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Abstract 

Supercapacitors store charge through the electrosorption of ions on microporous 

electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture 

of the electric double-layer in working devices is still lacking as few techniques can 

selectively observe the ionic species at the electrode-electrolyte interface. Here, we use in 

situ NMR to directly quantify the populations of anionic and cationic species within a 

working microporous carbon supercapacitor electrode. Our results show that charge 

storage mechanisms for the electrolyte studied are different for positively- and negatively-

polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in 

acetonitrile; for positive polarization charging proceeds by ion exchange, whereas for 

negative polarization, counter-ion adsorption dominates. In situ electrochemical quartz 

crystal microbalance (EQCM) measurements support the NMR results and indicate that 

adsorbed ions are only partially solvated. These results provide new molecular-level 

insight, the methodology offering exciting possibilities for the study of pore/ion size, 

desolvation and other effects on charge storage in supercapacitors. 

 

Introduction 

The mechanism of charge storage in supercapacitors has traditionally been attributed to the 

electrosorption of ions on the surface of a charged electrode to form an electric double-layer. 

However, in recent years a number of empirical observations have shown that the mechanism is 

more complex, with factors such as relative pore/ion sizes[1-3] and desolvation effects[4,5] playing 

important roles. Theoretical studies have led the way in understanding supercapacitor charging on 

the molecular level,[6,7] and have demonstrated that charge screening,[8-10] ionic 

rearrangement[11]  and confinement,[12]  and pore surface properties[13] can have significant 

effects on the capacitance and charging dynamics. Nevertheless, theoretical simulations 

necessarily depend on assumptions and simplifications, and many questions concerning details of 

the charging mechanisms in real devices remain unanswered. In particular, it is not clear if 

charging is a purely adsorptive process, or if ion exchange and expulsion from the charged 

electrodes also contribute to the formation of the electric double-layer. Recently, in situ 

experimental methodologies based on electrochemical quartz crystal microbalance (EQCM)[14,15] 

and infra-red (IR) spectroscopy[16,17] have started to address these questions. These methods 

can observe ion adsorption and expulsion in charged electrodes, and have been able to distinguish 

purely adsorptive regimes from ion mixing during charging. However, neither of these techniques 

alone permit the direct quantification of species within the electric double-layer in absolute terms, 

EQCM measuring total mass changes in the electrode and IR spectroscopy measuring only the 
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ions outside of the pores, and so an unambiguous picture of the charging mechanism has not yet 

been obtained.  

 

One approach that has recently shown promise for the study of supercapacitors is nuclear 

magnetic resonance (NMR) spectroscopy. NMR has the advantage that it is element selective, 

thereby allowing individual ionic species to be observed independently.[18,19] Ex situ NMR 

measurements on disassembled supercapacitor electrodes have revealed changes in the 

populations and local environments of ionic species that result from charging.[20] In situ NMR and 

magnetic resonance imaging methods have also been developed, which allow changes in the local 

environments of the ions in the electric double layer to be observed for working devices.[21-

24] These approaches have provided qualitative insight into the charging mechanism for a range of 

electrolyte systems. However, in principle NMR is fully quantitative and should enable the 

measurement of absolute ion populations at the electrode-electrolyte interface. In particular, the 

combination of NMR with EQCM, which tracks the displacement of all electrolyte species including 

solvent molecules, should provide a full description of the structure of the electric-double layer.  

 

Here, we use tetraethylphosphonium tetrafluoroborate (PEt4-BF4) salt dissolved in 

acetonitrile (ACN) as the electrolyte, employing 31P and 19F NMR experiments to enable the 

selective observation of the PEt4 cations and BF4 anions, respectively. Deuterated ACN was also 

used to enable the observation of solvent species by 2H NMR (as described in Supplementary 

Information). Experiments have been performed on commercial YP-50F activated carbon, for 

which gas sorption measurements show an average pore size of 0.9 nm with 92% of pores being 

smaller than 2 nm. The specific surface area is 1730 m2·g–1 and the total pore volume is 0.75 

cm3·g–1 (see Supplementary Information). 

 

 

Results 

Supercapacitor bag cells were constructed following a shifted ‘overlaid’ design, allowing a 

single electrode to be studied independently inside the NMR coil whilst maintaining good 

capacitive properties.[24] Electrodes were fabricated using 95 wt% YP-50F and 5 wt% PTFE 

binder (see Materials and Methods). Fig. 1 shows 31P and 19F NMR spectra of individual 

supercapacitor electrodes in cells held at 0 V with electrolyte concentrations of 1.5 M, 0.75 M and 

0.5 M. In each spectrum, intense ‘ex-pore’ resonances are observed at 40 ppm (31P) and –150 

ppm (19F), corresponding to ions located in voids between carbon particles and in electrolyte that 

resides in a small reservoir between the two electrodes. Small features visible in the ex-pore  
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Figure 1. 31P (a, c, e) and 19F (b, d, f) NMR spectra of individual supercapacitor electrodes showing in- and 
ex-pore cation and anion environments. Electrolyte concentrations are (a, b) 1.5 M, (c, d) 0.75 M and (e, f) 
0.5 M. Supercapacitors were held at a cell voltage of 0 V. The in-pore resonances in each spectrum are 
highlighted. 
 

