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Origami inspired structures are gaining traction in the aerospace community. Often
ignored, these structures exhibit an additional degree of freedom beyond rigid folding due to
facet bending, leading to so called non-rigid Origami. A thin, initially plane inextensible sheet
can be folded or creased along a general curve to form two concatenated developable surfaces
that are not rigid or flat foldable. In the literature, theorems of differential geometry have
been used to calculate the shape of a curved-line folded sheet by identifying kinematic
constraints between the pair of developable surfaces. Two special cases; one in which the fold
curve remains planar and the other in which the fold angle is constant, have been identified.
In this work, we revisit these special cases through practical experiments and finite element
analysis to quantify and validate the effectiveness of the analytical approach based on
differential geometry. The results show excellent correlations with both elastic numerical
modelling and differential geometry-based analysis able to capture the shape of the creased
sheet influenced by crease rotation and facet bending. We then extend our methods to a
special case of a curved creased disk and compare our predictions to experimental results.
Agreement shows robustness and effectiveness of the differential geometric approach and also
validates our numerical model, which may be applied to Origami structures with more
complex extended curved crease networks.

I. Nomenclature

� Crease curve ^1 Principal curvature of Surface (1
PG Generator at point P on crease curve W Orientation of ^# & g6 w.r.t PG
B Arc length of crease curve F Half of crease angle
^(B) Principal curvature of crease curve � Young’s modulus
g(B) Twisting curvature of crease curve a Poisson’s ratio
^6 Principal curvature of crease curve \ Orientation of an arbitrary generator
g6 Geodesic twisting curvature of crease curve 2 Principal curvature of internal region
^# Surface normal curvature of crease curve 0 Internal radius of circular disk
^1 Major principal curvature 2' Principal curvature of rim region
^2 Minor principal curvature V Orientation of generators in rim region
t, n, b Vector triad for crease curve in Euclidean space
t, u, T Vector triad for crease curve in local surface (1

II. Introduction

Design of Origami inspired deployable space structures [1], micro-air vehicles [2], deployable stents [3] and tunable
metamaterials [4] is made possible largely by mathematical methods that help understand Origami and associated

folding and unfolding behaviour [5, 6]. Many of these structures are underpinned by motion localised within straight
creases, albeit some that exhibit soft modes of deformation from facet bending [7]. This additional bending flexibility
leads to non-rigid Origami, which has become of interest lately [8, 9]. Students of the Bauhaus Movement in the late
1920s discovered a variation of non-rigid Origami by folding along a curve [10]. Non-rigid folding enables curved
creased structures to store elastic energy, with potential use in applications requiring actuation and deployability.

However in contemporary designs, applications of curved folded Origami are limited by a lack of understanding
and require expertise in manufacturing techniques; some successful applications exist in the form of adaptive shading
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systems and fast-food containers. Material testing has also been done using timber [11] and aluminium [12], however,
there is still a knowledge gap in how different materials perform for curved creased structures. Recently, there have
been studies of curved crease Origami [13–17], but the question of how an arbitrary curved crease folds in 3D remains
unanswered for the most part; in particular, a generic approach that can predict the shape of curved crease Origami with
complex extended curved crease networks is largely absent.

In this work, we try to answer that question by revisiting the work of Duncan and Duncan [18]. In their paper, they
identify a thin, initially plane inextensible sheet can be folded or creased along a general curve to form two concatenated
developable surfaces that are not rigid or flat foldable. A developable surface is a smooth surface with zero Gaussian
curvature everywhere, i.e. it is formed by bending or rolling of planar surfaces without need of stretching or tearing.
Developable surfaces can be imagined to be ruled surfaces formed by tracing straight lines relative to a space curve;
these straight lines are regarded as generators. The authors in Ref. [18] use theorems of differential geometry to calculate
the shape of a curved-line folded sheet by identifying kinematic constraints between the pair of developable surfaces.
Based on their experiments with sheet metal, two special cases are presented; one in which the fold curve remains planar
and the other in which the fold angle is constant.

