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Comprehensive analysis of high-throughput experiments for
investigating transcription and transcriptional regulation

Summary

Joern Michael Toedling
12 January 2009 Jesus College

As the number of fully sequenced genomes grows, efforts are shifted to-
wards investigation of functional aspects. One research focus is the tran-
scriptome, the set of all transcribed genomic features. We aspire to under-
stand what features constitute the transcriptome, in which context these
are transcribed and how their transcription is regulated. Studies that aim
to answer these questions frequently make use of high-throughput tech-
nologies that allow for investigation of multiple genomic regions, or tran-
scribed copies of genomic regions, in parallel.
In this dissertation, I present three high-throughput studies I have been
involved in, in which data gained from oligo-nucleotide tiling microar-
rays or large-scale cDNA sequencing provided insights into the transcript-
ome and transcriptional regulation in the model organisms Saccharomyces
cerevisiae and Mus musculus. Interpretation of such high-throughput data
poses two major computational tasks. The primary statistical analysis in-
cludes quality assessment, data normalisation and identification of signif-
icantly affected targets, i.e. regions of the genome deemed transcribed or
involved in transcriptional regulation. Second, in an integrative bioinfor-
matic analysis, the identified targets need to be interpreted in context of
the current genome annotation and related experimental results. I pro-
vide details of these individual steps as they were conducted in the three
studies.
For both primary and integrative analysis, functional, extensible and well-
documented software is required, which implements individual analysis
steps, allows for concise visualisation of intermittent and final results and
facilitates the construction of automated, programmed workflows. Ide-
ally such software is optimised with respect to scalability, reproducibil-
ity and methodical scope of the analyses. This dissertation contains de-
tails of two such software packages in the Bioconductor project, which
I (co-)developed.
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Glossary

The following terms are used throughout this dissertation.

The terms microarray and array are used interchangeably.

Reporters are the DNA sequences affixed to a microarray for measuring
the abundance of complementary mRNA fragments with expression mi-
croarrays or complementary sonicated DNA fragments in ChIP-chip ex-
periments. Each reporter is assumed to have a unique identifier and a
unique sequence, but can appear as multiple features on the array surface.
Note that in the majority of the microarray-related literature, a reporter is
called a probe, but since that term does not differentiate between reporter
and feature, the term reporter is preferable.

Genome segments that (are considered to) match the sequence of a re-
porter are called the match positions of that reporter. A unique reporter match
position (RMP) is an RMP, which is the only match of that reporter in the
genome.

A genomic region is a segment of the genome.

The sample is the aliquot of isolated RNA, or immuno-precipitated or input
DNA that is hybridised to the microarray. A genomic region apparently
enriched by ChIP is called a ChIP-enriched region.

The primary data gained from scanning the microarray and processing
the scanned image is called the raw data, which in most cases requires
preprocessing, or normalisation, to improve the signal-to-noise ratio.

An expression profile refers to the vector of expression levels of one tran-
script in a number of conditions or samples.

A transcriptional unit (TU) is a set of (m)RNAs that share at least one tran-
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scribed genomic nucleotide and are transcribed from the same segment of
the genome in the same orientation.

Concerning gene and protein names I follow the organism-specific con-
ventions for writing gene and protein names in this dissertation. With
Mus musculus, gene symbols are italicised, with the first letter in upper
case and the remaining letters in lower case (Gata4 ). M. musculus protein
names are the same as the gene symbol, but are not italicised and all letters
are in upper case (GATA4)1. With Saccharomyces cerevisiae, gene symbols
are italicised and all letters are in upper case (STB1 ). S. cerevisiae protein
names are the same as the gene name, but are not italicised, and the first
letter is upper case and the remaining letters are lower case (Stb1)2.

Gene name Protein name
M. musculus Gata4 GATA4
S. cerevisiae STB1 Stb1

1Mouse Genome Informatics (MGI) Nomenclature guide:
http://www.informatics.jax.org/mgihome/nomen/short_gene.shtml

2Saccharomyces Genome Database (SGD) naming guidelines:
http://www.yeastgenome.org/gene_guidelines.shtml
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Chapter 1

Introduction

This dissertation describes three high-throughput studies, in which data
gained from oligo-nucleotide tiling microarrays or large-scale cDNA se-
quencing was used to obtain new insights into the transcriptome and tran-
scriptional regulation. I have mostly worked with data from the model or-
ganisms Saccharomyces cerevisiae and Mus musculus, but one study also
included an analysis of a data set from Homo sapiens.

In this chapter, I will give a general and brief overview of the biological
concepts, the microarray technologies, and the relevant annotation data
which I have investigated and used in the projects that are described in
this dissertation. The following chapters describe each individual study,
and each chapter contains a more specific introduction covering the back-
ground information that is pertinent to the respective study.

Chapter 2 describes an investigation of coexpression and co-regulation of
genes that are adjacent to each other in the genome.

Chapter 3 describes the use of ChIP-chip and expression microarray tech-
nology to elucidate the role of four post-translational histone modifica-
tions and four transcription factors in the development of heart and mus-
cle cells.

In Chapter 4, I detail the analysis of tiling microarray data to characterise
the whole transcriptome of S. cerevisiae during exponential growth and in
the course of the cell cycle.

1



Finally, Chapter 5 describes two software packages that I have written or
co-authored to facilitate the analyses of the high-throughput studies pre-
sented in this dissertation.

1.1 Transcription

Transcription1 is the process in which a polymerase enzyme produces an
RNA complementary to a stretch of genomic DNA. The apparent purpose
of transcription is to either translate the information from the DNA into a
protein or relay the information in the form of RNA to cellular processes.
Here, I will briefly outline the current – and incomplete – understanding of
transcription and transcriptional regulation, as these concepts will be re-
ferred to extensively in the following chapters (for a more detailed review,
please refer to [1] and references therein).

Transcription is a three-step process [2], consisting of:

initiation the polymerase enzyme is recruited to the transcript’s
transcription start site (TSS) by the pre-initiation complex of general
transcription factors and starts the complementary RNA with the
first nucleotide

elongation the polymerase moves along the transcript’s DNA template
and consecutively extends the complementary RNA

termination the polymerase stops and detaches from the DNA, and the
RNA product is released and post-processed.

The enzymes that are responsible for transcription are DNA-dependent
RNA polymerases. Several different polymerases, involved in transcrip-
tion of different kinds of RNA, have been identified:

• RNA polymerase I transcribes a large 45S precursor RNA [3] that splits
into three ribosomal RNAs (28S, 18S and 5.8S rRNA).

1This dissertation will solely deal with transcription in eukaryotes.
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• RNA polymerase II is involved in the transcription of all pre-mRNAs [3],
snRNAs [4], and miRNAs [5].

• RNA polymerase III transcribes all tRNAs, 5S rRNA, and other small
ncRNAs [6, and references therein].

• In plants, RNA polymerase IV is involved in the synthesis of siRNAs.
Other types of RNA polymerase have been found in mitochondria and
plant chloroplasts.

The existence of transcribed non-coding RNAs (ncRNAs) was hypothe-
sised as early as 1958 [7], but until the late 1980s, tRNA and rRNA were
the only well-known types of ncRNA. Since then, many more forms of
ncRNA have been identified, such as miRNA, snRNA, and snoRNA. Over
the last few years, using high-throughput microarray and sequencing ex-
periments, eukaryotic cells have been found to contain many more unex-
pected RNAs not coding for proteins. Most of these non-coding RNAs are
currently of unknown function (e.g., [8, 9, 10]). At present, the majority of
RNAs produced in the cell are presumed to be non-coding [11].

Chapter 4 describes one tiling microarray study that allowed for an unbi-
ased survey of the complete transcriptome of S. cerevisiae at high resolu-
tion. In this study, we identified multiple new and unexpected, presum-
ably non-coding, RNAs in the transcriptome of budding yeast.

1.2 Regulation of transcription

Before a segment of the genome can be transcribed, three events have to
happen. First, the genomic DNA in the highly condensed chromatin must
be made sufficiently accessible to serve as a template for complementary
base pairing. Second, the polymerase must be recruited to the transcrip-
tion start site of the DNA segment to be transcribed. Thirdly, the poly-
merase must be enabled to move along the DNA of the target to produce
the complementary RNA.

3



1.2.1 Histone modifications

A central structure of chromatin organisation is the nucleosome, a stretch
of 146–147 bp of DNA wrapped around a complex of eight histone pro-
teins. The eight histone proteins comprise two copies each of four differ-
ent proteins (H2A, H2B, H3 and H4). The N-terminal tails of these proteins
protrude out of the nucleosome, allowing them to interact with molecules
outside their own nucleosome. The histone tails have been shown to be in-
volved in inter-nucleosomal interactions that stabilise higher order struc-
tures of the chromatin [12], although the nature of these higher order chro-
matin structures is still poorly understood. Furthermore, several enzymes
have been discovered to covalently attach chemical groups to specific re-
sidues in the N-terminal tails of histone proteins, or to remove these at-
tached groups. Among such covalent modifications described are acety-
lation, methylation, phosphorylation, ubiquitination, and others (see [13]
for a recent review).

Many of these histone modifications have been associated with changes
in the transcription rate of genes located next to modified nucleosomes
(see [14, 15] for examples). Activating modifications are those which seem
to coincide with increased transcription, while repressive modifications are
associated with reduced gene expression.

Histone modifications may affect chromatin structure in two ways. First,
they may influence the interactions between histone proteins and DNA, as
well as the interaction between adjacent nucleosomes. Both types of inter-
actions are important for regulating the chromatin structure. Acetylation
of lysine residues in the histone tails has been observed to have an activat-
ing effect, which can be explained by a change in charge. The addition of
the acetyl group neutralises the positive charge of the lysine residue. The
affinity of the histone protein to the negatively charged backbone of the
DNA is lowered, and the chromatin structure is opened up [16]. Second,
modified histones are known to specifically recruit non-histone proteins,
such as chromatin remodelling enzymes that modify the chromatin struc-
ture (reviewed in [13]). It has been hypothesised that different combina-
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tions of histone modifications may recruit different kinds of target proteins
and thus bring about distinct follow-up effects [17]. This “histone code”
hypothesis is currently widely debated, and there exist pieces of evidence
both in favour and against. Nevertheless, if such a code exists, much fur-
ther work is required towards understanding how this code is deciphered
in the cell.

Chapter 3 describes the analysis and results of ChIP-chip experiments, in
which we investigated the role of four histone modifications in transcrip-
tional regulation, and relates our findings to the histone code hypothesis.

Histone modifications have been shown to be at least partially maintained
throughout cell divisions by as yet unknown mechanisms [18], and are
therefore considered “epigenetic” factors, since they provide heritable in-
formation that is beyond the nucleotide sequence of the DNA. The inheri-
tance of histone modifications is similar to, and likely linked to, the inher-
ited methylation of cytosines in CpG islands.

1.2.2 Transcription factors

Certain proteins, collectively known as transcription factors (TFs), bind to
the promoter region or other regulatory regions close to the target TSS and
help to activate or repress the transcription process. TFs can bind directly
to the DNA, to DNA-associated histone proteins, or to other transcription
factors already bound to DNA or histone proteins.

General, or basal, transcription factors are expressed in a multitude of dif-
ferent cell types, bind to many different kinds of promoter regions, and
are involved in transcription of many different RNAs (see [19] for a recent
review). Examples of such general transcription factors are the compo-
nents of the pre-initiation complex that recruits the RNA polymerase II to
the TSSs of the genomic region to be transcribed. Specialised transcription
factors, on the other hand, regulate the activity of the polymerase at each
stage of the transcription process, or regulate the function of the general
transcription factors. These specialised TFs are only expressed in certain
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cell types and bind only to specific regulatory regions that can often be
characterised by specific DNA sequence motifs.

1.3 Transcript orientation

Groups of adjacent transcripts have frequently been shown to be coex-
pressed across tissues and/or time (e.g., [20]). Figure 1.1 depicts the prin-
cipal types of orientation that two adjacent transcripts can have in relation
to each other. The orientation may provide clues as to how the transcrip-
tion of the two transcripts is coupled. For example, for pairs of divergent
transcripts, the common regulation of transcription through bidirectional
promoter regions has been well characterised in H. sapiens [21].

In Chapter 4, I present a study about the orientation of adjacent transcripts
that are expressed throughout the cell cycle of S. cerevisiae.

1.4 DNA microarrays

Microarrays are devices for measuring the abundance of multiple RNAs or
DNAs in a sample in parallel. The most common application of microar-
rays is to simultaneously measure the mRNA abundance of transcripts of
multiple genes [22]. Microarrays produced for this purpose are commonly
called expression microarrays. More recent alternative uses of microar-
rays, such as in array comparative genomic hybridisation (CGH) require a
more general description of the potential applications of microarrays.

During the last decade, a number of different microarray platforms have
been established. Among these different platforms, oligo-nucleotide mi-
croarrays such as the ones manufactured by Affymetrix [23] are proba-
bly the most commonly used. Many techniques to reduce and control
the inherent noise of microarray gene expression data [24, 25, and others]
have been developed, establishing microarray expression data as a reli-
able source of information about transcript abundance. Statistical meth-
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Figure 1.1: Scheme of possible orientations, in which two adjacent genomic re-
gions can be transcribed.

ods have been developed for the identification of differentially expressed
genes under different conditions [26, 27], as well as methods for other ap-
plications for microarrays.

cDNA microarrays The classical type of microarrays uses polymerase
chain reaction (PCR) products, hence the name “cDNA” relating to com-
plementary DNA fragments, of about 1 kb length as reporters [22]. The
reporters represent transcripts of genes and are usually derived from ESTs
and mRNAs. A sample RNA of interest, for example RNA obtained from
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tumour cells, is labelled with one dye, such as Cy5, and is hybridised to
the microarray together with a control RNA sample, which is labelled with
another dye, such as Cy3. The RNA from the sample of interest and the
control RNA compete for binding to the reporters that are fixed on to the
microarray surface.

Because of the use of two dyes, the term two-channel microarrays, or two-
colour microarrays, has been used synonymously with cDNA arrays. By
now, however, experiments in which two samples labelled with different
dyes are hybridised to oligonucleotide microarrays are also common.
The reporter level of two-colour microarrays is usually specified as the
ratio or fold change between the two individual channel intensities.

Oligonucleotide expression microarrays With this type of microarray, each
transcript is represented by a number n (typically n ∈ [11, 20]) of oligonu-
cleotide reporters of 24 to 60 nucleotides in length [23]. The reporters are
usually complementary in sequence to segments at the 3’ end of the tran-
scribed regions of the genes. The expression level of a transcript is derived
by summarising over the n individual reporters.
In the traditional design used by Affymetrix (Santa Clara, California,
USA), a transcript is represented by a “probe set” of 2 · n reporters of
length 25. Of these, n are perfect match (PM) reporters that match the
sequence of the transcript to 100%. In addition, there are an equal number
of mismatch (MM) reporters, which have the same sequences as the PM
reporters except for the nucleotide in the centre of each reporter, which is
replaced by its complementary base. The MM reporters were originally
intended to provide reliable estimates of the reporter background levels.
The usefulness of mismatch reporters for this purpose, however, has been
doubted, and many approaches to the analysis of oligonucleotide micro-
array data now disregard MM reporters [24].

Tiling microarrays Improvements in techniques for the production of mi-
croarrays have resulted in an extension of the microarray types described
above. A key development was the reduction of the size of each feature,
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that is the set of copies of one reporter affixed at one position on the micro-
array surface. As a result, genomic tiling microarrays can include tar-
get regions covering a whole genome, not just the coding sequences of
genes [28]. A specialised (and older) type of tiling microarray has only
selected regions of the genome represented by reporters. Promoter tiling
arrays are a common example of microarrays of this design.

With arrays that should represent the whole genome, reporter selection of
an equal standard to commercial or self-spotted expression microarrays is
not feasible. The inclusion of intergenic regions into the target sequences,
to be represented by reporters on the array, results in reporters showing se-
quence characteristics of these regions, which are less homogeneous than
the characteristics of annotated open reading frame (ORF) sequences. The
reporters on tiling arrays thus show substantial variation in their physical
characteristics regarding staining and hybridisation of these reporters and
their targets. An obvious source of variance in reporter hybridisation is
the varying GC content of the reporter sequences [29]. Because of repeti-
tive elements in the genome, tiling array reporters also differ largely in the
specificity of reporter matches to the genome.

The analysis of tiling-microarray data poses specific challenges, due to the
high density of reporters and the massive number of genomic regions to be
represented by reporters. One of these challenges is dealing with reporter
specificity and differential reporter response due to sequence characteris-
tics. Another challenge is to merge the reporter levels from single reporter
match positions (RMPs) into segments that correspond to genomic regions
of interest, such as transcribed regions or ChIP-enriched regions [30].

A major application of whole-genome tiling microarrays is unbiased tran-
scriptome analysis, meaning the detection of transcribed regions beyond
previously annotated coding sequences (e.g., [8, 9]). From the first tran-
scriptome studies of this kind, it has become obvious that in many higher
organisms there is a large amount of transcription beyond what was
known and expected from annotated genome elements and gene predic-
tions. Many of these new transcripts do not contain an ORF of more than
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a few residues in length and are therefore considered to be non-protein-
coding RNAs (ncRNAs). The exact mappings, architectures, functions,
and significance of the majority of these non-coding transcripts are yet to
be determined [28].

Other applications of whole-genome tiling microarrays are ChIP-chip (see
Section 1.4.1 and, e.g., [31]), and assaying DNA copy number variations
(array-CGH, e.g., [32]). Tiling microarrays can also be used to get a high-
resolution view on other cellular processes that affect the DNA or RNA,
such as recombination events [33].

Exon microarrays The commonly used oligonucleotide expression mi-
croarrays contain reporters that are complementary in sequence to seg-
ments at the 3’ end of the translated regions of the genes [23]. The reason
for this placement of reporters is that the reverse transcription of mRNA
into cDNA (or cRNA), which is then hybridised to the microarray, starts
from the poly-A tail of the mRNA. The reverse-transcribing polymerase
generates complementary copies to the 3’ end of the translated region of
an average length of 1000 bp [23]. Hence, common expression microarrays
are only able to distinguish transcripts of the same gene if the transcripts
differ in their last few included exons (627 bp is the average length of ex-
ons in M. musculus, as annotated in the Ensembl database [34], release 50,
July 2008). An intermittent step between such traditional expression ar-
rays and whole-genome tiling microarrays are exon arrays. The reporters
on this type of microarray represent all annotated individual exons of tran-
scripts. For example, on the exon arrays that are produced by Affymetrix,
each exon is represented by four reporters. Exon microarrays provide
summarised expression levels for individual exons and allow for hypothe-
ses about the expression of distinct, alternatively spliced, transcripts of a
gene [35].

BeadArrays Another type of microarray are the BeadArrays manufac-
tured by Illumina Inc. [36]. With this microarray design, each transcript
is only represented by one or two reporters of 50 nucleotides length, but
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Figure 1.2: Boxplots showing the typical distribution of normalised reporter lev-
els versus the GC content of reporter. The GC content groups are specified from
10% to 90%, in steps of 5%, with the box label specifying the upper limit of the
interval. A box label of “0.5”, for example, means that the reporters considered
for this box had a GC content of 0.45 < gci ≤ 0.5. The width of each box is pro-
portional to the number of reporters in the respective group.

each reporter occurs roughly 30 times on the microarray. The thirty-odd
copies of the reporter are placed in individual beads at random positions
onto the array surface. Each bead contains an additional oligo-nucleotide
stretch that needs to be decoded to identify the reporter at each bead posi-
tion. The BeadArray platform has shown to yield precise results and to be
highly comparable with Affymetrix expression microarrays that contain
multiple distinct oligonucleotides for measuring a transcript [37]. How-
ever, since each transcript is only represented by one or two reporters,
these reporter sequences must be carefully chosen from all 50-nucleotide
subsequences of the transcript.

Reporter issues Reporter levels are strongly affected by the GC content
of the reporter sequence. Figure 1.2 demonstrates this effect on example
data. The reporters, which are 24mers in this example, are grouped by
their GC content and the distribution of the reporter levels per group is
shown. The level of each reporter is shown as median normalised expres-
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sion level over six heart and skeletal muscle samples (these samples are the
expression data from the study described in Chapter 3). There is clearly
a significant relationship between the reporter levels and their GC con-
tent. Increases in the GC content coincide with higher median reporter
levels. The reason is that there are three hydrogen bonds with comple-
mentary guanine and cytosine bases, but only two between adenine and
thymine. This effect has been reported before, and normalisation methods
for microarray data that specifically take the GC content of the reporters
into account have been suggested [38].

Microarray intensity preprocessing Even when only considering data gen-
erated on the same microarray platform and from the same biological
condition, reporters that are supposed to measure the abundance of the
same mRNA typically show a large variation across their raw intensi-
ties. Sources of variation can be divided into reporter-specific variation,
such as reporter sequence characteristics and reporter spotting efficiency;
sample-processing variation, such as purification and amplification of bio-
logical material, labelling of the material, hybridisation of the material and
scanning of the microarrays; and sample-specific sources of variation. The
non-biological variation, namely reporter-specific and sample-processing
variation, can be referred to as “obscuring” variation [24]. One usually
aims to carefully reduce this obscuring variation while preserving the bi-
ological variation by normalisation. Most normalisation methods work un-
der the assumption that, on any microarray, the observed intensity mea-
surement yi of reporter i is a function of [mRNAi], the concentration of
the transcript that reporter i represents, and a reporter-specific or general
background intensity bgi:

yi = f ([mRNAi], bgi) . (1.1)

This function usually contains additional error terms that capture addi-
tional noise in the data. The concentration [mRNAi] is the signal of in-
terest, and the aim of most normalisation methods is to down-weight the
influence of the background measurement bgi of the reporter level. Nor-
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malisation methods differ with respect to the type of function f that is
assumed for the observed intensity, how the background measurement
bgi is estimated, and how bgi is consequently treated. Many normalisa-
tion methods, such as vsn [25], assume that most transcripts (or a specified
subset of transcripts) are not differentially expressed between the anal-
ysed samples and use replicate measurements of these transcripts to esti-
mate the background levels and error terms. Normalisation methods have
frequently been shown to improve the signal-to-noise ratio in expression
microarray studies.

One approach to obtaining estimates of the reporter-wise background in-
tensities is to co-hybridise a control RNA or genomic DNA in addition to
the RNA samples of interest to the microarray platform. This approach
is commonly applied with two-channel expression microarrays, with ar-
ray CGH experiments, and with ChIP-chip experiments. In Chapter 5, I
describe how the readouts from genomic DNA hybridisations can be used
to normalise transcription data on whole-genome tiling microarrays.

1.4.1 ChIP-chip

ChIP-chip, chromatin immunoprecipitation combined with tiling microar-
rays, is a well-established high-throughput assay for DNA-bound pro-
teins [39] and post-translational chromatin/histone modifications.

Briefly, the procedure is as follows (see the supplement to [39] for a more
extensive description of each step):

1. in vivo fix proteins interacting with DNA in place using formalde-
hyde

2. split the DNA-protein construct into random fragments, usually by
sonication

3. enrich DNA fragments that are linked to the protein or show the
chromatin modification by use of a specific antibody against the pro-
tein/modification by immunoprecipitation (IP)

4. reverse the DNA-protein binding and wash away the proteins

13



5. label the IP-enriched DNA fragments with one dye and label control
DNA fragments, such as non-IPed sonicated genomic DNA (input)
with another dye, or possibly the same dye if a set of one-channel
microarrays are used

6. hybridise the IP-enriched DNA fragments and the control fragments
on a microarray

Steps 1 – 4 make up the chromatin immunoprecipitation (ChIP) steps, and
the second “chip” refers to the hybridisation to a microarray.

ChIP-chip experiments have been successfully applied for the detection
of binding events of transcription factors, such as Gal4 [39] or the oestro-
gen receptor [31], for pinpointing the positions of nucleosomes [40], and
for identifying genomic regions, in which the histones bear certain post-
translational modifications [41, for example]. In Chapter 3, I describe a
ChIP-chip study, in which we identified the genomic positions of four his-
tone modifications and the DNA binding events of four transcription fac-
tors in heart and muscle cell and related these findings to gene expression
and the functional role of the modifications and transcription factors.

1.5 Microarray-based investigation of transcrip-

tion throughout the cell cycle

1.5.1 Budding yeast cell cycle

Eukaryotic cells reproduce themselves by duplicating their DNA and then
dividing into two daughter cells. The daughter cells repeat the same pro-
cess, and so forth. The cell division (mitosis) phase is followed by a gap
phase, in which the cells grow and fulfil their physiological function, after
which they enter the S phase of DNA duplication. In a second gap phase
following the S phase, synthesis mistakes in the replicated DNA are cor-
rected before the cell enters mitosis and divides into two cells [2]. Budding
yeast (S. cerevisiae) is unusual in that its cells give rise to unequal cells in
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Figure 1.3: Diagram showing the cell cycle of budding yeast. In addition to the
phases, certain key events at stages of the cycle are also indicated, as are a few
transcription factors (in the boxes) whose target genes are needed for these key
events and/or drive the progression through the cycle. The length of the coloured
arrows indicate the approximate proportional length of each of the four phases.
One total iteration of the cycle when growing in rich media takes about 60–100
minutes (after release from cell cycle arrest; see Chapter 4).

division, that is to a larger “mother cell” and a smaller “daughter cell”.
The smaller daughter cell evolves from a bud extension of the mother cell
that emerges at the end of the G1 phase [42].

Figure 1.3 shows a schema of the cell cycle of S. cerevisiae. In addition to the
phases of the cycle, certain key events are listed. Boxes hold a few selected
transcription factors, and the arrows indicate at which stages of the cy-
cle these TFs have been reported to regulate the expression of their target
genes. These TFs include Mbp1, Swi6 and Swi4, which are all active in the
late G1 phase [43], Stb1 at the G1/S phase transition [44], and the S phase
regulator Hcm1 [45]. The listed TFs further include the two transcription
factors Fkh1 and Fkh2, which are involved in the regulation of gene ex-
pression in the late G2 and early M phase [46], together with Mcm1, which
is also a regulator of expression in late M- and early G1 phase [47].
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Transcripts that are regulated by these TFs show periodic expression pro-
files concordant with the cell-cycle progression. Many periodically ex-
pressed genes are involved in events that only occur once in the cycle,
such as budding, DNA replication and cytokinesis. Some periodically ex-
pressed genes, such as cyclins, are also involved in regulating the progres-
sion of the cycle itself [48].

1.5.2 Microarrays and the cell cycle

Cho et al. [49] used oligonucleotide expression microarrays to investigate
the cell-cycle expression of the annotated S. cerevisiae genes over two in-
dependent time courses of samples taken after release from prior arrest of
the cell cycle. Cells were synchronised to the same stage of the cell cycle
in distinct ways for the two time courses, in one case using a temperature-
sensitive mutant of the cycle-dependent kinase Cdc28, arresting the cells
in the late G1 phase, and in the other case a mutant of Cdc15, arresting
the cells in late G2 phase. The authors focused on those genes showing
at least two-fold changes in expression over the time course and visually
inspected them for periodicity in their expression patterns. Cho and co-
workers identified 416 genes that were periodically expressed in concor-
dance with the cell cycle progression and assigned them to different stages
of the cycle.