resonances are due to susceptibility effects associated with the bag cell components and 

geometric anisotropy of the cell.[21,22] Weaker ‘in-pore’ resonances corresponding to ions inside 

the micropores close to carbon surfaces are also observed, shifted to lower frequency by 5 - 7 

ppm. The shift of the in-pore resonance from that of the ex-pore resonance is due to diamagnetic 

nucleus independent chemical shift (NICS) effects (often referred to as ‘ring current’ effects) 

associated with the delocalized electrons in the predominantly sp2-bonded carbon surface.[22,25] 

Calculations indicate that the NICS effect should be significant for species within a few Ångstroms 

from the carbon surface. However, the effects of dynamics must also be considered as fast 

exchange between different positions within a pore will result in an averaging of the observed 

chemical shift. Taking this into account, NICS values of around 5 ppm have been predicted for 

species inside pores up to 2 nm in width, consistent with the shifts observed here.[25] 
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Figure 2. In-pore ion populations per gram of YP-50F at 0 V plotted as a function of concentration for PEt4-
BF4 / ACN electrolyte. For each concentration equal populations of cations and anions are adsorbed and the 
total in-pore ion population varies approximately linearly with electrolyte concentration. 

 

Through comparison of the in-pore resonance intensities with calibration samples, it is 

possible to quantify the number of in-pore species in absolute terms and gain insight into the 

adsorption properties. In-pore ion populations are plotted as a function of electrolyte concentration 

in Fig. 2. For the three electrolyte concentrations studied, in-pore anion and cation populations at 0 

V are balanced and vary approximately linearly with the concentration. Using estimated solvated 

ion diameters of 1.35 nm (PEt4+) and 1.16 nm (BF4
–)[26] (see Supplementary Information) and the 

measured ion uptakes at 0 V, we find that the in-pore ions should occupy a total volume of 1.12 

cm3 (1.5 M electrolyte), 0.56 cm3 (0.75 M electrolyte) and 0.37 cm3 (0.5 M electrolyte) per gram of 

YP-50F. For the 1.5 M electrolyte, the total volume of the in-pore ions estimated on this basis is 

significantly larger than the total pore volume of 0.75 cm3·g–1 for YP-50F. This indicates that for this 

concentration, the assumption of each ion having a complete ACN solvation shell is not valid; 

instead, the ions must be more densely packed inside the micropores, with partial desolvation or 

overlap of their solvation shells.  

 

To investigate changes in the in-pore ion behaviour during charging, in situ NMR 

experiments were performed as the supercapacitor cells were charged sequentially from total cell 

voltages of 0 to 1.5 V in steps of 0.25 V. They were then discharged in a single step to 0 V, before 

being charged in steps of –0.25 V to –1.5 V. 19F and 31P in situ NMR spectra were acquired at each 

voltage (Fig. 3) after cells had been held for 60 minutes (1.5 M & 0.75 M electrolyte) or 90 minutes 

(0.5 M electrolyte), until a negligible constant residual current was obtained (see Supplementary 

Information). In both voltage ranges, the in-pore cation and anion resonances move to higher 

frequency in the NMR spectra as the cells are charged. This is consistent with previous 

results[21,22] and is due to changes in the nucleus-independent chemical shifts (NICS) that result 

from the electronic charge that is developed within the carbon electrode: charging of π-bonded  
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Figure 3. In situ 31P and 19F NMR spectra of individual supercapacitor electrodes at different states of 
charge. Spectra recorded in the range 0 → 1.5 V are shown in (a, c, e); spectra recorded in the range 0 → –
1.5 V are shown in (b, d, f). Electrolyte concentrations are (a, b) 1.5 M, (c, d) 0.75 M and (e, f) 0.5 M. In-pore 
anion intensities increase for positive charging, while in-pore cation intensities increase for negative 
charging. 
 

carbon systems gives rise to so-called paratropic or anti-aromatic ring currents, which result in 

positive NICS for nearby species.[22] 

 

While the frequencies of the in-pore resonances depend on the electronic charge state of 

the electrode surface, importantly, the intensities of the in-pore resonances correspond to the 

number of in-pore ions within the electrode. As the cell potentials are varied, changes in the in-

pore resonance intensities reflect the changing ion populations within the electric double-layer that 

is formed at the electrode-electrolyte interface within the micropores. In the positive voltage range, 

the in-pore resonances in the 19F NMR spectra increase in intensity as the cell is charged, showing 

that anions are absorbed into the micropores during charging. For the negative voltage range, an 

increase in the in-pore cation population is observed in the 31P NMR spectra as cations are 

absorbed into the micropores. These results provide a qualitative picture that is consistent with the  
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Figure 4. In-pore ion populations for supercapacitor electrodes at different charges states in the range –1.5 
to +1.5 V with (a) 1.5 M, (b) 0.75 M and (c) 0.5 M electrolyte concentrations. Values are given as milimoles 
per gram of YP-50F carbon in a single electrode. Lines joining the data points are a guide to the eye. Ion 
exchange is observed for positive charging whereas cation adsorption dominates for negative charging. 

