Ready Posture for Rapid Reaction of Badminton Robot Arm
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Abstract— For immediate motion, taking a ready posture is a
promising way because it can reduce enormous possible patterns
of movement. For the selection of an appropriate ready posture,
it is essential to know the structure of the task that includes
the physical characteristics of a robot. We investigated our
previous-built badminton robot arm to decide an appropriate
ready posture as a case study. We first examined the Kine-
matic characteristics to extract possible ready postures. In this
analysis, we found that postures for hitting shuttles are limited
to approximately one-tenth of all possible postures. Besides,
these postures could be spatially divided into two clusters, one
is for forehand shots, and the other is for backhand shots.
Then, we calculated reaching time from various postures and
confirmed that possible ready postures by kinematics analysis
shortened averaged reaching time. We also found that there are
more effective ready postures if considering the dynamics of the
robot. These ready postures did not resemble those calculated
by kinematics analysis.

Index Terms— Kinematics, Hydraulic/Pneumatic Actuators,
Biologically-Inspired Robots

I. INTRODUCTION

Although rapid situational motion generation is essential
for real-world robots, it has still remained a considerable
challenge. Rapid situational motions can be regarded as
motions of a robot required to rapidly react to different
situations, as exemplified by ball sport such as tennis and
badminton. Generally speaking, the generation of rapid situ-
ational motions is essential for many of these ball sports, but
the technological solutions are also necessary beyond these
entertainment platforms, more generally applicable for large
variations of applications including rapid legged locomotion,
dexterous manipulation, aggressive manoeuvres in UAVs, for
example.

A popular approach to the generation of rapid situational
motions is to employ high-speed sensors (e.g. vision, po-
sitional, and force sensors) for state recognition with high
temporal resolutions, which is then used to rapidly compute
motion trajectories, being executable by high-speed high-
precision actuators. Dedicated structures are often adopted
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Fig. 1. Model of a badminton robot arm and its degrees of freedom. The
robot model takes zero posture. Real robot [S] is shown in the left bottom
frame.

to meet the demand for specific tasks. Such approaches have
been shown previously in many ball sports robot platforms
such as table tennis [1][2], baseball [3], or badminton [4].
While this approach is generally applicable to many different
types of generating rapid situational motions, and often
exceeds performances of humans, the solutions are usually
high-cost and over-optimized for specific tasks being difficult
to apply to different problems as human athletes playing well
for many different types of games.

In contrast to these brute force technical solutions, humans
tend to employ different strategies to achieve performances
beyond their “hardware capabilities”. For example, to gener-
ate motion immediately from many potential motion candi-
dates, reducing possible motion patterns could be useful to
reduce the computational cost for motion planning. Reduction
of possible patterns is also effective for motor learning, such
as for learning of local dynamics [6]. To reduce possible
motion patterns, Imitation learning by human demonstration
[7]1[8] is a promising approach. Some studies of table tennis
robot adopted a virtual hitting plane to limit the possible
hitting points [9][10] based on the virtual hitting point



TABLE I
PHYSICAL PARAMETERS OF BADMINTON ROBOT ARM

Joint Range of motion [rad] Length of the | Mass .of the
min ‘ max next link [m] next link [kg]
1 —3m/4 w/4 0.363 1.063
2 —7/2 w/2 0.063 0.187
3 —7/2 w/2 0.044 0.054
4 0 /2 0.5842 0.254°

2 The length to the center of the racket face
b The mass including a racket

hypothesis [11]. In addition, it is also important to consider
the initial condition of posture, which we call “Ready Pos-
ture”, with which the possible motion patterns can be easily
generated without much computation in motion planning. In
human sports, humans are known to take a specific posture
before starting motions [12], which can be considered as an
optimal ready posture to rapidly generate motions to react
to different situations, even though it might deteriorate the
performance of motion for more general cases. In general,
finding such ready posture requires the knowledge about the
task that includes the physical characteristics of a robot.

From this standpoint, this study investigates ready postures
of a robot platform built for playing badminton (Fig. 1). In
our previous study, we successfully demonstrated the basic
capability of this robot reacting to a trajectory of badminton
shuttle by selecting a motion from swinging motions defined
in advance [5]. The initial postures of the robot was decided
by a heuristic manner. In our other previous study, we ex-
amined the effect of ready posture for reaching using simple
robot arm models with one or two degrees of freedom [13].
However, it dealt with general reaching with few constraints
of the task.

In this study, in contrast, we focus on the ready posture of
the specific platform, in order to react to different trajectories
of shuttles, with minimum reaction time. As it becomes
clearer in this paper, the ready posture plays a critical role
in some cases, especially when the reaction time is highly
restricted.

