upregulation (Di Malta et al., 2017), were further 

tested for their suitability as a reporter of lysosome stress by analysing their 

expression after applying different TFEB-activating stimuli.  

Table 6.2 Applied Biosystems™ TaqMan® Gene Assay for RRAGD 

Assay ID Gene 
Symbol 

Gene Name(s) RefSeq(s) GenBank mRNA(s) Amplicon 
Length 

Hs002220
01_m1  
 

RRAGD Ras related GTP 
binding D 

NM_021244 AF272036.1;AK289799.1;A
L523999.3;BC003088.1 

61 

 

Wild type HEK293 cells were incubated with acetaminophen, torin1, ML-SA1, or 

amino acid (AA)-free medium before RNA isolation and qPCR analysis. Suprisingly, 

throughout the time course of torin1 incubation, all differences in expression were 

showing down-regulation of transcription of these genes (Figure 6.6A). ML-SA1 



158 
 

treatment caused similar downregulation of genes to that of torin1, with the exception 

of NEU1 which was strongly upregulated at 8 and 24 hours incubation (Figure 6.6B). 

Amino acid starvation of HEK293 cells produced the most dramatic response in the 

genes, resulting in significant upregulation of every gene except for RRAGD at 4 

hours starvation (Figure 6.6C). 
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Figure 6.5 
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Figure 6.5: Lysosomal gene regulation in HEK293 cells after treatment with 

chloroquine 

Wild type HEK293 cells were incubated with normal growth medium, with 50µM CQ 

for 3, 6, 16 or 18 hours, or with 100µM acetaminophen for 18 hours. Cells were then 

lysed, RNA was isolated, reverse-transcribed and quantified using qPCR as 

described in Chapter 2, section 2.13. Graph representing the fold change in mRNA 

copy number relative to that of PBS treated control samples, normalised to β-actin 

expression. Error bars represent mean ± SEM of 3 experiments. Statistical analyses 

were unable to be performed due to faulty Array Card wells exhibiting anomalous 

fluorescence in a number of polymerase-negative control wells. 
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Figure 6.6 
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Figure 6.6: Measuring gene regulation of a subset of CQ-responding genes 

using alternative TFEB-activating conditions 

Wild type HEK293 cells were incubated with 100µM acetaminophen for 24 hours, or 

(A) 30nM torin1 for 4, 8, or 24 hours, (B) 50µM ML-SA1 for 4, 8, or 24 hours, or (C) 

AA-free medium for 4, 8, or 16 hours before RNA was isolated, reverse-transcribed 

and quantified using qPCR as described in Chapter 2, section 2.13. Graphs 

represent the fold change in mRNA copy number relative to that of the vehicle 

control samples, normalised to β-actin expression. Statistical significance was 

determined using a one-way ANOVA analysis and Dunnett’s multiple comparisons 

tests to determine statistically significant differences from the vehicle control. 

*** p<0.0001, ** p<0.001, * p<0.05, unmarked means not significant from control. 
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6.3 Discussion 

The data presented here shows that TFEB with C-terminally tagged GFP, when 

stably expressed in HeLa, NRK, or HEK293 cells, functions as expected by 

translocating into the nucleus in response to torin1-mediated mTOR inhibition. 

Through the use of high-throughput automated widefield fluorescence microscopy, 

GFP-tagged TFEB translocation has been quantified and shown to be a robust 

reporter for lysosomal stress caused by a variety of stimuli, including amino acid-

deprivation, deacidification of lysosomes and bacterial virulence protein uptake. The 

dynamic range of the automated TFEB-GFP nuclear translocation assay provided a 

sensitive readout for lysosomal stress, as seen in the dose-dependent response to 

VapA incubation (Figure 6.3A) It even allowed mapping of the active domain of 

VapA, through studying the effects of chimeras of parts of VapA and of other Vap 

proteins (Figure 6.3A).  The assay was also sufficiently sensitive to allow the 

generation of dose response and time course graphs for three small molecules, CQ, 

