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MITOCHONDRIAL COMPLEX III RIESKE Fe-S PROTEIN PROCESSING AND ASSEMBLY 

Erika Fernandez-Vizarra and Massimo Zeviani 

MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY, 

Cambridge, UK. 

ABSTRACT 

Regulation of the mitochondrial respiratory chain biogenesis is a matter of great interest 

because of its implications for mitochondrial disease. One of the mitochondrial disease 

genes recently discovered associated to encephalopathy and mitochondrial complex III 

(cIII) deficiency is TTC19. Our study of TTC19-deficient human and mouse models, has 

led us to propose a post-assembly quality control role or ‘husbandry’ function for this 

factor that is linked to Rieske Fe-S protein (UQCRFS1). UQCRFS1 is the last incorporated 

cIII subunit, and its presence is essential for enzymatic activity. During UQCRFS1 

assembly, the precursor is cleaved and its N-terminal part remains bound to the 

complex, between the two core subunits (UQCRC1 and UQCRC2). In the absence of 

TTC19 there is a prominent accumulation of these UQCRFS1-derived N-terminal 

fragments that proved to be detrimental for cIII function. In this article we will discuss 

some ideas around the UQCRFS1 processing and assembly and its importance for the 

regulation of cIII activity and biogenesis.  
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COMPLEX III OVERVIEW 

The mitochondrial respiratory chain (MRC) is composed of four multimeric enzymes, 

responsible for the redox reactions that take electrons from NADH and FADH2, 

ultimately reducing molecular oxygen to water. This electron transfer is coupled to 

proton pumping from the matrix to the intermembrane space, generating a proton 

electrochemical gradient, which is the driving force for the condensation of ADP+Pi by 

the FO-F1 ATP synthase, a fifth complex, which together with complexes I to IV form the 

oxidative phosphorylation system (OXPHOS).  

Complex III (cIII) or ubiquinol:cytochrome c oxidoreductase is the center of the MRC, 

transferring electrons from coenzyme Q  (CoQ or just Q) to cytochrome c.  

X-ray diffraction crystal structures of cIII are available from Bos taurus 1, Gallus gallus 2, 3 

and Saccharomyces cerevisiae 4 as well as a cryo-EM structure that has recently been 

published from Homo sapiens 5. All of them are practically identical in shape and subunit 

composition. In all of these organisms, cIII is a tightly bound symmetrical dimer where 

one mitochondrial DNA (mtDNA) and nine nuclear genes encode the structural subunits 

forming each cIII monomer. Of all these subunits, only three possess electron transfer 

properties: 1) the mtDNA-encoded cytochrome b (MT-CYB in the mammalian 

nomenclature) that contains the two Q binding sites (Qo or QP and Qi or QN) and two b-

type hemes with different redox potentials (bL and bH): 2) cytochrome c1 (CYC1) that 

contains one c-type heme and 3) the Rieske Fe-S protein (UQCRFS1), whose 

intermembrane space-facing hydrophilic C-terminus hosts a 2Fe-2S high-potential 

cluster.  

The electron transfer and proton pumping processes within cIII occur according to a ‘Q-

cycle’ model 6, 7. UQCRFS1 receives one of the two electrons from oxidation of one 

ubiquinol molecule, and transfers it to CYC1. During this redox reaction, UQCRFS1 ‘head’ 

moves, towards the CYC1 subunit of one of the monomers, whereas the N-terminal 
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transmembrane domain is in close contact with MT-CYB of the other monomer 8. The 

reason for this configuration may be to provide stability to the dimeric cIII2 structure.  

 

MAMMALIAN COMPLEX III ASSEMBLY PROCESS 

Most of what is known about the assembly of cIII comes from studies in yeast 9, 10.  Based 

on the structural similarities and the fact that the first and last steps of human cIII 

assembly are conserved, it is assumed that the in-between process will be the same in 

yeast and mammals 11.  