By understanding key features of curved creases through differential geometry and experiments, we propose a
non-linear geometric elastic numerical model that can predict the geometry of curved crease Origami problems. The
model is also capable of capturing hinge-like crease mechanics without need of a complex plastic material model.
Following a review of fundamentals of differential geometry in Section III, we revisit special cases from Ref [18] through
simple experimental models and a non-linear geometrical elastic model, to inspect the differential geometric approach in
Section IV. We then study a simple problem of a closed curved crease inside a circular disk using differential geometry
and reveal our proposed numerical model in Section V.

III. Curved Folded Developables
In this section, we review the fundamentals of differential geometry of curved folds and introduce the notation used

throughout the paper while repeating the main details of Ref. [18] for completeness.
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Fig. 1 A plane inextensible sheet divided into two regions by a fold curve, �. (a) The point P lies on the fold
curve, �. PG is a generator of the surface in initial planar form. (b) Surface on the left of � deforms about the
generator line PG to form developable surface (1. The triad t, n, b is associated with the fold curve, �, which is
now a twisted space curve [18].

Consider a curved crease line, � which divides part of a plane inextensible sheet into two regions as in Fig. 1(a). As
a result, the sheet on the left hand side deforms into a developable surface with the generator PG. Now the curve, � is a
twisted space curve which is associated with the moving triad t, n, b as shown in Fig. 1(b): n is the normal vector
and t is the tangent vector and b is the binormal vector at a point P along the curve. The curve � may be specified by
the principal curvature ^(B) and torsion g(B) of the curve, which are associated with the vector triad by Serret-Frenet
formulae:

dt/dB = ^n
dn/dB = −^ t + gb
db/dB = −gn

(1)
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This description is independent of any surface that contains the curve; however, these differential equations can be
modified for the properties of the curve, � to read in terms of the properties of the surface (1 with the aid of the triad t,
u, T, as illustrated in Fig. 2, given by Eq. 2:

dt/dB = ^6u + ^# T

du/dB = −^6 t − g6T
dT/dB = −^# t + g6u

(2)
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Fig. 2 Projection, C’ of the fold curve, C on the tangent plane at P. The triad t, u, T is associated with the fold
curve, � on the surface (1.

The geodesic curvature, ^6 describes the original, planar layout of the fold curve and is a fixed property while
normal curvature, ^# correlates current surface curvature in a tangential direction to ^6. The curvatures are related by
Meusnier’s theorem:

^n = ^6u + ^# T (3)

This, in turn, formally relates these curvatures to the fold angle, 2F and ultimately to the spatial torsion of the fold curve,
g, the rate of change of fold angle along the curve, dF/dB and to the corresponding geodesic torsion in the surface, g6,
after the theorem of Bonnet, given by Eq. 4; a detailed derivation can be found in Ref. [18]:

g = dF/dB − g6 (4)

These relations are used to determine the rules for compatible folding between the surfaces set by the conditions
below:

^# ,2 = −^# ,1 (5)

dF1/dB = −dF2/dB (6)

where subscripts 1 and 2 correspond to surfaces 1 and 2 respectively. Equation 5 states that at any common point on the
fold curve, surfaces have equal and opposite surface normal curvatures: as per Eq. 6, surfaces make equal fold angles to
the local dihedral plane. The relationship between the geodesic torsions and the intrinsic variation of the fold angle
along the curve then follows:

g6,2 = g6,1 − 2dF1/dB (7)

^# and g6, which are oriented at an arbitrary angle W to the principal curvature ^1 of the surface (1, can be obtained by
virtue of a Mohr’s circle or Euler’s formulae, which yield the following relationships:

^# = ^1 sin2 W (8)
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g6 = ^1 cos W sin W (9)
The fold angle, 2F at any point along the crease curve is then related to the spatial curvature of crease, ^ and the surface
normal curvature, ^# , in Eq. 10:

sinF = ^6/^ (10)

