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Abstract 
Background 

Accuracy and frequency of glucose measurement is essential to achieve safe and 

efficacious glucose control in the ICU. Emerging continuous glucose monitors provide 

frequent measurements, trending information and alarms. The objective of this study was 

to establish the level of accuracy of continuous glucose monitoring (CGM) associated with 

safe and efficacious glucose control in the intensive care unit. 

Methods 

Three established glucose control protocols (Yale, University of Washington, and NICE-

SUGAR) underwent evaluation using computer simulations. Insulin delivery was informed 

by intermittent blood glucose (BG) measurements or CGM levels with an increasing level 

of the measurement error. Measures of glucose control included mean glucose, glucose 

variability, time glucose was in target range, and hypoglycemia episodes.  

Results 

Apart from Washington protocol, CGM with mean absolute relative deviation (MARD) up to 

15% resulted in similar mean glucose as with the use of intermittent BG measurements. 

Glucose variability was also similar between CGM and BG-informed protocols. Frequency 

and duration of hypoglycemia were not worse using CGM with MARD at or below 10%.  

Measures of glucose control varied more between protocols than at different levels of the 

CGM error.  

Conclusions 

The efficacy of CGM-informed and BG-informed commonly used glucose protocols is 

similar but the risk of hypoglycemia may be reduced using CGM with MARD at or below 

10%. Protocol choice has greater influence on glucose control measures than the glucose 

measurement method. 
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INTRODUCTION 

Accurate measurement of blood glucose concentration is essential for achieving safe and 

efficacious glucose control in the intensive care unit [1,2]. Accuracy standards to 

determine adequacy of intermittent and continuous glucose monitoring devices are subject 

of an ongoing debate informed by consensus but lacking convincing evidence [3]. 

  

Various types of glucose measuring devices are currently used in the ICU setting. A 

limited number of studies report the use of subcutaneous continuous glucose monitors 

(CGM) [4-9] and majority of glucose measurements are currently performed intermittently 

using either blood gas analyzers or point-of-care (POC) glucose meters. Although blood 

gas analyzers have been shown to be accurate [10], the use of POC meters raised many 

concerns [11-13].  The point-of-care devices which measure glucose concentration in 

either arterial or capillary blood were not designed for use in the critically ill patients who 

are prone to frequent and often large changes in hematocrit, pH and blood oxygenation. 

Intermittent measurements are also limited by the heavy workload at the ICU and could 

lead to missing important events such as hypoglycemia episodes.  

 

In response to these concerns and also to increase the frequency of blood glucose 

measurements without affecting staff workload, CGM devices are being developed for use 

in the critically ill. Intravenous and subcutaneous CGM systems are now available for 

clinical use and have undergone early clinical testing [14-17]. CGM technologies offer 

frequent automated glucose measurements, a glucose rate of change assessment, and 

threshold or predictive alarm functionality. These properties may positively impact the 

safety of current glucose control protocols and improve clinical outcomes [18].  
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Potential benefits may be substantial but should be evaluated and documented to attain 

regulatory approvals, reimbursement, and clinical acceptance. To date, no studies have 

assessed glucose control measures obtained from using continuous glucose monitoring 

compared to intermittent glucose measurements. Such direct comparison could provide 

valuable data to help inform the debate on accuracy guidelines.  

 

Two approaches to perform comparison studies are feasible. Clinical trials may be 

conducted but these are costly, time-consuming and bounded by ethical constraints. 

Computer simulations offer a resource efficient alternative [19,20]. In the present study, we 

utilized a validated virtual population of 56 critically ill patients [21] to simulate clinical 

experiments and compare glucose control measures using three commonly used glucose 

control protocols informed by either intermittent or continuous glucose measurements.      
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MATERIALS AND METHODS 

We used computer simulations to contrast the ability of continuous and intermittent 

glucose measurements to  achieve desirable glucose levels in combination with common 

glucose protocols in the critically ill. This allowed direct comparison, similar to that offered 

by crossover clinical trials, among glucose measurement methods (continuous vs. 

intermittent) and glycemic control protocols. The simulated experiments utilized a virtual 

population of critically ill patients, developed from data collected in multicentre 

multinational clinical trials [22-26], and validated against independent clinical data [21]. 