 

accepted view of supercapacitor charging: as electronic charge accumulates within the electrode, 

ions of opposite charge are adsorbed onto the surface to form an electric double-layer. 

 

Absolute ion populations determined from the deconvoluted in-pore resonance intensities, 

plotted in Fig. 4, offer more quantitative insight and provide a detailed compositional picture of the 

electric double-layer during charging. Interestingly, for the positive cell voltage range, we find that 

the charging mechanism is not a purely adsorptive process. For all electrolyte concentrations, the 

in-pore anion population increases together with a simultaneous decrease in the in-pore cation 

population. This shows that charge storage is actually driven by ion exchange, whereby anions are 

absorbed into the micropores while cations are simultaneously ejected. This leads to an overall 

negative ionic charge, which forms an electric double-layer with the positive electronic charge that 

accumulates on the electrode surface. Over the voltage range studied, the number of cations 

ejected from the micropores is approximately equal to the number of anions adsorbed, meaning 

that the total number of in-pore ions does not change significantly. For the 0.5 M electrolyte, an 

apparent increase in in-pore cation population is observed between 1.0 → 1.5 V. However, for 

these voltages we note there are larger uncertainties in deconvoluting the very low intensity in-pore 

resonances in the experimental 31P NMR spectra. In the negative voltage range, a different 

charging mechanism is observed: between 0 → –1.5 V, the in-pore cation population increases for 

all electrolyte concentrations, but there are no significant changes in the in-pore anion population. 

Therefore charge storage in the negative voltage range is dominated by counter-ion adsorption, 

with an overall increase in the number of in-pore ions. Note that while the electrochemical stability  
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Figure 5. Comparisons of the magnitudes of ionic 
and electronic charge stored on supercapacitor 
electrodes in the range –1.5 – 1.5 V for electrolyte 
concentrations of (a) 1.5 M, (b) 0.75 M and (c) 0.5 
M. Values are given as coulombs per gram of YP-
50F carbon in a single electrode. Lines joining the 
data points are a guide to the eye. Good overall 
agreement between the stored electronic charge 
and ionic charge is observed across the voltage 
range studied. 

 
 

window of ACN-based electrolytes can be as large as 3 V, the potential range studied here was 

limited to ±1.5 V due to the significant overlap of the in-pore and ex-pore resonances at > 1.5 V. 

 

It is straightforward to determine the total ionic charge within the carbon electrode at each 

voltage step from the in-pore ion populations. For the three concentrations studied, we find good 

overall agreement between the ionic charge inside the micropores and the stored electronic charge 

(Fig. 5), the latter being determined from integration of the current vs time plots at each voltage 

step. At high voltages between 1 and 1.5 V for the 0.5 M electrolyte, a noticeable deviation is 

observed; this is likely related to the difficulty in accurately deconvoluting the weak 31P in-pore 

resonance intensity at these voltages, the signal overlapping with the stronger signal from the ex-

pore ions. The overall agreement between the ionic and electronic charge shows that it is the ions 

in the in-pore environment (within a few nanometres from the electrode surface) that are primarily 

responsible for charge storage.  
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To probe the local environments of the solvent molecules, in situ 2H NMR spectra were 

recorded for a supercapacitor cell containing 1.5 M electrolyte (see Supplementary Information).  

The resonances corresponding to in-pore and ex-pore / free electrolyte ACN solvent molecules are 

much broader, probably as a result of faster exchange processes affecting the highly mobile 

solvent molecules, precluding the accurate deconvolution of in-pore resonance intensities. Instead, 

to gain further information about the charging mechanisms and behaviour of the solvent molecules, 

the same system was studied in situ using an electrochemical quartz crystal microbalance 

(EQCM). Particles of YP-50F carbon were deposited on a piezoelectric quartz crystal resonator 

whose resonance frequency can be related to the mass of the crystal electrode through the 

Sauerbrey equation,[27] thus providing information about the ion and solvent molecule fluxes 

during the charging of the porous carbon electrode. The carbon-coated resonator was used as a 

working electrode in a three-electrode EQCM cell containing PEt4-BF4 / ACN electrolyte at the 

intermediate concentration of 0.75 M. In contrast to previous EQCM studies, which probed 

dynamic charging using cyclic voltammetry experiments,[14,15] measurements were performed 

under steady-state conditions (i.e., at fixed voltages) to mirror the NMR experimental methodology. 

These steady-state experiments should be less influenced by the kinetics of adsorption; rather, a 

complete reorganization of the ions and solvent molecules in the pores to approach the lowest 

energy arrangements is possible.  

 

The electrode was polarised from the open-circuit voltage (OCV) of 0.43 V vs. Ag reference 

electrode up to +0.7 V vs. Ag in steps of 0.1 V. The electrode was then discharged to the OCV 

before being charged to 0 V vs. Ag in steps of –0.1 V. The electrode was held at each voltage for 

120 s until a constant residual current was obtained (Fig. S9 in Supplementary Information). The 

initial OCV was close to the point of zero charge (PZC) of the electrode (0.49 V vs. Ag), the PZC 

being measured in a separate experiment (see Supplementary Information). The sequence was 

repeated several times to ensure reproducibility of the results. The low carbon loading on the 

resonator (tens of micrograms) restricts the electrochemical window such that purely capacitive 

behaviour is only observed in the potential range 0 ↔ +0.7 V vs. Ag. Outside of this window, there 

are significant redox contributions to the total current (see Fig. S10 in Supplementary Information). 