IV. Special Cases of Curved Folded Developables
Duncan and Duncan [18] illustrate two degenerate cases: Case I - where the folded curve lies in a plane and Case II -

where the fold angle of the folded curve is the same everywhere, informed by their experiences of sheet-metal working.
These conditions tend to be mutually exclusive, with a varying fold angle in the first case and an out-of-plane fold
curve in the second. The geodesic torsion of both surfaces are shown to be equal and opposite in the first case and
to be equal to each other in the second case where the fold angle is constant. Since the tangential curvatures are also
known, by virtue of a Mohr’s circle, the directions of pairs of generators linked across the fold curve are determined and
the developable geometries of both surfaces on either side of the fold curve are completely specified in terms of their
generators. For the first case, the authors show that the surface on one side is a mirror image in the osculating plane of
the other; in other words, linked generators are collinear. In the second, the generators are analogous with light rays
reflecting in planar optics i.e. equally inclined to the local tangent of the fold curve. In this section, we will study these
two cases using simple physical models and a non-linear geometric numerical model implemented in commercial finite
element package, ABAQUS [19], to test the validity.

A. Experimental Investigation
The generator directions remain unchanged during folding owing to the intrinsic nature of the Mohr’s circle.

Therefore, generators can be expressed simply in planar development - before folding occurs; we use this property to
construct our physical models. Rectangular paper cards separated into two sections by a curved crease are marked with
(a) collinear generators and (b) generators reflecting at equal angles about the curve in their planar form as illustrated in
Fig. 3. The paper cards are then scored along the crease and the generators with a sharp scribe, to force them to deform
into their corresponding shapes. Informal visual observations of the fold curve and fold angle in both cases confirm the
predictions of the differential geometric approach. Observations also confirm that, in both cases, the curvatures of the
linked generators are almost equal and opposite, giving locally concave and convex surfaces, cf. Section III.

ζ

ζ

(a) (b)

Fig. 3 Inextensible folding of paper card about straight generators and a fold curve of the two special cases
of Duncan and Duncan [18] with planar development and deformed shape shown side-by-side. (a) The pairs
of generators on either side of the fold are collinear in Case I and (b) equally inclined to the local tangent at a
representative angle Z in Case II. In both cases surfaces are curved in opposite senses on both sides. The fold
curve in Case I remains planar but not in Case II, where the fold angle is constant.

B. Finite Element Analysis
Numerical models were developed in ABAQUS [19]. All models were considered to be made of a general linear-elastic

material with Young’s modulus, � = 105 GPa, Poisson’s ratio, a = 0.3, and a thickness, C = 0.1 mm. Note that the choice
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of material properties should not affect the expected results, as the theoretical model based on differential geometry
does not depend on material properties. Four-noded reduced integration shell elements (S4R) were used to create the
plate mesh as they allow for large rotations under finite strains. The flat mesh was generated with constant thickness,
and mesh sensitivity analysis was carried out for different creasing methods as discussed in Subsection 3 overleaf. The
ABAQUS/Standard solver with Newton-Raphson time integration was used with non-linear geometry enabled.

1. Modelling Crease

thickness of the plate

crease region

facets

expansion

contraction

(b)

 ΔT

rotational spring

(a)

Fig. 4 Schematic of the crease modelling approaches employed in finite element analysis. (b) Connector
approach: reference configuration (top), in which crease region is replaced with connector elements with
rotational stiffness, and equilibrium configuration (bottom), after the plate has bent. (b) Temperature gradient
approach: reference configuration (top), in which a thermal gradient, Δ) is applied through thickness along a
narrow strip corresponding to the width of crease, and equilibrium configuration (bottom), after the plate has
bent towards in the sense of the lower temperature, where the thermal gradient has induced curvature in the
crease region.