 

Virtual patients  

The virtual patients were created from clinical database collected in 56 critically ill patients, 

29 patients treated in the medical ICU [M 25; age 66.7(11.7)yrs; weight 76.5(14.6)kg, 

diabetes 5; APACHE II 19(16-24); total CHO intake 7.2(3.8)g/h; mean(SD) or 

mean(range)] and 27 in the surgical ICU [M 16; age 62.6(13.7)yrs; weight 83.5(18.4)kg, 

diabetes 7; APACHE II 22(19-25); total CHO intake 7.5(3.5)g/h; mean(SD) or 

mean(range)] at Charles University, Prague  [22,23] Medical University, Graz [23,24], 

Katholieke Universiteit, Leuven [25,26], and Royal Brompton Hospital, London [23,25].  

 

From the clinical data, 56 virtual patients were created, one virtual patient per one real 

patient, through a process termed experimental in silico cloning [19]. A physiologically-

based compartment model was fit to glucose measurements capturing the between-

person and temporal variability in insulin sensitivity as well as institutional differences in 

nutritional and other treatment protocols [19].  
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Validity of the virtual population was assessed by replicating two open-label randomized 

clinical trials evaluating glucose control protocols [25,27]. One study compared 

performance of the enhanced model predictive control algorithm at two ICUs in the UK and 

Belgium [25]. The other study compared three algorithms for insulin delivery in a single 

intensive care unit in Prague [27]. Principal findings of the two studies were reproduced 

[21]. 

  

Simulations design 

We simulated a 48-hour stay in the ICU. When evaluating intermittent glucose 

measurements, insulin delivery was adjusted according to the glucose measurement 

pertinent at the protocol-defined time points, i.e. hourly or less frequently. When evaluating 

continuous glucose measurements, available every 5 minutes, insulin delivery was 

adjusted at the protocol-defined time points as for the intermittent measurements, and 

additionally at hypoglycemia and hyperglycemia alarm thresholds set at 70mg/dL 

(3.9mmol/L) (70mg/dL) and 300mg/dL (16.7mmol/L) (300mg/dL). Once activated, alarms 

were disabled over the following 30minutes. Protocol-specific hypoglycemia and 

hyperglycemia treatment guidelines were applied.  

 

Further simulated experiments assessed sensitivity and specificity of CGM-triggered 

hypoglycemia alarms. An alarm was considered true positive if it occurred within ±30min 

from the start of BG-confirmed hypoglycemia event.  If hypoglycemia did not occur within 

±30min of the start of the alarm, the alarm was considered false positive. In these 

simulations, hypoglycemia treatment was not administered as it confounded the 

assessment of alarm sensitivity and specificity.  

 



7 
 

 

Glucose protocols 

Three common glucose protocols were simulated, Yale [28] (target range 100-140 mg/dL 

or 5.6-7.8mmol/L or; hypoglycemia thresholds 75 and 60 mg/dL or 4.2 and 3.3mmol/L), 

University of Washington [13] (target range 80-180 mg/dL or 4.4-10mmol/L; hypoglycemia 

threshold 60 mg/dL or 3.3mmol/L ) and NICE-SUGAR [29] (target range 80-180 mg/dL or 

4.4-10mmol/L); hypoglycemia thresholds 72 and 40 mg/dL or 4.0 and 2.2mmol/L). The 

same unmodified protocols were used when evaluating intermittent and continuous 

glucose measurements.  

 

CGM measurement error  

The CGM measurement error combined scale, bias and residual error components. The 

scale was expressed as a proportional error pivoted around blood glucose of 5.55mmol/l 

(100mg/dl). The constant bias was applied across the entire glucose range. The residual 

error was assumed to be autocorrelated with zero mean, normally distributed, and 

absolute at blood glucose values below 100mg/dL (5.55mmol/L) and proportional 

otherwise.  

 

Seven levels of the scale component (range 0.8 to 1.2 in steps of 0.1) were considered. 

The constant bias ranged from -15 mg/dL (-0.84mmol/L) to +15 mg/dL (+0.84mmol/L) in 

seven steps of 5 mg/dL (0.28mmol/L). The residual error was assumed to have a standard 

deviation ranging from 0 to 15 mg/dL (0.84mmol/L) for blood glucose below 100 mg/dL 

(5.55mmol/L), and a coefficient of variation from 0 to 15% for other glucose values. Seven 

steps with resolution of 2.5 mg/dL (0.14mmol/L) of SD and 2.5% of CV were considered. 