BafA1 and ML-SA1 that induce lysosomal stress by different mechanisms. It is 

therefore a potentially useful addition to the battery of tests, including 

LysoTracker®/LysoSensor™ staining to assess acidification, Magic Red™ to assess 

cathepsin activity, and LAMP staining currently available to assess the effects on 

lysosomal stress of known lysosomotropic compounds (Lu et al., 2017) or pre-drugs 

during drug development. However, a caveat is that TFEB translocation can be 

activated by a range of pathways, including a mTOR-independent PKC-mediated 

pathway (Li et al., 2016), and as such, cannot on its own be interpreted as a specific 

reporter or lysosomal status, or phospholipidotic potential of a compound. 

My initial qPCR experiments showed that under the conditions of CQ incubation with 

HEK293 cells used to induce TFEB translocation to the nucleus, there was little, and 

inconsistent effect on the regulation of 29 selected CLEAR element genes. A subset 

of the 5 genes with the highest peak expression after CQ treatment, plus RRAGD, 

were taken forward to another qPCR experiment using cells treated with torin1, ML-

SA1, or AA starvation.  

The negative effects on CLEAR element gene regulation shown by torin1 and largely 

by shorter ML-SA1 incubations differ from the ~2 to ~6-fold changes previously 

reported for the same genes (Sardiello et al., 2009) however the consistent 
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upregulation across all genes in the subset following amino acid starvation fits 

completely in line with previous reports. Low level effects on lysosome gene 

upregulation have been reported where a lysosomal gene transcriptional repressor, 

ZKSCAN3, was knocked down, and showed comparably mild <2.5 fold expression of 

lysosomal genes (Chauhan et al., 2013), so the fact that only two lysosome 

perturbations tested here caused upregulation of >2.5 fold expression might not be 

an anomaly. Additionally, the greater amount of TFEB expressed in the TFEB-GFP 

reporter cell line compared to wild type may have predisposed the reporter cells to 

overestimate the degree of TFEB activation under any conditions of lysosomal 

stress. In such a situation, the wild type HEK293 cells treated the same way may 

exhibit less gene upregulation as the endogenous TFEB pathway isn’t as strongly 

activated as estimated. Acetominophen again caused no change in lysosomal gene 

regulation, reflecting its lack of lysosomotropic character. 
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7.1 General discussion 

The overarching aim of the work reported in this thesis was to study the dynamics 

and function of organelles in the late endocytic pathway, focusing on the machinery 

that maintains the equilibrium of functionally heterogeneous organelles in the 

lysosome regeneration cycle. In particular, the roles of proteins involved in the 

interrelated aspects of late endosome-lysosome fusion to produce endolysosomes, 

and modulation of pH during reformation to regenerate acid hydrolase-storage 

lysosomes, were to be investigated. Additionally, a toolkit to report cell signalling in 

response to lysosomal damage or stress, was to be developed and tested. 

In Chapter 3, live cell microscopy data demonstrated the endolysosome 

subpopulation of lysosomes to be acidic and cathepsin-active. Using the presence or 

absence of Magic Red™ in dextran loaded terminal endocytic compartments to 

distinguish endolysosomes from storage lysosomes respectively, the cross-sectional 

size of endolysosomes was on average greater than that of storage lysosomes. 

Dense core lysosomes, as identified by EM, are consumed during sucrosome 

formation (Bright et al., 1997), and sucrosomes are endolysosomal in nature 

(Chapter 3, (Bright, Davis and Luzio, 2016)). Given that dextran-loaded Magic 

Red™-negative storage lysosomes appear smaller than endolysosomes, these 

storage lysosomes may very well represent dense core storage lysosomes observed 

by light microscopy. Endolysosomes were shown to strongly colocalise with Rab9 

and Rab7, the latter of which is in alignment with the correlation between Rab7-

presence and acidity of juxtanuclear lysosomes (Johnson et al., 2016). 