Two different approaches, viz, [a] rotational hinges with predefined rotational stiffness and [b] thermal gradient field
to induce hinge like creases, are employed to simulate creases, as illustrated in Fig. 4. In the first approach, the crease is
considered singular where the plate is modelled as two distinct portions with collocated nodes at the crease boundary.
The connection between two portions along the crease is established through connector elements and *COUPLING
constraint; a two-noded 3D connector element (CONN3D2) of Join + Rotate type is used. This particular type allows a
single desired rotational degree of freedom between two points and rotational elasticity to account for rotational response
of the crease, whilst translational degrees of freedom are constrained between the two edges for continuity of stress.

In the second approach, the crease is considered non-singular and twice the plate thickness wide informed by
Ref. [20], and two options are possible: [b1] divide the plate into three parts; the narrow slice which is twice the plate
thickness in width along the middle, corresponds to the crease, while the other two parts correspond to the facets either
side. A thermal gradient, Δ) , is applied through the thickness of the plate. Only the crease region is allowed to expand
by specifying a linear expansion coefficient in the narrow strip and zero elsewhere, and [b2] the temperature gradient,
Δ) is specified through thickness of the plate along a set of nodes along the crease-line. The finite width of the crease is
accounted for by ABAQUS by default, as the thermal gradient is automatically applied to the elements that share the
selected nodes. The mesh required fine tuning to keep the size of the elements close to half the width of the crease
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(which is equal to thickness of the plate [20]), close to the crease-line. In this option, the linear expansion coefficient is
specified for the entire plate but only the elements that share the nodes to which thermal gradient is applied will undergo
expansion.

2. Boundary Conditions
In the connector approach, when simulating crease with constant angle throughout, the rotational behaviour is

uniformly distributed along the fold-line using *COUPLING constraint with kinematic coupling. However in the case of
varying crease angle, a finite number of connector elements are used, and the angular displacement is specified for
each connector element based on the relationship given in Eq. 10. To maintain the planar nature of crease in the latter,
vertical displacement of the nodes along crease is restrained.

In the temperature gradient approach, when modelling the crease with constant angle throughout, the same
temperature gradient is specified for all nodes along the crease. In the case of varying crease angle, the temperature
gradient is varied along the crease based on the relationship given in Eq. 10.

3. Mesh Sensitivity
Case I, where the fold-line remains, planar is used to perform convergence study on mesh discretisation. Measuring

the fold-angle in the case of temperature gradient approach is not straightforward as the crease is non singular and
presents problems with defining tangent lines in order to measure angles. Hence, the vertical displacement of the free
edge on concave side of the crease is considered for the mesh sensitivity analysis. A non-uniform mesh was created
with a finer mesh close to the crease and increasingly coarser towards the free edges. Therefore, in order to make
a meaningful comparison, the size of the elements close to the crease as a ratio of plate thickness (C) is considered.
The vertical displacement of the centre of the free edge on concave side of the crease versus the relative size of the
element close to the crease is presented in Fig. 5. It can be seen that the connector approach (method [a]) produces
constant vertical displacement over the range of element sizes considered: this is expected, as this approach is capable
of producing sharp curvature changes regardless of the element size. In the temperature approach method [b1], the
vertical displacement reaches an almost consistent value after a relative size of C/11. Method [b2] runs into numerical
instabilities if elements are discretised beyond C/3, and is unable to achieve the full range of displacement. Note that
all simulations were performed keeping the temperature gradient, Δ) , constant at 8 × 108 ◦C / m. This is the largest
temperature gradient possible for the range of element sizes considered before encountering numerical instabilities.

4. Results and Discussion
Figure 6 shows the deformed shape obtained from finite element analyses: Fig 6(a) for the connector approach

and Fig. 6(b) for the temperature approach. The former closely resembles the shapes obtained from experiments with
cylindrical deformation on both sides in Case I and cylindrical and conical deformations in Case II; which we will
confirm quantitatively shortly. However, in the latter approach, method of splitting the plate into three regions and
specifying the temperature gradient to the narrow middle strip, Fig. 6(b1), produces similar shapes to that of experiments
and connector based models. However, the method of specifying the temperature gradient along the centre-line of the
plate, Fig. 6(b2), suffers from localised deformations and non-convergence, and is unable to achieve the full range of
displacement. The reason is because only one element on either side of the selected nodes undergo expansion and is
unable to achieve high enough curvature beyond a certain limit, leading to numerical instability. This problem is not
present in method [b1] as the crease region is discretised finer.

