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Abstract

The pattern of synaptic connections among neurons defines the circuit structure, which con-

strains the computations that a circuit can perform. The strength of synaptic connections is

costly to measure yet important for accurate circuit modeling. Synaptic surface area has

been shown to correlate with synaptic strength, yet in the emerging field of connectomics,

most studies rely instead on the counts of synaptic contacts between two neurons. Here we

quantified the relationship between synaptic count and synaptic area as measured from vol-

ume electron microscopy of the larval Drosophila central nervous system. We found that the

total synaptic surface area, summed across all synaptic contacts from one presynaptic neu-

ron to a postsynaptic one, can be accurately predicted solely from the number of synaptic

contacts, for a variety of neurotransmitters. Our findings support the use of synaptic counts

for approximating synaptic strength when modeling neural circuits.

Introduction

The wiring diagram of a neuronal circuit can be represented as a directed graph whose nodes

are individual neurons. Each edge represents every synaptic contact between the two nodes:

the edge weight captures physiological connection strength. When reconstructed from volume

electron microscopy, the edge weight is often derived from the number of synaptic contacts

between two neurons: more contacts is assumed to imply a stronger connection. This

approach has been used to build, on the basis of synaptic connectivity, models of neuronal

circuit function. Such models are capable of predicting animal behavior with some accuracy

[1–7].

The number of synaptic contacts of a neuron changes over time, due to both development

and plasticity [4, 8–11]. As the neuronal arbor grows, its absolute number of synaptic contacts

increases, but the fraction corresponding to specific partner neurons remains constant [4, 10].

Therefore, synaptic input fractions may be preferred over synaptic counts to compute the edge

weights that approximate connection strengths, to enable comparisons across cell types and

developmental stages.

However, neither the synaptic count nor the synaptic input fraction can be guaranteed to

accurately predict connection strength. Two identical edge weights, as derived from either
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synaptic counts or fractions, could correspond to two different physiological connection

strengths. It could be the case that some input cell types make few large synaptic contacts, and

others make many smaller ones, onto the same target postsynaptic neuron. Additionally,

molecular and biophysical properties of both cells and the synapse itself could invalidate both

counts and fractions for deriving edge weights.

Physiologically, synaptic strength has been measured in two ways. We can derive a joint

measurement for all synaptic contacts between two neurons by exciting the presynaptic neu-

ron and recording from the postsynaptic one. Alternatively, we can count the number of vesi-

cles that are releasing neurotransmitter at individual synaptic clefts [12–14].

The best measurement of connection strength would be paired electrophysiological record-

ings for all possible pairs of neurons. However, paired recordings for all possible neuron com-

binations is infeasible for large circuits in practice. Firstly, there is the combinatorial explosion

leading to prohibitive costs. Secondly, dissected brains have limited viability ex vivo: only a

small number of trials would be possible with any single preparation. Finally, weak connec-

tions could be hard to detect, despite being physiologically important for e.g. subthreshold

potentials [15–17], or integration across many simultaneous inputs [18, 19].

One step towards evaluating synaptic strength is the quantification of synaptic surface area,

which is feasible in volume electron microscopy. In mouse neocortical cells, the postsynaptic

density area of a morphological synapse was shown to correlate linearly with strength of that

synapse [14]. In this case, an edge weight would be a function of the total area of all synapses

between two neurons, rather than simply the synapse count.

Presynaptic active zones are visible in EM primarily due to electron-dense docked vesicles

and their binding machinery [20]. These vesicles represent quanta of neurotransmitter release,

which cause miniature end plate potentials at the postsynaptic terminal. These quanta build up

the postsynaptic potential which represents signal transduction [21]. The area of the active

zone correlates strongly with the number of docked vesicles [22]. The number of docked vesi-

cles correlates with probability of release [23, their Fig 5b], and with the strength of the synapse

[24]. The total number of vesicles does not correlate with synapse strength [23, their Fig 5c];

many of these belong to the reserve pool and are only released under prolonged stimulation

[12].