Spellman et al. [48] used cDNA expression microarrays to analyse the ex-
pression of all annotated S. cerevisiae genes in three cell cycle time course
data sets. The time courses differed in the methods used for synchronising
the cells. The first method supplied the α-factor pheromone to the cells, the
second one used a temperature-sensitive mutant of Cdc15, and the third
method enriched small G1 phase cells through centrifugation. On the mi-
croarrays, cDNA from the synchronised samples was hybridised against
cDNA from a control sample of cells asynchronously growing in rich me-
dia. Spellman and co-workers also included the previously published data
of Cho et al. (see above) into their analysis. The periodicity of gene ex-
pression profiles was assessed by a Fourier transform algorithm and by
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correlating the expression profiles of all genes to the expression profiles of
known cell-cycle genes. The authors identified 800 genes showing peri-
odic expression. They assessed the co-expression patterns of these genes
in two separate ways, firstly by the phase of the genes’ peak expression
(derived from the Fourier transform) and secondly by clustering them us-
ing correlation distance between expression profiles [50]. About half of the
periodic genes were assigned to well-understood functional groups by the
clustering. By the clustering, peak time assignment and by searching for
overrepresented sequence motifs in the promoter regions of the clusters,
Spellman et al. could provide a functional description of about 500 of the
800 periodically expressed genes.

A common challenge with cell cycle time courses is how to identify the
periodically expressed transcripts. De Lichtenberg et al. compared dif-
ferent methods for this task and concluded that simple approaches for
assessing periodicity, such as the ones used in [48] and [49],perform re-
markably well in comparison to later suggested more complex modelling
approaches [51]. The authors also concluded that the aspects needing to
be considered are the expression-profile periodicity and the variation in
the expression profile across the time course.

In Chapter 4, I describe a tiling microarray time-course study of the S. cere-
visiae transcriptome along the cell cycle. For these time courses, we used
two distinct established methods for synchronising the cells [48, 49] and
identified periodically expressed transcripts. Besides known cell-cycle
regulated ORF transcripts, these periodically expressed transcripts in-
cluded antisense transcripts and intergenic transcripts from unannotated
genome regions. By clustering the periodic transcripts and providing a
functional description of the clusters, we could segregate them into mod-
ules of transcripts with regulatory roles at different stages of the cycle. The
antisense and unannotated intergenic transcripts were divided into these
clusters as well, indicating that such transcripts may play a role in the cell
cycle progression.

Microarrays can only recover changes in transcript abundance along the
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cell cycle. There are sufficient indications that many genes that are impor-
tant for cell cycle regulation are certainly regulated at the stage of tran-
scription (Section 4.3, [48, 49]). However, cases of cell-cycle related genes
that are not regulated by transcription but only post-translationally are
known [49], as are genes that show periodic expression patterns but have
constitutive roles regardless of the cell cycle stage [48].

1.6 Gene annotation

There is substantial variation in how much is known about individual
genes. For only about 20% of H. sapiens and 10% of M. musculus proteins,
the biological function has been experimentally characterised (as of Octo-
ber 2007) [52].

In this dissertation, I mostly work with two kinds of gene information,
the gene coordinates in the genome and the gene’s annotation in the
Gene Ontology (GO) [53], if present. The GO provides structured anno-
tation of gene functions. It consists of three directed graphs that struc-
ture single pieces of gene function, the individual terms, or nodes, and
links them in meaningful ways, such that more specialised terms are child
nodes of related general concepts. For example, the term biological reg-
ulation (GO:0065007), amongst others, is an ancestor of regulation of pro-
grammed cell death (GO:0043067), which in turn is an ancestor of negative
regulation of apoptosis (GO:0043066)2.

In detail, the GO consists of three independent, directed graphs, the on-
tologies, namely biological process, cellular component and molecular function,
which allow for complementary descriptions of gene functions.

Genes, or the proteins encoded by protein-coding genes, are annotated to
GO terms based on different sources of evidence, and this source is stored
as the evidence code with each gene-term relation. The evidence codes are
listed in Table 1.1.

When considering the GO annotation for genes, I omitted annotations
2GO term identifiers and ordering as of May 2008

18



Abbreviation evidence code
IC inferred by curator

IDA inferred from direct assay
IEA inferred from electronic annotation
IEP inferred from expression pattern
IGI inferred from genetic interaction
IMP inferred from mutant phenotype
IPI inferred from physical interaction
ISS inferred from sequence similarity

NAS non-traceable author statement
ND no biological data available
TAS traceable author statement

Table 1.1: Gene Ontology evidence codes

with evidence codes IEA, NAS and ND, since these are less reliable than
the other types of annotation. The majority of annotated gene-term rela-
tions for S. cerevisiae are inferred from electronic annotation (IEA) (31,385 out
of 50,452, as of January 2008).

The GO graphs provide a structured vocabulary of gene annotations. This
structure has to be taken into account when performing statistical tests on
individual GO terms, as the graph structure introduces statistical depen-
dencies between terms within the same ontology.
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Chapter 2

Coexpression of adjacent genes

2.1 Introduction

Comparative studies of genomes and transcriptomes have shown that
genes that are concordantly expressed over time in the same tissue or co-
expressed in many tissues are often located next to each other in certain
chromosomal regions.

2.1.1 Gene clusters

Clusters of coexpressed genes were first identified in Saccharomyces cere-
visiae [49, 54] and Caenorhabditis elegans [55, 56]. In prokaryotes and in C.
elegans, such clusters are co-transcribed in the form of operons, an uncom-
mon concept in eukaryotes other than C. elegans, although recent tiling
microarray data sets have indicated that other eukaryotic transcriptomes
may also contain small numbers of operons [9] (see Chapter 5, Figure 5.2).
In Drosophila melanogaster, clusters of 10-30 coexpressed genes that span,
on average, 125 kb of genomic DNA can be observed, if one allows a lim-
ited number of intervening genes with deviant expression patterns [57].
In Homo sapiens, genes with high expression levels tend to conglomerate
in chromosome domains [58, 59]. Furthermore, certain gene clusters, such
as the beta-globin or HoxD genes, are regulated by a single control lo-
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cus [60], or by a global control region [61]. Transcription of functionally
related genes from bidirectional promoters has also been described; for
example, the human genes PPAT and AIRC, both of which are involved
in purine biosynthesis, are divergently transcribed (see Figure 1.1) from a
700 bp promoter region on chromosome 4 [62].

It has been implied that coexpressed, clustered genes are mainly house-
keeping genes, i.e. genes that are involved in fundamental cell functions
and thus expressed in all tissues [63, 64, 65]. Some reports indicate that
clusters of coexpressed genes tend to be conserved through evolution. For
example, when looking at traces of inter-chromosomal rearrangements
that occurred during the diverging evolution of human and mouse, clus-
ters of coexpressed genes are more conserved than other sets of adjacent,
orthologous genes [66]. Such clusters may have proven evolutionarily
beneficial, and the cluster arrangement may be preserved by natural se-
lection.

Fundamental questions about coexpression clusters remain unanswered.
How frequent are such clusters in eukaryotes? By what mechanism is the
transcriptional coupling of clustered genes brought about? And what is
the evolutionary origin of cluster formation?

2.1.2 Measures of gene coexpression among clusters

The most commonly used measure for coexpression of a pair of genes is
the Pearson correlation coefficient (CC) of the expression profiles of the
two genes. For example, Cohen et al. [54] considered a pair of genes to be
coexpressed if the two gene expression profiles had a Pearson CC greater
than 0.7. Clusters of n genes were considered coexpressed if the CC of
each of the n− 1 pairs of adjacent genes was greater than 0.7. One known
shortcoming of the Pearson CC, however, is its susceptibility to outliers,
an issue that cannot be neglected with data that are as noisy as gene ex-
pression data [67].

Singer et al. [66] suggested three complementary measures of expression
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similarity for a pair of genes in their analysis of the Novartis gene expres-
sion atlas data set from 2002 [68]. First, they quantified the “housekeep-
ingness” of the pair as the product of the proportions of tissues in which
each of the two genes was considered to be expressed. Second, the pair’s
overall expression was calculated as the average of the pair’s expression
levels across all tissues of the data set. Third, the coexpression of the two
genes across tissues was measured by the Pearson correlation coefficient
of the two genes’ expression profiles. For each of the three similarity mea-
sures, clusters of coexpressed genes were then identified using a sliding-
window algorithm with a fixed window width of 10 genes and a step size
of one gene, but only windows in which the 10 genes spanned less than
500 kb were analysed. In each window, the 9 similarity scores of each
pair of consecutive genes were summed up to yield a coexpression score
for the window. The window scores were compared to scores of 100,000
random sets of 10 genes, and scores exceeding the 95% or 99% quantile
of the scores of the random sets were taken to indicate that the window
contains a cluster of coexpressed genes. One drawback of the method of
Singer et al. is that the three measures for assessing coexpression of a gene
pair are considered separately from each other. Another drawback of the
method is the fixed window size of 10 genes for finding gene clusters. Due
to the latter limitation, this method may miss shorter clusters of less than
10 coexpressed genes.

I considered two measures for assessing coexpression of pairs of genes. I
first used the Hamming distance as a way to assess coexpression, since
gene expression profiles are binary vectors in our data. Later on, I devised
a more informative two-dimensional measure of gene coexpression.

2.2 Material and Methods

Data sets For this analysis, two publicly available data sets were con-
sidered, namely the Fantom3 transcription data (Mus musculus) [69] and
the 2004 Novartis Symatlas expression data (H. sapiens) [65]. The Fantom3
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data set contains expression profiles of 39,593 transcriptional units (TUs)
mapped to the mm5 assembly of the mouse genome (obtained from
http://fantom31p.gsc.riken.jp/cage/mm5/). A TU is a set of (m)RNAs
that share at least one transcribed genomic nucleotide and are transcribed
from the same segment of the genome in the same orientation [70]. In the
following, I use the term gene synonymously for transcriptional unit.

Expression information was obtained by four methods: full-length se-
quencing of isolated cDNAs, cap analysis of gene expression (CAGE),
gene identification signature (GIS) and gene signature cloning (GSC).
CAGE, GIS and GSC aim at identifying transcripts by recognition of short
characteristic sequence tags. For our analysis, we focused on the following
tissue transcriptomes (tissues are named as in the Fantom3 publications;
numbers in brackets denote the number of genes expressed in that tis-
sue): adipose (19,166), brain (13,766), cerebellum (18,753), diencephalon
(6,567), heart (8,423), liver (30,721), lung (30,560), macrophage (26,746),
muscle (8,829), prostate gland (10,795), somatosensory cortex (17,193),
testis (13,347), visual cortex (17,216).
The Symatlas data [65] were generated on a combination of two oligonu-
cleotide microarray designs (HG-U133A and GNF1H) from Affymetrix,
and contained measurements for approximately 34,000 probe sets. The
MAS5 algorithm [71] was used to preprocess the data and to assign a call
to each probe set’s expression in each tissue, one of present, marginal, or
absent. Probe sets were associated to genes (and thereby chromosomal lo-
cations) according to the probe set annotation supplied by the microarray
manufacturer. A gene was considered to be expressed if any of its associ-
ated probe sets had a present or marginal call. Probe sets with incomplete
location information, which did not unambiguously relate to a gene, were
excluded. The resulting data set consisted of binary expression calls for
19,358 genes with distinct chromosomal locations.

Adjacency of transcriptional units For the purposes of this study, two
TUs are considered to be genomic neighbours, or adjacent to each other,
only if, according to their genome location annotation, they are located on
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the same chromosome and there is no other TU annotated to the genomic
region in between them on either strand. The actual number of base pairs
between the TUs is irrelevant for this designation, as is whether the TUs
are on the same DNA strand.

Transcription factor binding sites (TFBSs) We considered only TFBSs that
were considered to be conserved in human/mouse/rat alignments, and
annotated as such in the UCSC Genome Browser (http://genome.ucsc.
edu). All TFBSs annotated in the 10 kb upstream region of each TU were
obtained, based on the Ensembl gene identifier of the TU. The TFBS anno-
tation of the UCSC Genome Browser is conservative and likely to contain
few false positives but may miss many true positive TFBSs. Two genes
were considered to have common cis-acting regulatory units if both had
binding sites of the same transcription factors annotated in their 10 kb up-
stream region.

Gene Ontology I investigated the similarities between the Gene Ontol-
ogy (GO) [53] annotations for pairs of genes. For each gene in the Fantom3
data, the GO annotations were obtained by using the Bioconductor pack-
age biomaRt [72] to query the Ensembl database [34](release 33, May 2005).
Only the most specific GO terms annotated for each gene were kept and
their ancestor terms1 were disregarded.
The similarity between GO annotations for a pair of genes was determined
as follows. Let T(gi) be the set of most specific GO terms annotated for
gene gi and |T(gi)| denote the cardinality of this set. Two genes gi and gj

were considered to have a similar GO annotation if

|T(gi) ∩ T(gj)| ≥ 0.5 ·min
(
|T(gi)|, |T(gj)|

)
, (2.1)

i.e. if 50% of the most specific GO terms of the gene with fewest such
annotated terms were also annotated for the other gene.

Protein domain information I also investigated the similarities between
the protein domain annotations for pairs of genes. For each gene in the

1See Section 1.6 in Chapter 1 for a description of the GO structure.
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Fantom3 data, the domain information for the encoded protein was ob-
tained, where available. I used the Bioconductor package biomaRt [72] to
query the Ensembl database (release 33, May 2005). Two genes were con-
sidered to have a similar domain annotation if at least 50% of the domains
of the gene with fewest domains annotated were also present in the pro-
tein of the other gene.

2.3 Results

2.3.1 Permutation scheme for estimating the null distribu-

tion of coexpression scores

I permuted the order of the TUs in the genome, while keeping the
actual positions at which TUs are located and the expression profile
of each TU across tissues fixed. More formally, given N ordered
identifiers of TUs Ψ = (ψ1, . . . , ψN) located at N ordered genomic lo-
cations Λ = (λ1, . . . , λN), the original mapping consists of the tuples
(ψi, λi), i ∈ [1, N]. In each permutation, a new set of locations Λ is con-
structed from Λ by randomly reordering the elements of Λ, and the per-
muted mapping consists of tuples (ψi, λi), i ∈ [1, N]. The mapping be-
tween the N identifiers and the N expression profiles, however, is the same
in the original data and in each permutation. The underlying null hypoth-
esis of this permutation scheme is that coexpression of genes within tissues
and across tissues is independent of the genes’ genomic location. By only
permuting their location, but keeping the genes’ identifiers, the number
of genes expressed in that tissue as well as coexpression patterns between
genes are preserved.

2.3.2 Chromosomal clustering of transcriptomes

We investigated the genomic organisation of 13 M. musculus tissue tran-
scriptomes that had been analysed in the Fantom3 project [69]. First, the
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scale of clustering of tissue-expressed genes along the genome was as-
sessed. A set of two or more adjacent genes that were expressed in a par-
ticular tissue was called a tissue coexpression cluster. 30-75% of the genes
expressed in each tissue were arranged in such clusters along the genome,
without any obvious prevalence for particular chromosomes. The clusters
consisted mainly of two or three genes.

To evaluate the significance of this observation, we compared the observed
number of genes expressed in clusters with the numbers seen in 10,000
permuted versions of the data (see above for the permutation scheme).
This permutation approach shows that while a large number of genes can
already be expected to be part of tissue coexpression clusters under the
null hypothesis, the observed number of clustered genes is significantly
larger. For 10 out of the 13 tissues, none of the 104 permutations showed a
greater or equal number of genes in such clusters. For instance, in the tis-
sue brain, there are 8, 214 genes in such clusters in the actual Fantom3 data,
while the 104 permuted versions of the data contain between 7, 714 and
8, 107 genes in such clusters. This observation corresponds to an empirical
p-value p < 10−4 for each of these 10 tissues; the p-values for the other
three tissues were 4 · 10−4 (diencephalon), 0.203 (lung) and 0.2954 (liver).

2.3.3 Evaluating coexpression across tissues

One-dimensional measure of coexpression

After preprocessing both data sets, Fantom3 and Symatlas, matrices X are
obtained with the rows holding the TUs and the columns holding the tis-
sues. These matrices are binary, with Xij = 1 if TU i is deemed to be
expressed in tissue j, and Xij = 0 otherwise. The expression profiles of
two adjacent TUs i and i + 1 are both binary vectors of equal length. An
obvious way to compare such vectors is the Hamming distance (HD) [73],
the number of positions in which the two binary vectors differ, i.e. the
number of tissues in which the two expression profiles differ.
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Figure 2.1: Fantom3: bar plot comparing observed Hamming distances between
the expression profiles of adjacent genes across tissues with the average Hamming
distances over 10,000 permutations of the gene order.

A probabilistic description of the HD The coexpression of a given
pair of genes across N tissues can also be described in terms of a
2× 2 contingency table.

Gene 1 expressed
0 1

Gene 2
expressed

0 v x
1 y z

with v + x + y + z = N.
Once this contingency table is filled in for a gene pair, the Hamming dis-
tance dH for this pair is given by

dH = N − v− z = x + y . (2.2)

I computed the Hamming distance for all pairs of adjacent genes in the
actual data and compared the observed distances to the ones obtained in
10, 000 permutations of the gene order. See Figure 2.1 for the bar plot. The
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observed Hamming distances tend to be smaller with the actual Fantom3
data than the average distances over 10, 000 permutations of the gene or-
der. A χ2 test also suggests rejection of the null hypothesis that the bin
frequencies of observed Hamming distances are consistent between the
actual data and the data with permuted gene order (p < 2.2 · 10−16, the
test statistic approximately follows a χ2

13 distribution under the null hy-
pothesis).

For pairs of highly coexpressed genes, the Hamming distance be-
tween their binary expression profiles is small. One shortcom-
ing of the Hamming distance for scoring coexpression, how-
ever, is that the reverse is not necessarily true, since the HD
completely disregards the actual expression of each TU across
tissues. Consider these two example pairs of adjacent TUs:
Pair I

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

TU Ia 0 1 1 1 1 1 1 1 1 1 1 1 1

TU Ib 0 1 1 1 1 1 1 1 1 1 1 1 0

Pair II

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

TU IIa 0 0 0 0 0 0 1 0 0 0 0 0 0

TU IIb 0 0 0 0 0 0 0 0 0 0 0 0 0

where T1. . .T13 indicate the 13 tissues of the Fantom3 data set. In both
pairs, the TU a is expressed in one more tissue than its neighbour TU b.
Thus, both pairs have a Hamming distance of 1. With pair I, however, one
of the TUs is expressed in 12 tissues and its partner is also expressed in 11
out of these 12 tissues. These two adjacent TUs can clearly be considered
to be highly coexpressed. In contrast, with pair II, the first TU is expressed
in a single tissue, while its neighbouring TU is not expressed in any tissue.
Even though, both pairs have an equally small Hamming distance of 1,
the TUs in the pairs show very different degrees of coexpression.

Scaled Hamming distance To get a more informative measure of the co-
expression of two genes, the observed Hamming distance is scaled by a
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Figure 2.2: Bar plot comparing observed scaled Hamming distances between
the expression profiles of neighbouring genes and average scaled Hamming dis-
tances over 10,000 permutations of the gene order in the Fantom3 data. The
scaled distances are binned into intervals, which are specified in the open inter-
val notation. For example, (0.1, 0.2] summarises all scaled HDs dSH, for which
0.1 < dSH ≤ 0.2.

factor that indicates the overall expression of the gene pair. The observed
HD is multiplied by the scaling factor 1/τ, where τ is the number of tissues
in which either one or both genes are expressed.
Considering the previously described 2 × 2 contingency table for coex-
pression of a pair of genes across tissues (page 27), the scaled Hamming
distance dSH for the a pair is computed as

dSH =
N − v− z

N − v
=

x + y
x + y + z

. (2.3)

The scaled Hamming distance dSH is a number between 0 and 1 with lower
numbers indicating higher degrees of coexpression. For pair I in the previ-
ous example, the distance is dSH = 1/12, and for pair II it is dSH = 1/1 = 1.
The scaled HD thus clarifies that pair I is highly coexpressed and that
pair II is not coexpressed at all.
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I computed the scaled Hamming distances for all pairs of adjacent genes
in actual data and compared them to the distances seen in the 10,000 per-
muted versions of the data (see Figure 2.2). The scaled HDs observed
on the Fantom3 data are smaller than the distances in the permuted ver-
sions of the data. A χ2 test also suggests rejection of the null hypoth-
esis that the bin frequencies of observed scaled Hamming distances are
consistent between the actual data and the data with permuted gene or-
der (p < 2.2 · 10−16, the test statistic approximately follows a χ2

10 distribu-
tion under the null hypothesis).

Nevertheless, the scaled HD does also not provide a satisfy-
ing resolution in quantifying the coexpression of gene pairs
across tissues. Consider the following two example pairs of TUs:
Pair III

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

TU IIIa 0 1 1 1 1 1 1 1 1 1 0 0 0

TU IIIb 0 0 0 0 1 1 1 1 1 1 1 1 1

Pair IV

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

TU IVa 0 0 0 0 0 1 1 0 0 0 0 0 0

TU IVb 0 0 0 0 0 0 1 0 0 0 0 0 0

where T1. . .T13 indicate the 13 tissues of the Fantom3 data set. Both pairs
III and IV have a scaled HD of 0.5, but while the TUs in pair III are
expressed in many tissues, and coexpressed in 6 tissues, pair IV consists
of two rarely expressed TUs, which are coexpressed in one single tissue.
Moreover, if one of the positive measurements of pair IV turns out to be a
False Positive the qualitative statement of the pairs’ coexpression changes
completely, while for pair III the coexpression statement is more solid.

I conclude that the Hamming distance, or a scaled version thereof, is not
an appropriate measure of gene coexpression. In fact, no one-dimensional
measure was found able to appropriately evaluate coexpression of adja-
cent TUs and also to distinguish between coexpressed tissue-specific TUs,
housekeeping gene pairs and silent gene pairs.
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A two-dimensional measure of coexpression

To quantify coexpression of a pair of genes in a set of n tissues, two co-
efficients are defined. Ω is the proportion of tissues in which either one
or both genes are expressed, and A is the proportion of tissues in which
both genes are expressed. Both coefficients are numbers between 0 and 1,
and A ≤ Ω. If A = Ω the two genes have an identical expression pat-
tern across tissues, while a small ratio A/Ω indicates that the two genes are
rarely coexpressed.

Considering the previously described 2 × 2 contingency table for coex-
pression of a pair of genes across tissues (page 27), these coefficients cor-
respond to

Ω =
x + y + z

N
(2.4)

and
A =

z
N

. (2.5)

Two thresholds Θcoex and Θunc to the ratio A/Ω were introduced for assign-
ing each pair of neighbouring TUs to one of the following coexpression
categories:

1. house-keeping, if A = 1

2. highly coexpressed, if A/Ω ≥ Θcoex and A < 1

3. uncorrelated, if A/Ω ≤ Θunc

4. silenced, if Ω = 0.

I computed these coefficients for each pair of adjacent genes in the Fan-
tom3 data and compared them to the values expected under the null
model.

Figure 2.3 shows the empirical p-values for each tuple (Ai, Ωj). The fre-
quency of each tuple in the Fantom3 data was compared with the tu-
ple’s frequencies in 10, 000 permuted versions of the data. For each tuple
(Ai, Ωj), the empirical p-value is given by the proportion of permutations
in which equally many or more gene pairs display this coexpression pat-
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Figure 2.3: Empirical p-values for numbers of gene pairs in Fantom3 transcrip-
tion data binned by general expression (A) and coexpression (Ω) over 13 tissues.
For each tuple/bin, the p-value indicates the proportion among 10,000 permuted
versions of the Fantom3 data, in which the frequency of this tuple was equal or
higher than in the actual Fantom3 data. Red and blue lines indicate the thresholds
on the ratio A/Ω for highly coexpressed and uncorrelated gene pairs, respectively.

tern (Ai, Ωj) as in the actual data. The distribution of the bivariate co-
expression measure (A, Ω) is non-random; certain tuples (Ai, Ωj) occur
more frequently in the genome than expected if coexpression were inde-
pendent of genomic location.

For the Fantom3 data, we set the thresholds Θcoex = 0.75 and Θunc =
0.5. These thresholds resulted in 3,230 highly coexpressed pairs (HCPs),
154 housekeeping pairs, 36 silenced pairs and 27,287 uncorrelated pairs
(UCPs). Figure 2.3 shows that the number of HCPs is larger than expected
under the null model. Similarly, there are more housekeeping pairs, and
more silenced pairs, than expected.
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2.3.4 Highly coexpressed clusters

As a generalised version of the highly coexpressed pair, a highly coex-
pressed cluster (HCC) is defined as a set of two or more neighbouring
genes, in which each consecutive pair of genes is considered to be a highly
coexpressed pair. It follows that a HCC of length 2 is the same as a HCP.
The majority of HCCs consist of two or three clustered genes (see Ta-
ble 2.1).

Genes in HCC 2 3 4 5 6 7
# such HCCs 2,155 359 74 27 3 2

Table 2.1: Numbers and lengths of observed highly coexpressed clusters
in the Fantom3 data. #: ’number of’.

2.3.5 HCPs and housekeeping functionality

It has been reported that housekeeping genes are often arranged in clusters
along the genome [64], and the same can be seen in the Fantom3 data. For
298 out of 1, 915 TUs that are expressed in all 13 tissues, the adjacent TU is
coexpressed in all tissues as well, which is a significantly higher number
than expected by chance (see Figure 2.3). The reverse, however, is not true:
most of our highly coexpressed pairs are expressed in nine or fewer of the
thirteen analysed tissues, indicating that highly coexpressed genes are not
necessarily housekeeping genes (see Figure 2.4).

2.3.6 Location, orientation, and dimension of HCCs

Highly coexpressed pairs were homogeneously distributed over all chro-
mosomes and chromosomal regions. Regarding the transcript pair ori-
entation (see Figure 1.1), the observed frequencies of divergent, conver-
gent and tandem transcript orientation were similar in HCPs and genomic
neighbour pairs in general. The intergenic distances and distances be-
tween the transcription start sites (TSSs) were computed for HCP and
compared with the respective distances for all pairs of genomic neigh-
bours. HCPs show smaller intergenic distances (median of 7,662 bp versus
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Figure 2.4: Histogram relating highly coexpressed gene pairs to the number of
investigated tissues (0 to 13) in which the genes of the pair are expressed.

18,665 bp for all pairs, p = 3 · 10−5, Wilcoxon Rank Sum Test) and smaller
distances between their TSSs (median of 28,781 bp versus 34,491 bp, p =
8 · 10−8, Wilcoxon Rank Sum Test).

Highly coexpressed clusters showed an upper bound in size. The exten-
sion of a cluster in base pairs is proportional to the number of coexpressed
genes in the cluster. For HCCs, we observed a maximal number of 7 genes
in a cluster, and the 95% quantile of the cluster extension was 320 kb, as
compared to 810 kb for clusters of uncorrelated genes (see Figure 2.5).