Three levels of the autocorrelation coefficient, 0.97, 0.98 and 0.99, were applied to 
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glucose values sampled every minute.  Overall, 735 combinations of the three error 

components were simulated. The total error obtained in the simulations was stratified 

according to the mean absolute relative deviation (MARD) into ranges 0-5%, 5-10% and 

10-15%. Sixty error combinations per virtual subject were randomly selected, twenty for 

each MARD range, and used in subsequent simulated experiments. Different error 

combinations could be selected for different subjects.  

 

Additional analyses were carried out to assess the effect of CGM imprecision and bias on 

glucose control and rate and duration of hypoglycemia.  CGM imprecision was varied 

between 0% and 15% in 5% steps in the absence of bias. Similarly, CGM bias varied from 

-15% to +15% in 5% steps in the absence of imprecision.  

 

Intermittent glucose measurement error  

Three intermittent glucose measurement methods were simulated, the arterial blood gas 

measurement (ABG), a point-of-care device using capillary blood (POC capillary) and a 

point-of-care device using arterial blood (POC arterial). The measurement error was 

assumed to be uncorrelated, normally distributed with zero mean and with characteristics 

reported by a systematic review by Inoue et al [10]; ABG, POC arterial and POC capillary 

measurement errors were assumed absolute below 75mg/dL (4.2mmol/L) with a constant 

SD of 2.3mg/dl (0.13mmol/L), 5.8mg/dL (0.32mmol/L) and 8.0mg/dL (0.44mmol/L), 

respectively. For glucose values above 75 mg/dL (4.2mmol/L) the measurement error was 

assumed to be proportional with a coefficient of variation at 3.2%, 6.0% and 7.8% for ABG, 

POC arterial and POC capillary measurements. 

 

Implementation 
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The Simulation Environment version 5.8 (University of Cambridge, Cambridge) was 

implemented under Matlab® (The Mathworks, Natick, MA, USA) [21]. 

 

 

Statistics 

Glycemia control measures were based on the blood glucose concentration.  

Hypoglycemia measures included the percentage of simulated patients experiencing at 

least one episode of hypoglycemia (<70 and <40 mg/dL or <3.9mmol/l and <2.2mmol/l) 

and the median duration of such episodes across simulated studies. Values shown are 

mean ± standard deviation or median (interquartile range). 
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RESULTS 

In total, 20,160 forty-eight-hour long simulated experiments were generated, a result of 

multiplication of 20 error combinations, 56 virtual subjects, 6 measurement methods (3 

ranges of CGM error plus 3 intermittent methods) and 3 ICU protocols. Three quarters of 

the simulated experiments (15,120) were used in the data analysis providing 560 

simulated experiments per ICU protocol and per measurement method. Further selection 

was carried out to obtain an equal representation of virtual ICU subjects in each MARD 

range and to assure an equal number of simulated experiments in each MARD range. The 

selection process adopted random sampling from allowable subsets (see details in 

Supplemental Information). 

 

Table 1Table 1 shows glucose control measures stratified according to the glucose 

measurement method and the glucose control protocol. Apart from the Washington 

protocol, CGM with MARD up to 15% resulted in similar mean glucose as with the use of 

intermittent BG measurements. Adopting the University of Washington protocol, the mean 

glucose was higher when CGM was used but this was offset by lower rates of 

hypoglycemia. Glucose variability was similar across all measurement methods and 

protocols. The time spent in target glucose range improved with increased CGM accuracy 

applying the Yale and Washington protocols reaching similar values as with the use of 

intermittent BG measurement methods when CGM MARD was below 10%. Applying 

NICE-SUGAR protocol, the time spent in target glucose range was largely unaffected by 

the glucose measurement method. 

 

Hypoglycemia measures are shown in Table 2Table 2. The frequency and duration of 

hypoglycemia episodes was reduced or similar for CGM measurements with MARD at or 
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below 10% across all protocols.  For CGM measurements with MARD in the upper 10-

15% range the frequency and duration of hypoglycemia less than <40 mg/dL (<2.2mmol/L) 

was also reduced but hypoglycaemia less than <70mg/dL (3.9mmol/L) was only reduced 

whilst applying Washington and NICE-SUGAR protocols.    

 

Supplemental Table1 shows sensitivity and specificity of CGM-based hypoglycemia 

alarms. Sensitivity was reduced with CGM measurements with MARD above 10%. 