CIII assembly starts with the synthesis of cytochrome b by dedicated ribosomes, where 

the yeast translation factors Cbp3 (mammalian UQCC1) and Cbp6 (UQCC2) are bound to 

the peptide exit tunnel and direct the nascent polypeptide to translocate into the 

mitochondrial inner membrane 12, 13. A third factor, Cbp4 (UQCC3), is bound to 

cytochrome b after the bL heme but before the bH heme are incorporated into the 

apoprotein 14. Pathological mutations associated with human cIII deficiency have been 

described in UQCC2 15 and UQCC3 16. These early assembly factors are released when the 

first nuclear-encoded subunits bind to cytochrome b. Cbp3 and Cbp6 are now liberated 

and can bind to the mitochondrial ribosomes to act again as translational activators for 

cytochrome b. The rest of the structural subunits are then incorporated into the nascent 

complex until only Rip1 (UQCRFS1) and the smallest subunit Qcr10 (UQCR11) are 

missing, in an already dimeric structure named as pre-cIII2 
10, 11. The incorporation of 

Rip1/UQCRFS1 can be considered as the crucial cIII2 maturation step because it is then 

that the enzyme becomes catalytically active. As depicted in Figure 1, UQCRFS1 is 

synthesized as a precursor protein in the cytosol and imported to the mitochondrial 

matrix following the TOM and TIM23 pathway, similarly to other proteins containing 

cleavable mitochondrial targeting sequences (MTS) 17. In the matrix, UQCRFS1 binds to 

MZM1L/LYRM7 18-20, the LYR-motif containing chaperone responsible for its 
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stabilization and for the recruitment of the Fe-S transfer complex in the matrix 21, 22. 

Once UQCRFS1 has acquired its 2Fe-2S cluster, BCS1L translocates and incorporates it 

to pre-cIII2 in the IM 23-25. This function is therefore essential for cIII2 activity and 

mutations in BCS1L are the most frequent cause of mitochondrial disease associated to 

cIII deficiency (reviewed in ref. (11)). Pathological mutations have also been described 

in LYRM7 26-29} and in TTC19, encoding a third factor necessary for UQCRFS1 metabolism 

30, 31, which is not present in yeast and will be discussed in more detail below.  

 

BOVINE CIII SUBUNIT 9: THE UQCRFS1 MITOCHONDRIAL TARGETING SEQUENCE 

One interesting observation that was pointed out as the main difference between the 

bovine cIII and the yeast and chicken enzymes was that the bovine complex contained 

eleven subunits instead of the ten found in the latter organisms. This extra subunit with 

a molecular mass of 8 kDa was called ‘subunit 9’ or SU9 32, 33 and its sequence was 

determined to be the 78 N-terminal amino acids of the UQCRFS1 precursor, i.e. its MTS 

34.  As a norm, proteins directed to the mitochondrial matrix contain an N-terminal 

amphipathic helix of variable length, which is recognized by the TOM complex and 

directs the precursor protein to the TIM23 complex to be translocated to the 

mitochondrial matrix. Here the precursor is then processed by the matrix processing 

peptidase (MPP), which cleaves off the MTS and gives rise to the mature protein 35. 

Normally, the MTS peptides are proteolysed by Cym1/PITRM1 or hPreP, as their 

accumulation inside mitochondria could have a highly toxic effect 36. Therefore, the 

presence of the UQCRFS1 MTS incorporated inside cIII as a structural subunit 

represents an anomaly and the reason why this happens is unknown.  

Yeast Rip1 has a much shorter MTS than mammalian and avian UQCRFS1: 30 amino 

acids vs. 78 and 76, respectively (Figure 2). Interestingly, TTC19 orthologs exist in 

organisms with long UQCRFS1 MTS, while absent in yeast. The processing of yeast Rip1 
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 5 

is also different from bovine UQCRFS1. Rip1 is processed in two steps, first 22 N-

terminal amino acids are cleaved by the MPP, generating an intermediate form of Rip1 

(iRip1), and, in a second step, the mitochondrial intermediate peptidase (MIP) removes 

the next octapeptide to give rise to the mature form of the Rieske Fe-S protein (mRip1) 

37. This processing was proposed to happen once Rip1 is inserted into cIII2 38. In the case 

of the bovine enzyme, a single-step processing of UQCRFS1 seems to be carried out by 

MPP after it is incorporated into cIII2 34, where SU9 remains bound to the complex and 

localized between the two core subunits (UQCRC1 and UQCRC2), as determined in the 

crystal structure (Figure 3) 1. When chicken cIII2 was isolated and crystallized for the 

first time, no SU9 was identified 2, leading to the idea that there was no such UQCRFS1-

derived subunit in the avian enzyme.  

