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1 Information theoretic methods

Dimensionality reduction is the process of reducing the number of features that need to take into account when making
predictions. Dimensionality reduction methods can be classified as ‘feature extraction’ or ‘feature selection’ methods. Feature
extraction methods transform a high-dimensional space of feature measurements to a space of fewer dimensions. Principal
Component Analysis (PCA) can achieve such a transformation without reference to the output scores by exploiting dependencies
between feature measurements, that may be assumed to be linear1. Many other transformations exist which can exploit nonlinear
dependencies and the statistics of the output scores. ‘Feature selection’ approaches try to find a subset of the original variables
that enable more accurate prediction by the elimination of irrelevant and confusing information. Filter methods select features
based on a performance measure regardless of the employed data modeling algorithm and separate the classification and feature
selection components. Filter methods are generally applied as pre-processing steps, with subset selection procedures that are
independent of the learning algorithm and the defining component of filter based methods is scoring criterion, which is often
as ‘relevance index’2. The relevance index denotes how useful each feature is likely to be for the ML classification methods.
Although this leads to a faster learning process, it is possible for the criterion used in the pre-processing step to result in a
subset that may not work very well downstream in the learning algorithm. The information theoretic methods investigate the
multivariate interaction within features and the scoring criterion is weighted sum of feature relevancy and redundancy. The
main goal of feature selection is obtaining a subset of features that produces the highest ’Area under the ROC Curve’ (AUROC)
and the precsion-recall curve on the classification models3. It has been mathematically proven that the performance ranks of
two models remain same in the ROC space and the PR space4. The classification performance is necessarily proportional to
removal of redundant features. Wrapper methods1, 5 search the space of feature subset based on the accuracy of a particular
classifier (e.g. LG or RF). Embedded methods perform feature selection in the process of training and during the modeling
algorithm’s execution. Hybrid methods were proposed to combine the best properties of filters and wrappers. Direct feature
selection searches to identify, individually, the relevant features and discard the irrelevant ones. Such methods are instances of a
wide range of general strategies for dimensionality reduction, which seek to map the input variables into a lower dimensional
space prior to running the supervised learning algorithm. A learning algorithm is faced with the problem of selecting a relevant
subset of features which makes the best prediction while ignoring the rest in the features. Since the usual goal of supervised
learning algorithms is to minimise regression error on an unseen test set, we have adopted this as our goal in guiding the feature
subset selection. Univariate and multivariate methods are two categories for all filter based methods. Univariate methods, the
scoring criterion only consider the relevancy of features while ignoring the feature redundancy. Multivariate method investigates
the multivariate interaction within features and the scoring criterion is a weighted sum of feature relevancy and redundancy.

Mutual information is univariate feature selection approach (Shannon, 1948) measures the amount of information shared by
an input feature X and class label (target) Y. Where the lower case x or y is possible values that the variables X and Y can adopt
from the alphabet X and Y respectively in (1). To obtain this, we need to estimate the distribution of px and py respectively6.

I(X ;Y ) = ∑
x∈x

∑
y∈y

p(xy)log
p(xy)

p(x)p(y)
(1)

Mutual Information Maximization (MIM) method given by (2) examines the mutual information between a class label Y
and a feature Xk, where K is the top features6. MIM assumes that all the features are independent and it does not account any
dependencies between the features.

Jmim(Xk) = I(Xk;Y ) (2)

Multivariate feature selection methods are described as follows Joint Mutual Information (JMI) was proposed by Yang and
Moody (1999)7, 8. JMI is the information between the targets and a joint random variable defined by pairing the candidate Xn
with each current feature. The redundancy term full captures by JMI.

Jjmi = ∑
X j∈S

I(XkX j;Y ) (3)

Minimal-Redundancy-Maximal-Relevance (mRMR) given by (4) was proposed by Peng et al9. This takes the mean of
redundancy term and it elemenated the conditional term. In equation (4), n is size of a feature set.

JmRMR = I(Xn;Y )− 1
n−1

n−1

∑
k=1

I(Xn;Xk) (4)
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Conditional Mutual Information Maximization (CMIM) given by (6) was proposed by Fleuret (2004)10 and is probably the
most-well known recent criterion. CMIM measures the information between a feature and the target and it is conditioned on
each current feature. The interaction information is the term in square brackets which can be both negative and positive. A
negative value indicate that the shared information between Xk and Y has decreased as the result of including Xn.

Jcmim = I(Xn;Y )−maxk[I(X j;Xk,Y )− I(Xn;Xk|Y )] (5)

Mutual information feature selection (MIFS) does not consider conditional redundancy (g = 0), but it does incorporate the
redundancy penalty (Brown et al., 2012).

Jmifs = I(Xk;Y )−β(Xn;Xk)− I(Xn;Xk)] (6)

Double input symmetrical relevance (DISR) aims to better include such complimentary features by expanding JMI11. Disr
normalises the information provided by a feature by how well the given feature complements the other features.

Jdisr(Xk) =
I(XnXk;Y )
H(XnXk;Y )

(7)

The interaction capping (ICAP) approximated by following equation.

Jicap(Xk) = I(Xk;Y )− ∑
X j∈S

maxk[0, I(Xk;X j)− I[(Xk;X j|Y )] (8)

2 Nested Cross Validation

Nested cross validation was used at model development stage to assure good generalisability when the models were tested with
hold out data. Varma and Simon12 report a bias in error estimation when using cross-validation for model selection; therefore,
we used stratified nested cross-validation as an almost unbiased estimate of the true AUC. The validation data-set is often used
to fine-tune models. For example, we try out various sets of K for a KNNC model by finding the AUC produced by each set of
K for the validation data-set. This would allow us to choose among the competing sets of K. In such a case, the AUC with
the validation data-set will be an optimistic estimate of how the fine-tuned model would perform with unseen data1. This is
because the final K will has been chosen such that the AUC with the validation data-set is the highest possible.