Specificity was also reduced above 10% MARD apart from the Yale protocol where it 

remained similar across the investigated MARD range. 

Table 3Table 3 shows glycemic control measures stratified according to CGM 

imprecision. Apart from the Yale protocol, CGM with imprecision up to 15% resulted in a 

similar mean glucose and glucose standard deviation. With the Yale protocol, CGM 

imprecision of 15% resulted in a higher mean glucose and higher glucose variability 

leading to a reduction of time spent in target glucose range. The effect of CGM imprecision 

on frequency and duration of hypoglycemia is shown in Table 4Table 4. An increase in the 

number of hypoglycemia episodes, but not the duration, was seen with the increasing 

imprecision in all three protocols.  

 

Table 5Table 5 shows the effect of CGM bias on glucose control. As expected, a 

reduction in mean glucose with increasing bias was observed in all protocols. A marked 

reduction in time spent in target glucose range was present in all protocols with negative 

bias at or below 10%. With the Yale protocol, both positive and negative bias exceeding 

10% resulted in reduced time spent in the target glucose range. With the Washington 

protocol time spent in target range was least affected by positive bias whereas with NICE-

SUGAR protocol the time spent in target range increased with increasing positive bias.  
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The effect of CGM bias on frequency and duration of hypoglycemia is shown in Table 

6Table 6. An increase in the number of hypoglycemia episodes below 70mg/dL 

(3.9mmol/l) with increasing bias was evident with all protocols, although at a different bias 

threshold. The Yale protocol was sensitive to positive CGM bias with the number of 

hypoglycemic episodes steadily increasing with increasing positive bias. The NICE-

SUGAR protocol was the least sensitive. A marked increase in the number of 

hypoglycemia episodes below 70 and 40 mg/dL (3.9 and 2.2mmol/L) was observed at bias 

10% and above.   
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DISCUSSION 

The present study assessed the level of accuracy of continuous glucose monitoring 

required for safe and efficacious glycemic control in the intensive care unit by contrasting 

glucose control measures obtained with three common insulin titrating protocols. 

Experiments using intermittent and continuous glucose measurements demonstrated 

comparable efficacy of CGM-informed and BG-informed ICU insulin protocols in terms of 

mean glucose and glucose variability across all levels of the CGM error and protocols. The 

time spent in target glucose range was similar for CGM error up to 10% but decreased 

thereafter. Hypoglycemia rates were maintained or improved with CGM error up to 10% 

MARD. The frequency and duration of severe hypoglycemia below 40 mg/dL (2.2mmol/L) 

was reduced across the investigated MARD range.  

 

Unlike Yale and NICE-SUGAR protocols which provided similar mean glucose across all 

measurement methods, mean glucose associated with CGM-driven Washington protocol 

was higher and was offset by a considerably reduced frequency of hypoglycemia (Table 

2Table 2). A reduction in hypoglycemia frequency was also observed in the CGM-driven 

Yale protocol but only with MARD less than 10%. With MARD values above 10% both 

frequency and duration of hypoglycemia events were higher than using intermittent BG 

measurements. In contrast, the CGM informed NICE-SUGAR protocol resulted in a similar 

frequency of hypoglycemia less than 70 mg/dL (3.9mmol/L) as with intermittent BG 

measurements. 

 

Glucose control measures were protocol dependent so that the type of protocol had a 

larger effect on endpoints than the glucose measurement method. This applied to mean 

glucose, glucose variability, and hypoglycemia rates and duration. 

Formatted: Font: 12 pt, Bold
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The efficacy of the CGM-driven Washington protocol measured as a percentage of time 

glucose was in target range was offset by the high frequency of hypoglycemia episodes 

compared to the other two ICU protocols. In contrast, the NICE-SUGAR protocol had 

fewer hypoglycemia episodes but also the lowest percentage of time spent with glucose in 

the target range. Of the three ICU protocols, the Yale protocol appeared to be the safest 

with the lowest rates of hypoglycemia while attaining the mean glucose similar to the 

Washington protocol.   

 

CGM-triggered alarms are designed to facilitate timely detection of hypo- and 

hyperglycemia and may improve the safety of existing protocols. We documented 

acceptable sensitivity and specificity of hypoglycemia alarms at MARD up to 10% and then 

gradual deterioration in sensitivity and specificity. This finding was consistent across all 

protocols.     