2.3.7 Functionality, paralogy and transcriptional regula-

tion of highly coexpressed gene clusters

The similarity in GO annotation, protein domain annotation and sharing
of TFBSs among pairs of adjacent genes were investigated. Pairs of highly
coexpressed genes were compared with all pairs of adjacent genes in the
Fantom3 data. Each analysis was limited to the genes annotated with Gene
Ontology terms (36% Fantom3 genes), protein domain information (42%)
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Figure 2.5: Scatter plot showing median and 95% quantile of the empirical dis-
tribution of the genomic extension (in base pairs) of a cluster versus the number
of genes in the cluster. These values are shown for highly coexpressed clusters
(HCC) and for clusters of uncorrelated, consecutive genes (UCC). The two lines
indicate the least-squares linear-regression fits for median and 95% quantile of
the extension of UCC.

or TFBSs (33%), respectively. Table 2.2 shows that the sharing of protein
domains and GO terms is slightly less frequent in HCPs than for genomic
neighbours in general, whereas sharing of common TFBSs occurs at a sim-
ilar rate.

To further investigate the relationship between coexpression and paralogy,
gene pairs that had highly similar protein domains but showed only weak
coexpression (in total 1,307 gene pairs) were examined. Among such pairs
were members of well-known gene families that have previously been de-
scribed to be clustered at certain genomic locations but to display tissue-
specific expression nonetheless. These included the family of S100-calcium
binding proteins [74].
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# annotated
pairs

% of neigh-
bour pairs
with similar
annotation

# annotated
HCPs

% of HCPs
with similar
annotations

GO terms 5,586 17.1 1,272 8.8
Protein
domains

7,335 18.1 1,567 10.8

TFBSs 4,800 27.4 770 29.7

Table 2.2: Functional and transcriptional properties of genomic neigh-
bours in M. musculus. Genomic neighbours irrespective of their coexpres-
sion share Gene Ontology (GO) terms and protein domains to a slightly
higher extent than do highly coexpressed gene pairs (HCPs), whereas a
similar number of both groups of neighbours are potentially regulated
by the same transcription factors through their respective binding sites
(TFBSs). The phrase ’pairs with similar annotation’ means ’pairs in which
the annotation of the partners is considered to be similar’. #: ’number of’.

2.3.8 H. sapiens microarray data

To verify that the observations from the Fantom3 data are not limited to
one single data set and organism, we repeated the analysis for the 79 tis-
sues in the Homo sapiens part of the GNF Symatlas data set [65].

These data include a greater variety of tissue transcriptomes than the Fan-
tom3 data. In particular, the Symatlas data includes a number of embry-
onic transcriptomes, which can be expected to show a small overlap with
adult tissue transcriptomes. To account for this increased variation of tran-
scriptomes, the thresholds for the definition of HCPs and UCPs were set
lower, namely Θcoex = 0.50 and Θunc = 0.33. These lower thresholds also
ameliorated the lower coverage and higher false negative rate that is to
be expected in the Symatlas microarray data as compared to the combi-
nation of sequencing and tag-based techniques of the Fantom3 data. One
indication of the lower coverage of the Symatlas data is that it contained
measurements for 19,358 TUs, while the Fantom3 data contains expression
information for 39,593 TUs. The transcriptome of H. sapiens, however, is
not expected to be half the size of the M. musculus transcriptome.

36



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ΩΩ

ΑΑ

house−keeping
highly co−expressed
uncorrelated

=0

<=0.01

<=0.05

<=0.1

<=1

p−value

Figure 2.6: Empirical p-values for numbers of gene pairs in GNF H. sapiens
expression data binned by general expression (A) and coexpression (Ω) over 79
tissues divided in 20 equal-sized bins. Red and blue lines indicate the thresholds
on the ratio A/Ω for highly coexpressed and uncorrelated gene pairs, respectively.

We repeated the complete analysis (Sections 2.3.2 – 2.3.7) using the Symat-
las data set and obtained very similar results. Figure 2.6 shows the em-
pirical p-values per expression/coexpression tuple. Very similar results
were also obtained with respect to the chromosomal clustering of genes
expressed in human tissues, the tissue distribution of observed HCCs as
well as for the relationship of functional similarity, paralogy and transcrip-
tional regulation. In agreement with the results on the Fantom3 data (see
Table 2.2), Table 2.3 shows for the H. sapiens Symatlas data that sharing
of protein domains and GO terms is slightly less frequent in HCP than in
genomic neighbours in general, whereas sharing of common TFBS occurs
at a similar rate.

We conclude that our observations on chromosomal clusters of coex-
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# annotated
pairs

% of neigh-
bour pairs
with similar
annotation

# annotated
HCPs

% of HCPs
with similar
annotations

GO terms 5,336 10.3 1,047 6.9
Protein
domains

5,511 13.3 1,066 9.9

TFBSs 3,174 20.4 600 20.2

Table 2.3: Functional and transcriptional properties of genomic neigh-
bours in H. sapiens. Genomic neighbours irrespective of their coexpres-
sion share GO terms and protein domains to a slightly higher extent than
highly coexpressed gene pairs (HCPs, coexpression as measured in the
GNF H. sapiens Symatlas data), whereas a similar number of both groups
of neighbours are potentially regulated by common transcription factors
through their respective binding sites (TFBSs).

pressed genes are not specific properties of the Fantom3 data set, or the
M. musculus transcriptome, and hypothesise that these observations may
more generally hold true for mammals.

2.4 Discussion

There is plenty of evidence that eukaryotic genes are ordered along the
genome in an organised manner. We focused on large-scale, qualitative
features of transcriptional regulation and considered a set of adjacent, co-
expressed genes to be a coexpressed gene cluster, irrespective of the quan-
titative expression levels of the genes. We analysed the M. musculus tran-
scriptome using the Fantom3 data set [69] and reproduced the results us-
ing H. sapiens microarray data (Novartis Symatlas [65]).

In tissue transcriptomes, large numbers of genes were found to be ex-
pressed in chromosomal clusters. Observations based on random permu-
tations of the gene order, however, suggested that only a subset of these
clusters might be actively transcriptionally coupled. The observed cluster-
ing also is an effect of crowding a given number of genes into a genomic
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region of fixed length.

I assessed the coexpression of gene clusters across tissues and observed
a significant proportion of highly coexpressed gene clusters (HCCs) and
a small number of housekeeping gene clusters. HCCs are characterised
by an upper limit on physical cluster size and on the number of genes
making up these clusters (see Figure 2.5), possibly due to the underlying
mechanism of coexpression. This finding may point to uncharacterised
cis-acting units regulating the coexpression of certain sets of genes. The
coupling of highly coexpressed clusters could be controlled by histone
modifications interacting with specific proteins that loosen or tighten the
chromatin structure. Histone-modifying enzymes can affect large chro-
mosomal regions, which are delimited by boundary elements [75, 64] and
possibly contain the coexpressed gene clusters. In contrast, uncorrelated
clusters may have emerged as a consequence of intervening genes be-
ing transcriptionally silenced, for example during cell differentiation. In
haematopoietic cells, it has been shown that the stem cells are charac-
terised by a mostly loose chromatin structure and each differentiation step
of the cells is accompanied by silencing of genes and tightening of the
chromatin structure in specific chromosomal regions [76]. Modifications
that affect chromatin structure can be stably inherited across cell division
by DNA methylation [77], slowly reversed by histone lysine methylation
or rapidly modulated by histone acetylation.

For S. cerevisiae, it has been reported that genes regulated by the same
sequence-specific transcription factor tend to be periodically spaced across
the genome [78]. Other reports suggest that transcriptional regulation de-
termines the organisation of genes in transcriptional units on the chromo-
some [79]. For example, target genes apparently regulated by the tran-
scription factor aire were shown to occur as clusters along the genome.
Nevertheless, aire sometimes had opposing effects on adjacent genes, up-
regulating one and down-regulating the other [80]. Our finding that
20–30% of all genomic neighbours show the same transcription factor
binding sites (TFBSs) in their upstream regions is in agreement with pre-
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vious reports. However, sharing of TFBSs does not necessarily result
in the coexpression of adjacent genes across tissues, as such sharing is
equally frequent in highly coexpressed neighbours and genomic neigh-
bours in general. Our focus on TFBSs that are conserved between H. sapi-
ens, M. musculus and Rattus norvegicus seemed reasonable at that time. Re-
cently, it has been reported that, while the binding motif is often conserved
between species, the exact position of the motif with respect to the TSS is
not [81]. In the light of this finding, we would probably not limit ourselves
to strongly conserved binding sites again.

Considering a broader definition of a gene clusters, irrespective of the
genes’ transcription rate, genes coding for proteins involved in the same
metabolic pathways have been reported to be arranged in clusters in all
eukaryotic genomes, albeit to a different degree [82]. Genes involved in
stable protein-protein complexes tend to be located on the same chromo-
some and to be closer to each other than expected by chance [83]. We
assessed paralogy and functional similarity as potential explanations for
the arrangement of genes in clusters. Previous reports have indicated co-
functionality of coexpressed gene clusters [54, 57, 84], without comparison
to co-functionality of genomic neighbours in general. Adjacent genes that
were highly coexpressed in the Fantom3 or Symatlas data were not found
to show a higher degree of co-functionality than genomic neighbours in
general. This unexpected finding might be due to the incompleteness of
the used annotation information (e.g., the Gene Ontology). Another pos-
sible explanation of this observation is provided by models of gene dupli-
cation where duplication leads to neofunctionalisation and subfunction-
alisation. Neofunctionalisation, in which duplicate genes have diverged
in function from the ancestral gene, can result in expression of the dupli-
cate genes in tissues lacking expression of the ancestral gene [85]. Sub-
functionalisation, on the other hand, can result in division of the ancestral
expression pattern onto the duplicates [86, 85].

The assignment of pairs of adjacent gene pairs into the categories “highly
coexpressed” and “uncorrelated” was based on arbitrary thresholds for
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the two-dimensional measure of coexpression. As the biological mech-
anisms for the co-transcription of adjacent genes are currently unknown
and the data might contain false-positive and false-negative expression
calls, a rigorous evaluation of these thresholds is difficult. Some pairs of
adjacent transcripts might have been miscategorised. However, the per-
mutation approach and the observations about genomic extent and size
of HCCs indicate that the chosen thresholds can be used for a meaningful
categorisation of the gene pairs.

We hypothesise that HCCs trace back to large-scale, persistent reorgan-
isations of the transcriptome, whilst TF regulation is likely to fine-tune
co-transcription on shorter time scales. At present, we can only speculate
on how transcriptional coupling of adjacent genes is brought about. Stud-
ies addressing the chromatin remodelling process and the factors involved
therein may provide insights into the underlying mechanism.

Contributions to this project

This study was conducted between May 2005 and March 2006. I designed
and performed the described bioinformatic analysis, except for the anal-
ysis on TFBS sharing between genomically adjacent genes. I wrote the
Methods part and most of the Results part of the publication [87] and con-
tributed to the interpretation of the results. Antje Purmann created the bi-
nary expression matrices and annotation tables for both data sets. Markus
Schüler performed the analysis of TFBSs shared by adjacent genes. Silke
Sperling conceived the study and wrote most of the biological introduc-
tion and discussion of results in the publication, excerpts of which I have
adopted in this chapter to put my methods and analyses into perspective.
Wolfgang Huber supervised my analyses. All authors contributed to the
publication [87].
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Chapter 3

Transcriptional regulation in
developing cardiomyocytes

The embryonic development of the mammalian heart has been well doc-
umented at the anatomical and morphological level, but the underlying
genetic regulation is poorly understood. A few key transcription factors
and chromatin modification processes are known to be crucial in heart cell
development, but the complete regulatory network of transcription factors
and epigenetic factors involved remains to be determined. I contributed to
a study in which ChIP-chip and expression microarray data were used to
investigate the influence of post-translational modifications of the histone
proteins and transcription factors (TFs) in the development of Mus mus-
culus heart and muscle cells. First, we investigated the presence of four
histone modifications and their relation to gene expression (see Section 3.1
and [88]). Second, we used ChIP-chip to determine the DNA binding sites
of four known key transcription factors (see Section 3.2).
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3.1 Histone modifications

3.1.1 Introduction

Post-translational histone modifications

Post-translational modifications of the histone proteins have been associ-
ated with changes in the transcription rate of genes from DNA adjacent to
the modified nucleosomes [14, 15]. (See Section 1.2.1 for an introduction
to histone modifications in transcriptional regulation.)

Distinct histone modifications have been suggested to act together, inas-
much as their combination determines the downstream effect on transcrip-
tion [17]. This “histone code” hypothesis is still under discussion. In par-
ticular, there has been no agreement on whether histone modifications are
working in combination to bring about transcription by recruiting specific
transcription factors [89] or if the combinations of modifications rather are
a consequence of active transcription [90, 91].

Liu et al. mapped 12 different types of histone H3 and H4 acetylation and
methylation in 0.5 Mb of the S. cerevisiae genome, using ChIP-chip with
single-nucleosome resolution. Some of the modifications were found to
be transcription-dependent, whilst the others seemed to be independent
of transcription [91].

A combination of one activating and one repressive histone modification
has been associated with reduced gene transcription [92]. This finding
could be explained by the histone code hypothesis, or simply by the fact
that the repressive modification is dominant.

We investigated four different histone modifications, which have all pre-
viously been associated with gene activation, for their combinatorial effect
on gene expression in three cell types. These modifications are two types
of acetylation of lysine residues, and di- and tri-methylation of one specific
lysine residue. Acetylation of lysine residues in the histone tails has been
observed to have an activating effect, which can be explained by a change
in charge. The addition of the acetyl group neutralises the positive charge
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of the lysine residue. The affinity of the histone protein to the negatively
charged backbone of the DNA is reduced, and the chromatin structure is
opened up [16]. The interplay between histone methylation and transcrip-
tional regulation seems to be more diverse, as some methylation types
have been associated with gene activation and others with gene repres-
sion, depending on which residues were being methylated and how many
methyl groups were added. However, the modifications that we analysed
(di- and tri-methylation of lysine 4 of histone H3) have been associated
with gene activation only [15, 93], although the di-methylated form has
also been observed near inactive genes in S. cerevisiae [15].

Previous approaches to the analysis of ChIP-chip for histone modifica-
tions

There are important differences between ChIP-chip against histone mod-
ifications and ChIP-chip against transcription factors. With transcription
factors, it is safe to assume that the majority of genomic regions will not
show a real binding site for that transcription factor. Hence, most reporters
on the microarray will not indicate true enrichment, at least not when the
tiling microarrays represent the whole genome or an unbiased subset of
the genome. This situation is beneficial for the data preprocessing and
for identifying ChIP-enriched regions, since most of the data can safely
be assumed to show non-enrichment. With histone modifications, on the
other hand, the degree and extent to which the genome shows a certain hi-
stone modification can only be guessed at the present time. This situation
make estimation of the background distribution of reporter levels under
non-enrichment difficult.

Moreover, transcription factor binding sites are highly localised point ef-
fects, meaning that the transcription factor binds at one specific position
directly or indirectly to the DNA and the signal will show a peak shape
around this position. The highest point of the signal peak will be as close
to the actual binding site as the reporter-tiling on the microarray allows
(see [94] for an extended discussion and for a derived model of TF ChIP-
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chip data). With histone modifications, the enzyme which modifies the
histone tail is unlikely to act on only one single histone protein, but will
modify a number of nearby histones. A single-nucleosome resolution
study of histone modifications in S. cerevisiae has shown that modifica-
tions occur in the form of broad modified domains and that adjacent nu-
cleosomes mostly share the same modifications [91].

Bernstein et al. [95] have mapped di- and tri-methylation of histone H3 ly-
sine 4 (H3K4me2/H3K4me3) and acetylation of histone H3 lysine 9 or ly-
sine 14 (H3ac1) across the non-repetitive regions of chromosome 21 and 22
in H. sapiens, using ChIP-chip on oligonucleotide tiling microarrays with
one 25mer reporter starting every 35 bp. To identify ChIP-enriched re-
gions, they used a sliding window approach. A 400 bp sliding window
was moved along the chromosome, and the authors tested whether the
preprocessed reporter levels within the window were higher in the ChIP
samples than in control DNA samples using a one-sided Wilcoxon rank
sum test. Positions with a p-value less than 10−4 (alternative hypothesis:
levels of reporters mapped inside the window are higher in the ChIP sam-
ples than in the control DNA samples) were considered to be enriched, and
enriched positions less than 200 bp apart were merged into ChIP-enriched
regions.

Liu et al. [91] conducted a ChIP-chip study for 12 different types of his-
tone H3 and H4 acetylation in S. cerevisiae. They used an oligonucleotide
microarray that tiled selected regions of the S. cerevisiae genome with one
reporter every 20 bp. This dense reporter tiling allowed the authors to
reach a single-nucleosome resolution. The positions of the nucleosomes
had been determined by the authors in a previous study. ChIP-chip lev-
els for each histone modification were summarised over the ∼ 7 reporters
per nucleosome. Nucleosome modification levels were then categorised
according to the positions of the nucleosomes relative to annotated ORFs
in the S. cerevisiae genome. For each type of histone modification, the nu-
cleosome modification levels in each positional category were compared

1H3ac is used as a summary term for H3K9ac and H3K14ac.
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with the levels in all other categories using two-tailed t-tests, and the re-
sulting p-values were corrected for multiple testing using a false discovery
rate (FDR) estimate [96].

Koch et al. [41] analysed histone modifications from ChIP-chip data in
1% of the human genome as part of the ENCODE project [97], using a
Hidden Markov model (HMM) [98] approach. The microarrays that Koch
and colleagues used, however, were cDNA arrays containing spotted PCR
products of about 1 kb length. The advantage of using an HMM for find-
ing ChIP-enriched regions, especially for finding possibly large regions
enriched for histone modifications, is that the autocorrelation in nearby
reporter match positions is modelled in the analysis. A large enriched
region would correspond to a sequence of observations showing an “en-
riched” hidden state in the Viterbi path. However, a fairly good idea about
the distributions of reporter levels in enriched and non-enriched regions is
required for the construction of an appropriate HMM for ChIP-chip data,
as the numbers of “non-enriched” and “enriched” hidden states and the
respective emission distributions have to be set.

Li et al. [99] also suggested an HMM approach for finding enriched regions
in ChIP-chip from high-resolution tiling microarrays and demonstrated its
use on a data set of p53 binding on H. sapiens chromosomes 21 and 22. The
authors used a two-state HMM and different normal distributions for the
emission probabilities of the two states.

3.1.2 Material and methods

We investigated the presence of four post-translational histone modifica-
tions using ChIP-chip on tiling microarrays. We also analysed gene ex-
pression microarray data for the relationship between histone modifica-
tions and transcript expression.
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Chromatin immunoprecipitation data

ChIP-chip experiments were performed using three different M. muscu-
lus cell types: undifferentiated and differentiated skeletal muscle cells
(cell line C2C12; I use the terms C2C12U for undifferentiated C2C12 cells
and C2C12D for differentiated C2C12 cells), and cardiomyocytes (cell
line HL1). Immunoprecipitation was performed with separate antibod-
ies recognising four different post-translational histone modifications: two
acetylation types, H3ac, which is histone H3 acetylated at lysine residues 9
and/or 14, and H4ac, which is histone H4 acetylated at lysine residues 5, 8,
12, and/or 16; and di- or tri-methylation of the lysine residue 4 of histone
H3, denoted H3K4me2 and H3K4me3. For each antibody and cell-line, the
whole ChIP-chip process was performed twice, resulting in two biological
replicates per antibody-cell-type combination and 24 samples in total.

Initially, we also had 6 ChIP samples, two per cell type, using an antibody
against Polymerase II. The resulting microarrays, however, showed strong
artifacts during quality assessment and we decided to exclude them from
further analysis.

Microarray design

ChIP microarray For this study, we used custom-designed oligonu-
cleotide microarrays from NimbleGen Systems. The reporters on the ChIP
microarrays were 50 nucleotides long. Human or mouse transcripts of
8,585 genes expressed in heart, skeletal or smooth muscle were selected
from several sources2. All supplied gene identifiers were mapped to the
Ensembl database (version 26). Human-mouse orthologs were identi-
fied and redundant entries were removed. Transcript coordinates corre-
sponded to those annotated in the mm5 assembly (NCBI build 33, May
2004) of the M. musculus genome.

Reporters were designed to match regions surrounding the transcription

2The sources included review publications of genes involved in muscle and heart
development, e.g., [100], and lists of genes considered to be expressed in H. sapiens or
M. musculus heart or muscle tissues in the Symatlas expression data [65]
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start sites (TSSs) of the transcripts. The regions were selected as follows3.
The human-mouse conserved non-coding blocks in the 5 kb region up-
stream of the TSSs and in the first intron up to 10 kb downstream of each
TSS were considered. If no such block with ≥ 10% sequence conservation
could be found for a transcript in the list, a fixed region extending from
2.2 kb upstream to 0.8 kb of the first intron was selected. Repeats in the se-
lected regions were masked and 50mer reporters covering the selected re-
gions were designed by NimbleGen Systems, with one reporter-matched
genomic position starting every 85 bp where possible. Note that this is
not a whole-genome tiling array, but rather it is similar to commercially
available promoter tiling arrays in which selected promoter regions are
densely tiled with reporters but the rest of the genome is not represented
on the array.

Expression microarray Reporters on the expression microarray were 24
nucleotides long. Gene identifiers of the 8,585 selected genes (see above)
were mapped to the Ensembl database (version 26), and all transcripts
annotated for these genes were retrieved. Each transcript was represented
on the expression microarray by 15 reporters.

Quality assessment

The first step of data analysis was a thorough quality assessment of the
raw microarray data. The chromatin immunoprecipitation process and
the hybridisation to the microarray are delicate processes, in which a num-
ber of artifacts can arise. First, I considered the spatial distribution of raw
reporter intensities. This visualisation can show artifacts that were intro-
duced if the array was mishandled, such as fingerprints, scratches, and
edge effects, or incorrectly scanned. The raw intensities are visualised ac-
cording to the position of the reporters on the microarray surface. The
colour of the reporter-wise dots represents the raw intensity. One expects

3Steffen Grossman and Silke Sperling from the Max Planck Institute for Molecular
Genetics in Berlin, Germany, decided which regions should be represented on the micro-
array and designed the microarray in collaboration with NimbleGen Systems.
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a more or less homogeneous distribution of low and high intensities across
the whole microarray surface. Regions with predominantly low or high
intensities can arise due to hybridisation artifacts, such as for example fin-
gerprints on the array surface.

Another quality assessment step was to assess the similarity of raw re-
porter intensities between microarrays. With our ChIP-chip data, within
each cell type, all microarrays had a comparable input sample in the Cy3
channel, the untreated genomic DNA from cells of the same cell type.
Thus, between all the arrays of one cell type, the raw Cy3 reporter inten-
sities would show a strong correlation. In the microarrays that we finally
used in the analysis, I observed Pearson correlation coefficients of 0.73 to
0.91 between the input samples.

Another factor that should be checked at this stage is whether the anti-
body has led to any enrichment. Functional antibodies should lead to
some points lying above the diagonal in the scatter plot of ChIP reporter
intensities versus input intensities [101]. Moreover, when positive control
regions are visualised (see page 136), a possibly noise enrichment signal
should already be obvious in the raw data. Positive control regions are
genomic regions in which ChIP enrichment is to be expected a priori. If
negative control regions are also known, a preliminary assessment of the
antibody’s specificity is possible as well. We did not have any control re-
gions, but exploratory visualisations of the raw data indicated that specific
enrichment was present.

ChIP array reporter remapping

The microarrays had been designed based on the mm5 assembly of the
M. musculus genome, which was an incomplete draft assembly. I used the
Blast-like alignment tool BLAT [102] to re-map the reporters to the mm8
assembly (NCBI build 36, February 2006), then the current draft of the
genome (in March 2006). In the re-mapping step, I allowed for one mis-
match per 50mer reporter. The implicit assumption is that if 49 out of 50
nucleotides are complementary that would be sufficient for hybridisation.
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I did not consider a more complex hybridisation model, in which the posi-
tion of the mismatch in the reporter sequence and its impact on secondary
structure formation are taken into account. Reporters were mapped to
389,918 genomic positions of the mm8 assembly. These positions are dis-
persed over 16,882 genome stretches that are covered by five or more re-
porters which uniquely match inside that stretch and have an offset be-
tween their matches’ start positions of ≤ 100 bp, mostly exactly 85 bp, as
intended in the array design for mm5.

ChIP microarray preprocessing

Intensities of each channel were normalised and glog-transformed4 us-
ing the vsn method [25]. One common assumption of most normalisation
methods, including vsn, is that the variation of most reporter levels does
not reflect biological variation between samples/conditions (input, ChIP)
but is non-biological variation, e.g., due to differences in sample process-
ing and hybridisation. This assumption probably does not hold in this
case, especially since the fraction of histones bearing post-translational
modifications cannot safely be assumed to be small. The vsn normalisa-
tion was still useful to reduce unspecific errors in reporter measurements.
However, it cannot be excluded that while the vsn certainly increased the
signal-to-noise ratio, the vsn may also have masked weak ChIP enrich-
ment. Log-ratio enrichment levels for each reporter were calculated by
subtracting the preprocessed Cy3 (input) levels from Cy5 (ChIP) levels,
which were both reported on a log scale by vsn.

Expression array reporter remapping

The reporters were mapped to the mouse genome assembly mm8 using
BLAT [102], allowing up to one mismatch per 24mer reporter. Only re-
porters that uniquely matched one segment of 23 or 24 nucleotides in
the M. musculus genome and that were mapped within the boundaries of

4glog∆(x) = log
(

x +
√

x2 + ∆
)
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Figure 3.1: Bar plot showing how many reporters were mapped within the bound-
aries of each of the 11,865 M. musculus transcripts annotated in the Ensembl
database (version 39) that had at least one reporter mapped inside. #: ”number
of”.

any transcript annotated in the Ensembl database (version 39, June 2006)
were further analysed. 11,865 transcripts had at least one reporter mapped
within their boundaries, the majority of which (8,130) had 15 or more re-
porters mapped to them (see Figure 3.1). Alternative transcripts of the
same gene were allowed to share reporters.

Expression array data preprocessing

Transcript expression levels were computed from raw reporters intensities
using the robust multiarray analysis (RMA) method [24]: raw intensities
were background-corrected by subtracting a global background estimate,
quantile normalised, log-transformed (base 2) and summarised into tran-
script expression levels using the median polish procedure.
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Identification of ChIP-enriched regions

To identify genomic regions in which the histones bear one or more of the
four investigated modifications (H4ac, H3ac, H3K4me2, H3K4me3), we
employed a three-step procedure:

1. smoothing reporter levels using a sliding-window approach

2. determining a threshold above which smoothed reporter levels
should indicate enrichment at that genomic position

3. combining adjacent enriched positions into ChIP-enriched regions.