3 Figure for orginal dataset with potential confounders

We added three potential confounders aao, PC1 and PC2 to the dataset and no mitigation is applied to the confounders in Figure
1. aao had the vote 100 for all features selection criteria and followed by HLA_B _*06 with the vote ‘100’ in ‘MIM’ and JMI
and HLA_DRB1_07 with the vote ‘97’ in ‘mim’and HLA_B_*27 with the vote ‘89’ in ‘disr. PC1 and PC2 had the average
vote for the most FS criteria and there effect was mitigated post to the mitigation.

4 Figures for impact of original dataset confounding on feature selection

Figure 2 and Figure 3 show the average AUC in nested cross validation and AUC in hold out set respectively when CMIM,
DISR, ICAP, JMI, MIFs, MRMR and overall ranking was applied to the original dataset.

5 Figures for impact of mitigated confounding on feature selection

Figure 4 and 5 illustrate the average AUC in nested cross validation and the AUC in hold out set respectively when CMIM,
DISR, ICAP, JMI, MIFs, MRMR and overall ranking was applied to the mitigated dataset

6 Figures for evaluation metrics

Figures 6,7 show ROC curve and precision-recall for 6 ML models
Figures8 show the accuracy, precision, recall and F1 score for 448 generated different models. Figures 9 depict the 64

different combination for each ML model.
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Figure 1. Heatmap (a) feature ranking original dataset with three confounders aao, PC1, PC2. The majority vote over 100
bootstrap for the top 10 selected features (in rows) and seven features selection techniques in (columns)

The best models Accuracy % F1-score%

Model
Num

Model
Name

Feature
Selec-
tion

Top
features

Cross
validation

Hold out External
Cross

validation
Hold out External

402 LG disr 40 0.59 0.54 0.56 0.58 0.53 0.56
303 Adaboost jmi 60 0.62 0.61 0.53 0.62 0.61 0.56
416 DT disr 10 0.54 0.54 0.51 0.26 0.25 0.30
398 XGBoost disr 40 0.58 0.55 0.55 0.58 0.55 0.55
232 KNNC disr 60 0.73 0.76 0.53 0.76 0.53 0.74

39
NB

Gaussain
mim 10 0.56 0.54 0.55 0.45 0.42 0.48

184
Random
Forest

icap 20 0.58 0.54 0.57 0.56 0.49 0.58

Table 1. The best generated models out of 448 generated models
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(a) CMIM (b) DISR

(c) mim (d) JMI

(e) MIFS (f) MRMR

Figure 2. Pre-Mitigated Feature Selection - Cross-validation.
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(g) Overall Ranking

Figure 2. Pre-Mitigated Feature Selection - Cross-validation.
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(a) CMIM (b) DISR

(c) MIM (d) JMI

(e) MIFS (f) MRMR

Figure 3. Pre-mitigated Feature Selection - hold out.
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(g) Overall Ranking

Figure 3. Heatmap depicting the predictive performance (AUC for hold out set) for different number of HLA features(in rows)
and different classification method in (columns). It can be observed for all feature selection all classifiers show relatively the
same predictive performance in many cases. Pre-Mitigated Feature Selection -Hold-out.
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(a) CMIM (b) DISR

(c) MIM (d) JMI

(e) MIFS (f) MRMR

Figure 4. Heatmap depicting the predictive performance (AUC average over cross validation) for different number of HLA
features(in rows) and different classification method in (columns). It can be observed for all feature selection all classifiers
show relatively the same predictive performance in many cases. Mitigated Feature Selection - Cross-validation.
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(g) Overall Ranking

Figure 4. Heatmap depicting the predictive performance (AUC average over cross validation) for different number of HLA
features(in rows) and different classification method in (columns). It can be observed for all feature selection all classifiers
show relatively the same predictive performance in many cases. Mitigated Feature Selection - Cross-validation.
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(a) CMIM (b) DISR

(c) MIM (d) JMI

(e) MIFS (f) MRMR

Figure 5. Heatmap depicting the predictive performance (AUC hold out) for different number of HLA features(in rows) and
different classification method in (columns). It can be observed for all feature selection all classifiers show relatively the same
predictive performance in many cases.Mitigated Feature Selection -hold-out.
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(g) Overall Ranking

Figure 5. Mitigated Feature Selection -hold-out.
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(a) AdaBoost (b) Decision Tree

(c) KNN (d) Logistic Regression

(e) NB Gussian (f) XGBoost

Figure 6. Mitigated - ROC Curve.
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(a) AdaBoost (b) Decision Tree

(c) KNN (d) Logistic Regression

(e) NB Gaussian Forest (f) XGBoost

Figure 7. Mitigated - Precision & Recall Plots.
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(a) accuracy

(b) precision

(c) recall

Figure 8. Comparison between accuracy, precision, recall and F1 score for cross validation, hold out and external set for 448
different generated ML models.There are 448 models trained using combination of “number of features”, “Feature Selection”,
7 ML Model type’( hold out and cross validation and external model performance
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(d) F1-score

Figure 8. Mitigated Feature Selection -hold-out.
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(a) AdaBoost

(b) DecisionTree

Figure 9. Accuracy,Precsion, Recall and F1 score curve of each models with internal( hold out and cross validation) and
external model performance
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(c) KNNC

(d) Logistic Regression

Figure 9. Accuracy,Precsion, Recall and F1 score curve of the each models with internal( hold out and cross validation) and
external model performance
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(e) Random Forest

(f) XGBoost

Figure 9. Accuracy,Precsion, Recall and F1 score curve of the each models with internal( hold out and cross validation) and
external model performance
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