Both method [a] and [b1] offer similar deformed shapes but have different functional advantages and disadvantages
when used to model creases in finite element analyses. Method [a] is well suited to capturing a known dihedral angle
and produces well controlled shapes. However, if the structure is to be loaded after it is deformed via method [a], the
fold-angle would remain fixed, which is unrealistic. This can be alleviated by specifying angular moments instead
of angular displacements during deformation. Method [b1] is useful in metal forming simulations and in studying
intrinsic nature of creases; however, it is computationally more expensive than method [a], and modelling multiple
creases using this method is cumbersome e.g. specifying the dihedral angle is not straightforward as the relationship
between fold-angle and temperature gradient should be established first. In this method, the crease region can be made
softer or highly expandable by finetuning material properties of the crease region alone, to account for stiffness of the
crease, which is achieved by means of the rotational spring stiffness in method [a].

We will now make a quantitative comparison of finite element results with the predictions from the differential
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Fig. 5 Convergence study on shell discretization. Vertical displacement of the centre of free edge on the
concave side of the crease is plotted against the smallest element size as a ratio of plate thickness, C. Connector
approach (method [a]) produces constant vertical displacement over the range of element sizes considered. In
the temperature approach method [b1], the vertical displacement reaches an almost consistent value after a
relative size of C/11. Method [b2] encounters numerical instabilities beyond C/3. The connector approach is the
most computationally efficient of the three methods.

geometric approach; only the results from the connector approach are considered. To this end, we find principal
curvatures from the finite element results and convert them into generator plots. First, the curvatures, ^G and ^H , and
twisting curvature, ^GH of the plate, are written at every node in a local (G, H) coordinate system oriented at an angle
j to the principal curvature direction from ABAQUS. A spectral decomposition of this symmetric matrix produces
diagonal components of the new matrix, which returns its eigenvalues, corresponding to principal curvatures, while
their directions are represented by eigenvectors. The principal curvatures, ^1 and ^2 and corresponding directions, j are
thus calculated at every node, and their principal curvature directions can be plotted as directional lines at each node.

Figure 7 shows the major principal curvature direction plots for both cases.. The finite element results remarkably
match the predictions from the differential geometric approach; with collinear generators in Case I and generators
reflecting at equal angle about the tangent in Case II. Finite element analysis captures the ’free edge’ boundary condition,
where the plate does not achieve pure cylindrical/conical deformation at the unsupported edges (which is absent in the
differential geometric approach). Nevertheless, the results confirm the validity of the differential geometric approach for
predicting the shape of curved creased structures. In the next section, we will study a generic problem to test both the
differential geometric approach and our non-linear geometric finite element analysis.

V. Circular Disk with Closed Circular Crease
A curved “open” crease runs from edge-to-edge as in the previous cases; a “closed” crease is entirely contained

inside the plate. To understand the deformation of closed shells with closed creases, we take a basic problem: a flat
circular disk with a single central circular crease. In this section, we extend the differential geometric approach based on
Ref. [18] to predict the geometry of the creased disk, informed by experimental and numerical investigations.
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Case I

Case II

Connector Approach Temperature Approach

(b1) (b2)

Fig. 6 Deformed shape obtained from finite element analyses of special cases from Duncan and Duncan [18].
(a) Using our “connector approach”, close resemblance to the shapes obtained from experiments is achieved,
with cylindrical deformation on both sides in Case I (left) and cylindrical and conical deformations in Case II
(right). (b) Using our “temperature approach”: (b1) similar shape to that of experiments and connector based
model is achieved, but (b2) models suffer from localised deformations and non convergence, and is unable to
achieve the full range of displacement as the other models.

A. Experimental Investigation
Disks with a diameter of 80 mm were cut from shim steel sheets of varying thickness using a water jet cutter, in

order to minimise initial stresses and bends on the edges, and for a higher degree of accuracy and precision. Choosing
80 mm affords a disk that is easy to crease, handle and observe.