 

 Measured mass changes (normalized by the electrochemically active area of the quartz 

resonator, 1.27 cm2) are plotted as a function of the electrode potential in Fig. 6a. The mass of the 

electrode is observed to increase at negative potentials relative to the OCV. This behaviour is 

qualitatively consistent with the adsorption-driven charging mechanism inferred from the NMR 

data, the absorption of cations into the micropores with no significant change in the anion 
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Figure 6. (a) Electrode mass change, Δm, plotted 
as a function of potential during polarization of 
YP-50F in 0.75 M PEt4-BF4 / ACN solution. The 
vertical dashed line denotes the open circuit 
potential (OCV). A mass increase is measured for 
negative polarization, whereas a mass decrease 
is measured for positive polarization (b) 
Comparison of experimental and calculated 
electrode mass changes plotted as a function of 
capacitive charge during polarization. Calculated 
mass changes are based on a purely adsorptive 
mechanism (green triangles) and an ion exchange 
mechanism (orange squares). The grey horizontal 
line denotes zero mass change. For negative 
polarization, a linear fit to the data (dotted line) 
shows experimental mass changes are larger 
than predicted by the purely adsorptive model, 
indicating that solvent molecules are also 
adsorbed. For positive polarization, the ion 
exchange mechanism gives best agreement with 
negative mass change observed experimentally. 
  

 
 

population resulting in an increase in the total number of ions and hence mass of the electrode. 

For positive potentials relative to OCV, the electrode mass is found to decrease slightly over the 

potential range studied. This behaviour is consistent with the exchange-driven charging 

mechanism determined from the NMR data. The adsorption of anions and simultaneous explusion 

of cations from the electrode should result in an overall decrease in the total in-pore ionic mass 

since the BF4 anions have a significantly smaller mass (86.8 g·mol–1) than the PEt4 cations (147 

g·mol–1).  

 

It is possible to gain a more quantitative interpretation of the EQCM results by comparing 

the experimental mass changes with theoretical values calculated assuming different models for 
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the charging mechanism. Fig. 6b shows the experimental mass changes plotted as a function of 

the capacitive charge stored on the electrode, calculated by integrating current vs. time plots using 

Faraday’s law.[15] Also plotted are theoretical mass changes based on two different charging 

mechanisms. For the first model, a purely adsorptive mechanism is considered, based on the 

traditional assumption that that one negative (positive) charge stored in the electrode is balanced 

by the adsorption of a single cation (anion) on the electrode surface. For the second model, an ion 

exchange mechanism was assumed whereby for positive (negative) electrode polarization, two 

charges stored on the electrode surface are compensated by the adsorption of one anion (cation) 

and desorption of one cation (anion). For negative polarization, the purely adsorptive model (green 

triangles) predicts the largest mass change, although the measured mass changes are much 

higher than those predicted by either model across the entire potential range. In contrast to the 

NMR data shown in Fig. 3, which selectively observe in-pore cation and anion populations, mass 

changes measured by EQCM originate from all electrolyte species (including solvent molecules) 

that enter and leave the porous electrode. Since the NMR data shows that the anion population 

remains approximately constant during negative polarization (i.e., a purely adsorptive mechanism 

is operating), the additional mass observed experimentally must originate from the co-absorbed 

solvent molecules. The slope of a linear fit of the experimental mass change vs. charge gives an 

experimental molar mass of 369 g·mol-1 per adsorbed species (from Faraday’s law). Assuming that 

the adsorbed species are PEt4 cations (justified on the basis of the NMR results), we can estimate 

a cation solvation number of 5.4. This value is slightly lower than the solvation number of 7 

predicted for chemically similar NEt4 cations in bulk solution,[26] indicating that cations are partially 

desolvated when they enter the pores of the microporous carbon. 

 

For positive polarization, Fig. 6b shows that the purely adsorptive model again predicts a 

mass increase as BF4 anions are absorbed into the micropores. This is not in agreement with the 

experimental data, where a slight mass decrease is observed. In contrast, the ion exchange model 

(orange squares) predicts a slight decrease in electrode mass during charging. This is because 

heavier PEt4 cations (147.2 g·mol–1) are replaced by an equal number of lighter BF4 anions (86.8 

g·mol–1) in the electrode. This model gives better agreement with the experimental values, where a 

mass decrease is also observed. Although it was not possible to extract clear information 

regarding the solvation number because of the limited accessible voltage window at positive 

potentials (up to 0.7 V vs. Ag) and low deposited mass of carbon, the fact that change of the 

electrode mass follows that predicted by the NMR results confirms that the charging mechanism is 

driven by ion exchange in the potential range studied. For the 0.75 M and 0.5 M electrolyte 

concentrations, a large fraction of the cations are expelled at the highest potential studied by NMR 

(+1.5 V, see Figures 4b and c). As a consequence, the purely adsorptive mechanism must start to 
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become important at higher potential when all cations have been expelled from the electrode. 