Endolysosomes were also shown to be marked by ML1Nx2-GFP, a probe developed 

for the detection of the endolysosomal phosphoinositide PI(3,5)P2 (Li et al., 2013), 

however interpretation of these data is complicated by a dispute over the specificity 

of ML1Nx2-GFP binding to PI(3,5)P2, particularly due to differing results from an 

experiment with a PIKFYVE inhibitor, YM201636, which is known to rapidly and 

specifically deplete PI(3,5)P2 (Jefferies et al., 2008). Hammond et al., 2015 

questioned the specificity of ML1Nx2-GFP. They closely reproduced an experiment 

using ML1Nx2-GFP with or without YM201636, but instead of using separate cell 

populations, measured the same cell population throughout the duration, and 

observed no reduction in colocalisation of ML1Nx2-GFP with LAMP1 after PI(3,5)P2 

depletion (Hammond et al., 2015). Hammond et al. 2015 suggest that their 
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experimental approach was more consistent as it avoided the effects of cell to cell 

differences in expression. ML1Nx2 consists of two copies of the N-terminal cytosolic 

domain of TRPML1 and one possibility is that it correctly recognises PI(3,5)P2 but 

once localised to the membrane, ML1Nx2 interacts with protein binding partners of 

this cytosolic domain. Nevertheless the concerns about ML1Nx2-GFP suggest that a 

better probe should be developed. 

To better understand the machinery involved in formation of endolysosomes by the 

fusion of late endosomes with endolysosomes/lysosomes, I investigated the roles 

played by the R-SNAREs VAMP7 and VAMP8. As described in Chapter 4, there is 

some evidence for the redundancy of VAMP7 and 8 in the delivery of endocytosed 

cargo to lysosomes by kiss-and-run or full fusion events. After depleting HeLa cells 

of VAMP7 or VAMP8 individually, no significant effect was observed on morphology 

of intracellular compartments, or on delivery of late endosome cargo to lysosomes, 

indicating some degree of functional redundancy in these cells, as endocytic 

trafficking was functional. CRISPR-Cas9-mediated knockout of each SNARE was 

employed to completely eliminate these SNAREs, as the remaining levels after 

individual siRNA-mediated knockdown of SNAREs has previously shown to be 

insufficient to impact a number of intracellular trafficking pathways (Bethani et al., 

2009). The unaffected lysosomal delivery observed in dual VAMP7 and VAMP8 

knockout cells led to the investigation of the alternative R-SNARE YKT6, another 

longin R-SNARE which has been shown to be required for homotypic vacuole fusion 

(Ungermann et al., 1999) and competes with Nyv1p, the yeast homologue of 

VAMP7, to bind to the vacuolar t-SNARE complex (Fukuda et al., 2000). Yeast YKT6 

(Ykt6p) has also been shown to be able to substitute for Nyv1p in in vitro yeast 

vacuole fusion (Thorngren et al., 2004). Knockdown conditions in which YKT6 

depletion did not affect wild type HeLa cells significantly impeded delivery of 

endocytic cargo to lysosomes in VAMP7 and VAMP8 dual knockdown cells (Chapter 

4). Furthermore, stable expression of HA-VAMP7 in the dual knockout cells rescued 

the effect of YKT6 depletion on lysosome delivery, supporting the role of YKT6 as a 

compensatory R-SNARE, and an alternative to VAMP7 in lysosomal trans-SNARE 

complexes. Similarly, a recent study has demonstrated YKT6 and VAMP7 compete 

to bind with the Syntaxin17-SNAP29 complex required for autophagosome-lysosome 

fusion in fruit fly cells (Takáts et al., 2018). These authors also provided evidence 
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that YKT6 is not part of the fusion-competent trans-SNARE complex in wild type 

cells, and instead plays a regulatory role. A study of HeLa cells, however, showed 

YKT6 to form a SNARE complex with SNAP29 and Syntaxin7, mediating 

autophagosome-lysosome fusion independently of Syntaxin17 (Matsui et al., 2018). 