Smoothing of reporter levels Individual reporters measure the same
amount of DNA with varying efficiency due to reporter sequence
characteristics, such as GC content, secondary structure, and cross-
hybridisation [103]. Normalised reporter levels were averaged across the
two biological replicates and smoothed along chromosomal coordinates
using a sliding-window method. To ameliorate the reporter effects as well
as the stochastic noise, I performed a smoothing over individual reporter
intensities before looking for ChIP-enriched regions. A window of 800 bp
width was slid along each chromosome and the intensity at each reporter-
matched genomic position x0 was replaced by the median over the inten-
sities of those reporters inside the window centred at x0. Factors taken
into account in the choice of the sliding-window width were the size dis-
tribution of DNA fragments after sonication (600–1200 bp, mean: 900 bp)
and the spacing between reporter matches on the genome (median: 86 bp,
first quartile: 84 bp, third quartile: 216 bp). We chose a window-width of
800 bp, which was slightly less than the average fragment size and meant
that most windows included >= 4 reporters. With this window width,
we could be sure that the signal is not smoothed over many fragments
and was calculated as the median over at least four reporters. At any posi-
tion x0 at which the window comprised less than three reporter-matched
positions, the smoothed level was flagged as missing, as the data were
insufficient to provide information about ChIP enrichment at such a posi-
tion.
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Enrichment threshold As threshold for enrichment, we took a high quan-
tile of a simulated distribution of smoothed reporter levels under non-
enrichment. We permuted the reporter-matched genomic positions and
repeated the smoothing procedure on the preprocessed reporter levels
with the permuted positions. The 99% quantile of this estimated, empiri-
cal “null” distribution of smoothed reporter levels made up the threshold
for each antibody. Note that this 99% quantile was an arbitrary choice
and was not used for assessing significance of determined ChIP-enriched
regions. To allow for different efficiencies of antibodies, a threshold was
defined for each type of histone modification separately.

Combining enriched positions into ChIP-enriched regions We called a
reporter-matched position enriched if it had a smoothed reporter level
greater than the threshold. Enriched positions were merged into regions
using an agglomerative approach. Initially, each position was considered
to be an individual region. Two regions ri and rj were combined into
a single region if any enriched position in ri was less than 600 bp apart
from any enriched position in rj. This procedure corresponds to the single-
linkage agglomeration method in hierarchical clustering. ChIP-enriched
regions containing fewer than three reporter-mapped positions were dis-
carded. To require such a minimum number of enriched positions might
at first seem redundant with the smoothing median computation (since a
smoothed reporter intensity is already the median of all the reporter in-
tensities in the window), but it plays an important role in reporter-sparse
regions, where a window might only contain one, or a few reporters, and
we wanted to avoid making calls in such regions.

Co-occurrence of ChIP-enriched regions with different modifications

Two ChIP-enriched regions ri,h1 and rj,h2 , which were enriched for different
histone modifications, were considered to be co-occurring if

length
(
ri,h1 ∩ rj,h2

)
≥ 0.75 ·min

(
length(ri,h1), length(rj,h2)

)
(3.1)
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Code Histone modifications for which such
a region shows enrichment

H3ac histone H3 acetylated at lysine residues
9 and/or 13

H3K4me2 histone H3 di-methylated at lysine resi-
due 4

H3K4me3 histone H3 tri-methylated at lysine resi-
due 4

H4ac histone H4 acetylated at lysine residues
5, 8, 12, and/or 16

H3acK4me2 H3ac & H3K4me2
H3acK4me3 H3ac & H3K4me3
H3acK4me2/3 H3ac & H3K4me2 & H3K4me3
H4ac-H3ac H4ac & H3ac
H4ac-H3acK4me2 H4ac & H3ac & H3K4me2
H4ac-H3acK4me3 H4ac & H3ac & H3K4me3
H4ac-H3acK4me2/3 H4ac & H3ac & H3K4me2 & H3K4me3

Table 3.1: Codes used to indicate from which kinds of ChIP-enriched re-
gions combined enriched regions were constructed.

where “∩” denotes region intersection. Thus, the two regions were con-
sidered to be co-occurring if 75% or more of the shorter of the two regions
(in terms of base pairs) was also included in the longer of the two regions.
The two co-occurring regions were merged into a combined region with
start and end being the extremal positions of the two co-occurring regions.
Other regions could in turn co-occur with the combined region and be in-
cluded into a larger combined region, and so on.

Thus, we obtained all (combined) genomic regions enriched by ChIP with
any combination of the four histone modifications. We used a coding
scheme to indicate the combination of the four antibodies (see Table 3.1).

Relating ChIP-enriched regions to transcript expression

A ChIP-enriched region was considered to be associated to a transcript
if its centre position was located less than 10 kb upstream of the TSS, or
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between the TSS and the 3’ end of the transcript. A region could be as-
sociated to more than one transcript, for example in the case of nearby
alternative transcripts of the same gene or other tandem, convergent or
divergent transcripts (see Figure 1.1).

Transcripts for which we had expression levels measured on the microar-
ray were stratified into categories depending on to what kind(s) of (com-
bined) ChIP-enriched regions they were associated to. Transcripts without
any associated region were assigned to a separate category. I compared the
expression levels between categories in a formal way using a linear model
that related the presence or absence of histone modifications to transcript
expression levels.

Software

The computational analysis of the data was performed in R, using my soft-
ware package Ringo (see Section 5.2) and other Bioconductor [104] pack-
ages.

3.1.3 Results

First I performed an extensive quality assessment of the data and per-
formed a preprocessing step to increase the signal-to-noise ratio in the
data. During the quality assessment step, I observed a number of prob-
lematic microarrays that showed hybridisation artifacts5. See Figure 3.2
for an example picture of one microarray that showed hybridisation arti-
facts. The bright rim on the picture suggests that all reporters near the rim
of the array display very high raw intensities, which is probably due to
mishandling of the microarray rather than due to biological effects. The
second artifact is the wave pattern on the surface. This effect is known
as a Moiré pattern in image processing and emerged during the scanning
process of the microarray.

5Hybridisation and scanning of the microarrays were conducted by employees of
NimbleGen Systems. We had no influence on these steps.
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Figure 3.2: This picture shows the spatial distribution of raw reporter intensities
of one example microarray that shows two artifacts. Coordinates in the picture
correspond to coordinates on the surface of the microarray. The colour of the dots
represents the value of the raw reporter intensity, with brighter shades of green
corresponding to higher intensities. For well-hybridised microarrays, a homoge-
neous picture can be expected. Here, the bright rim of the array and the wave-
like patterning are artifacts introduced during hybridisation and scanning of the
microarray.

After communication with the microarray manufacturer, the hybridis-
ations of most below-standard microarrays were redone. Almost all
of the new hybridisations resulted in microarrays of acceptable quality.
However, for the ChIP-chip experiments with the antibody against Poly-
merase II, we did not receive acceptable replacement microarrays and
therefore decided to drop these experiments from the study.

I applied a custom heuristic algorithm (Section 3.1.2, page 52) for the de-
tection of modified histone sites in the ChIP-chip data, and hence obtained
the positions and co-occurrence of ChIP enriched regions for the four his-
tone modifications in each of the three cell types (HL1, C2C12U, C2C12D).
The number of ChIP-enriched regions for each type of histone modifica-
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Figure 3.3: Normalised reporter levels at the TSS of the gene Hand2 in HL1 and
C2C12U cells. The brighter lines correspond to the four histone modifications in
HL1 cells, the darker ones to the histone modifications in undifferentiated C2C12
cells. The ticks below the genomic coordinate axis on top indicate genomic posi-
tions matched by reporters on the microarray. The blue arrows on the bottom mark
the Hand2 gene with the arrow direction indicating its transcription direction,
i.e. the gene is located on the Watson strand.

tion was similar in all three cell lines (see Table 3.2), although the genomic
positions of ChIP-enriched regions varied between cell types. To illus-
trate, Figure 3.3 shows one example genome region which is enriched for
all four histone modifications in HL1 cells, but shows no enrichment in
undifferentiated (and differentiated) skeletal muscle cells. This genome
region contains the TSS of the gene Hand2, which is a transcription factor

Modification HL1 C2C12U C2C12D
H4ac 2,657 2,682 2,802
H3ac 2,950 2,765 2,982
H3K4me2 3,087 2,999 2,940
H3K4me3 3,051 3,195 3,260

Table 3.2: Frequency of ChIP-enriched regions for the four histone modi-
fications in the three investigated cell types.
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Figure 3.4: This figure displays the 5,992 modified regions discovered in HL1
cells (x-axis) and which combinations of histone modifications are enriched in
these regions (y-axis). Dark-blue indicates that a histone modification is enriched
in a region, white indicates it is not. The regions are ordered by the frequency of
the combination among all modified regions.

that is required for the development of the right heart ventricle [105, 100].

We saw that the ChIP-enriched regions of the four histone modifications
frequently co-occurred, i.e. showed an overlap of more than 75% of
their genomic width (Section 3.1.2, page 53). Such combined enriched
regions of overlapping ChIP-enriched regions from single histone modi-
fications were classified according to the combination of histone modifica-
tions (see Table 3.1 for the class labels). For the sake of consistency, ChIP-
enriched regions for each modification that showed less than 75% overlap
(or no overlap at all) with any ChIP-enriched regions of other modifica-
tions, were grouped into four single-modification classes. Thus, the 11,745
ChIP-enriched regions of the four individual histone modifications were
merged into 5,992 modified regions in HL1 cells; 6,202 in C2C12U; 6,125
in C2C12D. Figure 3.4 shows all the combined regions for the HL1 cells.
The regions are grouped by classes and the classes are ordered according
to the size of the class among all combined regions. The most common
type are regions that only show enrichment for H4ac (1,295 regions), fol-
lowed by combined regions of class H3acK4me2/3, i.e. regions that show
co-occurrence of the three analysed modifications of histone H3 (1,181 re-
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gions).

I assessed the relationship between histone modifications upstream and
within transcripts, and the expression of these transcripts, in detail using
the expression microarray data from the three cell lines.

Histone modifications should be considered in combination rather than
individually in order to get a precise description of the association be-
tween histone modifications and transcription. Tri-methylation of lysine
4 of histone H3 (H3K4me3) has previously been reported to coincide with
elevated transcript levels [106], but in our data we saw that this in not
the case if some histones in that genomic stretch were only di-methylated
at that residue. Acetylation of histone H3 residues is a far more reliable
marker for increased transcription (see Figure 3.5). These relations were
highly similar in all three cell types.

A more formal approach was required to assess the relation between his-
tone modifications and transcript expression.

Linear model: transcript expression related to histone modifications

I employed a linear model relating the absolute expression level of every
transcript to cell type, presence of associated ChIP-enriched regions for
each histone modification, median reporter GC content and interactions
between the histone modification terms. The model (in S-plus/R formula
notation):

y ~ H3ac + H4ac + H3K4me2 + H3K4me3

+ GC + cell.type + H3ac:H4ac + H4ac:H3K4me2

+ H4ac:H3K4me3 + H4ac:H3K4me2:H3K4me3

+ H3ac:H4ac:H3K4me2 + H3ac:H4ac:H3K4me3

+ H3ac:H4ac:H3K4me2:H3K4me3 + H3ac:H3K4me2:H3K4me3

+ H3ac:H3K4me2 + H3ac:H3K4me3 + H3K4me2:H3K4me3

where
y: log2 expression level of transcript in cell line
H3ac: indicator variable for transcript’s associated modification H3ac; it is
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Figure 3.5: Relationship between histone modifications and expression. The
boxes show the quartiles of the empirical distributions of expression levels for
the transcript categories. The lower and upper border indicate the first and third
quartile, respectively, and the bold line in the middle of each box marks the me-
dian. Transcripts were categorised according to which (combination) of histone
modification(s) had been associated to them. (a) When the four modifications are
considered independently of each other, they are similarly associated with ele-
vated expression levels compared to the no-modification group. (b) When con-
sidered in combination, we see different associations. H3ac combined with the
other three modifications shows comparatively lower transcript levels than H3ac
alone. Transcripts that are associated to H3K4me3 and H3K4me2 in combination
and H3K4me2 alone show no elevated expression levels.

1 if at least one ChIP-enriched region for H3ac is associated to the tran-
script, 0 otherwise.
H4ac, H3K4me2, H3K4me3 : analogous to H3ac
GC : median GC content (in percent) of the reporters on the expression
microarray that had been mapped to transcript
cell.type : factor variable, one of “C2C12U”, “C2C12D” or “HL1”
and the expression “A:B” denotes the interaction term between predictors
A and B.

The function lm of R (version 2.4) was used to fit the model. Ta-
ble 3.3 shows the resulting coefficients of the model and an assessment
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of whether these are significantly different from zero. The table also spec-
ifies for each predictor variable the coefficient estimate, its standard error
and the p-value for the null hypothesis that the coefficient is equal to 0
(two-tailed one-sample t-test, alternative hypothesis: the coefficient is dif-
ferent from 0). The p-values were corrected for multiple testing using the
Bonferroni correction method [107].

Term
Esti- Std. t-value p-value Sig.
mate error

Intercept 4.26 0.06 76.24 < 2 · 10−16 ?

H3ac 0.58 0.05 11.07 < 2 · 10−16 ?

H4ac 0.38 0.03 13.28 < 2 · 10−16 ?

H3K4me2 0.06 0.05 1.19 1
H3K4me3 0.39 0.04 9.01 < 2 · 10−16 ?

GC 8.22 0.02 75.22 < 2 · 10−16 ?

cell.type.C2C12U -0.02 0.02 -0.99 1
cell.type.C2C12D 0 0.02 -0.25 1
H3ac:H4ac -0.23 0.10 -2.34 0.37
H4ac:H3K4me2 0.08 0.09 0.93 0.35
H4ac:H3K4me3 -0.33 0.09 -4.44 0.0031 ?

H3ac:H3K4me2 -0.23 0.11 -2.09 0.7
H3ac:H3K4me3 -0.37 0.11 -3.11 1.7 · 10−4 ?

H3K4me2:H3K4me3 -0.33 0.08 -4.10 7.9 · 10−4 ?

H4ac:H3K4me2:H3K4me3 0.05 0.15 0.31 1
H3ac:H4ac:H3K4me2 -0.11 0.18 -0.63 1
H3ac:H4ac:H3K4me3 0.24 0.16 2.33 0.38
H3ac:H3K4me2:H3K4me3 0.46 0.14 3.40 0.013 ?

H3ac:H4ac:H3K4me2:H3K4me3 -0.08 0.23 -0.33 1

Table 3.3: Coefficients of the linear model that relates transcript expression to
presence/absence of histone modifications according to our ChIP-chip data. For
an explanation of the predictors, see Section 3.1.3. The column “Sig.” indicates
predictors that are significantly different from 0 according to the model by ?. p-
values have been corrected for multiple testing using the Bonferroni procedure.
Std.:”Standard”.

The intercept, and the predictors for H4ac, H3ac and H3K4me3 are signif-
icantly different from zero, as are a number of interaction terms between
modifications. The median GC content of each transcript’s reporters on
the expression microarray has a significant positive effect on the measured
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transcript expression level. Cell type is not deemed to be a significant pre-
dictor in the model.

3.1.4 Discussion

We analysed ChIP-chip data for four histone modifications: acetylation of
lysine residues in histones H3 and H4 and di-/tri-methylation of lysine re-
sidue 4 of histone H3. ChIP enrichment for these modifications was mea-
sured in three cell types, using a custom developed two-channel oligonu-
cleotide microarray. The reporters on the microarray represented selected
regions surrounding the TSSs of known muscle- and heart-specific genes.
We investigated the relation of regions that showed enrichments for these
modifications to annotated transcripts and the expression levels of these
transcripts. Transcript expression levels were measured using expression
microarrays of another custom design.

One caveat about using expression microarrays for this purpose is that
the arrays did not directly measure the quantity that we were interested
in, i.e. the transcription rate of genes related to ChIP-enriched regions.
Expression microarrays measure the mRNA steady-state levels, which
strongly depend on the mRNA transcription rates, but are also influenced
by the mRNA degradation rates [108]. Initially, we had also intended to
measure the occupancy levels of Polymerase II (Pol II) in the transcribed
regions with ChIP-chip, as these are suggested to provide a better esti-
mate of the actual transcription rate than expression microarrays can pro-
vide [91]. However, the respective ChIP-chip microarrays with the Pol II
samples were found to show serious artifacts from the hybridisation, and
were therefore excluded from further analyses.

The other microarrays partially showed artifacts as well, but the microar-
ray manufacturer provided us with replacement hybridisations of accept-
able quality in those cases. Microarrays may be an established technology
by now, but this example shows that thorough quality assessment is still
mandatory. The sample purification, hybridisation and scanning of the
microarrays are such delicate processes that even microarrays generated
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by dedicated specialists, as in our case, can show serious artifacts. Such
artifacts lead to biologically irrelevant findings from microarray studies, if
not properly accounted for. The results from ChIP-chip studies are meant
to generate hypotheses that need to be validated in more accurate, small-
scale experiments. To avoid wasting time on testing inaccurate hypotheses
that are due to artifacts in the data, concise quality assessment of the data
is required, before searching for ChIP-enriched regions.

We developed a heuristic algorithm for finding genomic regions enriched
for histone modifications. This algorithm provides an estimated thresh-
old, above which smoothed reporter levels are considered to be enriched.
The threshold is estimated in a three-step procedure: the reporter match
positions for each chromosome are permuted at random; the levels of the
permuted reporters are smoothed using the same sliding-window method
as for the original levels; finally the threshold for enrichment is set equal
to a chosen quantile of the distribution of smoothed reporter levels after
permutation. This algorithm worked well for the ChIP-chip data in this
study. However, the algorithm would have to be tuned to allow detection
of histone modified sites in other ChIP-chip data with high sensitivity and
specificity. In Section 5.2, I describe a more generally applicable algorithm.

We did not perform a straightforward Wilcoxon rank sum test to com-
pare ChIP and input reporter levels in a sliding window, as done by Bern-
stein et al. (see Section 3.1.1) to find ChIP-enriched regions for two rea-
sons. First, with only two ChIP samples per modification and an average
reporter spacing of ≥ 85 bp, the test would have low power unless a win-
dow of large size was used. Second, one assumption for getting meaning-
ful p-values with the Wilcoxon rank sum test is that all orderings of the
ranks are equally likely. However, levels of reporters with adjacent ge-
nomic match positions cannot be considered to be independently identi-
cally distributed, since sample DNA fragments after sonication are longer
than the distance between the positions. Hence, not all rankings of re-
porter levels are equally likely with ChIP-chip data and thus the p-values
of the Wilcoxon test are not meaningful.
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The algorithm used does not make strong assumptions about the data,
besides smoothed levels in ChIP-enriched regions being stochastically
larger6 than the smoothed levels in non-enriched regions and enriched re-
gions encompassing a certain number of nearby reporter match positions.
Our heuristic algorithm is simpler than an HMM method. An HMM ap-
proach (see Section 3.1.1) would have required further assumptions about
the distributions of reporter levels in enriched and non-enriched regions
and about how many ChIP enrichment states there are for histone modifi-
cation. If these assumptions are appropriately stated, however, the HMM
may be more powerful in detecting enrichments.

Unlike the data of Liu et al. [91], our ChIP-chip data did not have a single-
nucleosome resolution, so our findings might partly be due to aggregate
signals over two or more nucleosomes. However, Liu et al. [91] have stated
that the modification patterns occur as broad regions and rarely differ be-
tween adjacent nucleosomes. The resolution of the microarrays that we
used is approximately one reporter every 85 bp (in most regions). Thus,
only a small part of our findings could be due to inappropriate averaging
over many nucleosomes.

ChIP-enriched regions of the four histone modifications were frequently
found to co-occur (Figure 3.4) in the same genomic positions. Whether
two regions were considered to be co-occurring was based on the arbi-
trary requirement that the two regions needed to overlap to at least 75%
of their genomic width. However, which fractions of the whole chromatin
are marked by each histone modification is currently unknown, and thus
an appropriate null model for the overlap of histone modifications cannot
be formulated. If such a model existed, more meaningful requirements for
region overlap could be derived from it.

Our results indicate that histone modifications form a combinatorial code,
in the sense that different combinations lead to distinct outcomes with re-
spect to observed expression levels. Individual modifications were found

6A random variable X is said to be stochastically larger than the random variable Y, if
their cumulative distribution functions FX(x), FY(y) satisfy the inequality FX(a) ≥ FY(a)
for all a and there exists at least one a0, for which FX(a0) > FY(a0).
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to be approximately equally associated with higher transcript levels, as
previously reported. However, when transcripts are stratified by co-
occurrence of the measured histone modifications in their upstream or
downstream regions, certain combinations were found to be associated
with higher expression levels, while other combinations were not related
to an increase in expression at all.

In a more formal approach, I analysed the effect of each histone modifi-
cation on transcript expression levels, using a linear model (Section 3.1.3).
The cell type, in which the expression level has been measured, and the
median GC content of each transcript’s reporters were additional predic-
tors in the model. The coefficients of the model suggest an interpretation
that is in line with the previous results. Of the four modifications, pres-
ence of H4ac, H3ac and H3K4me3 seem to have a significant and positive
effect on gene expression, while by itself H3K4me2 is not associated with
changes in expression rate. Moreover, the fact that a number of interaction
terms between the modifications are significantly different from zero indi-
cates that the combination of present modifications need to be considered
for a clear description of the association between histone modifications
and gene expression. In combination with other modifications, H3K4me2
can also have a significant association with transcript expression.

The significant effect of the GC content indicates that this reporter-specific
effect has not been cancelled out during the summarisation of reporter
levels into transcript levels. However, due to the required remapping of
reporters to the newer genome assembly, transcripts are represented by a
variable number of reporters per transcript. Thus all transcripts’ reporters
cannot be expected to show an equal range of GC proportions. Therefore,
the median GC content should be taken into account as a predictor in the
transcript expression level, and the model indicates this significant effect.
A model that excludes the reporter GC would be less able to explain the
expression data.

The highly significant intercept is to be expected, since there certainly are
other unobserved factors apart from the four analysed histone modifica-
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tions that influence the expression levels of the transcripts, which the in-
tercept summarises. These unobserved factors likely include other histone
modifications, transcription factors, further epigenetic factors, the decay
rate of the transcripts’ mRNAs, and the availability of nucleotides and en-
ergy for the transcription process. Since the expression levels are specified
on a logarithmic scale, the intercept may also contain any factors of pro-
portionality between the predictors and the expression level7.The fact that
the cell line variable was not deemed to be a significant predictor in the
model indicated that the associations of histone modifications to transcript
expression level are comparable in the three analysed cell types.

Our findings about the four observed histone modifications agree with the
histone code hypothesis [17], as long as we agree to a rather lenient defini-
tion of the word “code”. For a strict definition of a code being a set of rules
for converting one form of information into another form or representa-
tion, neither all of the rules nor all components of the input information
are known yet. Thus it remains to be seen whether such a histone code
does exist.

Histone modifications may primarily function as signalling markers
for specific effectors, and thus increase the combinatorial possibilities
amongst many such markers in the regulation of transcription. The four
analysed modifications are only a subset of all currently known histone
tail modifications (see [13] for a recent review), and thus these findings
may only represent a piece of the puzzle. A more complete understand-
ing of the role of histone modifications in transcriptional regulation will
only emerge once the interactions of multiple modifications haven been
considered in detail. In addition, enzymes that modify histone tails are
known to have other, non-histone substrates as well. For example, the en-
zyme SETD7 (SET9), which can methylate histone H3 at lysine 4, was also
shown to methylate P53 [109]. Hence, observed associations between his-
tone modifications and gene activation or repression could at least partly
be byproducts of the effect on these other targets rather than the histone

7since log2(c · x) = log2(c) + log2(x)
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modifications being directly involved in gene activation.

Without further experiments, we cannot say what the relationship is be-
tween the observed histone modifications in genomic regions and the
chromatin structure of that region. Recent reports suggest that the same
modification state can have opposite functional results, depending on
which proteins bind to the modified histones. H3K4me3 and H34me2
can be recognised by both BPTF and ING2. BPTF is part of the NURF
chromatin-remodelling complex that activates transcription [110]. In con-
trast, ING2, which is part of a deacetylase transcription repressor complex,
can also bind to H3K4me3 and H3K4me2 [111].

Post-translational histone modifications are certainly not the single deter-
minant of chromatin structure formation. For example, nucleosomes that
contain variant histone proteins in place of standard histone proteins, such
as H3.3 in place of H3, are seen in characteristic locations with respect
to actively transcribed regions, indicating that these may be involved in
modifying the chromatin structure [112]. There are indications that the
histone variants are mainly responsible for inheritance of gene activation
status and histone modifications through cell division (reviewed in [113]).
Accordingly histone variants would seem to be more important in the hi-
erarchy of transcriptional regulation than histone modifications.

Further results of this study can be found in [88].

3.2 Transcription factor binding events

3.2.1 Introduction

Subsequent to the ChIP-chip study of histone modifications, we analysed
the binding events of four transcription factors in the M. musculus car-
diomyocyte cell line HL1. The four transcription factors, GATA4, MEF2A,
NKX2.5, and SRF, are all known to be involved in different stages of heart
development [100, 114].
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MEF2A is a member of the myocyte enhancer factor MEF family of transcrip-
tion factors that has been associated with the differentiation of all muscle
cell types [100], but has also been found to be involved in post-synaptic
differentiation in the brain [115]. NKX2.5 has been described as a cardiac
transcription factor and its expression was found to be crucial for the de-
velopment of the heart’s conduction system [116, 100]. GATA4 is a mem-
ber of a family of zinc finger transcription factors that bind a core GATA
motif and are expressed during development in the heart and tissues de-
rived from the endoderm [117]. Mutations of GATA4 lead to a number of
congenital heart defects [100]. SRF regulates the development of all muscle
cell types, and Srf−/− knock-out mice embryos fail to form a mesoderm
and die at an early stage of embryonic development. A heart-specific si-
lencing of SRF also results in embryonic lethality due to heart chamber
malformation [114].

The genes Gata4, Mef2a, Nkx2.5, and Srf are highly conserved between
M. musculus and H. sapiens [100, 114].

3.2.2 Material and methods

Microarray design For this study, we designed an oligonucleotide micro-
array for ChIP-chip analysis. This new platform superseded the microar-
ray platform we had used in the histone ChIP-chip study. This new plat-
form consisted of a set of two microarrays with 390k reporters each. We
compiled a list of genes to be represented. This list includes genes that are
known to play a role in heart and muscle development, all transcription
factors annotated in the TRANSFAC database [118] and known positive
control genes, for which binding sites of the four TFs analysed had been
reported previously. For these genes, we used the following method to se-
lect genomic regions to be represented by reporters on the microarray. We
obtained the coordinates of all transcripts of these genes, as annotated in
the Ensembl database [34](release 39, June 2006). For each transcript, one
region extending from 2 kb upstream to 100 bp downstream of the anno-
tated TSS was taken. Additionally, the conserved non-coding blocks in the
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10 kb upstream genome region and in the 3 kb downstream region of the
annotated TSSs were taken as additional regions. Bases were considered to
be conserved if annotated with a PhastCons [119] score≥ 0.2. The selected
genome regions were merged if less than 300 bp apart and extended to a
minimum size of at least 1 kb. For the selected genome regions, which en-
compassed approximately 89 Mb, isothermal reporters8 of 50–60 bp length
were designed by NimbleGen Systems. The design resulted in a set of two
microarrays with 390,000 reporters each, thus 780,000 reporters in total
representing the selected genome regions. I remapped the final list of re-
porters to the mouse genome build mm8 and reporters with multiple hits
in the genome were excluded from further analyses. After remapping,
17,814 transcripts of 12,942 genes are represented on the microarray, each
by 1 to 613 reporters with a median number of 78 reporters (mean: 81.8)
per transcript.

ChIP-chip data The enrichment of the four TFs (GATA4, MEF2A,
NKX2.5, and SRF) was measured in the cardiomyocyte cell line HL1,
which we had already used for histone ChIP-chip (Section 3.1). For each
of the four transcription factors, the ChIP experiment was performed
twice, and the ChIP samples were hybridised against input DNA samples.
Hence, there were two biological replicates per transcription factor.