II. METHOD

To examine the effect of ready posture on the necessary
time of hitting, we analyzed and simulated a badminton
robot arm. First, we derived possible ready postures by
kinematic analysis. Then, we calculated the required time
for hitting from various initial postures. We used a model of
a badminton robot arm that we developed before [5] (Fig. 1,
Table I). Each joint of this robot is driven by a pneumatic
cable cylinder to meet a demand for high acceleration and
high speed. We used toolboxes of Matlab R2019a: Robotics
System Toolbox for kinematic calculation, Simscape Multi-
body for dynamic simulation, and Deep Learning Toolbox

Fig. 2. The position of the robot in badminton court. The black curve is
an example of a shuttle trajectory defined by three points.

for learning of neural networks.

In this study, we consider to use the robot platform shown
in Fig. 1. The platform has a limited reachability because
of the limitations of the hardware, but we consider hitting
of shuttle within the reach of this platform. As shown in
Fig. 2, even with these physical limitations, the platform is
capable of reacting to many different situations, i.e. different
trajectories of shuttles, determined by the initial conditions
(positions and velocities) of shuttles. The following analyses
in this paper were based on many randomly selected initial
conditions of a shuttle, and consider how the robot can react
to these variations because of the pertinent selection of ready
postures.

A. Calculation of postures by random sampling

To understand the broad characteristics of robot kinematics
for a badminton task, we extracted task-appropriate postures
from random postures. First, we selected a set of random
joint angles and calculated their positions and postures of a
racket by solving forward kinematics. Next, we extracted a
group of robot postures for hitting that meet the following
condition.

Nracket,z

> /3, (1)

TNracket,z * Mracket,z > 07

Nracket,y

where the normal vector of a racket iS Tracket =
(Mracket,» Mracket,y, Nracket,z)- This condition means either
side of a racket faces forward and upper direction. Then,
we calculated the mean of these points and defined it as the
ready posture kinematically determined by random sampling.

B. Calculation of postures for random trajectories of a
shuttle

As a more task-specific case, we calculated hitting postures
by random trajectories of a shuttle. First, we generated
many trajectories of a shuttle as the following process. The
robot model was on a badminton court, as shown in Fig. 2.
Here, we used parabolic shuttle trajectories for simplification.
Three points are necessary to determine the shape of the



trajectory. We decided one point near the robot gnear by
random sampling in the following range (near point in Fig. 2).

|Qnear - Qbase| < larm, 2
|qnear,my‘ S lforearm7 (3)

|QIlear,z — {base,z é lhandracket7 (4)

where gnase 1 the position of the first joint, I, is total arm
length, lforearm is forearm length (the summation length of
first and second links), and lyandracket 1S the length of hand
and racket (the summation length of third and fourth links).
We selected another points ¢aunch as a launched position of
a shuttle by selecting random points over the court of the
opponent (launch point in Fig. 2). We set the range of height
of these points as the reachable height of the robot, that is,
|q1aunch,z - qbase,z‘ < lhandracket- The horizontal PTOjeCtiOH
of the third point is on the line created by connecting the
horizontal projection of first and second points. We selected
the third point ¢oyer—net above the net and randomly decided
its height in the passing area. We set the upper end of the
height to 5.0 m (over-net point in Fig. 2).

Next, we calculated hitting posture for each trajectory by
calculating inverse kinematics for each point on the trajec-
tory. We used generalizedInverseKinematics function as a
solver of inverse kinematics. We chose the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) gradient projection algorithm. For
calculation, we set the position of a racket, range of motion
of each joint, and orientation of racket surface to the reverse
direction of flying shuttle velocity with its angular tolerance
as 0.1 rad as constraints. If we got multiple points for hitting,
we selected one hitting point randomly.

Then, we calculated the mean of these hitting points and
defined it as the ready posture kinematically determined by
random shuttle trajectories.

C. Calculation of required time for hitting

We calculated the required time for hitting from an initial
posture as the procedure in the following paragraphs. Before
the explanation of the procedure, we explain the setup of
the dynamics simulation used in this study. We constructed a
model of a badminton robot arm using physical parameters
of the real robot [5]. For the calculation of actuator outputs
from commands, we used the same pneumatic dynamics
as described in Equations (5)—(8) of the previous study
[5] because this robot has pneumatic cable cylinders as its
actuators. The torque of ith joint 7; is calculated as;

7i = rma(l — pw) (Pin — Pi2) — sgn(wi) e, ©®)

where rypa 1S @ moment arm, p., is a coefficient of dynamic
friction, 7. is a coefficient Coulomb viscous friction, w; is
an angular velocity of ith joint, and P;; is inner pressure of
jth pneumatic cylinder for ith joint. ; = 1 means positive
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Fig. 3.  An example of time series of joint angle and inner pressure
of pneumatic cylinders during a swing. F;; is inner pressure of jth
pneumatic cylinder for ith joint. b = 1 means ‘Positive direction, and

b = 2 means negative direction. In this case, Plzrget = 0.80 [MPa],
Py3*8" = 0.20 [MPa], P35 = 0.15 [MPa], P,5"*°" = 0.25 [MPa],
P5rEet = pyirect = piiteet — piaset — () in the whole time. Here,

we denote the target pressure for P;; as Pit]f“get.

direction, and ;7 = 2 means negative direction. The source
pneumatic pressure was 0.9 MPa. The solver for simulation
was the eighth-order Dormand-Prince method (ode8), and the
simulation timestep was 0.1 ms.