Taken together with an in vitro study suggesting YKT6 to be required for 

autophagosome-vacuole fusion in yeast (Bas et al., 2018), the role of YKT6 in 

lysosome-autophagosome fusion appears to be evolutionarily conserved. The 

autoinhibitory state of farnesylated YKT6 (Wen et al., 2010) and the reversible nature 

of YKT6 membrane association complicates the design of rescue experiments, 

particularly as overexpressed YKT6 has been reported to predominantly cytosolic 

(Gordon et al., 2017). Without an easily approachable YKT6 rescue experiment, the 

specific role of YKT6 in endosome-lysosome fusion could be elucidated by co-

immunoprecipitation experiments to determine if YKT6 complexes with lysosomal Q-

SNAREs Vti1b, Syntaxin7 and Syntaxin8. Additionally, the effect of YKT6-

knockdown on lysosomal delivery could be investigated in individual VAMP7- or 

VAMP8- knockdown cells to determine if YKT6 specifically compensates for VAMP7 

as indicated by the VAMP7 rescue data. Introduction of a mutation into the zero ionic 

layer of YKT6 represents a useful tool that could be used to separate the regulatory 

or fusogenic roles of YKT6 in endolysosomal SNARE complexes. 

After acidic, catalytically active endolysosomes are formed by fusion events, 

lysosomes must be reformed to maintain the equilibrium of neutral, storage 

lysosomes. As detailed in Chapter 1, studies of autolysosomes have provided the 

most information concerning machinery and requirements of lysosome reformation. 

To better address the specific question of how neutral lysosomes are derived from 

the highly acidic endolysosome source, I developed tools to study the V1 and Vo 

sectors of the V-ATPase complex. Differently fluorescently tagged V1G1 and Voa3 

subunits were to be used to assess colocalisation as an estimation of V1-Vo 

association in the lysosome regeneration cycle. Both tagged V1G1 and Voa3 

subunits independently localised to endolysosomal limiting membranes, to 

sucrosome limiting membranes, and to tubules protruding from sucrosomes after 

invertase uptake, indicating proto-lysosomes in the first stage of reformation. Both 

subunits individually localising to protolysosomal tubules may indicate that V1-Vo 

associated full V-ATPase complexes are trafficked onto the limiting membrane of the 
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newly forming lysosome, however due to the limitations faced with the secondary 

fluorophore, V1 and Vo sectors were not studied simultaneously. Preliminary 

evidence from immunofluorescence experiments showed V1G1 not to appear on the 

most peripheral Voa3-, or lgp120-marked lysosomes, which are assumed to be the 

least acidic lysosomes (Johnson et al., 2016). The differences between the 

fluorescent signal in the sucrosome lumen produced by TagRFP or mOrange2 

M163K compared to GFP may likely be avoidable with a tag as quenchable as GFP 

was demonstrated to be when the cells were clamped at pH 5. pHuji is likely to be a 

suitable tag to take forward due to its higher pKa compared to mOrange2 M163K, 

and its greater fluorescence discrepancy between lysosomal and cytosolic pH values 

(Shen et al., 2014). Provided pHuji fluorescence doesn’t occur in the sucrosome 

lumen, cells co-expressing V1G1-pHuji Voa3-GFP should be taken forward. 

Confocal slices should be imaged in resting cells before sucrose uptake, after 24 

hours sucrose incubation, when dense core lysosomes are depleted, and after a 

further 8 hours of invertase uptake when dense core lysosomes have been restored 

to the resting levels (Bright et al., 1997). Manders’ colocalisation coefficient should 

be used to calculate the proportion of Voa3-marked membrane which is also positive 

for V1G1, and used as a readout of the proportion of V1-Vo associated V-ATPase 

complexes at rest, when the terminal endocytic compartment is entirely comprised of 

swollen endolysosomes, or after reformation of less acidic, storage lysosomes. This 

proposed system employs overexpression of fluorescently tagged subunits, and as 

such, the dynamics of the non-fluorescent endogenous proteins will not be observed. 