However, the restricted potential range of the EQCM measurements (from 0 to 0.7 V vs Ag) 

prevents high polarisation states to be reached. We note that in this regime (> 1.5 V), the EQCM 

response of the electrode would be expected to change to show increasing mass for the positive 

electrode (reflecting a purely adsorptive mechanism). 

 

Discussion 

The combined NMR-EQCM approach provides a full picture of the charge storage 

mechanism over the potential range studied. At a cell voltage of 0 V, the electrode is wetted by 

equal numbers of anions and cations, which are densely packed inside the micropores and 

partially desolvated for high electrolyte concentrations. Upon charging, for negative potentials the 

electronic charge stored on the electrode surface is balanced by the absorption of cations into the 

micropores. For positive potentials, the stored electronic charge is balanced by the absorption of 

anions into the micropores and simultaneous expulsion of cations.  

 

The asymmetry in ion sizes may be one reason for the different mechanisms in the two 

charging regimes. Ion and solvent reorganization inside the micropores may play a role in 

determining this: packing inside of the pores may be more efficient with excess (spherical) cations 

than for excess anions, so that more charge can be accommodated at negative potentials without 

having to expel the co ions. Of note, the EQCM measurements for the current system indicate that 

the adsorbed cations also carry additional solvent molecules into the pores, which means that 

even more space has to found inside the micropores as the electrode is charged. Under the 

steady-state conditions employed here, and in contrast to dynamic measurements performed in 

other EQCM studies, solvent molecules will have time to reorder so that they can take up less 

space. We note that the ordering of propylene carbonate (PC) solvent molecules within micropores 

has recently been observed by X-ray total scattering experiments.[28] Pair distribution function 

analysis identified a shortening of the average intermolecular distance by approximately 0.05 Å as 

compared to bulk solution, interpreted as a densification of the packing of the PC molecules 

through vertical alignment. It is also possible that the micropores may expand during charging to 

accommodate the additional adsorbed species. Indeed, the expansion of micropores during 

charging has recently been proposed on the basis of electrochemical dilatometry experiments.[29] 

The results presented here should be contrasted with our earlier work on a 1.5 M 

tetraethylammonium tetrafluoroborate (NEt4-BF4) / ACN electrolyte.[22] In this work, only the 

anions were monitored by 19F NMR; for negative potentials the in-pore anion population changed 

only slightly upon charging to –0.5 V (as seen here), after which it dropped to approximately 20% 

of the initial value at –1.25 V. At positive potentials, the in-pore anion population remained constant 
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until approximately 0.75 V before increasing steadily. Although we can only indirectly infer NEt4 

cation behaviour, these results suggest that charge is stored via the cation adsorption mechanism 

now in a different potential window (–0.5 to +0.75 V (NEt4+) vs. –1.5 to 0.0 V (PEt4+)). It is possible 

that the screening between cations may be worse for the smaller, less polarisable NEt4 cations, 

disfavouring dense cation packing, and reducing the negative voltage threshold at which anions 

are expelled from the pores. Differential solvation effects for the two types of cation may also be 

important. 

 

Kinetic phenomena cannot be totally excluded. Unlike the current study which was 

performed on a pristine cell, the cells in the previous study[22] were cycled multiple times between 

0 – 2.3 V prior to the NMR measurements. Furthermore, magnetic resonance imaging 

experiments, albeit under non-steady state conditions, have indicated that changes in in-pore ion 

populations can occur in the first several cycles;[24] this will further affect ion transport and 

ordering in the electrode during charging. In the current study, the adsorption of larger cations at 

negative polarizations could present steric hindrance to anions leaving the pores. However, the 

steady-state conditions employed in this work, and the rapid mobility of both the cations and 

anions, should allow ions and solvent molecules to reorganize within the pores (and within the 

electrolyte) to approach the lowest energy state. Hence, it is unlikely that kinetic effects are 

dominant in determining the in-pore ionic populations at different charge states, unless the 

differences in energy between the ion-exchange vs. ion adsorption are very small. Experiments are 

underway to study an even wider range of systems under both static and dynamic charging 

conditions to explore these phenomena further.  

 

The experiments provide definitive evidence that over most potential ranges the electric 

double layer formed during charging is not composed of a single counter-ionic species, the NMR 

results showing that significant numbers of co-ions can remain inside the micropores during 

charging in both the positive and negative voltages ranges. However, for the positive electrode in 

the 0.5 M concentration electrolyte the cations are almost completely ejected from the electrode at 

a cell voltage of around 1 V while anions continue to be adsorbed. Mean field theory and 

simulations have shown that for certain pore/ion size ratios, a ‘jump’ in capacitance can be 

expected for such a case, i.e., where the applied potential is sufficiently high to drive the co-ions 

out of the pore but is not high enough to fill the pores completely with counter-ions.[10,30] No 

significant capacitance increase was measured for the 0.5 M concentration electrolyte as 

compared to the 1.5 M electrolyte (both yielding capacitances of approximately 100 F·g–1 (see 

Supplementary Information)); however, it may be that factors such as charge screening by solvent 

molecules or the appreciable pore-size distribution of YP-50F mask any effects in this case. Future 
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investigations will enable a better fundamental understanding of the relative importance of these 

effects for the optimization of capacitive properties. 