 

The insulin titrating protocols achieved different balances between safety, as measured by 

hypoglycemia exposure, and efficacy as assessed by time spent in the target range. The 

NICE-SUGAR protocol emphasized hypoglycemia avoidance at the expense of higher 

glucose concentrations whereas with the Washington protocol the emphases were 

reversed. The Yale protocol was most balanced with 50% of time spent in a tight glucose 

range and a low risk of hypoglycemia. 

 

Additional analyses contrasted CGM imprecision and bias. In agreement with Boyd and 

Bruns [20], we observed a smaller effect of imprecision on mean glucose and time spent in 

the target range compared to bias. This observation extended to frequency and duration of 



15 
 

hypoglycemia in the case of the Yale and NICE-SUGAR protocols but not with the 

Washington protocol. In the latter protocol the effect of increasing CGM imprecision on the 

number of hypoglycemia events was more pronounced than the effect of bias. The results 

from this additional analysis support our main finding that glucose control measures are 

protocol dependent.  

 

The partial difference between our observations and those by Boyd and Bruns [20] on the 

effect of imprecision can be explained by the different ways CGM levels informed glucose 

protocols. In the present study, a single CGM level pertinent to the protocol-directed 

control time was used. Boyd and Bruns used the linear regression analysis to interpolate 

CGM measurements between two control times, and in case of hourly sampling 12 CGM 

measurements (one every 5 minutes) were used to derive the glucose level informing the 

protocol and mitigating the effect of imprecision. Authors of this recent study [20] indicated 

that when CGM was used to raise alarms between algorithm-defined time points the 

commonly used glucose control metrics remained unchanged. The results of our study 

confirm this finding for some of the studied protocols but not for others adding an 

emphasis on protocol dependence. 

  

Originally, the three protocols were designed for the use with intermittent glucose 

measurements. Apart from the benefit of any-time display of glucose concentration, 

additional information provided by continuous glucose measurement devices such as 

glucose trending, hypo/hyper and predictive alarms could lead to further refinements of 

existing protocols or may stimulate the development of novel protocols with enhanced 

performance but this is outside the scope of the present work. 
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Simulations have limitations but offer the only practical approach given the prohibitive cost 

and ethical dilemmas associated with conducting similar evaluations as large scale clinical 

trials. It is important that virtual populations represented by a simulation model of glucose 

regulation are validated and predictions confirmed. In our previous work we carefully 

considered these aspects and apart from developing our virtual population from clinical 

data and applying it on a one-to-one basis (one virtual subject per one critically ill patient) 

we validated predictions by replicating glucose control measures of comparative clinical 

studies [21].  Others used simulations to evaluate the effect of measurement error on 

glucose control in the ICU [13,30-31] using intermittent BG measurements. Our study 

expands these findings by contrasting intermittent and continuous glucose measurements 

and simulating an intended use of CGM with currently available ICU protocols, i.e. 

advising on insulin delivery at protocol time points and, additionally, at times of CGM-

triggered alarms. Validation of our observations in an appropriately designed clinical study 

is desirable but is logistically and ethically challenging.  

 

Accuracy of glucose meters in the ICU has been studied extensively [10-13] although 

accuracy guidelines and standards are being debated. Existing standards such as ISO 

15197:2003/2013 may not be fully applicable to the ICU environment as their purpose is to 

regulate glucose meters for self-monitoring at home setting. Recent recommendations for 

the ICU were set out in a consensus document [3] suggesting that 98% of intermittent BG 

readings should fall within 12.5% of a reference standard (or within 10 mg/dL or 

0.55mmol/L for glucose < 100 mg/dL or < 5.5mmol/l) and the remaining 2% of readings 

should be within 20% of reference standard [3]. It was also suggested that for CGM MARD 

values should not exceed 14% and that MARD values above 18% demonstrate poor 
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accuracy. Our study is in a broad agreement with these CGM guidelines but we would 

suggest that MARD of a single CGM sensor and not across a large number of sensors 

should be below 10% as averaging results may mask individual sensors with poor 

accuracy. 

 

In conclusion, the efficacy of CGM-informed and BG-informed common glucose protocols 

is similar with MARD up to 15% but the risk of hypoglycemia may be reduced using CGM 

with MARD at or below 10%. Protocol choice has greater influence on glucose control 

measures than the glucose measurement method. Continuous glucose monitoring may 

stimulate the development of novel more efficacious and safer glucose control protocols 

than those currently available. 
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Table 1a: Glucose control measures based on simulated blood glucose (without error component) and stratified according to the glucose 
measurement method (continuous glucose monitoring vs. intermittent BG) and ICU glucose protocol (Yale, Washington and NICE-SUGAR).  
  