Similarly, postsynaptic sites are visible due to the high density of structural proteins, protein

kinases and phosphates (which preferentially bind to the heavy metals used in sample prepara-

tion for electron microscopy) [25] involved in neurotransmitter reception and recycling. [26]

showed that, in rat cerebellar stellate cells, the area of the postsynaptic site scaled linearly with

neurotransmitter receptor count. The same work showed that variability in receptor count

(and therefore postsynaptic area) is a major determinant of variability in postsynaptic current

amplitude, the precursor to action potentials and therefore signal transduction. In combina-

tion, the larger the synaptic surface area is, the greater the strength of the synapse.

The cost of measuring synaptic surface areas is linear to the number of synaptic contacts for

each graph edge, and could potentially be estimated by sampling only a subset of synaptic con-

tacts. Here, we measured surface areas for all synaptic contacts of a number of connections

between different cell types in the central nervous system of Drosophila larvae, using volume

electron microscopy.

Our goal was two-fold. First, to find out whether synaptic surface areas are similar within

and across cell types. Second, to study the correlation between synaptic contact number

and area. We found that synaptic surface area measurements are similar across the systems

and synapse types studied, and that there exists a strong correlation between the number of

synaptic contacts and the total synaptic surface area per connection, which may be

generalisable.
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Therefore, our findings support the use of synaptic counts towards predicting connection

strengths in a wiring diagram, dispensing with the labor-intensive measurements of synaptic

surface areas, in Drosophila larvae. Therefore, any microscopy modality sufficient to resolve

synaptic puncta (including light microscopy; e.g. [9, 27, 28], and more recently expansion

microscopy, e.g. [29]) can serve as the basis for predicting circuit graph edge weights towards

computational modeling of neuronal circuit function.

Results

Edge types

Drosophila synapses are largely one-to-many [30], and therefore the best measure of synaptic

area for a single contact between two neurons is that of the postsynaptic membrane. We mea-

sured the area of 540 such contacts in 3D using a serial section transmission electron micros-

copy (ssTEM) image stack. These represent 80 graph edges (unique presynaptic-postsynaptic

neuron partnerships). The postsynaptic neurons are first-order projection neurons belonging

to two disparate sensory systems. In each system, one set of inhibitory and one set of excitatory

inputs were measured bilaterally, giving 4 total edge types with left/right replication:

• Olfactory projection neurons (PNs) in the brain

• Local inhibitory neurons designated “Broad D1” and “D2” (broad)

• Excitatory olfactory receptor neurons (ORNs) onto the same pairs of olfactory PNs

• First-order mechano/nociceptive projection neurons “Basin” 1 through 4 (Basins) in the first

abdominal segment (a1)

• Local inhibitory neurons designated “Drunken”, “Griddle”, and “Ladder” (LNs)

• Stretch receptor neurons from the chordotonal organs designated “lch5”, “v’ch”, and “vch”

(cho)

The neuronal arbors of all neurons had previously been reconstructed and reviewed by

expert annotators [2, 31], but only as skeletonised representations, with point annotations for

synaptic contacts. This approach currently represents the most feasible strategy for manual

retrieval of both contact number and contact fraction. These are shown along with the neuro-

nal morphology in Fig 1.

In the olfactory system, broad neurons mediate both intra- and inter-glomerular lateral

inhibition [31] by synapsing onto a broad range of cell types, including ORNs and PNs. ORNs,

on the other hand, primarily innervate a single partner PN (making up over 50% of its den-

dritic inputs in some cases), although they have some off-target edges with low contact number

and fraction.

In the chordotonal system, Basin projection neurons integrate inputs from a wide array of

input neurons across several modalities [2], including the mechanosensory chordotonal neu-

rons. They mediate both short- and long-loop behavioural responses, and are repeated seg-

mentally. Behavioural choice is in part mediated by local inhibitory neurons [3], including the

LNs discussed here.