1. Scoring
The generic method of forming creases in thin sheets is scoring by hand with a pointed object along a known path.

In experiments, using a ball-point pen and a stencil, circular creases are scribed onto the disks using approximately the
same pressure. Application of same pressure is somewhat subjective, however with practice it was achieved to a greater
extent, forming a constant fold-angle across the crease. Alternatively, using a steel indenter, a circular crease can be
imprinted on circular disks with Instron machine.

2. Observations
Upon scoring, the disk deforms out of plane into a general saddle shape. The deformation was primarily cylindrical

inside the crease region and conical in the rim region. Other interesting features are the two ’dead zones’, characterised
by sharp cone like deformation at the top and bottom of the rim region as shown in Fig. 8(a).

When indented by Instron instead, the disk deforms irregularly with petal like formations in the outer rim region,
characterised by wave like deformation as shown in Fig. 8(c); the deformation was partially cylindrical inside the
crease region. Such deformation arises from indenting process, where the disk deforms instantaneously rather than
progressively. The experiments were repeated for several specimens and different thickness and similar observations
were made. Since differential geometric approach is only applicable to developable deformations, only the case of
creasing with a ball-point pen is relevant for differential geometric approach.
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(a) (b)

Fig. 7 Plot ofmajor principal curvature direction at each node of finite element analyses of Duncan andDuncan
[18] special cases. (a) Case I - where the crease-line is planar. (b) Case II - where the crease has equal angle
throughout. Black straight lines indicate the major principal curvature direction at each node: connecting
adjacent nodes with black lines in the same direction produces generators of the sheet. Generators match
the predictions from the differential geometric approach with collinear generators in Case I and generators
reflecting at equal angle about tangent in Case II with the ’free edge’ boundary condition evident, where the
plate has not achieved pure cylindrical/conical deformation at the unsupported edges.

B. Differential Geometric Approach
This section extends the work of Duncan and Duncan [18] in predicting the shape of the circular creased sheets.

Experiments shed some light on the shape of the internal region enclosed by the fold-line to be approximately
cylindrical: therefore let the constant curvature of the entire internal region (^1) be 2. Following notation in Section III,
the internal properties of the curved disk are described below.

An arbitrary internal generator which makes an angle \ with the principal curvature axis through the centre and the
fold-line, is inclined at an angle W with the tangent to the fold-line, as illustrated in Fig. 9. Thus:

W =
c

2
− \ (11)

The shell curvature on the fold-line of the internal region (denoted by suffix 8) is therefore given by Eq. 8:

^# ,8 = ^1 sin2 W (12)

and from Eq. 11,

^# ,8 = 2 cos2 \ (13)
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Fig. 8 Comparison of deformed circular discs with Finite Element analyses. (a) When scored with a ball-point
pen, the disk deforms out of plane into a saddle shape; with cylindrical deformation in the internal region within
the crease and conical deformation in the outer rim region. Two ’dead zones’, characterised by sharp cone like
deformation are at the top and bottom in the rim region, overlaid in green in the figure. (b) Finite Element
Analysis of a circular disk scored by introducing a thermal gradient along the circular crease-line sequentially,
there is a remarkably similar shape to the actual specimen scored by a ball point pen. The disk deforms out
of plane into a saddle shape, with cylindrical deformation in the internal region within the crease and conical
deformation in the rim region, with two dead zones. A similar shape is obtained using the connector approach
as well. (c) When indented with a circular steel indenter, the disk deforms irregularly, with several petal like
formations in the outer rim region and some cylindrical deformation in the internal region. (d) Finite Element
Analysis of a circular disk scored by introducing thermal gradient all at once along the circular crease-line
produced close results to that of the actual specimen with six dead zones. The connector approach failed to
converge to a solution.
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Fig. 9 Problem definition for the analytical model. (a) The internal region of the circular disk imprinted with
a central circular crease of radius, 0, attains a cylindrical deformation, thus acquiring a constant maximum
principal curvature, 2 throughout. It is characterised by a generator profile consisting of parallel lines as shown.
(b) An arbitrary internal generator subtending an angle \ with the principal curvature line through the centre
as shown deviates by V to form a generator line of the external rim region.