Data preprocessing The raw reporter intensities were normalised and
glog-transformed using the vsn method [25], separately for Cy3 and Cy5
channel. Preprocessed reporter levels were then computed by subtracting
the normalised Cy3 from the Cy5 levels, yielding reporter-wise enrich-
ment as glog fold changes between ChIP and input DNA.

Since each sample had been hybridised to two microarrays that con-
tained two non-overlapping sets of reporters, I normalised the data in two
batches, first the microarrays with the first reporter set and then the arrays
with the second set. The control reporters on the microarrays, whose main

8Isothermal array design aims to achieve uniform reporter performance, by adjusting
each reporter’s genome position and length to obtain an approximately equal melting
temperature across the entire reporter set of the microarray [120].
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purpose is to act as guiding points during the scanning of the microarrays,
were dropped from the data prior to normalisation. After normalisation,
the results from the two microarrays per sample were combined, yielding
an expression matrix with levels for 764,087 reporters in 8 samples, two
samples per transcription factor.

Finding ChIP-enriched regions The two replicate samples per transcrip-
tion factor were analysed together. We employed a two-step approach
for finding ChIP-enriched regions, similar to the one for identifying re-
gions enriched for histone modifications (Section 3.1.2), but differing in
the choice of enrichment threshold. First, normalised reporter levels were
smoothed using a sliding window. A window of 600 bp width was
slid along the genome and the score at each genomic position, which is
matched by a reporter, was calculated as the median over all reporter lev-
els within the window. Positions for which the window encompassed less
than four reporters were excluded from further analyses. I computed a
threshold, above which smoothed reporter levels should considered to be
enriched. See Section 5.2.3 (page 138ff.) for details on the heuristic algo-
rithm that I used to compute this threshold, and implemented in Ringo.
Enriched genome positions that were less than 210 bp apart from each
other were merged into a single ChIP-enriched region. ChIP-enriched re-
gions were identified individually for each TF.

Relating ChIP-enriched regions to transcripts An enriched region was
counted as being related to a transcript if the region’s centre position was
located less than 10 kb upstream of the transcript’s TSS or between its start
and end coordinates.

Software For this analysis, we mainly used my R/Bioconductor package
Ringo (see Section 5.2).

3.2.3 Results

We investigated the in vivo binding sites of the transcription factors
GATA4, MEF2A, NKX2.5 and SRF, using a custom-design microarray plat-
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TF
# enriched mean # related # unique mean # related

regions genes / region related genes regions / gene
GATA4 447 1.02 345 1.32
MEF2A 999 1.04 701 1.49
NKX2.5 383 1.00 276 1.39
SRF 1,335 1.09 1,150 1.26

Table 3.4: Numbers of ChIP-enriched regions for the four transcription
factors and of genes related to them. The table also shows the average
number of genes that every enriched region is related to and the average
number of ChIP-enriched regions per gene for each TF. #: “number of”.

form with reporters representing potentially regulatory regions at the TSSs
of 17,814 transcripts. Based on our previous experience with ChIP-chip
microarrays from the same manufacturer, I performed an extensive qual-
ity assessment of the raw data. All microarrays were deemed to be of
acceptable quality.

For each TF, we found multiple ChIP-enriched regions. Table 3.4 shows
the numbers of enriched regions per TF and how many genes these were
considered to be related to. Most enriched regions are related to the tran-
scripts of one gene only, but every gene that has enriched regions of an TF
related to them on average has about 1.35 of them. In total, 1,671 genes
had one or more regions enriched for any of the four TFs and of these:

• 1,173 showed enrichment for one TF only

• 286 showed enrichment for two of the TFs

• 121 showed enrichment for three TFs and

• 91 genes were related to enriched regions of all four investigated TFs.

Figure 3.6 displays the transcription factor ChIP-chip reporter levels at the
TSSs of the genes Tbx20 and Tbx3. Tbx20 has associated ChIP-enriched
regions for all four transcription factors upstream and downstream of the
TSS. Tbx3, on the other hand, only shows enrichment for SRF and MEF2A,
downstream of the two TSSs; and these enriched regions have a lower
maximal level in comparison to the enrichments seen for Tbx20.
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Figure 3.6: Heart transcription factor enrichments at the TSSs of the genes
Tbx20 ((a), top panel) and Tbx3 ((b), bottom panel). The ticks below the ge-
nomic coordinate axis on top indicate genomic positions matched by reporters on
the microarray. The blue arrows on the bottom mark the transcripts of the genes
Tbx20 and Tbx3, with the arrows indicating their respective transcription direc-
tion. Tbx3 has two transcripts with separate TSSs in this region.

Figure 3.7 displays a subset of the genes that showed ChIP-enriched re-
gions for the four transcription factors. The displayed genes are the four
analysed TFs, genes that show enrichment for all four TFs and a few
selected genes that have previously been reported to be regulating car-
diomyocyte development.

When comparing the TF data with the histone data (Section 3.1), we
observed that some of the enriched regions for TF enrichment were al-
most completely overlapping enriched regions for histone modifications.
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Figure 3.7: Heart transcription factor network as seen in the ChIP-chip data.
The green coloured nodes are the four transcription factors for which we sought
binding sites with ChIP-chip. Blue nodes are a subset of the genes with identified
TF binding events. An edge from a TF to a gene indicates that the TF had a ChIP-
enriched region upstream or inside one of the respective gene’s transcripts. Edge
colouring is used to distinguish the edges from the four TFs.

Figure 3.8 displays the reporter levels for the four transcription factors at
the TSS of the Hand2 gene on chromosome 8 (bottom panel). For compar-
ison, the ChIP-chip data for the four histone modifications (Section 3.1) in
this region is also shown (top panel).
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Figure 3.8: Normalised histone modifications ChIP-chip and TF ChIP-chip re-
porter levels at the TSS of the gene Hand2 in HL1 cells. (a) (top panel): the four
histone modifications (b) (bottom panel): the four transcription factors. The ticks
below the genomic coordinate axis on top indicate genomic positions matched by
reporters on the microarray. The blue arrows on the bottom mark the Hand2
gene with the arrow direction indicating its transcription direction, i.e. the gene
is located on the Watson strand.

3.2.4 Discussion

We analysed DNA-binding events of four transcription factors, GATA4,
MEF2A, NKX2.5 and SRF, in HL1 cardiomyocyte cells, using ChIP-chip
on custom oligonucleotide microarrays with reporters tiling potential reg-
ulatory regions surrounding the TSSs of selected genes. Figure 3.7 shows
the core regulatory network of the four TFs, as it is suggested by our
ChIP-chip data. The graph indicates a tight regulatory interplay between
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the transcription factors. NKX2.5 and GATA4 show ChIP-enriched re-
gions in the upstream or transcribed genome region of each other, indi-
cating that NKX2.5 potentially regulates the expression of Gata4, and vice
versa. GATA4 and SRF show ChIP-enriched regions in their own tran-
script region, indicating potential auto-regulation of their own transcrip-
tion rate. The genes of Nkx2.5 and Gata4 both show potential regula-
tion by the transcription factors SRF and MEF2A, as do many of the indi-
cated NKX2.5- and GATA4-target genes. This could indicate that SRF and
MEF2A are at a higher hierarchical level in the regulatory network. The
other displayed genes that show enrichment for all four TFs are all known
to play roles in the development of heart cells. See Section 3.1.3 for the ear-
lier discussion of Hand2. In addition to HAND2, the T-box transcription
factors TBX3, TBX5 and TBX20 have also been implicated as components
of the core regulatory network of heart development [100]. The apparent
co-regulation of Tbx3, Tbx5 and Tbx20 by multiple transcription factors
underlines their reported function (see Figure 3.6). Tbx20, which shows
ChIP-enriched regions for all four analyses TFs, has been described as
an activator in the formation of the chambers and the conduction system.
Tbx3, which only shows borderline ChIP-enrichment for SRF and MEF2A
(Figure 3.6), was implicated as a repressor of chamber myocardium devel-
opment [100].

Not every identified ChIP-enriched region necessarily corresponds to an
actual binding site of that transcription factor in vivo. Unspecific binding
of the antibody and cross-hybridisation of the reporters in that region re-
sult in false positive enriched regions. Preliminary validation of the TF
enrichment regions using quantitative PCR indicated a low false positive
rate in the data, however. Moreover, multiple previously described regu-
latory interactions were also implied in our data.

A second caveat is that the presence of a genuine binding site of a tran-
scription factor does not necessarily imply that the bound transcription
factor affects the expression of any nearby genes [121].

Appropriate experiments are required to follow up on the observed ChIP-
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enriched regions for transcription factors and histone modifications. Ex-
periments can validate hypothesised binding sites and help to distinguish
between functional binding sites and inconsequential binding events or
false positive identified ChIP-enriched regions. Moreover, investigations
of the interaction between these transcription factors and the modified hi-
stones can provide further insights into the transcriptional regulatory net-
work in heart cell development. Follow-up experiments may also clarify
at which particular stage(s) of the transcription process these transcription
factors and the histone modifications are involved.
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These studies were undertaken as part of the European Union Framework
Project HeartRepair (FP6, LSHM-CT-2005-018630) and were a collaboration
between our research group and the Cardiovascular Genetics group at the
Max Planck Institute for Molecular Genetics in Berlin, Germany.
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Tammo Krueger and Matt Ritchie contributed R source code for data pro-
cessing. Silke Sperling planned the experiments. Wolfgang Huber super-
vised my data analysis. I designed the oligonucleotide microarray for the
transcription factor ChIP-chip study, together with Tammo Krueger, Silke
Sperling and the support team of NimbleGen Systems.
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Chapter 4

A high-resolution view of
transcription in budding yeast

4.1 Introduction

We studied the transcriptome of Saccharomyces cerevisiae (budding yeast)
in exponential growth phase and during cell cycle progression, using a
whole-genome tiling microarray. The microarray contains over 6.5 mil-
lion 25mer reporters, which cover the S. cerevisiae genome (strain S288c)
in unprecedented detail and resolution. Figure 4.1 displays the layout
of the strand-specific reporter tiling of the S. cerevisiae genome, using a
microarray design which was devised by Lars Steinmetz in collabora-
tion with Affymetrix Inc. (Santa Clara, California, USA). The reporters
were designed to tile each strand, with a reporter starting every 8 base
pairs. An offset of 4 bp between the two strands’ tiling paths allows for
strand-specific readouts. For each of the approximately 3 million perfect
match (PM) reporters that match the genome without mismatches, there is
a mismatch (MM) reporter. A MM reporter has the same sequence as the
corresponding PM reporter, apart from its central base at the thirteenth
position, which is replaced by its complementary base.

Prior to our analyses, we re-aligned the sequences of all reporters, regard-
less of whether the reporters had been designed as PM or MM reporters
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Figure 4.1: Layout of reporters tiling the S. cerevisiae genome on the used
Affymetrix arrays. On each strand, the offset between reporter start positions
is 8 bp; between the two strands, there is a 4 bp offset between the two tiling
paths, which allows for strand-specific readouts.

by the manufacturer, to the genome sequences of S. cerevisiae strain S288C
(obtained from SGD, ftp://genome-ftp.stanford.edu/pub/yeast/data_
download, version of 7 August 2005). Only reporters with a perfect match
to a 25-nucleotide segment in the genome sequence were used in the fol-
lowing analyses. For each genomic position matched by a reporter, it
was recorded whether it was a unique reporter match position (RMP) or
whether that reporter also matched other genomic positions1.

4.2 Redefining the transcriptome

The first study was an analysis of the S. cerevisiae transcriptome in expo-
nential growth phase. We used the microarray readouts to identify which
parts of the yeast genome are being transcribed in cells in exponential
growth phase and how the observed transcripts are related to annotated
genome features.

1More precisely, a reporter matches a 25-nucleotide “segment”. That segment, how-
ever, is uniquely defined by the genomic position of its central nucleotide, which is why
I refer to the “position” that is matched by a reporter.
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4.2.1 Material and methods

Samples were taken from the S. cerevisiae 288c background strain S96,
which had been grown in rich media to exponential growth. Poly-A RNA2

and genomic DNA were extracted from the samples and hybridised to
tiling microarrays of the design described above (see Section 4.1).

During quality assessment, a number of the hybridisations showed obvi-
ous artifacts on the microarray surface that rendered them useless for later
analyses. However, three poly-A RNA hybridisations and three genomic
DNA hybridisations were deemed to be of acceptable quality. First, we
normalised the data to increase the signal-to-noise ratio in the data.

Normalisation We used the three genomic DNA hybridisations for nor-
malisation of the RNA hybridisations. See Section 5.1.3 for a detailed de-
scription of this normalisation approach, which we implemented in our
custom R/Bioconductor package tilingArray. Briefly, from the reporter
levels from the RNA hybridisation, we first subtracted a background level
estimated from the intensities of reporters that mapped to the genome out-
side any annotated genome feature3. The background-corrected reporter
levels from the RNA samples were then divided by a reporter-wise affin-
ity level, which was estimated by the geometric mean of that reporter’s
intensities in the three genomic-DNA hybridisations. Finally, the reporters
with the 5% lowest geometric mean intensities in the DNA hybridisations
were dropped from the data. These were deemed to be dead reporters, the
readouts of which would be dominated by noise. When taking the ratio
during normalisation (Equation (5.5), page 122), such readouts would re-
sult in artificially high reporter levels, as a consequence of dividing two
small numbers by each other.
The preprocessed levels are fold changes of expression in the RNA sam-

2We also prepared total RNA extract samples (Total-RNA) for the study [9]. The re-
sults described here, however, were obtained on the Poly-A RNA samples only, since
their data were deemed to be cleaner than the Total-RNA data.

3Genome feature is used as a summary term for annotated ORFs (confirmed or du-
bious ones), upstream open reading frames (uORFs), pseudogenes, ncRNAs, repeat re-
gions, and transposable elements.
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Figure 4.2: Example picture displaying the effect of the normalisation method,
tilingArray, which uses a DNA hybridisation to increase the signal-to-noise ratio
for RNA hybridisations. Shown is a genomic region on the Watson strand of
chromosome 4 of S. cerevisiae. The upper panel shows the raw Poly-A RNA and
DNA readouts from reporters having a match position in this region. The middle
panel shows the normalised Poly-A RNA signal. The lower panel shows the gene
annotated in this region, with orange boxes indicating the exons of this gene.

ples in comparison to the DNA samples. Thus, high reporter levels in-
dicate that the genome segment matched by this reporter may be part of
a transcript. I will refer to the preprocessed reporter levels as expression
levels.

Figure 4.2 shows the effect of normalisation on the data in the region
around the ORF of gene RPL31A. Reporter levels matching the two ex-
ons of the transcript are elevated in contrast to the reporter levels outside
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of the ORF or in the intron. The expression levels confirm that the two
exons are part of the ORF’s mRNA, while the intron is not. One can also
see that a few reporter levels to the left and right of the ORF boundaries
are also elevated. These correspond to the 5’ UTR and 3’ UTR of the ORF’s
transcript, respectively.

After normalisation, the reporter expression levels were interpreted as sig-
nal along each strand. Each strand was divided into segments of similar
expression level. See Section 5.1.4 for details about the segmentation al-
gorithm. Briefly, the signal along each strand is divided into S segments.
Expression levels within each segment are assumed to be constant, and the
segment boundaries are chosen using a dynamic programming algorithm
that minimises the residual sum of squares (that is, the sum of squares of
all expression levels minus their respective segment mean expression lev-
els). The single parameter of the algorithm is S, the number of segments.
We set it based on the assumption that the average length of a transcript
or non-transcribed segment would be 1.5 kb4. Dividing the length of each
chromosome by 1.5 kb gave the setting for the parameter S, the number of
segments on each strand of that chromosome.

Segment expression level A segment k is characterised by two segment
boundaries tk and tk+1, with tk < tk+1. The segment boundaries are nu-
cleotide positions on a chromosome, as are the RMPs. Each reporter with
a unique RMP zi that satisfied tk ≤ zi < tk+1 was considered to be within
the segment. The expression level of segment k was defined to be the me-
dian of the expression levels of all reporters within the segment k.

Threshold for transcribed segments We estimated an expression thresh-
old, above which a segment is considered to be transcribed. To estimate
the expression threshold, most unannotated regions were assumed to be
untranscribed. The distribution of segment expression levels from unan-
notated regions was used to estimate the expression level distribution of

4The average exon length in S. cerevisiae is 1,305 bp; and 6,322 out of 6,609 genes con-
tain only one single exon, as annotated in the Ensembl database [34, release 50].
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Figure 4.3: Histogram displaying the median segment expression levels (after
normalisation) for the segments that do not overlap any annotated genome fea-
tures. The distribution of these segment levels was used to estimate the threshold
y0 (see the text for details). Segments with median segment levels exceeding y0
were considered to be transcribed. Note that after the threshold had been deter-
mined, the segment levels were scaled such that the threshold is equal to 0.

untranscribed regions. We considered the distribution of expression lev-
els of those segments that did not overlap with any annotated genome
feature, but for which the majority of RMPs were unique to the segment.
Some of these segments may have corresponded to previously unanno-
tated transcripts, but the majority of them were assumed to be untran-
scribed. The observed distribution of average segment levels y is shown
in Figure 4.3. The distribution has a sharp peak on the left, corresponding
to untranscribed segments, and a flat shoulder on the right, which pre-
sumably includes the unannotated intergenic transcripts. This distribu-
tion can be interpreted as a mixture between a null distribution (the peak)
that corresponds to a normal distribution L0 ' N (µ0, σ0) and some other
distribution Lalt. The alternative distribution Lalt was assumed to contain
negligible mass at y < µ0.

The normal distribution L0 was estimated from the observed distribu-
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tion of segment expression levels of unannotated regions, as follows. The
mode of the distribution was estimated by the midpoint of the shorth5 of
the distribution This mode was taken as an estimate for µ̂0, the mean of
the normal distribution L0. For an estimator of the standard deviation σ0,
first the values y < µ0 were reflected onto y > µ0. The median absolute
deviation over these values, which are symmetrically distributed about
µ0, was taken as an estimate for σ̂0. We assumed that the null distribution
of expression levels in untranscribed segments is the (µ0, σ0) normal dis-
tribution and assigned a p-value to every segment; that is, how probable
it is to observe a similar or greater average segment level under such a
null distribution. The p-values were adjusted for multiple testing using
the Benjamini-Yekutieli false discovery rate (FDR) procedure [122]. We se-
lected the segment level threshold y0 that corresponds to a FDR of 0.1% to
get a conservative set of transcribed unannotated regions. Any segment,
whether corresponding to an annotated genome feature or not, was con-
sidered to be transcribed if its median expression level y satisfied y ≥ y0.

A method that is similar to our estimation of the null distribution of ex-
pression levels in untranscribed segments has been described previously
for estimating the distribution of microarray reporter intensities that are
due to non-specific binding and background noise [24].

Categorisation The segments were categorised according to existing
genome feature annotation6. Segments in which more than 50% of the
reporters had other match positions (i.e. > 50% of the RMPs were non-
unique) were assigned to the category “excluded”. The remaining seg-
ments were divided into categories “transcribed” and “untranscribed”,
depending on whether the segment expression level exceeded the thresh-
old (described above).

5The shorth of a univariate distribution is defined as the shortest interval that contains
at least half of the data. Its midpoint is a robust estimator of the mode of an unimodal
distribution.

6Genome feature annotation was obtained from the Saccharomyces Genome
Database (SGD) FTP site at ftp://genome-ftp.stanford.edu/pub/yeast/data_
download/chromosomal_feature in August 2005.
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For transcribed segments, first the overlap on the same strand with any
verified, uncharacterised or dubious ORF, any transposable element, or
any rRNA, tRNA, snRNA or snoRNA was assessed. If there was any over-
lap with any such feature, the segment was recorded as overlapping the
feature a) completely, b) more than 50%, or c) less than 50% of the segment
length. In the case of a segment overlapping more than one type of fea-
ture, the category was determined by the “most important” feature type
in that segment, where features were ranked by importance as follows:
verified ORF > uncharacterised ORF > dubious ORF > rRNA > tRNA >

snRNA > snoRNA > transposable element. For transcribed segments that
did not overlap any such feature on the same strand, we checked the over-
lap to features on the opposite strand. Any transcribed segment that did
not overlap any such feature on the same strand, but did overlap a feature
on the other strand, was categorised as “antisense”. Any transcribed seg-
ment that did not overlap any feature on either strand was categorised as
“unannotated intergenic”. As additional annotation, annotated transcrip-
tion factor binding sites, which were derived in ChIP-chip experiments
by Harbison and co-workers [123], were obtained from http://jura.wi.

mit.edu/fraenkel/download/release_v24/GFF. These transcription fac-
tor binding sites (TFBSs) were not considered for categorisation of tran-
scribed segments, but were added to the along-chromosome visualisations
in the database (page 88) as additional annotation of genome regions.

Pruning of short segments Short, apparently transcribed, segments could
have arisen during the reverse transcription step (from RNA to cDNA),
by spurious second-strand transcription from the first-strand cDNA. We
applied computational filters to distinguish “real” transcribed segments
from such artefactual transcript. Transcribed segments that did not over-
lap annotated genome feature were only considered for further analyses if
they were longer than 48 bp, had higher expression levels than the adja-
cent segments at both sides, and if they had a higher expression level than
the region defined by the same boundaries on the opposite strand.

UTR lengths For each transcribed segment that completely contained
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a single annotated ORF, the 5’ and 3’ UTR lengths were determined by
comparing the positions of the segment boundaries with the boundaries
of the ORF. The 5’ UTR length was calculated as the distance between the
first base of the first reporter and the first base of the ORF start codon.
The 3’ UTR length was calculated as the distance between the last base
of the stop codon and the last base of the last reporter in the segment.
5’ UTR and 3’ UTR lengths were grouped by Gene Ontology annotation
(Section 1.6) of the ORFs. For each GO group, I compared the UTR lengths
of ORF transcripts in the group with the UTR lengths of all ORF tran-
scripts not included in group, using a two-sample, two-tailed Wilcoxon
rank sum test. ORF transcripts in each GO group were considered to have
significantly long or significantly short UTR lengths if the group’s p-value
satisfied p ≤ 0.002.

Software The R software which was written for the analysis, and which I
co-authored, is available in package tilingArray (Section 5.1) from the Bio-
conductor project (www.bioconductor.org), as is the microarray data in
package davidTiling.

4.2.2 Results

Our microarray data describe the transcriptome of S. cerevisiae in unprece-
dented detail. 11,412,977 bp (≈ 94%) of the genome of strain S288c are
represented uniquely by reporters on the microarray that we used. Of
these, 85% showed an expression level above background (where the
background level was determined as described above on page 81).

Most transcribed segments corresponded to annotated ORFs. Table 4.1
shows the categories and lengths of observed transcripts.

2,223 transcribed segments contained one single ORF and had a signifi-
cantly higher expression level than the adjacent segments at both sides.
For these ORF transcripts, we could accurately measure the lengths of
their UTRs by comparing the transcript segment boundaries with the
annotated ORF boundaries. 3’ UTRs had a median length of 91 nu-
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Transcribed segment category # Median length [bp] (Q1 – Q3)
annotated ORF 5,942 1,321 (769 – 2,039)
dubious ORF 183 1,073 (571 – 1,789)
ncRNA (all) 80 413 (249 – 1,301)
unannotated intergenic 214 305 (91–637)
antisense 228 1,169 (739–1,797)

Table 4.1: Categories and lengths of 6,647 transcribed segments in the
yeast tiling microarray data. Samples were taken from strain S288c in ex-
ponential growth phase. The lower and upper quartiles of the empirical
lengths distributions are specified in brackets beside the median lengths.
“ncRNA (all)” is used as a grouping term for rRNA, tRNA, snRNA and
snoRNA. #: “number of”.

cleotides and were found to be longer than 5’ UTRs, which had a median
length of 68 nucleotides. The UTR lengths were found to differ between
ORFs of distinct functional categories. I grouped the UTR lengths by the
genes’ Gene Ontology annotations (see Section 1.6) and compared the UTR
lengths between each group and the combined remaining groups. The re-
sults are shown in Figure 4.4.

Furthermore, we saw multiple transcripts of unexpected structure, such
as pairs of genes being transcribed as single, apparently bicistronic, tran-
scripts. See Figure 5.2 (Chapter 5, page 130) for an example of such an
operon-like transcript.

In accordance with other recent publications from tiling microarray ex-
periments, the proportion of the genome that is actively transcribed was
found to be much larger than currently annotated. We found about
200 unannotated intergenic transcripts from DNA sections that do not
have any existing genomic feature annotation on either strand. None of
these transcripts (which were validated using PCR) were indicated to be
protein-coding in an evolutionary analysis (see [124, page 121ff.] for de-
tails). With a median length of 305 bp, these unannotated intergenic tran-
scripts are shorter than ORF transcripts and previously annotated ncRNAs
(median length: 413 bp). Figure 4.5 shows one such unannotated inter-
genic transcript on chromosome 16. In addition, there were about 200
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Figure 4.4: Shown are the median 5’ and 3’ UTR lengths for ORF transcripts
annotated to each GO category shown. The colour of the box marks which ontol-
ogy a category belongs to (orange: cellular component, green: biological process,
blue: molecular function). The grey vertical lines denote the median 5’ and 3’
UTR lengths over all ORF transcripts. Stars indicate categories for which the
UTR lengths are significantly longer (red star) or shorter (blue star) than the
UTR lengths of transcripts not annotated to the category (two-sided Wilcoxon
test, p ≤ 0.002). med.: mediated; mitoch.: mitochondrial.

transcripts antisense to known genes. Figure 4.5 display an identified tran-
script that is antisense to the ORF YPR027C.

In summary, our data suggest that transcriptomes, even from organisms
that have been extensively studied, are far more complex than currently
annotated. All biological findings from this study are presented in detail
in the related publication [9]. Further details about the normalisation and
segmentation methods used in this study can be found in Chapter 5 (Sec-
tion 5.1).
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Figure 4.5: Visualisation of the Poly-A-RNA data in a 9 kb region of chromo-
some 16. The green dots in the top panel correspond to the preprocessed reporter
intensities on the Watson strand, the blue dots in the bottom panel are the in-
tensities from the Crick strand. The middle panel shows the genomic coordinate
and genome features that are annotated in this region. Blue boxes are annotated
ORFs; the golden vertical bars are experimentally determined transcription fac-
tor binding sites. The bright-green box denotes the genomic template of a tRNA.
On the Crick strand, a unannotated intergenic transcript of 233 bp length can be
seen. Moreover, there is a transcript antisense to the ORF YPR027C.

Database

Visualisations of our transcription data in all genomic regions (similar
to Figure 4.5) are provided in an online database. The database can be
searched by gene name, gene alias and chromosomal coordinate. I imple-
mented the database and its interface in HTML and Perl CGI. The database
can be accessed at http://www.ebi.ac.uk/huber-srv/David2006.
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4.2.3 Discussion

We have presented a high-resolution survey of the transcriptome of S. cere-
visiae in unprecedented detail, available in an online database. Whole-
genome tiling microarrays, despite their technical shortcomings and anal-
ysis caveats, provide an unbiased view of the transcriptome, since the
reported transcribed regions are not restricted to previously annotated
genome features. Using this technology, we have seen that even the tran-
scriptome of a thoroughly studied organism, S. cerevisiae, still contains
many unexpected regions of transcriptional activity.

