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     Biocatalysis is an environmentally friendly, cost-efficient alternative to chemocatalytic 

synthesis. Yet improvements in specificity and efficiency are needed, and have to be 

generated quickly to meet the fast pace of product development in industry. This ambition is 

met by droplet microfluidics, a powerful tool to scan vast libraries at kHz speed with >107/day 

throughput. Instead of µL robotic liquid handling systems, pL water-in-oil emulsion droplets 

are generated in PDMS chips replacing the use of plasticware.  

 

Novel detection devices and coupled reactions complement direct optical readout and 

broaden the range of target reactions to enable functional metagenomics and directed 

evolution campaigns. The combination of droplet screening with UMIC-seq, high quality 

nanopore sequencing at a cost of <1.1 cent per sequence, creates maps in sequence space, 

possibly a future basis for applying AI/ML to extrapolate trajectories beyond the experimental 

output. The success of combinatorial campaigns in droplet formats suggests that this 

technology is coming of age. 

 

 

 

 

 



Advantages and challenges  
 
Advantages 

● Selections are based on direct measurement of product, not a proxy. 

● Lower costs: (i) pL instead of >µL assay volumes (i.e. ~108-fold ↓); (ii) low capital 

expenditure: droplet rig >20-fold cheaper than screening robots. 
● Screening of >106 variants per hour: (i) more likely to beat the odds in directed 

evolution and functional metagenomics, low probability events captured, large 

accelerations per round; (ii) higher throughput more likely to avoid evolutionary dead 

ends: escape from local fitness plateaus facilitated 

● Versatile and modular assay toolbox: (i) microfluidic chip design emulates screening 

workflows; (ii) a wide range of enzyme classes can be assayed; (ii) double emulsions 

can be sorted in a flow cytometer, as an alternative to all-on-chip workflows. 

 

Challenges 
● Commercial availability and setup: (i) ‘black box’ instrument rarely commercially 

available but modules for droplet formation, chip design etc. available on the market. 

(ii) microfluidic expertise required. 
● Sensitivity: fluorescence-activated droplet sorting (FADS) has a detection threshold of 

< 0.1 µM (~3000 molecules in a pL droplet), but higher detection thresholds for 

absorbance-activated droplet sorting (AADS; 10 µM), dielectrophoretic droplet sorting 

(DEDS, 1 µM) and mass-activated droplet sorting (MADS, 30 µM).  
● More assays needed – synthetic access to assayable substrates important. 

● Reaction product must not escape from the droplet compartment – if it does, the 

screening is compromised. 
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