First, we simulated full swings to various directions from
random sampled initial postures (Fig.3). As shown in the
graph of inner pressure, the convergence to the target pressure
delayed though we provided the target pressure as a step
function. Full swings were generated by setting a target inner-
pressure of either chamber of the pneumatic cylinder for one
of the joints to the maximum value 0.8 MPa and setting target
inner-pressures of either chamber of the pneumatic cylinder
for other joints to randomized values. Other target inner
pressures were set to zero. As randomized values, we used
uniform randomization for the first joint. We used Gaussian
randomization, whose standard deviation was 0.2 MPa for
other joints. We stopped the simulation when one of the
joint reached to the joint limit. We collected data by 100,000
swings.

Next, we regressed the required time for reaching from the
combination of initial posture and final posture. We used a
feedforward neural network for regression. We set the number
of hidden layers as two and the number of neurons in each
layer as 64 and eight. Training data were extracted from data
collected in the previous paragraph by setting timestep for
final posture as T'/+/1 + |a|, where T is timestep of the end
of the simulation, and @ is random value with a standard
normal distribution. Repeating this process ten times, we
prepared 1,000,000 training data. Besides, we added 100,000
static data (the same initial and final postures) to the training
data. We learned network ten times and adopted the average
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Fig. 4. Reaching points by random postures. Red circles are for forehand
shots. Blue circles are for backhand shots. Gray circles do not meet a
requirement for racket postures.

of the output of them as an ensemble.

Then, we calculated averaged reaching time from ready
posture calculated in the previous subsection to possible
hitting postures using this network. Finally, we also calcu-
lated averaged reaching time from various initial postures to
optimized ready posture, including dynamics property. We
selected various initial postures as dividing the motion range
of each joint among ten.

III. RESULTS

A. Ready posture kinematically determined by random sam-
pling

Random sampling reaching points were located in a part
of a torus shape (gray, red, and blue circles in Fig. 4). Among
these points, points that are feasible for hitting were limited
substantially (red or blue circles in Fig. 4). The number of
points for forehand is 721, and the number of points for
backhand is 298 among 10000 points in total. To investigate
the characteristics of the distribution of hittable postures in
joint space, we drew histograms of joint angles (Fig. 5). The
sum of red and blue histograms means the histogram for all
hittable postures. As shown in the histograms, the distribution
was not uniform. Therefore, the calculated ready posture was
different from the posture with the middle range of motion
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Fig. 5. Histogram of postures in random points reaching with restriction of
racket postures. Red means points for forehand shots and blue means points
for backhand shots. Vertical bold lines indicate the mean values for each
shot. Black bold lines indicate the mean values of points for total shots.

(bold black line in Fig. 5). However, the deviation of ready
posture from the middle posture was not large.

For more detailed analysis, we classified the postures to
postures for forehand shots and those for backhand shots. The
areas for forehand and backhand shots were nearly separated
(red and blue circles in Fig. 4, respectively). The distribution
in the joint one to three of each group biased to one side in
the range of motion (red and blue histograms in Fig. 5). The
distribution of postures for backhand shots had the opposite
tendency against that for forehand shots. Thus, ready posture
for each shot was different from that for whole shots (red and
blue bold lines in Fig. 5). Therefore, if the necessary kind of
shots could be identified beforehand, it is possible to take a
more effective ready posture.

B. Ready posture kinematically determined by random tra-
Jectories of a shuttle

Hittable points for random trajectories of a flying shuttle
appear to occupy a similar area to the random sampling
describing in the previous subsection (Fig. 6). The trajectories
for forehand and backhand shots were separated in horizontal
projection (Fig. 6(a)), though sagittal trajectories were varied
and mixed (Fig. 6(b)). This indicates that observing shuttle
motion in horizontal projection is useful to decide the kind
of shots. Distribution and ready postures also had a similar
tendency to the random sampling case, except it had little
more concentrated distribution (Fig. 7). This implies the
constraint of racket face applied in the random sampling case
captures the outline feature of this task, but a flying shuttle
condition includes more tight constraints than the constraint
described in (1).



(a) Top view

(b) Side view

Fig. 6. Random trajectories of a flying shuttle. Red circles indicate hittable
points for forehand shots. Blue circles indicate hittable points for backhand
shots.