Many genomic regions that are considered to be transcribed corresponded
to annotated open reading frames. The segmented tiling microarray data
allowed us to obtain precise measurements of the lengths of the UTRs. I
investigated the relationship between UTR length and gene function as
annotated in the Gene Ontology (Figure 4.4). In general, 3’ UTRs were
found to be longer than 5’ UTRs, which fits well with reports of the di-
verse roles of the 3’ UTR. For example, the 3’ UTR was reported to contain
sequence motifs for mRNA localisation [125] and motifs for regulation of
mRNA stability [126]. The observed relationship between gene function
and UTR length also indicates that long UTRs are required for more com-
plex functions outside of the nucleus. The mRNAs that are exported to the
mitochondria (GO:0005746) and the cell wall (GO:0005618) show longer
3’ UTRs, which contain the localisation sequence motifs.

Not all ORFs annotated in the S. cerevisiae genome were found to be tran-
scribed in our data. Genes that are required for sporulation and mating,
for example, did not show any transcripts. This observation was to be ex-
pected, considering that the data were derived from S. cerevisiae samples
grown in rich medium to exponential phase.

We observed more than 200 unannotated intergenic transcripts outside
any annotated genome feature and more than 200 antisense transcripts.
The function of these unannotated transcripts is unknown, and they do
not appear to be protein-coding [124, page 121ff.]. Several recent high-
throughput transcriptome studies have reported large numbers of un-
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expected transcripts of unknown function in different organisms [127].
Among such transcripts of unknown function are antisense transcripts, as
seen in our survey of the S. cerevisiae transcriptome. S. cerevisiae lacks core
components of the RNA interference (RNAi) pathway7 [128]; therefore a
possible role of the observed antisense transcripts in RNAi degradation of
the complementary sense mRNAs can be excluded.

A small fraction of our observed antisense transcripts may have been due
to antisense artifacts. A recent study by Perocchi et al. has shown that, dur-
ing the reverse transcription step from the RNA sample to cDNA (which
is then hybridised to the microarray), second-strand artifacts are created
by accidental reverse transcription of the first cDNA copy [129]. When
hybridising the cDNA to a microarray that allows for strand-specific read-
outs, such as the microarray that we used, the artifacts will be observed
on the strand opposite to the actual measured transcript. Perocchi et al.
suggested the use of the polypeptide actinomycin D, which specifically
blocks DNA-dependent DNA replication, to prevent such antisense arti-
facts. Our computational pruning of short transcripts (page 84), however,
has likely eliminated most (but not all) of the second-strand artifacts [129].

In summary, our tiling microarray study provided important insights into
the transcriptional complexity of budding yeast. In a recent, independent
high-throughput sequencing study of the S. cerevisiae transcriptome, Na-
galakshmi et al. found 85% of the DNA that we reported as transcribed
to be transcribed in their data [10]. The high agreement between the two
studies’ unexpected finding, that more than three quarters of the S. cere-
visiae DNA are actively transcribed during exponential growth, indicates
how little the characteristics of to-be-transcribed DNA features are yet un-
derstood, even in genomes of well-studied model organisms.

7The absence of components of the RNA interference pathway in S. cerevisiae is re-
markable, since they are conserved from Schizosaccharomyces pombe, another species of
yeast, to multicellular eukaryotes [128].
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Contributions

The experimental study, data preprocessing and segmentation were
planned and performed by Lior David, Wolfgang Huber and Lars
Steinmetz. I contributed to the implementation of the accompanying
R/Bioconductor package tilingArray for data preprocessing and analysis
(Chapter 5; Section 5.1), in particular the implementation of the segmen-
tation algorithm. I performed the analysis and visualisation of the results
of differing UTR lengths per GO category. I also programmed the web
interface that provides easy access to the high-resolution visualisation of
our data. The protein-coding potential of the unannotated intergenic tran-
scripts was assessed by Lee Bofkin.

4.3 Cell-cycle data

We worked with two further data sets, in which the cells had been syn-
chronised to the same stage of the cell cycle using two different methods
(see Section 1.5, page 14ff., for a description of the S. cerevisiae cell cycle
and previous related microarray studies). In one data set, the α-factor
pheromone was used to achieve the synchronisation, in the second set a
temperature-sensitive mutant of the the cyclin-dependent kinase Cdc28
(denoted cdc28m) was employed. Both synchronisation methods are well
established [48, 49]. Following the release of cell-cycle arrest, one sample
was taken every five minutes, up to 220 (α-factor) or 215 (cdc28m) minutes
after the release. The samples were treated with actinomycin D to prevent
the emergence of second-strand antisense transcripts during the reverse
transcription step [129].

The microarray data were normalised as described above (Section 4.2), us-
ing three genomic DNA hybridisations that had also been treated with
actinomycin D. The normalised data were also segmented as described
above (Section 4.2), except for one change. For setting the segmentation
algorithm’s parameter S, the number of segments (see Section 5.1.4 for de-
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tails), we assumed a shorter average segment length of 1,250 bp (instead
of 1,500 bp). This shorter average segment length was more consistent
with the average length of transcripts, as the median length of transcripts
observed in the exponential growth phase data was 1,273 bp (Section 4.2).
The parameter S for segmenting each chromosome strand was again de-
termined by diving the length of the chromosome by the average segment
length. Hence, we obtained a higher number of segments per strand than
in the previous study. Both data sets were segmented together, such that
the same segment boundaries applied in both data sets.

The transcribed segments were also identified and categorised accord-
ing to overlap with existing genome annotation as described above8 (Sec-
tion 4.2), with one small change in the procedure. In the pruning step
of the previous study (page 84), one condition for defining an unanno-
tated intergenic transcribed segment was that the median reporter level
in the segment had to be higher than the segment level on the opposite
strand. This filter had been introduced as a way to handle the previously
mentioned antisense-transcription artifacts. Due to the actinomycin D
treatment of the samples, such artefactual reverse transcription was sup-
pressed, and the filter could be dispensed with.

4.3.1 Methods

Determine periodicity

A combination of two methods was used to determine periodically ex-
pressed transcripts. The first method, by Ahdesmäki et al. [130], is a robust
testing procedure for periodicity of expression, based on a spectral esti-
mator together with Fisher’s g-statistic and correction for multiple testing.
The procedure is available in the R-package GeneCycle. Transcripts with
a p-value ≤ 0.01 were considered to be periodically expressed. The sec-
ond method used was suggested by de Lichtenberg et al. [51] and consists

8I obtained an updated annotation of the S. cerevisiae genome from the SGD web site
in September 2007.
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of computing a combined p-value ptotal for cell-cycle regulation of a tran-
script. For each transcript, ptotal-value is combined from pperiodicity, a p-
value for periodic expression, and pregulation, a p-value for “regulation” of
the transcript. pperiodicity assesses the periodicity in the expression profile
of the transcript (regardless of the amplitude), while pregulation accounts
for the variance in the expression profile of the transcript.

Transcripts were considered to be periodically expressed if both methods,
by Ahdesmäki and by de Lichtenberg, indicated such. Transcripts were
also considered to be periodically expressed, if only one of the methods
indicated such and the periodic expression could be confirmed upon in-
spection of the visualisation of the transcript expression profiles.

Regularised correlation

I define a regularised correlation coefficient as:

CCreg(Xi,•, Xj,•) =
cov(Xi,•, Xj,•)

sd(Xi,•) · sd(Xj,•) + s0
(4.1)

where:
Xi,•: expression profile of transcript i in the considered samples (time
points)
cov(Xi,•, Xj,•): covariance of the expression profiles of transcripts i and j
sd(Xi,•): standard deviation of the expression profile of transcript i
s0: a regularisation constant, set equal to a certain quantile, such as the
10% quantile or the median, of the empirical distribution of all pair-wise
products sd(Xi,•) · sd(Xj,•). This constant is used to assign a lower cor-
relation to transcript pairs whose expression shows little variation over
time. The use of a similar regularisation constant has been suggested for
regularising t-statistics when assessing differential gene expression [131].

Figure 4.6 shows the expression profiles of two example gene pairs in the
α-factor cell-cycle data to clarify the need for regularising the correlation
coefficient. The genes in the left panel (YAR008W and YJL187C ) show pe-
riodic, variable expression. The genes in the right panel (YOR033C and
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Figure 4.6: This figure shows the expression pattern of two pairs of gene tran-
scripts in the α-factor cell-cycle data. Also shown are the Pearson correlation
coefficient (CC) of the gene expression profiles and the regularised CCreg (Equa-
tion (4.1)). The y-axis captures the whole dynamic range of the α-factor expression
data. reg: regularised; glog: generalised logarithmic scale.

YKR100C ), on the other hand, show little variation around the mean in
their expression levels. This little variation happens to be in the opposite
direction between the two genes, and the expression profiles thus have a
Pearson correlation coefficient of −0.63. The small variation is accounted
for in that the regularised correlation coefficient of this pair is considerably
closer to zero. The genes in the left panel clearly show correlated expres-
sion profiles, while the negative correlation of the right pair is difficult to
distinguish from noise in the expression profiles.

Regularised correlation distance The regularised correlation distance be-
tween two transcripts i and j is computed as:

d(i, j) = 1− CCreg(Xi,•, Xj,•) . (4.2)

where CCreg(Xi,•, Xj,•) is defined above in equation (4.1).
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Clustering

Periodically expressed transcripts were grouped into clusters using hierar-
chical clustering. The distance matrix between transcripts was computed
using the regularised correlation distance (Equation (4.2)). This distance
matrix was used as input for agglomerative, hierarchical clustering with
the complete linkage agglomeration method. The height at which to cut
the dendrogram was chosen by inspection, giving the number of clusters
and the assignment of transcripts to clusters. The expression data along
with the clustering are visualised in the form of a heatmap (Figure 4.10,
Results page 104).

Transcription factor binding sites

The binding specificities of 124 S. cerevisiae transcription factors as position
specific score matrices (PSSMs) were published by MacIsaac et al. [132],
based on a refinement of ChIP-chip results by Harbison et al. [123]. I
obtained these PSSMs from the supplementary web page of the publica-
tion [132] and added the later reported PSSM of the transcription factor
Hcm1 [45].

The PSSM of a transcription factor is a probabilistic encoding of the TF’s
binding motif. The number of columns in the PSSM corresponds to the
length of the motif in nucleotides, and the PSSM has four rows, one each
for A, C, G, and T. Each entry mx,j of a PSSM M with L columns is
the probability of observing nucleotide x at position j of the bound se-
quence, where x ∈ {A, C, G, T} and j ∈ {1, 2, . . . , L}. Given a DNA se-
quence Z = {z1, z2, . . . , zL} of the same length L, one can compute a score
of how well the sequence matches the motif encoded by the PSSM M as

SM(Z) =
L

∑
i=1

log
mzi,i

qzi

(4.3)

where qx is the background probability of observing nucleotide x in the
genome. The score SM(Z) indicates how likely the TF whose binding mo-
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tif is encoded by M would bind to sequence Z. Typically, a sequence is
considered to match a motif if it achieves at least 70%–90% of the maxi-
mum possible score for the PSSM [133]. I required a score exceeding 80%
of the maximum possible score for a match. At this threshold, a limited
number of matches are found for each motif, and I tested how this number
of matches changes over different sets of sequences. Note that control of
the type I error rate for identifying matches in individual sets of sequences
is not the concern here, but rather I compare the number of matches of each
PSSM for different sets of sequences using the same threshold.

To assess whether a set of n DNA sequences matches a motif more of-
ten than expected by chance considering a total of m sequences (m ≥ n),
i.e. whether a certain binding motif is overrepresented in the smaller se-
quence set compared to the background frequency in the larger set of m
sequences, I use the group-specificity score [134], which is based on the
hypergeometric distribution. A set of n sequences, out of a total of m se-
quences, of which k sequences (k ≤ n) match a certain motif, is assigned
the following score, which is in essence a p-value, to the motif:

p(k) = P (X ≥ k) = 1− P (X < k) = 1−
k−1

∑
i=0

P (X = i) (4.4)

where

P (X = i) = f (i; m, b, n) =

(
b
i

)(
m− b
n− i

)
(

m
n

) (4.5)

and
m: total number of sequences
n: number of selected sequences, with n ≤ m
b: total number of sequences that match the binding motif
k, i: number of selected sequences that match the binding motif, with
k, i ≤ n.

The score p(k) is the probability of observing a number of k or more se-
quences with matches to the motif, if the set of n selected sequences is a
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randomly drawn subset of the total set of all m sequences. A sequence
set was deemed to have a significant enrichment of a transcription factor’s
binding motif if the score for this tuple was p ≤ 10−3.

Gene Ontology enrichment

I retrieved the GO annotation (Section 1.6) of verified S. cerevisiae genes
from the Ensembl database (version 47), using the Bioconductor package
biomaRt [72]. Over-representation of GO terms among gene groups was
assessed using Fisher’s exact test, as implemented in the Bioconductor
package topGO [135], with the p-value cutoff set to 0.001. The evalua-
tion proceeds in a bottom-up approach, starting from the most specific
GO nodes. Genes that are used for evaluating a certain node are not used
for evaluating any of its ancestor nodes [135, elim algorithm].

Software

The analyses described here, except for the TF motif enrichment, were im-
plemented in the statistical environment R, making use of tilingArray (see
Section 5.1) and other Bioconductor packages [104]. For the clustering and
the subsequent heatmap visualisation, I used the base R functions hclust
and heatmap. The enrichment for transcription factor binding motifs was
investigated using the Python module TAMO, which was developed by
Fraenkel and co-workers [136].

4.3.2 Results

We analysed two time-course tiling microarray data sets, that both cov-
ered more than two iterations of the cell cycle. The data sets were nor-
malised independently of each other, but then combined for determining
segments and transcripts. Table 4.2 lists the categories of transcribed seg-
ments that we observed in the cell-cycle data. Note that the number of
transcribed ORF segments is greater than the number of annotated ORFs
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in the yeast genome (6,259 [Source: SGD www.yeastgenome.org, Septem-
ber 2007]). This can be explained by the observation that certain ORF tran-
scripts are divided into two or more transcribed segments with different
expression levels, or are interspersed with untranscribed intronic regions.

Transcribed segment category # Median length [bp] (Q1 – Q3)
ORF 7,576 937 (457 – 1,545)
Dubious ORF 194 701 (305 – 1,221)
antisense 523 721 (377 – 1,133)
unannotated intergenic 135 505 (345 – 877)
pseudogene 7 1,217 (425 – 1,741)
rRNA 13 217 (161 – 466)
snoRNA 60 287 (167 – 411)
snRNA 4 341 (153 – 643)
transposable element 8 361 (206 – 581)
tRNA 20 675 (299 – 991)

Table 4.2: Categories of transcribed segments in the budding yeast cell-
cycle data. The lower and upper quartiles of the empirical length distribu-
tions are specified in brackets behind the median lengths. #: “Number of
segments”.

A number of transcript expression profiles show periodic patterns concor-
dant with cell cycle progression. Figure 4.7 displays the scaled expression
profiles of the transcripts of nine histone proteins in the two data sets. Hi-
stone transcripts have been previously reported to show varying expres-
sion patterns concordant with the cell-cycle progression, and to have their
peak expression during the S phase [137, 48]. In our data sets, the histone
transcripts are clearly periodically expressed. From the periodic expres-
sion pattern, it can be concluded that both data sets cover more than two
iterations of the cell cycle. The periodic expression profiles of the histone
transcripts (Figure 4.7) can be used to obtain an estimate of the duration of
one iteration of the cell cycle in each data set. The histone transcripts show
two clear expression peaks in both data sets and their expression is tightly
synchronised up to 160 minutes after release from cell-cycle arrest. The
synchronisation of cells wears off after 160 minutes. In the α-factor set, the
histone transcripts show peak expression at 40 and at 105 minutes, indicat-
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Figure 4.7: These plots show the median expression of nine histone gene tran-
scripts in the cell-cycle data. The top panel (a) shows their expression in the α-
factor data, and the bottom panel (b) shows the expression in the cdc28m set. The
expression profiles of the histone transcripts were standardised for visualisation
purposes.

ing that in these data one iteration of the cell cycle takes about 65 minutes,
which corresponds well with the estimate of Spellman et al. (66± 11), who
used the same synchronisation method for their data [48]. In the cdc28m

set, the transcripts show peak expression at 30 and at 120 minutes. Thus,
one iteration of the cell cycle in the cdc28m data takes about 90 minutes
(the estimate of Spellman et al. for the cdc28m data set of Cho et al. [49] was
80–100 minutes).
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Figure 4.8: Plots showing the expression profiles of two of the five antisense tran-
scripts whose expression strongly correlates negatively (CCreg ≤ −0.5) or posi-
tively (CCreg ≥ 0.5) with the expression of the transcript on the opposite strand.
Also shown are the expression profiles of the respective sense transcripts. The
left panel shows the sense/antisense pair of FAR1 as an example for the four pairs
with strong negative correlated expression profiles. The right panel shows the sin-
gle sense/antisense pair (of HSL1) with strongly positively correlated expression
profiles. as: “antisense”.

Periodically expressed transcripts

We determined a set of 639 transcripts that are periodically expressed in
concordance with the cell cycle progression (as described in Section 4.3.1,
page 92). These transcripts included 591 ORF transcripts, 37 antisense
transcripts and 11 unannotated intergenic transcripts.

Periodic antisense transcripts

Among the periodically expressed transcripts, there were 37 that were an-
tisense to annotated ORFs. Table 4.3 details these periodic antisense tran-
scripts.

The expression profiles of five of the periodic antisense transcripts are
strongly correlated with the expression profiles of the respective sense
transcript (|CCreg| ≥ 0.5), 4 negatively and 1 positively. Figure 4.8 shows
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Chromosome Strand Start End Antisense to CC reg
1 - 189427 191819 YAT1 0.45
2 + 372119 372543 TIP1 −0.49
2 - 590100 591348 DTR1 −0.05
3 + 202729 204209 TAF2 −0.45
4 - 232869 233909 VCX1 −0.01
4 + 722298 723026 YCF1 −0.04
4 - 908055 909407 GTB1 0.02
5 - 76101 77413 YEF1 −0.26
7 - 454935 455087 ALK1 0.41
8 + 378137 380073 SPS100 −0.18
8 - 383677 384573 CHS7 −0.04
8 - 456343 458487 YHR177W 0.01
9 + 31185 32561 YIL166C −0.07
9 + 243633 243929 YRB2 0.03
10 + 123737 125449 FAR1 −0.55 ?

10 + 291913 293537 PRY3 −0.10
10 - 703349 705149 HMS2 0.04
11 - 6205 7749 MCH2 −0.15
11 - 203832 204600 PGM1 −0.12
11 - 251040 251384 HSL1 0.59 ?

12 - 203261 204717 YLR030W, YLR031W −0.41
12 + 245577 246177 YLR050C 0.31
12 - 807211 808699 SPO77 −0.04
13 + 94457 95585 YML087C −0.46
13 - 618389 619429 YMR178W −0.24
13 + 623585 625281 YMR181C −0.69 ?

13 + 775985 776769 YMR253C −0.35
14 - 65757 66037 YNL300W −0.13
14 + 372473 374273 YNL134C −0.38
15 - 380333 380469 BUB3 0.31
15 + 506945 507817 YOR097C 0.16
16 + 76705 78609 GYP5 −0.24
16 - 114485 116357 USV1 0.14
16 + 243193 244217 YPL162C −0.55 ?

16 - 798015 799023 MSS18 −0.40
16 - 799783 800391 CTF4 −0.61 ?

16 + 924291 928339 OPT2 0.10

Table 4.3: This table provides details on the 37 antisense transcripts that
are considered to be periodically expressed. CCreg: regularised correlation
coefficient of the antisense transcript’s expression profile with the opposite
sense transcript’s expression profile. The five sense/antisense pairs whose
expression profiles are strongly correlated (see text) are marked by ?.
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the expression levels of two of these five transcripts in the α-factor cell-
cycle data. In the left panel, one of four antisense transcripts whose ex-
pression profiles have a strong negative (regularised) correlation with the
expression profile of the respective sense transcript is shown. The genes of
these four pairs are FAR1, CTF4, YMR181C and YPL162C. The right panel
shows the only sense/antisense transcript pair (of the gene HSL1 ) whose
expression profiles have a strong positive correlation.

TF binding motifs for the 37 antisense transcripts I investigated whether
the binding motifs of any transcription factors were specifically enriched
in the regulatory regions of the periodically expressed antisense tran-
scripts. Enriched TF binding motifs might give indications about the func-
tion of these antisense transcripts. For each of the 37 periodic antisense
transcripts, I retrieved the sequence of a respective regulatory region, ex-
tending from 600 bp upstream of the transcript’s start site to 600 bp down-
stream of the transcript’s end coordinate. A control set of sequences was
made up by the total set of 639 periodically expressed transcripts, simi-
larly extended by 600 bp both upstream and downstream. No TF binding
motif was found to be enriched (with p ≤ 10−3) in the extended sequences
of the 37 antisense transcripts, compared to the control set.

Clustering of periodic transcripts

Hierarchical clustering was used to stratify the 639 periodically expressed
transcripts into groups of similar periodic expression. For clustering, I em-
ployed a regularised correlation distance measure (Equation (4.2), page 94)
between the expression profiles of the transcripts. The expression data
used for the clustering were a subset of the α-factor data set, because I
considered the α-factor data to be cleaner and to show a higher degree of
synchronisation than the cdc28m data. Only the microarray data from 15
minutes after release of the cell-cycle arrest up to 160 minutes after release
were used, as the expression profiles of the histone transcripts indicated
tight synchronisation during this time (see Figure 4.7).
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Figure 4.9: Dendrogram visualising the result of the hierarchical clustering of the
expression data of the 639 periodically expressed transcripts. The blue line indi-
cates the height at which I decided to cut the dendrogram, resulting in assignment
of the periodic transcripts into 8 clusters.

The hierarchical clustering dendrogram is shown in Figure 4.9. The dis-
played horizontal line marks the height at which I decided the cut the
dendrogram. This cut resulted in an assignment of the periodic transcripts
into eight clusters.

Figure 4.10 shows the resulting heatmap of the expression data of tran-
scripts in the eight clusters. Antisense (AS) and unannotated intergenic
(UI) transcripts are distributed over the eight clusters (the colours indicate
the mark of the cluster on the left side of the heatmap in Figure 4.10).

• pink: 38 transcripts (5 AS, 2 UI), including ZPS1

• purple: 58 transcripts (2 AS, 0 UI), including RAS1

• red: 78 transcripts (1 AS, 2 UI), including CDC20, CDC6, CLN3, FAR1,
MCM2, MCM6, and TAF2

• brown: 97 transcripts (2 AS, 1 UI), including BUD4,CLB1,CLB2, and
SWI5
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Figure 4.10: Heatmap showing the expression profiles of the periodic transcripts
in the S. cerevisiae α-factor cell cycle data. Each row corresponds to a transcript,
each column represents a sample (time point). Columns are ordered by the time
they were taken after release from cell cycle arrest and the shown time points
correspond to more than two iterations of the cell cycle. Rows (transcripts) are
ordered as in the hierarchical clustering dendrogram (see Figure 4.9). The colour
bar on the left side of the plot denotes the cluster assignment of each transcript.
The colours in the heatmap denote the median expression levels of the transcripts
in each sample, with darker shades of blue indicating higher expression levels.
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• yellow: 87 transcripts (9 AS, 0 UI ), including all histone genes

• blue: 24 transcripts (5 AS, 0 UI), including DIG2, YPS1

• orange: 132 transcripts (8 AS, 5 UI), including CDC11, CLN1, MF, and
YOX1

• green: 125 transcripts (5 AS, 2 UI), including CDC45, HO, STB1, and
SWI4

TFBSs in the clusters I investigated the clusters for over-represented TF
binding motifs (as described in Section 4.3.1, page 95f.). For each periodic
transcript, a potentially regulatory sequence that extended from 600 bp
upstream of the start base to 600 bp downstream of the end base of the
transcript was retrieved. For each cluster and each of the 125 PSSMs, I
determined how many sequences of transcripts in the cluster matched the
PSSM and contrasted that to the matches of the PSSM among all periodic
transcripts. Table 4.4 shows the found significantly enriched binding mo-
tifs per cluster.

Cluster TF # in cluster # in all Score p
red:
78 transcripts

Mcm1 30 101 1.3 · 10−7

Xbp1 30 146 6.6 · 10−4

brown:
97 transcripts

Fkh2 32 101 3.1 · 10−6

Fkh1 28 101 2.7 · 10−4

yellow:
87 transcripts Hcm1 27 107 2.7 · 10−4

orange:
132 transcripts

Stb1 46 122 8.2 · 10−7

Swi4 41 108 3.5 · 10−6

green:
125 transcripts

Mbp1 43 102 5.7 · 10−9

Swi6 62 195 4.3 · 10−7

Swi4 34 108 7.9 · 10−4

Table 4.4: Table listing which TF binding motifs are enriched in the reg-
ulatory sequences of the transcripts in each cluster in contrast to the se-
quences of all periodic transcripts. Clusters not mentioned here had no
significantly enriched TF binding motifs. #: “number of transcripts whose
sequences contain one or more matches to the TF’s motif”.
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Gene Ontology categories of clusters I investigated which GO categories
were over-represented among the annotation of the ORF transcripts in
each cluster. The number of transcripts with a certain GO annotation in
each cluster was contrasted to the number of all periodic transcripts that
had this GO annotation. Table 4.5 details which terms were enriched for
each cluster, if any.

Cluster GO Term
Anno-
tated

In
Cluster

Expected p-value

pink polyamine transport 3 3 0.14 8.3 · 10−5

purple

ribosome biogenesis
and assembly

22 17 1.70 1.5 · 10−7

rRNA processing 5 4 0.39 0.00014
localisation 61 12 4.73 0.00079

yellow
microtubule nucle-
ation

15 9 2.43 0.00011

orange
membrane lipid
biosynthetic process

8 7 1.51 4.6 · 10−5

green

lagging strand elon-
gation

9 9 1.92 6.5 · 10−7

mismatch repair 7 7 1.49 1.6 · 10−5

leading strand elon-
gation

5 5 1.07 0.00040

DNA replication 48 28 10.23 0.00047
double-strand break
repair

12 8 2.56 0.00075

Table 4.5: Table listing which GO terms are enriched in the gene annota-
tion for each cluster in contrast to the annotation of all periodic transcripts.
“Annotated” refers to the number of all periodically expressed genes that
are annotated with the respective GO term. Clusters not mentioned here
had no significantly enriched GO terms with p ≤ 10−3.

Transcription patterns

In addition to looking at periodically expressed transcripts in the two cell-
cycle data sets, I surveyed the transcript orientation (see Figure 1.1) of all
pairs of adjacent, nearby transcripts, regardless of whether the transcripts
showed periodic or constant expression.
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There have been previous studies investigating pairs of adjacent genes in
S. cerevisiae. For example pairs of adjacent genes, the expression profiles
of the two transcripts of each pair were observed to be highly correlated
(Pearson CC≥ 0.63) over time in cdc28m cell-cycle microarray data [49, 20].
The distribution of intergenic distances, i.e. the distances between anno-
tated ORFs, has been investigated on a whole-genome scale in S. cerevisiae
and related to the orientation that the two adjacent genes have to each
other [138].