UQCRC1 and UQCRC2 are homologous to the two MPP subunits (MPP and MPP, 

respectively), and in plants they still preserve their processing properties 39. Mammalian 

cIII2 was considered to have lost its MPP activity. However, when the isolated enzyme 

was treated with detergents it showed this activity 40. The same phenomenon was 

observed by reconstitution of the system with recombinant UQCRC1 and UQCRC2; 

interestingly, MPP activity was inhibited when stoichiometric amounts of ‘SU9’ were 

formed by adding N-terminal UQCRFS1 peptides as substrate 41. 

Taking all this information together, it is plausible that UQCRFS1 is processed in situ by 

UQCRC1+UQCRC2 MPP activity when incorporated into pre-cIII2 (Figure 1). This would 

explain why the N-terminus of the UQCRFS1 precursor is found between these two 

subunits in the cIII2 structure and inhibits its MPP activity. This mode of action was also 

postulated based on the structural features of vertebrate cIII2 42. 
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 6 

N-TERMINAL UQCRFS1 PEPTIDES BOUND TO MAMMALIAN AND AVIAN CIII2  

After the identification of the first pathological mutations in TTC19 30 our laboratory got 

interested in determining the molecular function of this factor, related with cIII2 

biogenesis. For that reason we have studied TTC19-deficient cells and a knock out 

(Ttc19-/-) mouse model, whose characterization was recently published 31. In this report, 

by importing radioactively labeled UQCRFS1 in isolated mouse liver mitochondria and 

analyzing its incorporation into cIII2 in a time course, we found that UQCRFS1 is 

processed right after its import and assembly, and the peptides derived from the N-

terminus of the UQCRFS1 precursor remain bound to the complex. However, we did not 

find evidence of a unique cleavage point, giving rise to only two fragments 

corresponding to the mature UQCRFS1 and the 78-amino acid long SU9. Contrariwise, 

we observed the formation of the mature UQCRFS1 and the appearance of three main 

species of approximately 4, 8 and 12 kDa in size. In the steady state, these small 

UQCRFS1-derived peptides were readily detectable in the Ttc19-/- tissues while they 

were practically absent in the Ttc19wt samples. By mass spectrometry we were able to 

find tryptic peptides spanning from positions 8 to 204 of the UQCRFS1 precursor in the 

lower part of a SDS-PAGE (corresponding to sizes of 14 kDa and smaller), whereas in the 

higher part of the gel (30-14 kDa) we could only find peptides within the sequence of 

the mature protein (from residues 84 to 274) 31.  

When checking the twenty-two bovine and sixteen chicken cIII2 crystal structures 

available in the RCSB PDB protein data bank (https://www.rcsb.org) 43 there are 

peptides derived from UQCRFS1 MTS in all of them (examples in Figure 3).  In the 

original chicken structure, density corresponding to an amino acid chain sitting between 

UQCRC1 and UQCRC2 was detected and a chain was built in the structure, but the 

identity of this peptide remained unknown (PBD ID 1BCC, 2BCC, 3BCC) 3. This issue was 

resolved in the later chicken structures (see Table 1). Even though all the structures 
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contain these peptides, the sequences in each of one of them are very variable and in 

none of them the full UQCRFS1 MTS, from amino acids 1 to 78, is found (Table 1). This 

could reflect heterogeneity in the fragments that are contained in each of the analyzed 

cIII2 crystals 42.  

In our in organello assays, after import and incorporation into cIII2 of radioactive mouse 

Uqcrfs1, we observed that the 8 and 12 kDa fragments that are generated immediately 

after incorporation, disappeared with time and this clearance was much more efficient 

in wild-type compared to Ttc19-/- mitochondria. The abnormal accumulation of the N-

terminal peptides was associated with aberrant electrophoretic mobility of cIII2 in Blue-

Native gel electrophoresis (BNGE), defective enzymatic activity and increased reactive 

oxygen species (ROS) production. Therefore, we concluded that during the 

incorporation and in situ UQCRFS1 processing, several peptides containing its MTS are 

produced and remain bound to cIII2. However, in order to preserve cIII2 structural 

integrity and function, these peptides (at least those of 8 kDa and 12 kDa) must be 

removed. TTC19 is involved in the removal of these N-terminal UQCRFS1 peptides, as 

discussed in the next section.  