C. Required time for hitting from ready postures

We compared averaged required time to reach from one
of the three ready postures derived in the previous paragraph
to the possible hitting postures. We considered three cases
for possible hitting postures. One is with whole hitting
postures, that is corresponding to have no information for
trajectories. Another is with postures for forehand shots, that
is corresponding to the case the robot can predict that it
can hit a shuttle by forehand. The other is with postures
for backhand shots, that is corresponding to the case the
robot can predict that it can hit a shuttle by backhand. We
also calculated averaged reaching time for all initial postures
and the shortest averaged reaching time among searched
initial postures. As a result, averaged required time with
ready posture for whole hitting points was reduced from
averaged reaching time from random initial postures (green
and black in Fig.8(a)). The same was going to with ready
posture against the group of points for forehand shots (green
and red in Fig. 8(b)). The reduction ratio was higher when
using ready posture for backhand shots against the group
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Fig. 7. Histogram of postures for hitting flying shuttles with random

trajectories. Red means points for forehand shots and blue means points
for backhand shots. Vertical bold lines indicate the mean values for each
shot. Black bold lines indicate the mean values of points for total shots.
Circles indicate the posture with the shortest reaching time for each shot.
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Fig. 8. Reaching time from initial posture to target posture in the
flying shuttle condition. Green plots indicate the averaged reaching time
for randomly-selected initial postures. Initial postures are the mean hittable
posture (corresponding to bold black line in Fig.7) in black, the mean
hittable posture for forehand or backhand shots (corresponding to red or
blue bold line in Fig.7) in red for forehand and blue for backhand, and
the posture with shortest reaching time in each group of target postures in
orange. In (a), (b), and (c), the group of target postures was set as whole
hitting points, points for forehand hitting, and points for backhand hitting,
respectively. Error bars indicate standard deviation.

of points for backhand shots (green and blue in Fig. 8(c)).
However, the optimized postures had less reaching time than
those with kinematic calculated ready postures (orange in
Fig. 8). The optimized postures were largely different from
those calculated by kinematics analysis (circles and bold lines
in Fig.7). The appearances of ready postures are shown in
Fig.9.

IV. DISCUSSION

By the kinematics analysis, we found that effective pos-
tures of the shuttle hitting task were highly limited from
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Fig. 9. Ready postures of minimal reaching time for hitting flying shuttles
with random trajectories. (a) Ready posture for whole shots. (b) Ready
posture for forehand shots. (c) Ready postures for backhand shots.

possible postures. This reduction of candidates suitable for a
task could be useful not only for the decision of ready posture
but also for the reduction of search space in motion learning
or optimization. The reduction of search space is essential for
the immediate reactive motion because the calculation time
is limited in such motion.

The ready postures with the shortest reaching time were
largely different from the averaged postures (circles and bold
lines in Fig.7). Although those of the first joint showed a
relatively close tendency, those of other joints seem to have
no relationship. This could be explained by the inertia for
each joint. Because the first joint has large inertia, it is natural
for the motion of the first joint to become a bottleneck of
the reaching time. Besides, the inertia of the first joint is
influenced by the posture of other joints. The postures for
small inertia shorten the time to achieve the target angle of the
first joint. Another factor for the difference is the interaction
with joints by counteraction force. The direction of motion
for one joint affects the motion speed of other joints. Due to
the above factors, the relationship for reaching time by a joint
angle was affected by the angles of other joints (Fig. 10).

Because the ready posture is used for the reduction of
the search space, at least candidates must be obtained in
advance. Thus, the calculation time for ready posture itself
is not limited. Therefore, it is possible to use an exhaustive
search considering dynamics.

V. CONCLUSIONS

We investigated the ready posture for a badminton robot
arm by analyzing the kinematic structure of the robot and task
constraints. We found that the number of possible postures
for hitting was about one-tenth of all possible postures. When
dividing hitting postures into postures for forehand shots and
those for backhand shots, points of the center of racket face
were separated, and angles of the first to the third joint have
biased distribution. By calculating the reaching time from
ready posture, we confirmed that the ready posture reduced

-n/2 /2 -m/2 /2 -m/2 0.14
0, [rad] 0, [rad] 0, [rad 0.13

(a) 0,=-n/2 [rad] (b) 6,=n/10 [rad] (c) 0,=n/2 [rad]

Reaching
time [s]
0,[rad] i 0.16
0.15

Fig. 10. Examples of reaching time by various initial postures for backhand
shots. Here, 81 = 37 /20 [rad].

reaching time, especially in the backhand case. Future work
includes the improvement of the determination method of
ready posture by coupling with motion generation, motor
learning using ready posture, and the accomplishment of
badminton task with a human by a robot.
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