In addition, the higher than endogenous levels of V1G1 and Voa3 may be affecting 

V-ATPase function and not be representative of wild type cells. To bypass these 

potential confounding factors, I am in the process of generating knock-in cell lines, 

thereby expressing tagged subunits under the control of the endogenous promoter. 

These cells, while avoiding any disadvantages of ectopic expression and truly 

representing the dynamics of endogenous V-ATPase complexes, are limited in 

fluorescence, as the tag is only present at endogenous protein levels. The lower 

brightness of knock-in tagged subunits may present a limitation in the application of 

microscopy and colocalisation analyses. The reversible dissociation of V1-Vo as a 

mechanism to control pH during lysosome reformation fits in to a network relating 

lysosome membrane composition, pH, and reformation. Endolysosomal 

phosphoinositide PI(3,5)P2 has been shown in yeast to stabilise V1-Vo interaction (Li 
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et al., 2014). V1-Vo assembly is also promoted in HeLa cells by RILP (De Luca et 

al., 2014), which is recruited to endolysosomes by Rab7, which is concentrated more 

on perinuclear, acidic lysosomes, compared to peripheral, neutral lysosomes in 

HeLa cells (Johnson et al., 2016). It could therefore be predicted that reduction of 

V1-Vo assembly on reforming lysosomes occurs as a result of reduced Rab7 

density, and reduced RILP-mediated V-ATPase stabilisation, leading to reduced 

acidification and eventual neutralisation from passive proton leakage observed in 

peripheral lysosomes (Johnson et al., 2016). Beyond stabilising V1-Vo assembly, 

PI(3,5)P2 activates TRPML1, which is required for lysosome reformation (Miller et al., 

2015), however a recent study using short-term manipulations of PI(3,5)P2 suggests 

that PIKfyve-mediated generation of PI(3,5)P2 may play a TRPML1-independent role 

in lysosome reformation (Bissig et al., 2017). 

The final aim of this thesis was to develop a set of tools that could report lysosomal 

health by measuring activity of the TFEB-CLEAR signalling network. First, a high 

throughput automated TFEB translocation assay was developed to use as a screen 

for lysosome perturbation by small molecule pharmacological agents. This assay 

gave a robust and reliable readout of a variety of lysosomal stress conditions, 

including V-ATPase inhibition, lysosomotropic drug accumulation, amino acid 

starvation, bacterial virulence protein uptake, and activation of lysosomal Ca2+ 

channels. Short and long TFEB-activating incubations with CQ were applied to cells 

which were then analysed for expression changes of a broad selection of lysosomal 

genes in response to TFEB activation across different time points. None of the genes 

analysed were consistently >1.5 fold upregulated, however a subset of genes that 

showed the greatest fold change at any single time point were taken forward as 

reporters for further experiments. Expression of the subset of reporter genes was 

analysed in cells starved of amino acids, treated with TRPML1 activator ML-SA1, or 

treated with mTOR inhibitor torin1. Torin1-treated cells showed only downregulation 

of gene expression, which seems counterintuitive compared to its powerful effect on 

TFEB translocation to the nucleus. A small downregulation of some genes was also 

observed in ML-SA1-treated incubation with ML-SA1, however these conditions also 

caused a significant upregulation of NEU1, so at the very least, the responses of 

these genes are not consistent with one another. Amino acid starvation induced 
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significant upregulation of every gene in the subset by 8 hours, and continued to 16 

hours starvation. In this instance, the genes did show a consistent response. 