 

ROLE OF TTC19 IN COMPLEX III BIOGENESIS AND FUNCTION 

Since the first TTC19 mutations were published in 2011 30, a significant number of cases 

have been subsequently reported 44, 45. The biochemical profile of these patients, 

showing isolated cIII deficiency, underscores the importance of TTC19 for a correct 

biogenesis of this complex. Analysis of cIII2 assembly state in TTC19-deficient skin 

fibroblasts and muscle biopsies revealed the presence of UQCRC1 and UQCRC2-

containing subassemblies 30, 31, which suggested an involvement of TTC19 in the first 

steps of cIII2 assembly. However, the availability of the Ttc19-/- mice and more detailed 

kinetic analyses in human cells, revealed that the assembly process per se was not 
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 8 

particularly altered in the absence of TTC19, including a normal incorporation of 

UQCRFS1 31. TTC19 is loosely bound to fully assembled cIII2, as this interaction is 

disrupted when treating the mitochondrial membranes with a relatively mild detergent 

such as n-Dodecyl--D-maltoside (DDM), but not if the samples are exposed to the even 

milder detergent Digitonin.  Moreover, TTC19 only binds to cIII2 if UQCRFS1 is 

incorporated into the complex 31, suggesting a role in cIII2 biogenesis or maturation after 

assembly is completed. In fact, because the absence of TTC19 impairs the removal of the 

small UQCRFS1-derived fragments, we assigned a quality control or “husbandry” role 

for TTC19, in maintaining the structural and functional integrity of cIII2.  

 

PROSPECTS  

The imminent questions derived from our recently published work 31 are: 1) whether 

UQCRC1+UQCRC2 possess MPP activity in vivo and what is their role in UQCRFS1 

processing, 2) what proteases are working in collaboration with TTC19 in the removal 

of UQCRFS1 N-terminal peptides produced during assembly-processing and 3) how this 

process intervenes in UQCRFS1 turnover, to warrant cIII2 fitness.  

As for the first question, in plants, MPP is integrated into cIII2, thus carrying out the 

processing of the precursor proteins in addition to act as an MRC complex 39. However, 

in S. cerevisiae and in mammals, there is a soluble MPP localized in the matrix. Only two 

reports cited above 40, 41, have demonstrated an MPP activity incorporated into purified 

bovine cIII2 and performed by UQCRC1+UQCRC2. It would be necessary to demonstrate 

in vivo whether this activity is necessary for the in situ processing and proper 

incorporation of UQCRFS1.  

Concerning the second question, we performed co-immunoprecipitation studies that 

revealed specific interactions of TTC19 with cIII2, in the context of the respiratory 
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supercomplexes (i.e. cI+cIII+cIV) 46 and with the components of the so-called SPY 

complex 47. This is a mitochondrial quality control “proteolytic hub” that includes both 

the i-AAA protease YME1L and the rhomboid protease PARL. Logically the SPY complex 

is the first candidate to be explored in relation to its role in UQCRFS1/cIII2 quality 

control.  

Regarding the third question and taking together the information reported above, this 

process can be considered as a regulatory mechanism of cIII2 maturation and activity. 

Even in situations in which UQCRFS1 cannot be incorporated, there is an assembly of 

pre-cIII2, which contains all the subunits except UQCRFS1 and most probably the 

smallest UQCR11 20, 25. Therefore, the pre-cIII2 can be considered as an assembly 

checkpoint previous to the final activation, which must be somehow regulated. 

Accordingly, UQCRC1+UQCRC2 could control the amount of UQCRFS1 that must be 

incorporated into cIII2 by recognizing the UQCRFS1 MTS and processing it upon 

incorporation. The presence of the N-terminal UQCRFS1 fragments in between UQCRC1 

and UQCRC2 would inhibit their MPP activity and the incorporation of any new 

UQCRFS1. The removal of the UQCRFS1 N-terminal fragments would reactivate cIII2 

MPP activity and promote the removal of old, possibly damaged, UQCRFS1 from the pre-

cIII2 scaffold, so that new UQCRFS1 can then be processed and incorporated again. This 

would keep the complex functional. The interchange of catalytically active subunits that 

can be oxidatively damaged in large enzymatic complexes is a mechanism demonstrated 

in chloroplast Photosystem II 48-50 and in mammalian mitochondrial cI 51, where there 

seems to be an interchange of old damaged subunits for newly imported ones. If this 

model is correct, the turnover of UQCRFS1 should be faster than that of the other cIII2 

subunits, which is in fact the case in mouse tissues 52.  