 

In conclusion, we have used in situ NMR spectroscopy to quantify fully the cationic and 

anionic species within the electric double-layer in a working supercapacitor electrode. The 

combination of in situ NMR and EQCM measurements also gives further information on solvent 

uptake during charging that is not possible using either technique alone. Our results provide a 

direct molecular-level insight into the charge storage process in microporous carbon electrodes, 

and show that the charging mechanisms differ depending on the polarization of the electrode 

surface. The methodology introduced here opens the way for the study of factors such as relative 

pore/ion sizes, concentration and solvent effects on the ionic composition of the electric double-

layer during charging, questions that are at the heart of current efforts to optimize and improve the 

energy storage capabilities of supercapacitors. 
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Materials and Methods 

All carbon electrodes were prepared from YP-50F activated carbon (Kuraray Chemical, Japan). 

Free-standing carbon films were prepared as reported in Ref. 23 by mixing carbon powder (95 wt 

%) with polytetrafluoroethylene (5 wt %) (Sigma Aldrich, 60 wt % dispersion in water). Films were 

rolled to an approximate thickness of 0.25 mm. Prior to sample preparation, carbon film pieces 

were dried under vacuum at 200 °C overnight and then transferred to an argon glove box with H2O 

and O2 levels less than 0.1 ppm. Inside the glove box, the film pieces were cut to a mass of 7.4 ± 

0.1 mg. Tetraethylphosphonium tetrafluoroborate salt (>98%) was obtained from Tokyo Chemical 

Industries. Supercapacitor bag cells were prepared as previously described.[22]!NMR experiments 

were performed using a Bruker Avance spectrometer operating at a magnetic field strength of 7.05 

T, corresponding to 19F and 31P Larmor frequencies of 284.2 and 121.5 MHz, respectively. A 

Bruker HX double resonance static probe was used, with a 6.8 mm inner diameter solenoid coil. 
19F NMR spectra are referenced relative to neat hexafluorobenzene (C6F6) at −164.9 ppm, and 31P 

NMR spectra are referenced relative to 85 wt% H3PO4(aq) at 0 ppm. More details on the in situ 

methodology and deconvolution of the NMR spectra are given in Supplementary Information. 

 

 For EQCM measurements, a slurry composed of 80-90% of active electrode materials and 

10-20% of polyvinylidene fluoride (Arkema) in N-methyl-2-pyrrolidone (Sigma-Aldrich) was 

prepared and few droplets were deposited on a Maxtek 1 inch-diameter Au-coated quartz crystal 

resonator (with a fundamental frequency of 5 MHz). The carbon-coated quartz resonator was then 

dried at 60°C overnight in air. Maxtek RQCM system was combined with an Autolab PGSTAT101 

potentiostat for simultaneous EQCM and electrochemical measurements. Details of the cell 

assembly were reported previously.[15] Chronoamperometry tests were conducted at room 

temperature with simultaneous recording of the quartz resonance frequency. The capacitive 

charge stored on the electrode was calculated by integrating the current versus step duration time 

during the potential hold (see Fig. S9). Further details are given in Supplementary Information.  
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1. Quantifying adsorbed species at zero applied potential  

To quantify adsorbed species at zero applied potential, a series of calibration bag cells were 

prepared, each containing a 7.4 ± 0.1 mg YP-50F film electrode soaked with accurately measured 

volumes of electrolyte between 2 and 12 µL. 31P and 19F NMR spectra of bag cell samples with 1.5 

M electrolyte concentration are shown in Figure S1.  

 

 
 

Figure S1. 31P and 19F NMR spectra of bag cells containing 7.4 ± 0.1 mg YP-50F films soaked with 
different volumes of 1.5 M PEt4-BF4 / ACN electrolyte. 

 

The NMR spectra of the calibration bag cell samples were fitted with two resonances 

(corresponding to in-pore and ex-pore environments), and linear fits were performed for the total 

intensity as a function of electrolyte volume. Since the electrolyte concentrations and total sample 

volumes are known, it is then possible to quantify the absolute number of ions for a given 

resonance intensity in the NMR spectrum. 

 

However, accurate comparisons between the resonance intensities of the calibration samples and 

the resonance intensities determined for the supercapacitor cells are not possible because the 

metal current collectors have a large effect on the radiofrequency properties of the NMR probe, 

resulting in significant changes to the pulse lengths and powers, and detected signal amplitudes. 

Instead, ‘dummy’ supercapacitor cells were constructed, containing two electrodes separated by a 

small reservoir of electrolyte (as shown in Figure S2). In-pore resonance intensities for the dummy 

cell electrodes can be directly compared with the calibration samples because they do not contain 

metal components. Furthermore, these cells contain electrodes in the same environment as in a 

supercapacitor device, i.e., fully saturated with electrolyte.  
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Figure S2. Schematic diagram showing the construction of (a) an ‘overlaid’ design supercapacitor 
bag cell, and (b) a dummy cell without current collectors for calibration experiments. 