Distribution of synaptic surface area per edge type

For every one of the 540 synaptic contacts we measured the synaptic surface area (Fig 2Ai and

2Aii; see Methods). For each edge type, we independently plotted the histograms of log-synap-

tic surface area for all individual morphological synapses belonging to that edge type, with
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Fig 1. The anatomy and connectivity of the 4 circuits of interest. Presynaptic partners are shown in red, and

postsynaptic in blue: synaptic sites are shown in cyan. PN-containing circuits are anterior XY projections. Basin-

containing circuits are dorsal XZ projections. The connectivity matrices are have presynaptic partners on the Y axis,

and postsynaptic partners on the X axis. Ambiguous pairs of neurons (lch5–2/4 and vchA/B, which are

indistinguishable as their cell bodies lie outside the VNC) are distinguished by a truncated reconstruction ID. Squares

in the connectivity matrix are coloured by what fraction of the target’s dendritic input, by contact number, is
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overlaid fitted normal distributions (Fig 2Bi and 2Bii). We chose to plot the log-surface rather

than the plain surface because log-normal distributions are common in models of biological

growth, where larger specimens can grow faster in absolute terms given that they have propor-

tionally more resources than smaller specimens [32, 33].

Correlation between synaptic input counts and synaptic surface area

To analyse whether the number of synaptic contacts can reliably predict the total synaptic sur-

face area of an edge, we computed a linear regression between synaptic counts per edge and

the sum of synaptic surface area per edge (Fig 3A). At the synaptic level, the assumption of

homoscedasticity (homogeneity of variance) holds, but when aggregated at the graph edge

level, the variance of the area is proportional to the count. To account for this heteroscedasti-

city in the aggregated model, the regression was weighted by the inverse of the synaptic count.

When considering all edges jointly, ignoring edge type, we found an R2 of 0.905 (Fig 3C), with

visually few outliers, and a very good intercept at zero.

To analyse the influence of the edge type, we independently computed weighted linear

regression for all edges of each edge type (Fig 3B). We found that all independent regressions

presented similarly high R2 values, indicating that correlation is strong within each edge type

as well as for the joint.

While the joint regression appears very similar to each independent regression by edge

type, there could be significant differences by edge type that would prevent generalisation

across edge types. We then analysed the contribution of edge type to predicting total synaptic

area per edge from the count of synaptic contacts per edge (the contact number per edge).

Variability across edge types

If across edge types, an edge’s total synaptic area correlated with its synaptic count, we could

generalise and predict with confidence the former from the latter, independently of edge type.

If not, and edge type instead had some predictive power over the synapse size, then every edge

type’s synaptic areas would need to be sampled before predicting total synaptic area for any

edge of that type. If the predictive power of edge type is small, then synapses of different edge

types can be treated as belonging to the same distribution: edge type could be ignored. There-

fore, we could confidently predict total surface area for an edge independently of the edge

type.

Fig 2 shows a large variance in the areas of individual synapses (the α = 0.1 confidence

interval spans approximately an order of magnitude within each edge type). The difference in

means between the different edge types appears to have a small effect size in comparison to the

intra-type variation (Fig 2Bi), even where that difference is, strictly speaking, statistically sig-

nificant (Fig 2Biii). However, when inferring contact area from contact number in a graph

edge, the edge type may still have predictive power. We here examine whether this is the case.

Bayesian hierarchical modelling allows us to incorporate our understanding of the sources

of variation (e.g. potentially the edge type) into the model of a stochastic process.

Each graph edge from presynaptic neuron i to postsynaptic neuron j has n contacts. Each

contact k in the edge has an area A(i,j,k); therefore each edge has a total area Aði;jÞ ¼
Pnði;jÞ

k¼1 Aði;j;kÞ.

represented by that edge. The absolute number of contacts is also included. In total, there are 4 edge types (the 4 rows

above), 80 edges (one each for each non-zero cell across all 4 matrices), and 540 contacts (each being a morphological

synapse).

https://doi.org/10.1371/journal.pone.0266064.g001
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Fig 2. Results of synaptic area labelling. Ai) The ssTEM images upon which the analysis is based. Aii) A schematic showing the

plane of a neurite sectioned in the top image, and the pre- and post-synaptic sites of that neurite and one of its partners, in orange and

red respectively. Note the T-bar, cleft and and postsynaptic membrane specialisation. Bi) For each of the four circuits, the distribution

of synaptic areas on a log10 scale. The number of synapses targeting a left-sided neuron are shown in blue; right-sided in orange. Each

is overlaid with the best-fitting normal distribution (black dashed line) and 90% confidence interval (green dotted line). Bii) Table of

normal distribution parameters, in log10 nm2 to 3 decimal places. Biii) Raw p-values (colouring) and FWER corrected [34]

significance levels for pairwise ranksum comparisons of circuit synapse area distributions.