  Continuous glucose measurement BG intermittent 
 ABGc 

POCc arterial POCc capillary 

  0–5%  
MARDb 

5–10%  
MARDb 

10–15%  
MARDb 

2.6%d 

MARDb 
4.8%d 

MARDb 
6.2%d 

MARDb 

Y
a

le
  

Mean glucose  
(mg/dL) 

137 (126,151) 137 (126,151) 137 (123,157) 135 (126,150) 137 (128,151) 139 (128,155) 

SD glucose 
(mg/dL) 

29 (22,41) 31 (22,45) 31 (22,45) 29 (22,45) 31 (22,45) 31 (22,490) 

Time in targete 

(%) 
50 (33,66) 47 (31,61) 41 (28,57) 51 (33,68) 48 (31,68) 47 (30,66) 

W
a

s
h

in
g
to

n
 Mean glucose  

 (mg/dL) 
139 (132,150) 141 (130,153) 142 (123,157) 119 (108,133) 119 (108,133) 119 (108, 135) 

SD glucose 
(mg/dL) 

20 (16, 29) 22 (16, 29) 22 (18,31) 18 (14,25) 20 (16,25) 20 (16,27) 

Time in targetf 
(%) 

94 (88,98) 92 (85,98) 91 (81,98) 95 (88,99) 94 (87,99) 94 (87,98) 

N
IC

E
-S

U
G

A
R

 Mean glucose  
 (mg/dL) 

171 (162,178) 173 162,182) 166 (153,193) 171 (164,178) 171 (164,178) 173 (164,180) 

SD glucose 
(mg/dL) 

25 (18,36) 25 (18,36) 25 (18,36) 25 (18,38) 27 (20,38) 27 (22,38) 

Time in targetf 
(%) 

68 (56,81) 62 (49,79) 66 (37,87) 66 (54,79) 65 (54,78) 63 (53,76) 

a SI unit version of this table can be found in Supplemental Data (Supplemental Table 2) 
; b Mean absolute relative deviation 
c Measurement error obtained from meta-analysis evaluating blood gas analyzer (ABG) and point-of-care (POC) glucose meters [10];   
d Calculated from the data;  e Target range 100 to 140mg/dL; f Target range 80 to 180mg/dL
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Table 2: Frequency and duration of hypoglycaemia <70mg/dL (< 3.9mmol/L) and <40mg/dL (< 2.2mmol/L) stratified according to the glucose 
measurement method (continuous glucose monitoring vs. intermittent BG) and ICU glucose protocol (Yale, Washington and NICE-SUGAR). 
   

  Continuous glucose measurement BG intermittent 

   ABGb 
POCb arterial POCb capillary 

 
 

 0–5%  
MARDa 

5–10%  
MARDa 

10–15%  
MARDa 

2.6%c 

MARDa 
4.8%c 

MARDa 
6.2%c 

MARDa 

Y
a

le
 

<
7

0
 

m
g

/d
L
 Frequency  

(%subjects) 
12 22 31 21 25 29 

Duration 
(min) 

21(14,38) 31(17,64) 43 (23,82) 28 (18,32) 31 (19,46) 34 (21,52) 

<
4

0
 

m
g

/d
L
 Frequency  

(%subjects) 
0 0 0.7 1.4 1.8 2.4 

Duration 
(min) 

- - 14 (13,17) 16 (13,47) 17 (11,51) 22 (15,36) 

W
a

s
h

in
g
to

n
 

<
7

0
 

m
g

/d
L
 Frequency  

(%subjects) 
11 12 15 36 39 41 

Duration 
(min) 

38 (30,49) 39 (31,53) 38 (29,62) 52 (35,57) 54 (39,69) 51 (30,70) 

<
4

0
 

m
g

/d
L
 Frequency  

(%subjects) 
2.5 3.0 3.2 3.2 5.0 5.0 

Duration 
(min) 

20 (15,24) 22 (17,25) 19 (14,26) 14 (12,22) 15 (13,23) 17 (12,28) 

N
IC

E
-S

U
G

A
R

 

<
7

0
 

m
g

/d
L
 Frequency  

(%subjects) 
6 7 7 8 8 7 

Duration 
(min) 