The high-resolution tiling microarray data allow us to consider the actual
start and end base coordinates of transcripts in place of the annotated ORF
coordinates. In addition, non-ORF transcripts are also taken into account.

Of particular interest are pairs of divergent transcripts (Figure 4.11), as
such pairs with highly correlated expression profiles may be regulated by
single promoter regions with bidirectional activity. Bidirectional promoter
regions have been described in H. sapiens and were found to have the fol-
lowing characteristics [21, 139]:

• are short inter-transcript regions, less than 1 kb long, with the majority
being less than 300 bp long.

• have a higher median GC content (66%) than unidirectional promoters
(53%)

• often show specific TF binding motifs (such as the one of the GABP
complex) and lack of a TATA box.

With S. cerevisiae, it is unclear whether bidirectional promoters are a com-
mon category of promoters and, if so, how promoters of this category
might be characterised in general. Only a few examples of bidirectional
promoters have thus far been described and characterised. One previ-
ously described pair of divergent transcripts is UGA3–GLT1 and certain
elements, such as the binding site of Abf1, were found to be important for
the bidirectionality of this shared promoter region [140].

In general, an inter-transcript region of 1000 bp may be considered small
in the human genome (size: 3 · 109 bp), but it would be large in com-
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Figure 4.11: Scheme of divergent transcripts with putative bidirectional promoter
region in between.

parison with the untranscribed part of the S. cerevisiae genome. With the
α-factor cell-cycle data, we observed that of the 12,162,996 bp of the S288c
strain’s genome, 9,043,789 bp (≈ 75%) are contained within transcribed
segments, and the non-transcribed regions between transcripts have an
average length of merely 558 bp.

Data for orientation analysis The segment tables from the cell-cycle tiling
microarray data were further post-processed by merging directly adja-
cent transcribed segments9 into single transcripts. Directly adjacent tran-
scribed segments might otherwise have been interpreted as pairs of tan-
dem transcripts, although in most cases they were subsections of the same
transcripts. Non-adjacent transcribed exons of the same gene were also
merged into single transcripts. Merged ”super-segments” were assigned
an expression level equal to the weighted average of the individual seg-
ment levels, weighted by the lengths of the individual segments. Each
super-segment and each transcribed segment that had not been merged
was further considered to correspond to a transcript.

For this analysis, I investigated all pairs of adjacent transcripts with un-
transcribed regions of length ≤ 400 bp in between them. Depending on
the orientation of the two transcripts to each other (see Figure 1.1), a pair is
considered to be divergent, convergent or tandem. A transcript ti can be part
of more than one pair, if more than one other transcript on either strand

9Two transcribed segments were considered to be directly adjacent if there was no
untranscribed or excluded segment between them on the same strand.
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Figure 4.12: Distance between adjacent transcripts in the α-factor cell-cycle data.
The transcript pairs were stratified by orientation of the two transcripts to each
other (Figure 1.1).

has a start or end coordinate within 400 bp of the start or end coordinate
of transcript ti.

For the cell-cycle data, I observed 839 pairs of divergent transcripts,
564 pairs of convergent transcripts, and 370 pairs of tandem transcripts.

Distance between adjacent transcripts The overlayed histograms in Fig-
ure 4.12 show the base-pair distances between each pair of adjacent tran-
scripts. Note that neither divergent nor convergent transcript pairs were
allowed to contain pairs of overlapping transcripts. Thus, all pairs had an
inter-transcript region that is ≥ 0 bp and ≤ 400 bp long. Convergent tran-
script pairs tend to show inter-transcript regions smaller than 200 bp. With
tandem transcripts, the distances were more or less uniformly distributed
between 20 and 400 bp. For divergent transcripts, there was a clear peak
at 170–180 bp, and distances between 180 and 220 bp were also frequent.

Correlation of adjacent transcripts’ expression profiles I investigated
whether the orientation of two nearby transcripts affects the correlation
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Figure 4.13: These box plots show the distribution of the regularised correlation
coefficients between the expression profiles of the two transcripts of a pair. Pairs
are stratified by the orientation of the two transcripts to each other (Figure 1.1).
For comparison, the correlation coefficients for 1000 random transcript pairs are
also shown. The widths of the boxes are proportional to the numbers of pairs in
each category.

of their expression profiles. For each pair of divergent, convergent and
tandem transcripts, the regularised correlation coefficient (Equation (4.1))
of the expression profiles of the two transcripts was computed (s0 was
set to the 10% quantile of the observed standard deviation products of all
adjacent transcript pairs). For comparison, 1,000 pairs of random tran-
scripts were generated. The two partners of each such pair were drawn
at random from the set of transcripts on one chromosome without any
restriction on the orientation and distance of the two transcripts to each
other. The observed correlation coefficients by orientation are shown as
box plots in Figure 4.13. The expression profiles of divergent transcripts
were found to show significantly higher correlation than those of conver-
gent transcripts (p = 1.14 · 10−5) and tandem transcripts (p = 2.57 · 10−5).
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Divergent, convergent and tandem transcript pairs showed higher corre-
lation than random transcript pairs (p ≤ 6.27 · 10−14); p-values were de-
rived from two-sample Wilcoxon rank-sum tests with the null hypothe-
sis being that the two distributions of regularised CCs in pair categories
a and b have the same location, and the alternative hypothesis being that
the distribution of CCs in category a was shifted to higher values). Among
the highly correlated (|CCreg| ≥ 0.5) divergent transcript pairs is the pair
YKR085C–YKR086W, which has previously been reported as a pair of di-
vergent, co-regulated transcripts [141]. Another study reported that this
specific pair did not show correlated expression profiles [20], but in our
data the expression profiles are clearly correlated (CCreg = 0.52).

Promoter regions of divergent transcripts The regions between the TSSs
of divergent transcripts were investigated for characteristic attributes. To
this aim, I obtained the nucleotide sequences of these regions. A control
set was made up of the nucleotide sequences of the inter-transcript re-
gions from all considered divergent, convergent, and tandem transcript
pairs and the 400 bp sequences upstream of the TSSs of the Watson-strand
transcripts from the 1,000 random pairs. In total, the control set con-
sisted of 2,279 sequences of potential regulatory regions of expressed tran-
scripts. I investigated whether any of the TF binding motifs (as speci-
fied by MacIsaac and co-workers [132]) were enriched in the sequences
of the putative bidirectional promoter regions between divergent tran-
scripts (Section 4.3.1, page 95). Two TF binding motifs were found to
be significantly enriched in the promoter regions between divergent tran-
scripts. One is the motif of Abf1, which matches 57 of the 839 promoter
regions between divergent transcripts, but only 101 of all 2,279 analysed
regulatory regions of the control set of transcripts (p = 3.21 · 10−5). The
other motif enriched for divergent transcripts is the one of Rpn4 (matches
54 promoters of divergent transcripts and 101 of all analysed sequences,
p = 3.58 · 10−4).

Lin and co-workers recently published a set of motifs that they found to
be overrepresented in H. sapiens bidirectional promoter regions, includ-
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ing the motifs of known transcription factors, such as the one of GABP,
and new motifs that the authors found using ab initio motif discovery
tools [139]. GABP and the other TFs specified by Lin et al. have no ho-
mologous TFs in S. cerevisiae. Thus I constructed PSSMs from the motifs
as they were specified for H. sapiens and matched them to the analysed
S. cerevisiae sequences. Only one of these motifs was highly overrepre-
sented among the promoters of divergent transcripts (69/839 as compared
to 120/2,279, p = 1.79 · 10−6), a motif that Lin et al. had discovered ab ini-
tio. This motif has a consensus sequence of “RAAATTTTTCA” where “R”
stands for either adenine or guanine.

The promoter regions of divergent transcripts were not found to differ in
their GC content from the control set of sequences.

4.3.3 Discussion

We analysed two time courses of whole-genome tiling microarray data
sets for the periodic expression of transcripts and for the orientation of
adjacent transcripts relative to each other.

We identified a high-confidence list of 639 transcripts that showed periodic
expression patterns concordant with cell cycle progression. These were
mostly ORF transcripts, but included 37 transcripts that were antisense to
annotated ORFs and 11 unannotated intergenic transcripts from regions in
which no genome features were annotated on either strand.

I clustered the 639 periodically expressed transcripts into eight groups of
similar periodic expression patterns (see Figure 4.9). Each cluster was
characterised by enrichment for transcription factor binding motifs and by
over-representation of Gene Ontology annotations. The TFs with enriched
binding motifs are known regulators of cell cycle progression. Hcm1 is a
known regulator of S phase expressed genes [45] and the one cluster (yel-
low) that shows enrichment of the binding motif of Hcm1 contains the
histone genes. The expression of this cluster of transcripts peaks in the
time points corresponding to the S phase. This cluster also contains 9 an-
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tisense transcripts, which may be involved in regulation of expression of
other transcripts during the S phase. Another cluster shows enrichment
for Mbp1, Swi6 and Swi4. These TFs have been implicated in the regula-
tion of late-G1 transcript expression [43] and the transcripts in this cluster
accordingly show elevated expression at time points in the late G1 phase.
The GO terms that are enriched in this cluster agree with the specialised
role of the genes in this cluster during the end of the G1 phase, as all these
GO terms describe functions important for DNA replication. And another
cluster that shows peak expression at the G1/S transition shows enrich-
ment in the binding motif for the transcription factor Stb1, which is in-
volved in the G1/S transition [44]. At that stage, the genes required for
DNA replication seem to have ceased being transcribed, and the GO an-
notation that is enriched among genes in this cluster is the synthesis of
membrane phospholipids, possibly in relation to the membranes of the
daughter cells after mitosis and cytokinesis.

The enriched TF binding motifs and the enriched GO terms suggest spe-
cific roles of these clusters of transcripts during cell cycle progression. The
assignment of transcripts into eight clusters seemed reasonable consider-
ing the hierarchical clustering dendrogram (Figure 4.9). The dendrogram
cut was arbitrary, however, and so small transcript groups of specialised
function may have been overlooked, as they might have been absorbed
into bigger clusters. On the other hand, the two late-G1 clusters (green,
orange) only differ in the expression profiles of included transcripts at a
few time points, and the heatmap (Figure 4.10) suggests that these could
be interpreted as one single cluster. Both clusters also show enrichment
for the binding motif of Swi4. The enrichment of TF motifs and GO an-
notations, however, indicates that there are also functional differences be-
tween the two clusters. Nevertheless, this example stresses the fact that the
proposed clustering is only one of many possible clusterings of the peri-
odically expressed transcripts, based on a regularised correlation distance
between transcript expression profiles.

I have shown that a clustering of this kind is able to group the periodic
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transcripts into functional modules that are involved in driving the pro-
gression of the cell cycle at different stages of the cycle. Spellman et al.
suggested a similar clustering of periodically expressed ORF transcripts,
based on gene expression microarray data [48]. The results presented here
extend their findings, as the tiling array data set is of higher resolution
and additionally encompasses non-ORF transcripts. The 37 periodic anti-
sense transcripts, as well as the 11 unannotated intergenic transcripts were
split between the different clusters. As the samples had been treated with
actinomycin D before hybridisation to the microarrays, it can be assumed
that a negligible number of transcribed antisense segments are second-
strand artifacts from the reverse transcription [129]. The role of antisense
transcripts in S. cerevisiae is yet unclear, as S. cerevisiae lacks DICER and
other components of the RNA interference (RNAi) pathway [128]. The
expression of four of the periodically expressed antisense transcripts is
negatively correlated with the opposite sense transcripts’ expression, but
the majority of the periodic antisense transcripts does not show any sub-
stantial correlation with the expression profile of the respective sense tran-
script. Thus, their role does not seem to be RISC-mediated decay or,
more generally, mRNA degradation mediated through complementary
base pairing. At present, we can only speculate on the potential role of
the periodically expressed antisense transcripts, and on the role of the pe-
riodic unannotated intergenic transcripts.

Nevertheless, our findings indicate that non-coding transcripts are in-
volved in regulatory processes during different stages of the cell cycle.
Follow-up studies are required to elucidate the actual role of these tran-
scripts.

Transcript orientation Examples of divergent transcript pairs with cor-
related expression patterns have been described previously in the S. cere-
visiae genome [20]. We surveyed the whole transcriptome of S. cerevisiae in
an unbiased manner and found multiple pairs of adjacent transcripts with
regions of length ≤ 400 bp in between them. These pairs were stratified
into divergent, convergent and tandem transcript pairs (Figure 1.1). Di-
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vergent transcripts were found to show stronger correlated expression lev-
els than convergent transcripts, tandem transcripts and random transcript
pairs. Multiple pairs of divergent transcripts have a genomic region of
length 170–180 bp between their TSSs, with regions of length 180–220 bp
also being common. A bidirectional promoter region of length 170–180 bp
could be explained in the light of two recent studies, in which the po-
sitioning of nucleosomes in relation to transcriptional start sites was in-
vestigated [142, 143]. Many TSSs were found to be preceded by a short
region of about 140 bp that lacks any nucleosomes (a nucleosome-free
region (NFR)) and contains binding sites for transcription factors [142].
Adjacent to this region is a nucleosome which covers the TSS and starts
about 13 bp upstream of the TSS [143, the authors used the TSS positions
as we had annotated them in the exponential growth phase transcriptome
study (Section 4.2)]. A region of 170–180 bp could roughly correspond
to one single NFR that regulates both of the divergent transcripts and is
flanked by two nucleosomes that cover the TSSs of the two transcripts
(≈ 140 bp + 2 · 13 bp; note that, due to the reporter spacing on the micro-
array [Section 4.1], our estimate of the exact TSS position can only be accu-
rate within ±7 bp). A general relation between transcript orientation and
nucleosome positioning has also been suggested [142].

It remains to be seen how many of the regions in between observed di-
vergent transcripts are truly bidirectional promoter regions. Such bidi-
rectional promoters have been thoroughly characterised in H. sapiens [21,
139], but the described characteristics were not found to be directly appli-
cable to the regions between divergent transcripts in S. cerevisiae. How-
ever, two out of 125 known binding motifs of S. cerevisiae transcription
factors were found to be enriched in the promoter regions between diver-
gent transcripts. One is the binding motif of the transcription factor Abf1,
a TF with potential chromatin-reorganising activity. The binding motif of
Abf1 has previously been observed to be involved in regulating the bidi-
rectional transcription of the gene pair UGA3–GLT1 [140]. This gene pair
is also among the divergent transcript pairs analysed here, and I found
the motif of Abf1 in the promoter region between these transcripts and
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also in 56 other promoter regions between divergent transcripts. As Abf1
was seen to be involved in regulating the bidirectionality of at least one
transcript pair (UGA3–GLT1 ), it is plausible that it should regulate fur-
ther such pairs. The other enriched known binding motif is the one of
Rpn4. This TF was reported to stimulate the expression of proteasome
genes [144], and as far as I am aware has never been associated with bidi-
rectional promoters. The enrichment of the binding motif of Rpn4 here,
however, might be a chance observation and have no functional relevance.

Other transcription factors whose binding modalities are as yet unknown
could be responsible for divergent transcription patterns in budding yeast.
Lin and co-workers reported sequence motifs that were significantly en-
riched in bidirectional promoter regions in H. sapiens [139]. Of the mo-
tifs that they reported, only one that they found ab initio using motif-
discovery tools was over-represented in the promoter regions between di-
vergent transcripts in S. cerevisiae. This motif has a well-defined consensus
sequence “RAAATTTTTCA”, as ten out of its eleven nucleotide letters are
unambiguous. The biological significance of the enrichment of this motif
in the promoter regions of divergent transcripts in S. cerevisiae and in bidi-
rectional promoters of H. sapiens is unclear. Whether this motif happens to
be enriched by chance, corresponds to the binding motif of a yet unidenti-
fied TF or is a sequence motif that is relevant for nucleosome positioning
remains to be determined.

Taken together, all the described observations of divergent transcript pairs
and the promoter regions in between them only apply to a fraction of all
divergent transcript pairs in the cell-cycle data. The complete set of diver-
gent transcript pairs thus likely consists of two subsets. One subset con-
tains the divergent transcripts that are regulated by a shared bidirectional
promoter regions. Further studies are needed to precisely identify this set
and to further define the characteristics that bring about the bidirectional-
ity. The other subset consists of pairs of divergent transcripts that are reg-
ulated separately by unidirectional promoter regions. Since the genome of
S. cerevisiae is very densely covered with regions that are transcribed and
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the average distance between two transcripts is merely 558 bp, having a
region of length ≤ 400 bp in between any two transcripts does not nec-
essarily indicate any functional connection between the two transcripts.
The cutoff of 400 bp was an arbitrary choice based on previous observa-
tions that many interesting pairs of adjacent transcripts were less than this
distance apart from each other [20]. Due to this cutoff and the restriction
to non-overlapping transcripts, some relevant pairs of adjacent transcripts
might have been missed.

Nevertheless, the presented findings about transcript orientation in the
tiling microarray data, as well as the operon-like transcripts observed
earlier (Section 4.2), provide evidence against the existence of a simple
“one promoter, one transcript” concept in eukaryotes. Even an elemen-
tary model organism, such as S. cerevisiae, can provide important insights
into the process of transcriptional regulation. As our studies show, high-
throughput technologies are an excellent tool for figuring out further
pieces of the puzzle of transcription and transcriptional regulation.

Contributions

The microarray data were provided by Marina Granovskaia and Lars
Steinmetz. I performed all the described analyses, except for the identi-
fication of periodic transcripts, which was done by Marina Granovskaia,
Matt Ritchie and Lars Juhl Jensen.
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Chapter 5

Software for reproducible
research

Over the last two decades, programming source code (preferably in a
widely spoken high-level programming language, such as R [145]) has
emerged as an essential medium for the communication and critical aca-
demic evaluation of methodology in the biological sciences. Increases in
the scale of experimental designs and in the availability of personal com-
puters have fostered the popularity of this medium. Also, demand has in-
creased for functional, well-documented software providing data analysts
with generic tools, which they can reuse and extend for their own research
needs. This is especially true for the field of bioinformatics, which has
seen an exponential growth in data, and yet, in the early days, mostly was
based on slightly cryptic and poorly documented software tools that had
evolved from individual academic research projects. These tools were not
easily reusable, and researchers moving into the field had to rewrite their
own solutions to generic problems or to take pains to familiarise them-
selves with the software [146].

By now, however, the benefits of sharing software have become appar-
ent, and interoperable software tools are publicised in a similar manner
to biological research insights. In this chapter, I describe two software
packages, which I have (co-)developed. Both packages, Ringo [147] and
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tilingArray [148], are integrated in the Bioconductor project [104], which
is a collection of packages that extend the statistical environment R [145].
Bioconductor is an open source and open development software project
for the analysis and interpretation of genomic data. Bioconductor offers
tools that cover a broad range of computational methods, visualisations
and experimental data types. The design of these tools allows the con-
struction of scalable, reproducible and interoperable workflows.

5.1 tilingArray

5.1.1 Introduction

In 2005, high-resolution tiling microarrays with reporters for represent-
ing a whole genome were relatively new. Most available software for
microarray analysis focused on expression microarrays, the reporters of
which only represent the annotated ORFs of an organism. The unique
challenges posed by a whole-genome microarray platform required new
data processing and analysis approaches, and suitable extensions to ex-
isting methods developed for expression microarrays. We conducted a
high-resolution tiling microarray study that aimed to redefine the tran-
scriptome of S. cerevisiae ([9], Section 4.2). From the programming code
that was written to facilitate the analysis of the S. cerevisiae tiling arrays, we
constructed the Bioconductor package tilingArray. The package provided
other users with the means to conduct similar analyses and to reproduce
our results. The package was developed based on a transcriptome study
using a 25mer oligonucleotide microarray platform. Some functions in the
package tilingArray are specific to such a study, while other functions are
sufficiently general to be applied to other tiling microarray platforms and
study objectives. In accordance with Bioconductor’s open source, open de-
velopment philosophy, tilingArray is also meant as a starting framework
for the analysis of tiling arrays, which bioinformaticians can edit, extend
and adapt for their own analysis needs.
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5.1.2 Reporter annotation

During the analysis of tiling microarrays, a mapping of the reporters to
the genome sequence is required and needs to be made available in the
analysis software. Users may decide to use the reporter mapping anno-
tation that is provided by the manufacturer of the microarray. As long as
the complete genome sequence is known, however, a custom association
of reporters to genomic locations can be established via alignment of the
reporter sequences to the genome sequence. Powerful, specialised align-
ment tools for mapping multiple short sequences to a whole genome se-
quence are available. These include Exonerate [149] and the Bioconductor
package Biostrings. These tools are flexible with respect to the conditions
for a true match of a reporter to a genome segment. One consideration
is whether to allow mismatches between the reporter sequences and the
“matching” genome segment. If mismatches are allowed, different types
of mismatches might be treated differently. Mismatches at the ends of the
reporter have been shown to impede hybridisation less than mismatches
in the middle of the reporter [150].

Once the reporters have been mapped to the genome, the following infor-
mation needs to be extracted from the output of the alignment tool and
stored in a sensible data structure in the analysis environment: Which
reporters match the genome, and at what genomic coordinates? How
many distinct genomic coordinates are matched by each reporter? Only
reporters that uniquely match one single genome position are informative
for assessing transcription at that position. The readouts of reporters that
match multiple genome positions are harder to interpret as their level is af-
fected by cross-hybridisation. Still, there are cases in which even reporters
with more than one genomic match may be of interest. If, for example, a
reporter matches two genomic positions that are located in a pair of dupli-
cated genes, the reporter level could provide insights into the duplication
event.

The most natural way of representing the reporter-to-genome mapping in
R would be to use the data.frame class. However, repeatedly extracting
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subsets of a data.frame for a genomic region of interest is too slow for
practical purposes. tilingArray employs an object of class environment to
store the mapping. Per chromosome strand, the object holds four vectors
of equal length and ordering that specify at which genomic positions re-
porter matches start and end, what identifiers or indices these reporters
have in the intensities data, and whether these reporters match uniquely
to the genomic positions1.

5.1.3 Data preprocessing

On tiling microarrays, the whole genome is represented by reporters, in
contrast to expression or exon microarrays, which only represent anno-
tated ORFs. The reporters of tiling microarray therefore cannot be ex-
pected to meet equal standards of selection as seen with commercial ex-
pression microarray platforms. The large number of reporters results in
large variations in staining and hybridisation characteristics.

The package tilingArray includes functionality for adjusting raw tiling
microarray reporter levels measured from RNA samples of interest, based
on the output of a genomic DNA hybridisation. We assume that a re-
porter’s intensity level consists of a reporter-specific background level
plus a signal level that is proportional to the concentration of the reporter’s
RNA target:

xi = bgi + ci · [RNAi] (5.1)

where xi is the intensity measured for reporter i, bgi is the reporter’s back-
ground level and ci is a hybridisation factor denoting how well the re-
porter measures the target RNA concentration.

Naively, one could assume that both bgi and ci depend on the reporter’s

1The Bioconductor package Ringo (see Section 5.2) implements the S4 class probeAnno
that extends and solidifies this environment concept by a number of structural assertions.
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affinity to the target multiplied by some constant:

bgi = ai · bg0 (5.2)

ci = ai · c0 . (5.3)

If this assumption holds, dividing the raw intensity xi by an estimate of
this affinity âi would yield a normalised expression level for reporter i:

xi

âi
= bg0 + c0 · [RNAi] . (5.4)

In practise, this naive approach has not been found sufficient to nor-
malise reporter levels [24], since assumption (5.2) cannot account for cross-
hybridisation and other effects that influence the reporter-specific back-
ground signal. A better estimate of the reporter-specific background b̂gi,
accounting for non-linear dependencies between the reporter’s affinity
and its background signal, is required. An excellent way to obtain such
reporter-specific background b̂gi estimates is to hybridise genomic DNA
samples to the same microarray platform that is used to analyse the RNA
samples of interest.

Let Xij be the raw intensity of the i-th reporter on the j-th array, then the
normalised reporter intensity Xij is given by

Xij =
Xij − Bj(ai)

ai
(5.5)

where ai is a reporter-specific affinity factor, Bj(a) is a continuous function
estimating the background intensity of reporters with affinity a on array j.
The affinities ai are estimated by the geometric mean of reporter i’s in-
tensities from the genomic DNA hybridisations. For calculating Bj, the
reporters are grouped into strata corresponding to quantiles of ai. Within
each stratum, and for each array j, the midpoint of the shorth is calcu-
lated from the distribution of intensities of the reporters whose reporter
match positions (RMPs) do not overlap any genome feature2 on the same

2Genome feature is used as a summary term for annotated ORFs, uORFs, pseudo-
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or opposite strand. The function Bj is obtained from these values by linear
interpolation between them.

The values Xij are transformed to the generalised logarithmic (glog) scale
using the vsn method [25].

Finally, the function discards reporters with very low reporter-specific
affinities ai, by default the ones corresponding to the 5% lowest affinities
ai. When taking the ratio (5.5), low affinities ai may result in normalised
reporter levels Xij that are artificially high, even though these reporters are
uninformative.

Figure 4.2 (page 80) displays the effect of the normalisation-through-
DNA-hybridisations on reporter levels in an example genomic re-
gion. The normalisation procedure is implemented in the function
normalizeByReference of package tilingArray.

This normalisation procedure gave the best improvement of the signal-
to-noise ratio in the yeast tiling microarray data (see Section 4.2). The
package tilingArray uses the basic Bioconductor class ExpressionSet to
store the array data; thus, users can easily apply alternative preprocessing
methods from other packages or of their own devising. If, for example,
the microarray platform contains mismatch (MM) reporters in addition to
the perfect match reporters, users might consider using these for estimat-
ing the reporter-specific background intensity bgi, as done in the MAS5
preprocessing method proposed by Affymetrix [71].

5.1.4 Segmentation

For certain applications of tiling microarrays, such as to distinguish tran-
scribed genomic regions from untranscribed ones, the reporter-wise res-
olution of the signal may be too fine-grained. Genomic segments tran-
scribed by a polymerase enzyme can measure thousands of base pairs
in length and with most tiling microarrays encompass more than one re-
porter match position (RMP). Moreover, since single reporter measure-

genes, ncRNAs, repeat regions, and transposable elements.
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ments are not reliable, segments whose status as transcribed is supported
by multiple reporters are less likely to be false positives than those sup-
ported by few reporters.

Fitting a piece-wise constant function

The package tilingArray contains a segmentation function, in which in-
tensity values along the genome are divided into segments of approxi-
mately constant hybridisation signal using a dynamic programming al-
gorithm. The segmentation algorithm is based on the structural change
model, which is well-established in econometrics [151] and which has al-
ready been applied for segmenting array-CGH data [152].