https://doi.org/10.1371/journal.pone.0266064.g002
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Fig 3. Least-squares linear regressions of contact number vs area for each edge. Weighted by the reciprocal of the contact

number to reduce leverage by high-n edges. A) Joint regression line for all edges (black dashed line), y = 0.014x + 0.002, R2 = 0.905.

B) For each circuit, a zoomed-in region of A, showing the joint regression (grey dotted line) and the circuit-specific regression line

(black dashed line). Left-right pairs, when unambiguous, are shown in the same colour and joined with a dashed line of that colour.

†shows outliers beyond the limits of the ORN-PN plot. C) Table of regression line gradient (μm2count−1 to 3 decimal places), y-

intercept (μm2 to 3 decimal places) coefficient of determination R2 (to 3 decimal places).

https://doi.org/10.1371/journal.pone.0266064.g003
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It is assumed that the area of a single morphological synapse is the result of some stochastic

process which depends on which edge it belongs to, and which type that edge is.

Here we enumerate the four levels of the hierarchical model:

A(i;j;k) j (i; j) » ¡shape0;scale0;(i;j) Level 0
The areas a of individual synaptic con-
tacts k within a single edge (i; j) vary ac-
cording to a gamma distribution whose
scale depends on that edge's identity.
There are 80 distributions A described
(one for each edge) with 540 samples
observed (one for each morphological
synapse).

scale0;(i;j) j T(i;j) = t » ¡shape1;scale1;t Level 1
The edge-specific scale parameters are
gamma-distributed with a scale which
depends on the edge type T . There are
4 distributions described, one for each
edge type t.

scale1;t » ¡shape2;scale2 Level 2
The edge type-specific scale parameters
are gamma-distributed with a scale hy-
perparameter.

shape0; shape1; shape2; scale2 » U Level 3
Hyperparameters are sampled from a
flat prior (i.e. a uniform distribution
U).

This approach, with a hierarchical model (Fig 4A), gives us a single cohesive model which

encodes the different sources of variance, the edge type being one of them. It allows us to use

the same model when different amounts of information are available, and adjust our confi-

dence in predicted values accordingly; a characteristic that makes the model well-suited for

our data which has unequal sample sizes across edge types. The simple model (when we mea-

sure synaptic surface areas but ignoring the edge type or the partner identity) gives us a low-

confidence prediction of the size of a newly-annotated synapse which we suspect to belong to

this general distribution (Fig 4B). However, the prediction may change, and the confidence

increase, if we know which edge type the synapse belongs to–finding whether this is true is the

goal of this analysis. The confidence can increase again when we identify its presynaptic and

postsynaptic neurons (the partner identity). In other words, within the Bayesian framework,

the more prior information available, the better our prediction.

Furthermore, being able to parameterise the variance of the distribution parameters allows

us to draw conclusions about how different the distributions are across edges and edge types.

Tightly grouped scale0 parameters within an edge type (low variance of Gshape1 ;scale1;t
) would sug-

gest that edges within that group have similar distributions. In this case, synaptic area mea-

surements in one edge could be used to approximate the areas of synapses in other edges of the

same type. A tight grouping of scale1 parameters (low variance of Gshape2 ;scale2
) would imply that

the difference between edge types is small, and that synapse size information generalises across

edge types.