30 (19,55) 30 (21,75) 32 (21,75) 36 (26,69) 44 (23,74) 31 (23,69) 

<
4

0
 

m
g

/d
L
 Frequency  

(%subjects) 
0.4 1.3 1.3 1.4 0.8 0.8 

Duration 
(min) 

13 (12,14) 12 (11,16) 17 (16,21) 31 (24,32) 29 (25,41) 25 (17,33) 

a Mean absolute relative deviation    b  Measurement error obtained from meta-analysis evaluating blood gas analyzer (ABG) and point-of-care 
(POC) glucose meters [10]   c Calculated from the data 



24 
 

Table 3a: Glucose control measures based on simulated blood glucose (without error 
component) stratified according to CGM imprecision expressed as CV and ICU protocols 
(Yale, Washington and NICE-SUGAR) in the absence of bias.  
  

  
Imprecision (%) 

  
Baseline 5% 10% 15% 

Y
a

le
  

Mean glucose  
(mg/dL) 

132 (124,146) 133 (124,148) 137 (130, 153) 150 (137,166) 

SD glucose 
(mg/dL) 

25 (20,38) 27 (20,38) 29 (22,43) 34 (25,45) 

Time in target b 

(%) 
56 (37,68) 55 (36,69) 48 (30,63) 37 (23,50) 

W
a

s
h

in
g
to

n
 Mean glucose  

 (mg/dL) 
137 (130,150) 137 (130,148) 135 (128,144) 135 (128,144) 

SD glucose 
(mg/dL) 

20 (9,34) 22 (18,27) 23 (18, 3129) 25(20,34) 

Time in target c 
(%) 

94 (89,98) 94 (89,98) 93 (87,98) 91 (84,97) 

N
IC

E
-S

U
G

A
R

 Mean glucose  
 (mg/dL) 

169 (162,177) 169 (162,177) 171 (162,178) 171 (162,182) 

SD glucose 
(mg/dL) 

25 (18,36) 25 (20,36) 29 (22,40) 32 (23,43) 

Time in target c 
(%) 

70 (57,80) 68 (57,79) 63 (53,75) 60 (50,73) 

a SI unit version of this table can be found in Supplemental Data (Supplemental Table 3);   
b Target range 100 to 140mg/dL 
c Target range 80 to 180mg/dL 
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Table 4: Frequency and duration of hypoglycemia < 70 mg/dL (<3.9mmol/l) and < 40 mg/dL 
(<2.2mmol/L) stratified according to CGM imprecision expressed as CV and ICU glucose 
protocol (Yale, Washington and NICE-SUGAR) in the absence of bias. 
   

  Imprecision (%) 

baseline 5% 10% 15% 

Y
a

le
 

<
7

0
 

m
g

/d
L
 Frequency  

(%subjects) 
8.3 10.1 15.9 12.8 

Duration 
(min) 

18(14,24) 21(13,31) 22 (13,33) 25 (16,36) 

<
4

0
 

m
g

/d
L
 Frequency  

(%subjects) 
0 0 0 0.2 

Duration 
(min) 

- - - 22a 

W
a

s
h

in
g
to

n
 

<
7

0
 

m
g

/d
L
 Frequency  

(%subjects) 
7.8 9.1 17.5 26.6 

Duration 
(min) 

38 (33,51) 37 (30,46) 39 (30,58) 40(31,53) 

<
4

0
 

m
g

/d
L
 Frequency  

(%subjects) 
1.9 1.5 2.6 4.8 

Duration 
(min) 

20 (18,22) 18 (13,21) 24 (19,27) 22(19,27) 

N
IC

E
-S

U
G

A
R

 

<
7

0
 

m
g

/d
L
 Frequency  

(%subjects) 
6.6 6.1 6.9 10.1 

Duration 
(min) 

32 (19,58) 30 (20,48) 36 (21,53) 34 (20,57) 

<
4

0
 

m
g

/d
L
 Frequency  

(%subjects) 
0.9 0.3 0.6 1.4 

Duration 
(min) 

14 (12,16) 20a  19 (15,23) 11 (10,16) 

a Single hypoglycemia episode 
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Table 5a: Glucose control measures based on simulated blood glucose (without error component) stratified according to CGM bias expressed 
as CV and ICU glucose protocols (Yale, Washington and NICE-SUGAR) in the absence of imprecision.  
  