Given m replicate microarrays, with a set of k reporters that match k or-
dered genomic positions on one chromosome strand, the aim is to find the
optimal division of the positions into S segments representing regions of
similar reporter levels. To this aim, the algorithm finds an ordered set ζ

of S − 1 segment boundaries, or change points, ζ = {t2, t3, . . . , tS} that
minimise the cost function

G(ζ) =
S

∑
s=1

J

∑
j=1

i<ts+1

∑
i≥ts

(
xij − xsj

)2 (5.6)

where xij is the normalised signal of the i-th reporter on the j-th replicate
microarray (j = 1, . . . , m), t1 = 1, tS+1 = k + 1, and xsj is the arithmetic
mean of the signal values of array j in segment s. The loss function (5.6) is
the sum of squared residuals for all reporters from the mean values of their
respective segments. In this notation, two segment boundaries are fixed a
priori: t1 is the first reporter-match position and tS+1 is the hypothetical
one which would follow the last actual RMP. Hence, for a fixed value of
S, there are (k−1

S−1) different sets of segment boundaries ζ and the algorithm
finds the one set that minimises the cost function (5.6).

This minimisation can be reformulated in terms of likelihoods. For the
expression levels xi of all reporters belonging to segment s, we assume the

124



model

∀i ∈ s : xi = µs + εi with εi ∼ N(0, σ2). (5.7)

We assume that the residuals εi are independently identically distributed.
For µs and σ, we use the maximum likelihood estimators

µ̂s = ns
−1 ∑

i∈s
xi and σ̂2 = n−1 ∑

i
(xi − µ̂)2 (5.8)

where ns denotes the number of reporters making up segment s, n is the
total number of reporters measured, and µ̂ is the mean of all reporter lev-
els.

Setting the parameter S

The single parameter of the segmentation algorithm that needs to be set
is S, the number of segments. This parameter controls the sensitivity-
specificity trade-off of the algorithm. A setting for the parameter S can
be derived by a maximum-likelihood approach. The cost function (5.6),
however, has its absolute minimum of 0 if S is equal to k, the number of
RMPs on the chromosome strand, i.e. if each RMP makes up an individual
segment.

Obviously, this value for S is not useful. An alternative way to derive a
setting for S is to employ a penalised maximum-likelihood approach. A
penalty term that depends on the number of segments, the model param-
eters, is subtracted from the (log-)likelihood and the value that maximises
the penalised likelihood yields a setting for S. Two such penalised like-
lihoods are well-known, the Akaike Information Criterion [153] and the
Bayesian Information Criterion (BIC) [154]. The package tilingArray in-
cludes documentation describing how to use compute the penalised likeli-
hood and how to obtain the parameter setting SIC that is deemed optimal
in those approaches. The Bayesian Information Criterion, in particular,
works well for estimating the number of segments in simulated data. In
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our study of the yeast transcriptome (see Section 4.2), however, the esti-
mate ŜBIC largely exceeds a parameter setting deemed suitable, in partic-
ular with regard to specificity. The reason may be that the model (5.7) is
too simple to represent important aspects of high-resolution tiling micro-
array data; notably the assumption that the residuals in each segment are
independently identically distributed is too naive. The model (5.7) is use-
ful to estimate meaningful segment boundaries once the parameter S is
set appropriately, but it might not be sufficiently powerful for inferring S
from the data.

We set the parameter S on the basis of data exploration and simulation
studies, to guarantee a high sensitivity in the segmentation approach.
High specificity was attained by pruning steps following the segmenta-
tion (see Section 4.2).

Alternative segmentation approaches

Sliding average thresholding If the aim is to identify segments of a lim-
ited number of types, say “transcribed” and “untranscribed”, a combina-
tion of a sliding window algorithm and a thresholding algorithm could
be considered. In the sliding window algorithm, reporter levels are first
smoothed along each strand or chromosome, taking into account the in-
tensities of reporters nearby. In the thresholding algorithm, the RMPs at
which smoothed reporter levels exceed a provided threshold determine
the segment boundaries.

Such an approach has been used in some early tiling microarray studies for
the identification of transcripts (see, e.g., [8, 30]). The major drawback of
such a segmentation approach is that a sliding window of fixed size typi-
cally leads to biased estimates of the segment boundaries. The amount and
direction of this bias is determined by the degree by which signal levels in
the transcribed segment exceed the background signal. Figure 5.1 clarifies
this problem. Use of such a sliding-window algorithm typically allows the
qualitative assessment of whether there is signal above a fixed threshold
or not. However, the algorithm fails to provide an accurate estimate of the
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Figure 5.1: Comparison between the tilingArray segmentation algorithm and
sliding average thresholding (SAT). top: The dots correspond to simulated data
for a weakly expressed transcript starting at position 100 and ending at 200. The
vertical dashed green lines show the segmentation boundaries set by the segmen-
tation algorithm that is implemented in tilingArray. The blue line shows a sliding
average (window width of 50). The vertical dashed light-blue lines show the seg-
ment boundaries found by thresholding the sliding average at a threshold of y = 1
(horizontal dotted line). The SAT results in too short a transcript estimate. mid-
dle: As in the top panel a), for a moderately expressed transcript. The segment
boundaries estimated by both algorithms nearly coincide. bottom: As in the top
panel, for a strongly expressed transcript. The SAT estimate of transcript length
exceeds the actual length. The tilingArray segmentation produces unbiased esti-
mates for the segment boundaries in all three cases.
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length of the segment that exceeds the threshold. Note that the simulated
data used in Figure 5.1 were generated according to the model (5.7) and
unsurprisingly the tilingArray segmentation algorithm accurately recovers
the segment boundaries. In the tiling microarray study of the yeast tran-
scriptome (Section 4.2), we saw abrupt change points in the data, similar
to the ones in the simulated data in Figure 5.1. Hence, the drawback of
the sliding average thresholding needs to be taken into account with tiling
microarray data. An modified SAT algorithm, in which the median in-
stead of the arithmetic mean is used for smoothing, is less affected by the
variation in signal levels.

Hidden Markov Models Hidden Markov models (HMMs) [98] provide an
alternative for segmenting tiling-microarray data. The Bioconductor pack-
age snapCGH contains an HMM-based algorithm for segmenting array-
CGH readouts [155]. An HMM approach is suitable for recovering a fi-
nite number of levels, such as DNA copy number variations, and, with
appropriate parameter settings, allows accurate identification of segment
boundaries. HMMs, however, are limited in the sense that the number of
hidden states needs to be fixed. This may be problematic for the segmenta-
tion task3. Transcribed segments can show various expression levels. For
example, the three simulated segments in Figure 5.1 would require three
separate hidden states, e.g., “lowly expressed”, “expressed” and “highly
expressed”, and these may only be a small subset of observed transcrip-
tion rates. Furthermore, alternative splicing, mRNA degradation, and
other transcript structures lead to multiple transcribed segments of dif-
ferent levels within the same transcript. Such signal patterns are difficult
to interpret with HMMs.

The structural change model (page 124f.) can be seen as a continuous-state
model, in which every segment’s average intensity would make up a “hid-
den” state, and the number of states does not need to be fixed in advance
(although there is an implicit upper bound, namely the parameter S, the

3The same issue arises when HMMs are used for finding ChIP-enriched regions in
ChIP-chip data (see Section 3.1.1).
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number of segments).

Faster, comparable segmentation algorithms Dynamic programming al-
gorithms tend to be comparatively slow due to the use of nested loops,
and the segmentation algorithm of package tilingArray is no exception to
that rule. Faster segmentation algorithms that are also based on piece-wise
constant data models have recently been suggested for segmenting array-
CGH data [156, 157]. As both the resolution of tiling microarrays and the
number of samples in the individual studies are growing, these faster al-
gorithms are worth considering as methods for segmenting the data.

5.1.5 Visualisation of segments

tilingArray offers extensive functionality for visualising tiling microarray
data. The main visualisation function, plotAlongChrom, allows for concise
visualisation of a genomic region, displaying

• the normalised levels of reporters matching genome positions in this
region, separately for both strands if the data are strand-specific

• the fitted segment boundaries within this region

• genome features, such as ORFs, ncRNAs, and transcription factor bind-
ing sites, that are annotated in this region (a data.frame holding anno-
tated genome features needs to be provided to the function).

Figure 5.2 shows an example visualisation of the Poly-A RNA data from
our study of the S. cerevisiae transcriptome (see Section 4.2).

5.1.6 Discussion

The Bioconductor package tilingArray provides functionalities useful for
the analysis of high-density tiling microarray data (such as those gener-
ated on Affymetrix whole-genome GeneChip microarrays). The package
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Figure 5.2: Visualisation of the Poly-A-RNA data from our tiling microarray
study of the S. cerevisiae transcriptome (Section 4.2) in a 7 kb region of chromo-
some 14. The figure was created using the function plotAlongChrom from the
Bioconductor package tilingArray. The green dots in the top panel correspond to
the preprocessed reporter intensities on the Watson strand, the blue dots in the
bottom panel are the intensities from the Crick strand. The middle panel shows
the genomic coordinate and genome features that are annotated in this region.
Blue boxes are annotated ORFs; the golden vertical bars are experimentally de-
termined transcription factor binding sites. One can see an operon-like transcript
involving the ORFs GIM3 and YCK2 on the Crick strand.

was developed during a survey of the complete transcriptome of S. cere-
visiae in exponential growth phase and includes specific functionality for
this objective. Other functionalities of the package, however, are suffi-
ciently generic to be useful in other kinds of tiling microarray studies.
tilingArray makes use of generic Bioconductor classes, which in combina-
tion with Bioconductor’s open development philosophy makes the pack-
age amenable to being adopted and modified by bioinformaticians with
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related research objectives. We are continuing to maintain and enhance
the package as part of the Bioconductor project.

Contributions to tilingArray

The programming source code and documentation that is contained in the
package was written by Wolfgang Huber and me, with contributions from
Matt Ritchie.

5.2 Ringo

5.2.1 Introduction

ChIP-chip, chromatin immunoprecipitation combined with microarray
hybridisation, is a widely used assay for protein-DNA interactions and
chromatin plasticity. The experimental procedure is described in Sec-
tion 1.4.1 (page 13f.).

The interpretation of ChIP-chip data poses two computational challenges:

• primary statistical analysis, which is used as a grouping term for quality
assessment, data normalisation and transformation, and identification
of genomic regions of interest

• integrative bioinformatic analysis, during which the data are inter-
preted in context of existing genome annotation and related experimen-
tal results.

Both tasks rely on visualisation for exploring the data as well as to present
the analysis results. For the primary statistical analysis, some degree
of standardisation is possible and desirable. Commonly used experi-
mental designs and microarray platforms allow the development of stan-
dard workflows and statistical procedures. Most software available for
ChIP-chip data analysis can be employed in such standardised experi-
ments [158, 159, 160, 161, 147, 162]. However, the primary analysis steps
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frequently need to be adapted to specific experiments. The analysis soft-
ware therefore should offer flexibility in the choice of algorithms for nor-
malisation, visualisation and identification of ChIP-enriched regions. Yet
a greater degree of flexibility is required for the second task, integrative
bioinformatic analysis, as the data sets, analysis questions and the appli-
cable methods are diverse. A programming environment such as R and
Bioconductor offers appropriate flexibility for both tasks.

Ringo is an open-source R/Bioconductor software package for importing
raw microarray data, quality assessment, normalisation, visualisation, and
for the detection and quantitative assessment of ChIP-enriched regions.
The package’s basic functionality covers the complete primary statistical
analysis for ChIP-chip tiling microarrays. Ringo contains data import func-
tions for reading in two-colour tiling microarrays manufactured by Nim-
bleGen Systems [163]. Due to the modular design of Ringo, however, data
from other microarray platforms can also be processed, once imported us-
ing custom functions or functions from other packages. The firm inte-
gration of the package with Bioconductor simplifies the construction of
sophisticated analysis workflows, which can involve other R and Biocon-
ductor packages.

Ringo is complementary to existing available software for ChIP microarray
analysis. For example, mpeak [162], TiMAT (http://bdtnp.lbl.gov/TiMAT),
MAT [160], TileMap [159], ACME [101], HGMM [161], and ChIPOTle [158]
provide model-based and non-parametric algorithms for finding ChIP-
enriched regions on normalised and quality controlled ChIP-chip data.
These softwares commonly provide interfaces to these algorithms, and
users may be required to use the softwares in combination with other
tools for data import, data preprocessing and follow-up analysis. A
unique aspect of Ringo is that it facilitates the construction of automated,
programmed workflows and offers benefits in the scalability and repro-
ducibility of the analysis.
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5.2.2 Implementation

Ringo is an extension package for the statistical environment R. Most of its
functionality is implemented in the R programming language, while C and
C++ functions are used for performance-critical computations. The pack-
age interfaces functions from other Bioconductor packages, most notably
from the package limma [164]. The object classes used in Ringo are standard
Bioconductor classes, such as RGList and ExpressionSet. In addition, the
package provides new S4 object classes for representing identified ChIP-
enriched regions and reporter-to-genome mappings.

5.2.3 Functionality

Figure 5.3 shows a typical workflow of ChIP-chip data analysis and indi-
cates which steps are facilitated by the Bioconductor package Ringo. Key
functionalities of the package are import, quality assessment and prepro-
cessing of the raw data, visualisation of raw and processed data and an
algorithm for detecting ChIP-enriched regions.

Data I demonstrate the functionalities of the package on a ChIP-chip
data set of transcription factor binding events in the cardiomyocyte cell
line HL1. The data were generated on 60mer oligonucleotide microar-
rays that were manufactured by NimbleGen Systems. See Chapter 3 (Sec-
tion 3.2) for further details about the data.

Data import Ringo contains functions to read in raw data in NimbleGen
file formats, generated when the microarrays are scanned, into an RGList

object. Users can alternatively supply raw ChIP microarray data in the
RGList format. The package limma, for example, contains a function that
can read in most scanner file formats into an RGList. Such an object is
essentially a list class object and contains the raw intensities of the two
hybridisations for the Cy5 and Cy3 channel plus information on the re-
porters on the array and on the analysed samples.
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Figure 5.3: Workflow diagram displaying which steps of the analysis of ChIP-
chip experiments are facilitated by the Bioconductor package Ringo.

Quality assessment Ringo contains an extensive set of functions for qual-
ity assessment of the data. Its image function allows the user to examine
the spatial distribution of the feature intensities on the array surface. This
can be useful to detect obvious artifacts on the array, such as scratches,
bright spots, finger prints etc. that might render parts or all of the read-
outs invalid (see Figure 3.2 on page 56 for an example).

The autocorrelation plot can assist in the assessment of how the reporter
tiling across the chromosome affects the levels of reporters. For each base-
pair lag d, the correlation coefficient between the intensities of reporters
at genomic positions x + d and the reporter intensities at positions x is
computed. The correlation coefficient is plotted against the lag d in the
autocorrelation plot (see Figure 5.4). Some degree of autocorrelation is to
be expected, since the DNA fragments that are hybridised to the microar-
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Figure 5.4: This is an example autocorrelation plot, which was computed and
plotted using functions in Ringo. The autocorrelation decreases with increasing
lag.

ray are typically some hundred base pairs long. The visualisation is useful
to assess whether the autocorrelation is unusually high or low and up to
which distance this is the case.

Furthermore, if the data set contains biological or technical replicates, low
correlation between replicate sample intensities may indicate microarrays
of questionable quality. Ringo therefore contains the function corPlot to
visualise the correlation between replicate samples’ raw and preprocessed
reporter intensities.

Normalisation Following quality assessment, microarray data are nor-
malised to increase the signal-to-noise ratio of the data. Then fold changes
of normalised reporters intensities of the enriched samples divided by the
normalised intensities of the input samples are derived. The (generalised)
logarithm of these ratios yields the preprocessed reporter levels.

Ringo provides a number of choices for normalisation of ChIP-chip
data, interfacing preprocessing methods implemented in the Bioconduc-
tor packages vsn [25] and limma plus the Tukey-biweight scaling of the log-
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Figure 5.5: Normalised GATA4 ChIP-chip reporter levels around the TSS of the
gene Hand2. The green lines correspond to the preprocessed levels in the two
replicated ChIP samples for the transcription factor GATA4. The ticks below the
genomic coordinate axis on top indicate genomic positions matched by reporters
on the microarray. The blue arrows on the bottom mark the gene Hand2 with the
arrow direction indicating its transcription direction, i.e. the gene is located on
the Watson strand.

ratios that is suggested by NimbleGen. The preprocessing functions return
reporter levels on a log2 (or glog) scale in an object of class ExpressionSet,
the basic Bioconductor object class for microarray data.

Reporter mapping A mapping between the identifier of each reporter
on the microarray and the genomic positions at which the reporter’s se-
quence matches the genome sequence is required for ChIP-chip analy-
sis. Ringo implements a custom S4 class probeAnno to store this mapping.
The probeAnno object corresponds to a set of tables relating chromosomal
positions to feature identifiers on the array. The package provides func-
tions that assist in the production of the probeAnno object from reporter-
to-genome mappings supplied by the array manufacturer or from custom
alignments of the reporter sequences to the genome.

Visualising genomic regions An important aspect of genomic data analy-
sis is extensive exploration of the data using different visualisation tech-
niques. In addition to the visualisation functions offered by other R and
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Bioconductor packages, Ringo provides a function for displaying estimates
of reporter-wise log fold enrichment in specified genomic regions. See Fig-
ure 5.5 for an example. The plot displays the preprocessed reporter levels,
the positions of reporter matches to the genome and genes that are anno-
tated in the specified region.

Smoothing of reporter levels The identification of ChIP-enriched ge-
nomic regions, i.e. genomic regions that show enrichment in the immuno-
precipitated sample as compared to the untreated input sample, is a key
step in ChIP-chip data analysis workflows. A smoothing of reporter levels
is suggested to precede the identification of ChIP-enriched regions. Dif-
ferent reporters measure the same target DNA amount with different ef-
ficiency. This effect is caused by variable quality of feature synthesis on
the array, reporter GC content, target cDNA secondary structure, cross-
hybridisation, and other reasons. One way to ameliorate these reporter
effects as well as the stochastic noise is to perform a smoothing over in-
dividual reporter levels. A window of fixed width is slided along the
chromosome, and the reporter level at genomic position x0 is replaced
by the median over the levels of all reporters inside the window that is
centred at x0. Factors to take into account when choosing the width of
the sliding window are the size distribution of DNA fragments after son-
ication, which influences the autocorrelation between reporters (see Fig-
ure 5.4), and the spacing between reporter matches on the genome. Note
that while sliding-window smoothing potentially allows for clearer iden-
tification of ChIP-enriched regions, it will introduce a bias in estimates of
the start and end points of such regions (see Section 5.1.4). In the smooth-
ing step, the reporter levels from replicate samples can be combined into
a single smoothed sample for ChIP-enrichment of the analysed transcrip-
tion factor or histone modification. Figure 5.6 shows an example smooth-
ing result. The smoothed reporter levels indicate ChIP enrichment in the
displayed genomic region with less variation in the reporter levels than
in the two unsmoothed samples. The two replicate samples have been
combined into a single smoothed ChIP sample for GATA4 enrichment.
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Figure 5.6: Normalised and smoothed reporter levels around the TSS of the gene
Hand2. The pale green lines correspond to the preprocessed levels in the two
replicated ChIP samples for the transcription factor GATA4. The dark green line
is the result of the sliding window median smoothing across the two replicates.
For details on the figure annotation, see the legend of Figure 5.5.

Finding ChIP-enriched regions The aim is to determine a set of genomic
regions that appear to be antibody-enriched. Regions can be ranked by
a quantitative score of the confidence in the enrichment, or by a score of
the degree of enrichment in each region. A p-value is a particular case
of confidence score and is defined in the context of an appropriate null
hypothesis and a probability model. If the simple goal is to find and rank
regions in some way that can be reasonably calibrated, such complications
are not necessarily required. The confidence in an enrichment should be
distinguished from the degree of the enrichment. More profound enrich-
ments tend to result in stronger signals and hence less ambiguous calls.
However, the certainty about whether there is enrichment should also be
affected by reporter coverage, reporter sequence, and cross-hybridisation.

Which approach is best for identifying enriched regions from ChIP-chip
data depends on the microarray design, on the biological context of the
experiments, and on the way the regions are going to be used in follow-
up analyses. Ringo implements one possible approach. For a region to be
called enriched, the following is required
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• the smoothed reporter levels (log ratios) within that region all exceed a
certain threshold y0

• the region contains at least nmin positions matched by reporters

• there are no gaps larger than dmax base pairs between two consecutive
match positions in the region.

The minimum number of reporters rule (nmin) might seem redundant with
the sliding window smoothing, but it becomes important in reporter-
sparse regions. For example, if there is only one enriched reporter within
a certain genomic 1kb region and no other reporters were mapped to that
region, this single reporter arguably does not provide enough evidence
for calling this genomic region enriched. Making calls supported only by
a few reporters should be avoided. Finally, the dmax rule prevents calling
disconnected regions as a single enriched region.

The optimal approach for setting the enrichment threshold y0 would be
to tune it by considering sets of positive and negative control regions. As
such control regions are rarely available, a mixture modelling approach is
considered.

The distribution of the smoothed reporter levels y is assumed to be a mix-
ture of two underlying distributions. One is the null distribution L0 of
reporter levels in non-enriched regions; the other is the alternative distri-
bution Lalt of the levels in enriched regions. The challenge is to estimate
the null distribution L0. In Ringo, an estimate L̂0 is derived based on the
empirical distribution of smoothed reporter levels (see Figure 5.7). The
null distribution L0 is assumed to have most of its mass close to its mode
m0, which is close to y = 0. L0 is also assumed to be symmetric about m0.
The alternative distribution Lalt is assumed to be stochastically larger than
L0 and to contain negligible mass for y < m0. Based on these assumptions,
the following estimator of L0 is derived. First, the position of the mode m0

is estimated by the midpoint of the shorth of the empirical distribution of
those y that fall into the interval [−1, 1] (on a log2 scale). The distribution
L0 is then estimated from the empirical distribution of m0 − |y− m0|, i.e.
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Figure 5.7: This histogram shows the distribution of smoothed reporter levels
for the GATA4 ChIP sample. The red dashed line indicates the algorithmically
determined threshold y0, above which smoothed reporter levels are considered to
indicate enrichment. See the text for details about the algorithm.

by reflecting y < m0 onto y > m0.

From the estimated null distribution, an enrichment threshold y0 can be
determined, for example the 99.9% quantile. The red dashed, vertical line
in Figure 5.7 denotes one such estimated threshold. Antibodies vary in
their efficiency to bind to their target epitope, and the noise level in the
data depends on the sample DNA. Thus, y0 should be computed sepa-
rately for each antibody and cell type, as the null and alternative distribu-
tions, L0 and Lalt, may vary.

The algorithm described above provides a straightforward estimate for y0.
It has been used in previous studies, for example by Schwartz et al. [165].
There are other algorithms that use more complex models of ChIP-chip
data [94, 166].

5.2.4 Discussion

The functionality of the software package Ringo provides a good start-
ing point for researchers interested in the analysis of ChIP tiling microar-
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rays or of similar data. Ringo provides a comprehensive set of functions
for quality assessment, data processing, visualisation and ChIP-chip data
analysis. The package’s close integration with Bioconductor opens up di-
verse possibilities for subsequent analysis.

In addition to the computational challenges in ChIP-chip data analysis,
users need to be aware of experimental design issues, which can lead
to false positive and false negative enriched regions. Such experimen-
tal issues include lack of antibody specificity or sensitivity, and cross-
hybridisation. Although good software can help in identifying them, these
issues are the main reason why ChIP-chip, as with most high-throughput
approaches, should primarily be seen as a means to generate biological hy-
potheses that need to be validated in appropriate small-scale studies. Bio-
conductor provides a integrative framework for the formulation of well-
stated hypotheses.

Contributions to Ringo

I have written most of the source code included in the package, with
contributions from Oleg Sklyar, Tammo Krueger, Matt Ritchie and Wolf-
gang Huber. I have written the package documentation and most of the
manuscript describing the package [147], with contributions from Wolf-
gang Huber and Oleg Sklyar. Jenny J. Fischer and Silke Sperling provided
the ChIP-chip data displayed in this chapter and in the publication [147].
I am still maintaining and enhancing the Bioconductor package Ringo.
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Conclusions

High-throughput studies are powerful tools of the genomic era for further
enhancing our knowledge about the fundamental processes that cells em-
ploy to utilise the information that is encoded in their DNA. During my
time at EMBL-EBI, I had the opportunity to work on three large-scale stud-
ies, in which the processes of transcription and transcriptional regulation
were investigated in model organisms, using high-throughput technolo-
gies such as microarrays. This dissertation gives a comprehensive descrip-
tion of these studies, including their biological and technological back-
ground, the development of methods for analysing the data from such
studies, as well as the characteristic problems one needs to be aware of
during the analysis of the data and the interpretation of the study results.
As such, this document may give an impression of the potential of such
studies as well as of the challenges that are constantly being faced in cur-
rent genomics research. In this dissertation, I have also emphasised the
fact that biological, statistical, as well as computational aspects need to be
considered to obtain useful results out of large-scale genomics studies.

In conclusion, the obtained results exemplify the potential of such high-
throughput studies towards the formulation of well-defined hypotheses
about transcription and transcriptional regulation in eukaryotic cells.

By now (August 2008), it looks as if the high-throughput sequencing tech-
nologies are about to supplant microarrays as the preferred means of in-
vestigating transcriptomes and transcriptional regulation in the near fu-
ture. Even though these sequencing technologies are still immature and
only preliminary algorithms for analysing their output are available, these
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technologies promise to overcome typical problems which are inherent to
microarrays, such as reporter-specific noise effects. In addition, in contrast
to microarrays, high-throughput sequencing may also allow for reliable
quantification of RNAs with few copy numbers, whose signals are diffi-
cult to distinguish from background signal on microarrays. However, I
expect that microarrays will continue to be used for a few more years at
least, because microarrays will likely become more affordable, their out-
put is reasonably well understood and free powerful analysis tools, such
as Bioconductor, can be used for their evaluation. Algorithms for the anal-
ysis of high-throughput microarray data can be adopted to handle new
high-throughput sequencing data. And the next step, integrating the re-
sults from an high-throughput experiment with existing annotation and
other experimental results, is similar for both microarrays and sequenc-
ing studies. Thus, methods, algorithms and software for the analysis of
microarray experiments are not going to be dispensable from one day to
the other, but rather are being adopted by the scientific community to meet
the challenges of these new sequencing technologies in much-needed fur-
ther studies for investigating transcription and transcriptional regulation.
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Appendix A

Publications

These are the publications that I contributed to while researching for this
dissertation:

• David L, Huber W, Granovskaia M, Toedling J, Palm CJ, Bofkin L, Jones
T, Davis RW, Steinmetz LM (2006) A high-resolution map of transcription
in the yeast genome. [9]

• Huber W, Toedling J, Steinmetz LM (2006) Transcript mapping with high-
density oligonucleotide tiling arrays. [148]

• Purmann A, Toedling J, Schueler M, Carninci P, Lehrach H, Hayashizaki
Y, Huber W, Sperling S (2007) Genomic Organization of Transcriptomes
in Mammals: Co-regulation and Co-functionality. [87]

• Toedling J, Sklyar O, Krueger T, Fischer JJ, Sperling S, Huber W (2007)
Ringo - an R/Bioconductor package for analyzing ChIP-chip read-
outs. [147]

• Fischer JJ, Toedling J, Krueger T, Schueler M, Huber W, Sperling S (2008)
Combinatorial Effects of Histone Modifications in Transcription and Dif-
ferentiation. [88]

• Toedling J, Huber W (2008) Analysis of ChIP-chip data using Bioconduc-
tor. [167]
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