 

This dummy cells enable the determination of the number of in-pore ions in a 7.4 ± 0.1 mg 

electrode which is saturated in electrolyte with no applied potential. Since the working 

supercapacitor cells contained electrodes of the same mass, the same number of in-pore ions was 

assumed at 0 V.  

 

2. Estimated Solvated Ion Diameters  

The solvated BF4 anion diameter of 1.16 nm is based on the value determined using the Cerius 3.8 

program in Ref. [S1]. This assumes a single solvation shell comprising 9 acetonitrile molecules. 

 

For the PEt4 cation, no literature data for the solvated ion diameter is available. However, a recent 

publication by Matsumoto et al. provides crystallographic data for PEt4-BF4 salt, giving a 

desolvated cation diameter of approximately 0.72 nm.[S2] Assuming the thickness of the solvation 

shell to be the same as that for the tetraethylammonium (NEt4) cation (calculated in Ref [S1]. to be 

0.32 nm for a solvation shell comprising 7 acetonitrile molecules), we may estimate the solvated 

PEt4 cation diameter to be 1.35 nm. 

 

3. In situ NMR spectra of solvent molecules 

To probe the local environments of the solvent molecules, 2H NMR spectra were recorded for a 

supercapacitor cell containing 1.5 M PEt4-BF4 / ACN with deuterated solvent. As shown in Figure 

S3a, at 0 V, resonances corresponding to in-pore and ex-pore / free electrolyte ACN solvent 

molecules are observed, although in this case the linewidths are much broader; this is likely to be a 

result of faster exchange processes affecting the highly mobile solvent molecules and possibly 

residual 2H quadrupolar interactions. While the broader resonances preclude an accurate 

deconvolution of the in-pore resonance intensities, qualitative differences in the behaviour of the  
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Figure S3. (a) 2H NMR spectrum of a supercapacitor cell containing 1.5 M PEt4-BF4 / ACN 
electrolyte with deuterated solvent. In-pore, ex-pore and free electrolyte solvent environments are 
observed. (b, c) In situ 2H NMR spectra recorded as the capacitor is charged between –1.5 and 
+1.5 V.  

 

in-pore resonances are observed in the two charging regimes. In the positive charging regime 

(Figure S3b), the in-pore resonance is observed to move to high frequency underneath the ex-pore 

/ free electrolyte feature as the supercapacitor is charged, as is observed in the NMR spectra of 

the electrolyte ions. The intensity of the ex-pore feature increases as the in-pore feature moves 

underneath it. For the negative charging regime (Figure S3c), the movement of the resonance to 

high frequency appears to be accompanied by a larger increase in the intensity of the ex-pore 

feature. This could indicate that the in-pore solvent molecule population increases during negative 

charging, which is consistent with the EQCM data showing that the adsorbed cations are partially 

solvated.
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4. Additional NMR details 

NMR experiments were performed using a Bruker Avance spectrometer operating at a magnetic 

field strength of 7.05 T, corresponding to 19F and 31P Larmor frequencies of 284.2 and 121.5 MHz, 

respectively. A Bruker HX double-resonance static probe was used, with a 6.8 mm inner diameter 

solenoid coil. The “depth” pulse sequence[S3] was used for all experiments in order to reduce the 

background and probe ringing signals. The total delay between excitation of transverse 

magnetization and acquisition of the free induction decay was 90 µs. A recycle interval of 30 s was 

used, which was sufficient for spectra to be quantitative. For 19F NMR experiments, 16 transients 

were coadded for each spectrum; for 31P NMR experiments, 128 (256) transients were coadded for 

spectra recorded for samples containing 1.5 M (0.75 M & 0.5 M) electrolyte. 19F NMR spectra are 

referenced relative to neat hexafluorobenzene (C6F6) at −164.9 ppm, and 31P NMR spectra are 

referenced relative to 85 wt% H3PO4(aq) at 0 ppm. 

 

5. In Situ NMR Methodology 

In situ NMR experiments were carried out by placing the pristine cell in the NMR coil in the vertical 

orientation[S4] and charging sequentially to a series of different voltages (0, 0.25, 0.5, 0.75, 1, 

1.25, 1.5, 0, –0.25, –0.5, –0.75, –1, –1.25 and –1.5 V). The applied potential was controlled using 

a Bio-logic cycler in two-electrode configuration. Cells were held at each voltage for 60 minutes 

(1.5 M, 0.75 M electrolyte) or 90 minutes (0.5 M electrolyte) until an equilibrium charge state was 

obtained before 19F and 31P NMR spectra were acquired. For low voltages the current was close to 

zero at equilibrium. For voltages between 1 – 1.5 V, small constant currents of up to 0.005 mA 

were observed at equilibrium. For the discharge of the cell (1.5 → 0 V), current relaxations of 

double duration were used. Spectral fitting was carried out using DMfit software.[S5] 

Deconvolutions were carried out using a mixture of Gaussian and Lorentzian lineshapes to 

describe the different features in the spectra. In each case only the minimum number of 

components required to model the spectrum were used and a single lineshape was assumed for 

the in-pore resonance. Some spectra required several lineshapes to describe the free electrolyte / 

ex-pore resonance. This is ascribed to bulk magnetic susceptibility (BMS) effects and local 

variations in the magnetic field across the bag cell, which results in a range of different local fields 

and thus shifts for the same chemical species.[S5] For each electrolyte, the spectrum obtained at 0 

V was fitted first, as this showed the best resolution of the in-pore resonance. The peak positions 

and intensities obtained were then used as a starting point to fit the spectrum at the next highest 

voltage. Fits were repeated up to four times for each series of data in order to estimate errors. 