  
Bias (%) 

  
Baseline -15% -10% -5% 5% 10% 15% 

Y
a

le
  

Mean glucose  
(mg/dL) 

132 (124,146) 151 (144,164) 144 
(137,1598.8) 

137 (130,155) 128 (119, 139) 123 (115,137) 119 (110, 132) 

SD glucose 
(mg/dL)) 

25 (20,38) 25 (20,38) 25 (20,40) 27 (20,38) 27 (22,40) 27 (22,40) 27 (22,40) 

Time in targetb 

(%) 
56 (37,68) 36 (24,48) 44 (29,56) 51 (35,65) 56 (39,70) 54 (37,66) 49 (36,60) 

W
a

s
h

in
g
to

n
 Mean glucose  

 (mg/dL) 
137 (130,150) 159 (150,173) 151 (142,164) 144 (137,157) 132 (124,142) 126 (119,137) 121 (115,132) 

SD glucose 
(mg/dL) 

20 (9,34) 23 (16,31) 22 (16, 29) 22 (16,27) 20 (16,25) 20 (18,25) 20 (18,25) 

Time in targetc 
(%) 

94 (89,98) 81 (61,91) 87 (77,93) 91 (85,96) 97 (91,100) 97 (92,100) 97 (92,100) 

N
IC

E
-S

U
G

A
R

 Mean glucose  
 (mg/dL) 

169 (162,177) 195 
(184,204123) 

184 (177,193) 177 (169,184) 162 (155,169) 155 (150, 162) 148 (144,155) 

SD glucose 
(mg/dL) 

25 (18,36) 25 (18,34) 25 (18,34) 25 (18,36) 25 (18,34) 25 (18,34) 23 (18,34) 

Time in targetc 
(%) 

70 (57,80) 34 (19,48) 46 (36,60) 58 (47,71) 79 (67,88) 85 (75,92) 89 (80,95) 

a SI unit version of this table can be found in Supplemental Data (Supplemental Table 4); 
b Target range 100 to 140mg/dL 
c Target range 80 to 180mg/dL 
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Table 6: Frequency and duration of hypoglycemia < 70 mg/dL (<3.9mmol/L) and < 40 mg/dL (<2.2mmol/L) stratified according to CGM bias 
expressed as CV and ICU glucose protocol (Yale, Washington and NICE-SUGAR) in the absence of imprecision. 
   

  Bias (%) 

baseline -15% -10% -5% 5% 10% 15% 

Y
a

le
 

<
7

0
 

m
g

/d
L
 Frequency  

(%subjects) 
8.3 0.9 0.4 2.9 17.0 34.8 42.2 

Duration 
(min) 

18 (14,24) 16 (14,21) 29 (28,29) 14 (10,29) 20 (13,33) 26 (16,46) 33 (20,61) 

<
4

0
 

m
g

/d
L
 Frequency  

(%subjects) 
0 0 0 0 0 0 0 

Duration 
(min) 

- - - - - - - 

W
a

s
h

in
g
to

n
 

<
7

0
 

m
g

/d
L
 Frequency  

(%subjects) 
7.8 3.9 6.0 6.3 10.2 12.5 15.6 

Duration 
(min) 

38 (33,51) 23 (18,30) 32 (23,37) 33 (25,38) 41 (32,54) 46 (36,56) 53 (42,84) 

<
4

0
 

m
g

/d
L
 Frequency  

(%subjects) 
1.9 0.6 1.5 1.9 1.5 1.9 2.4 

Duration 
(min) 

20 (18,22) 17 (13,18) 14 (13,17) 15 (14,19) 18 (17,23) 22 (17,24) 23 (18,26) 

N
IC

E
-S

U
G

A
R

 

<
7

0
 

m
g

/d
L
 Frequency  

(%subjects) 
6.6 3.5 4.3 

 
5.5 6.9 

 
11.0 12.7 

Duration 
(min) 

32 (19,58) 23 (16,30) 26 (20,34) 25 (18,35) 32 (19,47) 28 (17,57) 34 (19,64) 

<
4

0
 

m
g

/d
L
 Frequency  

(%subjects) 
0.9 0 1.2 0.3 0.9 1.7 1.7 

Duration 
(min) 

14 (12,16) -  11 (10,13) 17a  18(15,18) 17(14,20) 19(17,20) 

a Single hypoglycemia episode   
 
 