These data suggest that gene regulation may not give a consistent response to 

different TFEB-activating conditions, but may be robust and consistent in reporting 

starvation. The relatively narrow dynamic range of gene upregulation along with the 

inconsistency of gene responses brings into question the utility of such a study as a 

universal reporter of lysosomal perturbation. The different responses to each mode 

of TFEB activation may be dependent on currently unknown TFEB-interacting 

machinery. In fact, much of the current understanding of how TFEB integrates 

signalling pathways to control TFEB translocation dynamics has only emerged in the 

last few years and there is undoubtedly more unidentified machinery involved. While 

phosphoproteomic studies show that TFEB undergoes phosphorylation at over 20 

sites, only 9 of these sites have been shown to be phosphorylated in functional 

studies (reviewed in Puertollano 2018). TFEB activity can be controlled by changes 

in localisation in response to phosphorylation by a number of kinases including 

ERK1/2, GSK3β and AKT (Settembre et al., 2011; Li et al., 2016; Palmieri et al., 

2017), or ester binding, blocking the 14-3-3 binding site (Song et al., 2016). TFEB 

phosphorylation has also been shown to affect TFEB stability by STUB1-mediated 

ubiquitylation and consequent promotion of its proteasomal degradation (Sha et al., 

2017). Phosphorylation-related effects on TFEB are also modulated by 

phosphatases, of which only calcineurin has yet been identified (Medina et al., 

2015). Beyond phosphorylation, TFEB also appears to be regulated at the level of 

nuclear export, as incubation with CRM1-mediated nuclear export inhibitor 

leptomycin B induced nuclear accumulation of TFEB-GFP in NRK cells (Figure 7.1). 

This effect was also recently reported in MCF7 (Li et al., 2018), HeLa and HEK293T 

cells (Napolitano et al., 2018), where the nuclear export sequence (NES) was 

determined to be adjacent to the mTORC1- and ERK1/2-phosphorylatable S142. 
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Figure 7.1 

   

 

Figure 7.1: Leptomycin B treatment causes nuclear accumulation of TFEB-GFP 

in NRK cells 

Confocal fluorescence microscopy images of clonal NRK cells stably expressing 

TFEB-GFP which were incubated with or without 20nM leptomycin B for 30 minutes. 

Scale bar represents 10µm. 

 

 

By analysing full length human TFEB sequence using the NetNES 1.1 server to 

predict NES locations (la Cour et al., 2004), the sequence starting at L435, reading 

as LMLLDDSLLPL, reached the threshold for NES detection (Figure 7.2A) and had 

the characteristics of a class 3 (Φ‐X2‐Φ‐X3‐Φ‐X2‐Φ) Kosugi NES consensus 

sequence (Xu et al., 2012; Kosugi et al., 2008). This suggests that in full length 

TFEB there may be an additional NES to that adjacent to S142. In future 

experiments to explore whether this additional predicted NES is functional, TFEB 

with L435A, L438A, L442A, and L445A mutations of the bulky hydrophobic residues 

(Figure 7.2B); based on NES-impairment of NS1 (TynellMelén and Julkunen, 2014), 

will be expressed in cells to determine the contribution of this NES to TFEB 

TFEB-GFP 

Untreated +Leptomycin B 
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localisation and dynamics. On a broader scale, additional machinery in the TFEB 

pathway could be identified using CRISPR library-based forward genetic screen. For 

this approach (see for example (Burr et al., 2016)), a cell line expressing a 

fluorescently-labelled reporter for the downstream effects of TFEB transcription 

activity, such as a knock-in of a highly responsive CLEAR element gene, would need 

to be generated. These cells could be transfected with a CRISPR library, and clones 

which display reduced reporter fluorescence in response to stimulus would be sorted 

by FACS, then sequenced to reveal which genes’ depletion reduced the function of 

TFEB, and are potentially involved in the function of the TFEB pathway. 
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Figure 7.2 

A 

 

B 

 

Figure 7.2: NetNES 1.1 prediction identifies a class 3 Kosugi consensus NES 

beginning at L435 in TFEB 

(A) Computational prediction of NES signals in wild type full length human TFEB 

sequence. 

(B) Computational prediction of NES signals in full length human TFEB after bulky 

hydrophobic residue mutations L435A, L438A, L442A, and L445A.  
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