The geodesic torsion, g6,8 , is equivalent to the surface twist rate, given by

g6,8 =
1
2
(−^1) sin 2W = − 2

2
sin(2\ − c) = 2 sin \ cos \ (14)

Thus, on the fold-line, the cylindrical curved surface has local shell curvature and geodesic torsion as ^# ,8 and g6,8
given by Eqs 13 & 14. From Bonnet’s Theorem, the developable folding conditions require, for both surfaces, inside (8)
and outside (>) the crease to obey:

3F

3B
= (^6^′# − ^# ^′6)/^2 (15)

where F8,> are respective normal angles and ^6 is the geodesic fold curvature.

Two other conditions must also be satisfied for compatible folding, as discussed in Section III. The first condition
being that the surfaces should have equal and opposite surface normal curvatures along the fold-line:

^# ,> = −^# ,8 (16)

and the second being the relationship between inside and outside geodesic torsion:

g6,> = g6,8 − 2
3F8

3B
(17)

Hence the generators of the outside region can be constructed by determining ^# ,> and g6,> from the relationships given
by Eqs 16 & 17 and constructing a Mohr’s circle. Determining ^# ,> is straightforward from Eqs 13 & 16, which yield:

^# ,> = −2 cos2 \ (18)
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The geodesic curvature of fold-line is simply its original curvature, ^6 = 1/0. Hence, 3^6/3B = 0 and B = 0\ ⇒ 3/3B =
(1/0)3/3\. From these relationships,

^′# ,8 =
1
0

3

3\
(2 cos2 \) = −2

2

0
cos \ sin \ (19)

From combining Eqs 13, 15 & 19:

3F8

3B
= (^6^′# ,8)/(^2

6 + ^2
# ,8) =

−22 cos \ sin \
1 + 0222 cos4 \

(20)

Substituting into Eq. 17 yields,

g6,> = 2 cos \ sin \
[
1 + 4

1 + 0222 cos4 \

]
(21)

From these results, the Mohr’s circle at an arbitrary point along the fold-line can be constructed for inside and outside
surfaces in Fig. 10.

κ
N,i

κ
N,o

τ
g,o

τ
g,i

κc
R

2θ2β

τ
g,i κ

N,o

κ
N,i

τ
g,o

θ

β

(a) (b)

τ
g

Fig. 10 (a) Mohr’s circle diagram showing the relationship between normal curvature ( # ) and geodesic
torsion (g6) for both inside (8) and outside (>) region of a circular disk with single central circular crease. 2'
is the generator rim curvature at a given point. (b) Planar development of the circular disk with single central
circular crease. On the fold-line, the cylindrical curved inside surface has local shell curvature and geodesic
torsion, ^# ,8 and g6,8 and the conical outside region has local shell curvature and geodesic torsion, ^# ,> and g6,>.

From the geometry of the Mohr’s circle, we see that:

2'/2[1 + cos 2V] = 2 cos2 \ = 2' cos2 V (22)

and:
2'/2 sin 2V = g6,> = 2' sin V cos V (23)

where 2' is the principal curvature of the rim region. From Eqs 22 & 23:

2' sin V cos V
2'2>B

2V
=

g6,>

2 cos2 \
(24)
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Fig. 11 Generator profile of an 80 mm diameter disk with a single central circular crease of 50 mm diameter
as predicted by Eq. 25 derived from differential geometry. In the regions highlighted in grey, the differential
geometric approach predicts intersecting generators, which is not possible for developable deformation. The
location of such regions is consistent with the two dead zones observed in the physical model.