Here we show how adding edge type information does not meaningfully improve the confi-

dence in predicting total synapse area from contact number for an edge. Fig 4B shows the
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Fig 4. Bayesian hierarchical modelling of distributions of synapse areas across graph edges and edge types. A) Model dependency

graph, showing how each level parametrises the levels below it, and the number of samples available at each level. B) Results of sampling

from the generated model, including the bounds in which 90%, 95%, and 99% of samples fall, demonstrating that our data is in line with

the model’s expectation. C) Comparing the results of sampling sub-models with a fixed edge type with the full joint model (red lines):

the small narrowing of the result intervals suggests that the edge type does not have predictive power of the relationship between contact

number and contact area for a graph edge, and therefore that the sizes of individual synapses do not differ much between edge types.

https://doi.org/10.1371/journal.pone.0266064.g004
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confidence intervals for predicting total edge contact area given edge contact number, ignoring

edge type information. Fig 4C shows, for each edge type, the change in confidence interval

when information about that edge type is introduced to the prediction. The increase in predic-

tion confidence (narrowing of the confidence interval) is small, suggesting synapse size infor-

mation from one edge type generalises fairly well to other types, for the edge types studied

here.

Discussion

Our data shows that, within the studied connections in the Drosophila larval nervous system,

the total synaptic surface area can be predicted solely from the number of morphological syn-

aptic contacts from a presynaptic neuron to a postsynaptic one, independently of the partici-

pating neuronal cell types.

The diversity of edge types included in our study (sensory axons onto excitatory interneu-

rons, and inhibitory interneurons onto excitatory interneurons), together with the observed

strong correlation between contact counts and surface areas, suggest that we should expect a

similarly strong correlation in other edge types in the central nervous system at the same Dro-
sophila larval life stage.

Whether the observed correlation holds true through changes in neuronal arbor dimen-

sions is an open question. In development, we know that the number of morphological synap-

tic contacts in a connection (i.e. an edge) grows by a factor of 5 from early first instar to late

third, while the distribution of the number of partners per polyadic synapse remains constant

[10], and the associated behavior doesn’t change [35]. In addition, synaptic input fractions are

preserved from first to third instar despite a 5-fold increase in cable and in number of morpho-

logical synaptic contacts [10]. Similarly, in the adult Drosophila fly, an increase of 50% in the

amount of dendritic cable and number of morphological synaptic contacts doesn’t alter the

synaptic input fractions, or the density of synaptic contacts per unit of cable, or some key bio-

physical properties of the neuron [4]. Our data, together with these reports on the strong pres-

ervation of both structural and functional circuit properties across neuronal arbor growth,

suggests that we ought to expect the observed strong correlation between number of contacts

and surface areas to persist throughout larval development as well as in situations where arbors

have different dimensions.

Our findings have implications for the study of the relationship between structure and

function, in particular towards making functional inferences from morphological data. The

estimation of synapse count from axo-dendritic apposition, also known as “Peters’ rule” [36],

has been shown not to hold in systems where it has been directly measured [37, 38]. On the

other hand, synaptic area has a linear relationship with synaptic strength [14], so our findings

(that synaptic count predicts synaptic area) suggest that inferring synaptic strength directly

from the number of morphological contacts is grounded and generalisable across different

edge types. Therefore our findings are consistent with the formulation of computational circuit

models directly from morphological synaptic counts per edge, as has been done in previous

studies that had implicitly assumed a correlation between counts and synaptic strength [2, 3, 7,

19, 39].

A full-fledged validation of our findings will require the comprehensive measurement of all

synaptic surface areas of all neurons of a central nervous system. Recent and upcoming auto-

mated methods for segmenting synaptic surface areas [40], aided by improvements in volume

EM such as isotropic imaging with FIBSEM [41], will make such a study tractable in the near

term for small model organisms such as Drosophila.
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Our findings have further implications towards speeding up reconstruction of wiring dia-

grams. Namely, comprehensive measurement of synaptic surface areas may no longer be a

requirement. Therefore, the performance trade-off could be tipped towards imaging speed at

the expense of resolution, lowering acquisition costs. As such, aiming for detecting synaptic

puncta from light microscopy [9, 27, 29, 42] or low-resolution EM [41], would allow inference

of synaptic strength, towards the computational analysis of neural circuits.

Methods

Imaging

The data volume used was the whole central nervous system described in [2]. The specimen

was a 6 hour old female Drosophila melanogaster, in the L1 larval stage. It is comprised of 4850

sections, each 50nm thick, cut with a Diatome diamond knife. Each section was imaged at

3.8 × 3.8nm resolution using an FEI Spirit TEM. The images were montaged and registered

using the nonlinear elastic method described in [43].