To determine whether the rate of UQCRFS1 incorporation and turnover, as well as the 

N-terminal fragment clearance changes depending on the metabolic conditions would 
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 10 

be a question of great interest to understand the relevance of this process in the 

adaptation to different energetic demands. This could be tested in differentiated tissues, 

where mitochondria in general and cIII2 in particular could play a different metabolic 

role. It is also possible to analyze UQCRFS1 turnover in cultured cells grown in OXPHOS-

dependent (galactose as carbon source) and independent (glucose as carbon source) 

media. If this were to be changed, it would reflect how cIII2 maturation must adapt to an 

increased MRC activity.   

These questions can be experimentally addressed; their elucidation will contribute to 

clarify the complex regulatory mechanisms of OXPHOS and their implication in health 

and disease.   
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FIGURE LEGENDS 

 

 

 

Figure 1. UQCRFS1 pathway from synthesis of the precursor in the cytoplasm, transport 

into the mitochondrial matrix through the TOM/TIM23 import system, incorporation of 

the 2Fe-2S clusters in the matrix and translocation to pre-cIII2 in the inner membrane 

(IM). According to our model, the N-terminal MTS is cleaved off in situ by the 

UQCRC1+UQCRC2 MPP activity. See main text for more details.   
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Figure 2. Graphic alignment of the Rieske protein precursors from yeast (S. cerevisiae), 

fruit fly (D. melanogaster), chicken (G. gallus) and mammals (bovine, mouse and 

human). Numbers indicate relevant residue positions. The two yeast cleavage sites, at 

positions 22 and 30 are indicated with arrows. The main cleavage site, conserved in all 

organisms is indicated with the big arrow. Different color MTS indicates the lack of 

homology of these sequences, while the homology in the mature protein sequences in 

very high.  
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Figure 3. Structures of full complex III dimer (cIII2) and of isolated UQCRFS1 (of only 

one of the monomers), from bovine (PBD ID: 1BGY) and chicken (PBD ID: 3H1J). The 

arrows indicate the presence of the UQCRFS1 fragments in the cavity between UQCRC1 

and UQCRC2. Images were generated with MacPyMol 
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Table 1. UQCRFS1 MTS sequences found in the published cIII2 structures 

BOVINE STRUCTURES 

UQCRFS1 MTS: Positions 1 to 78 

PDB ID Reference UQCRFS1 positions found  

1BGY, 1BE3 (1) From 48 to 78 

1L0L, 1L0N, 1NTK, 

1NTM, 1NTZ, 1NU1, 

1SQB, 1SQP, 1SQQ, 

1SQV, 1SQX, 2FYU  

(53-56) From 1 to 57 

1PP9, 1PPJ, 2A06 (57) From 32 to 42 and from 48 to 78 

1QCR (58) From 21 to 48 

4D6U, 4D6T (59) 

Monomer 1: From 50 to 56 and from 

64 to 77 

Monomer 2: From 62 to 63 and from 

65 to 78 

5KLV (60) 
From 20 to 27; from 44 to 61 and 

from 63 to 70 

5NMI (61) From 49 to 78 

CHICKEN STRUCTURES 

UQCRFS1 MTS: Positions 1 to 76 

1BCC, 2BCC, 3BCC (3) ---- 
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3H1L, 3H1H, 3H1I,  

3H1J, 3H1K 
(62) From 45 to 63 

3CWB, 4U3F (63, 64) From 46 to 75 

3TGU (65) From 2 to 8 and from 46 to 75 

3L70, 3L71, 3L72, 

3L73, 3L74 
(66) From 45 to 75 

HUMAN STRUCTURE 

UQCRFS1 MTS: Positions 1 to 78 

5XTE (5) From 1 to 57 

 

 

 

 

 

 

  

 

 
 
 
 
 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

am
br

id
ge

] 
at

 0
9:

32
 1

8 
D

ec
em

be
r 

20
17

 