Equation 24 now reduces to

tan V = tan \
[
1 + 4

1 + (02)2 cos4 \

]
(25)

Equation 25 constitutes the generator profile of the rim region and depends on the internal radius 0, curvature of the
internal region 2 and inclination of a generator to the principal curvature line through the circle centre, \: Figure 11
shows the generator profile plotted from Eq. 25.

The model predicts two zones in which the generator lines intersect, highlighted in Fig. 11. Generator lines cannot
intersect if the surface is developable; hence, these two regions correspond to the earlier ’dead zones’ in the actual
specimen scored with a ball-point pen.

C. Finite Element Analysis
The finite element model formulated from Section IV is used to set-up numerical models of circular disks in

ABAQUS [19], where both method [a] and method [b1] are used to model the crease. To mimic the experimental and
analytical models, the crease is modelled with varying angle around the crease based on the relationship given in
Eq. 10. Both methods were able to produce the shape that resembled the experimental observation from creasing
with a ball-point pen. The earlier Fig. 8(b) shows the deformed shape of the disk. an attempt was also made to
simulate instantaneous creasing via the Instron machine using both methods. The crease was restrained against vertical
displacement, and an equal dihedral angle was specified along the crease. However, the connector approach failed to
converge while the temperature approach (b1) produced results that closely resemble the experimental observation,
Fig. 8(d). The connector approach effectively overconstrains the crease during analysis, which has to be resolved in
order to converge to a solution.

To make a quantitative comparison, a similar approach to Section IV is adopted where the generator profile is
produced from finite element data, see Fig. 12(a): there is a remarkable resemblance to analytical results, but there
are some locations close to the crease which deviate from theoretical behaviour. The Gaussian curvature, product
of principal curvatures is an indicator of non-developable behaviour, plotted in Fig. 12(b). Zero Gaussian curvature
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indicates that one of the two principal curvatures is zero, thus informing developable deformation in the disk. As it can
be seen, the plot reveals that the Gaussian curvature is zero everywhere except for certain regions close to the crease,
where deviation of generator profile is also observed. Locations with non-zero Gaussian curvature will not obey folding
conditions set out by the differential geometric approach, which has the inherent developable deformation assumption.
The concentration of Gaussian curvature at four locations in the disk is consistent with the four-vertex theorem for
closed convex space curve, where there are four points with vanishing torsion or extreme curvature [21]; similar four
locations were determined analytically in Ref. [13] for an annulus. Overall, differential geometric approach though it
predicts the overall geometry of closed creased structure to a fair accuracy, it fails to capture the intrinsic deviations,
which is better captured by the numerical models discussed in this paper.
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Fig. 12 Results from finite element analysis of a creased circular disk. (a) Plot of major principal curvature
direction at each node. Black straight lines indicate the major principal curvature direction at each node.
Connecting adjacent nodes with black lines in the same direction produces generators of the sheet. The profile
agrees with analytical prediction for the most part except for regions close to the crease. (b) Plot of Gaussian
curvature (^1^2); zero values indicates developable deformation of the disk, almost everywhere except at regions
close to the crease.

VI. Concluding Remarks
This study was aimed at the geometry of curved crease structures through non-linear geometric finite element

analysis, validated by practical experiments and an analytical method based on differential geometry. To this end,
two different problems were considered: a rectangular sheet with an open curved crease that runs from edge to edge,
and a circular sheet with a closed circular crease. Three different methods were employed to implement creases in
finite element models, and each method has its functional advantages and disadvantages which should be considered
when using them to model curved creases. For example, the connector method was more computationally efficient in
modelling a rectangular sheet with an open curved crease, while the temperature method of segmenting the plate into
crease and facets proved effective in modelling a circular sheet with a closed circular crease. The finite element results
show excellent correlation between experimentally and analytically determined shapes, while also capturing intrinsic
features like ’free edge’ boundary condition in the case of a rectangular sheet with an open crease, and four locations of
extreme curvature in the case of a circular sheet with a closed crease. This paper is primarily based on simple, single
curved creases, but the numerical model will be useful for the design and analysis of Origami structures with more
complex extended curved crease networks.
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