Neuronal and synapse morphologies

The neurons analyzed in this study were all published in [31] (olfactory sensory neurons

ORNs, olfactory PNs and GABAergic Broad LNs) and in [3] (chordotonal somatosensory neu-

rons, Basin neurons, and synaptically connected GABAergic LNs including Drunken, Ladder

and Griddle LNs). Neuronal morphologies and connectivity were reconstructed collabora-

tively using CATMAID [44] with the procedures described in [38].

To reconstruct a neuronal arbor, point annotations (“skeleton nodes”) are placed in each z
section of a neurite. Synaptic contacts are identified by the presence of a thick black active

zone, presynaptic specialisations such as vesicles and a T-bar, and evidence of postsynaptic

specialisations, across several sections. In the CATMAID software, a point annotation

(“connector node”) is placed on the presynaptic side of the synaptic cleft; directed edges are

then drawn from the nearest presynaptic skeleton node to the connector node, and from the

connector node to a skeleton node in each postsynaptic neuron.

Synaptic area annotation

Using catpy, a Python interface to CATMAID’s REST API [45], the locations of synaptic con-

tacts between neurons of interest were extracted, and an axis-aligned cuboid of image data

including the connector node and the pre- and post-synaptic skeleton nodes of interest was

downloaded. This was stored in an HDF5 [46] file whose schema extends that used in the

CREMI challenge [47]. The location of the relevant skeleton and connector nodes are also

stored in the file, to be used as a guide.

In Drosophila, most synapses are polyadic (one-to-many). Therefore, the best measurement

for the synaptic contact area from presynaptic neuron i to postsynaptic neuron j is the area of

the postsynaptic membrane. Using BigCAT, a BigDataViewer-based [48] volumetric annota-

tion tool, the postsynaptic membrane (identified by evidence of postsynaptic specialisations,

and adjacency to a synaptic cleft which was itself adjacent to presynaptic specialisations) was

annotated with a thin line in each z section in which it appeared. These annotations are given

unique IDs, and the association between the ID and the nodes it is associated with is also

stored in the CREMI file.

These annotations were then normalised post hoc. Using scikit-image [49] v0.14, the line

drawn in each z section was skeletonised [50]. The skeletonised line was converted into a string

of coordinates in pixel space, which was smoothed with a Gaussian kernel (σ = 3). Its length in
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pixel units was taken and multiplied by the xy resolution (3.8nm). This 2D length is then mul-

tiplied by the z resolution (50nm) to give an approximation of the synaptic surface represented

by the membrane visible in this section, in nm2. The area of a synapse is approximated by the

sum of such areas for a single contact across z sections.

By extension, the contact area of a graph edge between neurons i and j is the sum of synap-

tic areas for all contacts between i and j.

Hierarchical modelling

The gamma distribution was selected as it is a versatile continuous probability distribution

with a low number of parameters and a positive domain. The priors for each of the 3 shape

parameters were uniform between 0.001 and 1000. The prior for parameter scale2 was uniform

between 1 and 1000000.

The modeling was performed using the R language [51] and the JAGS [52] sampler. The

sampler was run for 100000 iterations, and thinned by 2, with a 1000-iteration burn-in.

These scripts are included in the publication as a zip file, S1 File.

Other software

The majority of analysis was performed using Python [53] version 3.7, numpy [54] v1.16, scipy

[55] v1.1, and pandas [56] v0.23. Figs 1–3 were generated using matplotlib [57] v3.1 and Figur-

eFirst [58]. Fig 4 was generated using the R language [51] and ggplot2 [59]. Figures were

assembled using Inkscape [60] v0.94.

Data used for plotting are included in the publication as a zip file, S1 File.

Supporting information

S1 File. Hierarchical modelling scripts. A compressed archive containing the Bayesian analy-

sis code as an R package.

(ZIP)

S2 File. Data tables used in plotting. A compressed archive containing raw data used in plots

as CSVs. Includes a README file with more information.

(ZIP)
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