Example deconvolutions of 31P and 19F NMR spectra are shown in Figure S4.  
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Figure S4. Representative deconvolutions of 31P and 19F in situ NMR spectra recorded for cells 
held at voltages of 0, 0.75 and 1.5 V. Experimental lineshapes are shown in blue, while the sum of 
individual fitted components is shown in red. 
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6. Electrochemical characterisation of in situ NMR supercapacitor bag cells 

A cyclic voltammogram (CV) for a 1.5 M PEt4-BF4 / ACN supercapacitor bag cell with 7.4 mg 

YP-50F electrodes is shown in Figure S5. The CV was recorded between cell voltages of 0 and 1.5 

V with a voltage scan rate of 0.5 mV·s–1. Reproducible capacitive behaviour was observed over 10 

cycles, and the discharge current of –0.18 mA at 0.9 V yields a capacitance of 102.4 F·g–1. This is 

in good agreement with the capacitance obtained from the 1.5 V → 0 V discharge current in the in 

situ NMR experiment (see below), and values reported for similar systems in the literature.[S4,S6] 

 

 

 
 
Figure S5. Cyclic voltammogram of 1.5 M PEt4-BF4 / ACN supercapacitor bag cell with 7.4 mg 
YP-50F electrodes.  

 

Figure S6 shows current relaxations for the 1.5 M PEt4-BF4 / ACN supercapacitor bag cell 

with 7.4 mg YP-50F electrodes during the in situ NMR experiment. The relative timings and 

durations of the in situ NMR experiments are also shown. Small residual currents were obtained, 

with a maximum value of 1.8 µA at 1.5 V. These constant currents are attributed to non-faradaic 

processes and so are neglected in the calculation of total charge stored (Fig. 5 in the main text). 

Inclusion of these constant residual currents does not make a significant difference to the values 

obtained. 
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Figure S6. Current relaxations for the 1.5 M PEt4-BF4 / ACN supercapacitor bag cell with 7.4 mg 
YP-50F electrodes recorded during the in situ NMR experiment. Vertical dashed lines indicate the 
start and end points of 31P and 19F in situ NMR experiments performed sequentially after a 
constant current was obtained. 
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Figure S7 shows the cumulative charge stored for each cell at each voltage step in the in situ NMR 

experiments. The stored charge varies approximately linearly with the applied cell voltage in each 

case and is fully discharged during the 1.5 V → 0 V step. 

 

 
 

Figure S7. Plot showing cumulative charge stored as a function of voltage in supercapacitor bag 
cells containing 7.4 mg YP-50F electrodes used in in situ NMR experiments.  

 

From integration of the 1.5 → 0 V discharge current with respect to time, a gravimetric 

capacitance of 99.6 F·g–1 was determined for the bag cell containing 1.5 M PEt4-BF4 / ACN 

electrolyte. This value is in good agreement with literature values for similar systems comprising 

activated carbon electrodes and tetraethylammonium tetrafluoroborate electrolyte.[S4,S6]  

 

The capacitance of the cells containing 0.75 M and 0.5 M PEt4-BF4 / ACN electrolyte as 

determined from the integrated 1.5 → 0 V discharge currents were found to be 97.5 and 

100.2 F·g–1, respectively, almost identical to the cell made with the 1.5 M electrolyte. This shows 

that, despite the differences in concentration, an essentially equal amount of charge is stored by 

these systems over the voltage range studied. 
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7. NMR spectra of dried supercapacitor electrodes 

To investigate the effect of drying supercapacitor electrodes, 3.4 mg YP-50F carbon films were 

wetted with 5 µL of NEt4-BF4 / ACN and PEt4-BF4 / ACN electrolytes inside magic angle spinning 

NMR rotors. The rotors were then sealed before 19F NMR spectra were recorded (shown in blue in 

Figure S8). Ex-pore and in-pore anion environments are clearly visible for both electrolytes. The 

NMR rotors were then opened and left in air for 45 minutes for the solvent to evaporate. 19F NMR 

spectra of the dried films are shown in red in Figure S8. For both electrolytes, the evaporation of 

the solvent causes changes in the ex-pore ion populations (which decrease) and the in-pore anion 

populations (which increase). It is possible that as solvent molecules are removed from the ex-pore 

environment, the occupation of the in-pore environment becomes more energetically-favourable, 

where solvent molecules remain. These data show that differences in measured ion populations 

are to be expected between the in situ NMR experiments reported in this work, and ex situ 

experiments reported previously, where electrodes were dried prior to the NMR experiment.[S6] 

 

 
 

Figure S8. 19F NMR spectra of YP-50F films wetted with 1.5 M (a) NEt4-BF4 / ACN and (b) PEt4-
BF4 / ACN electrolyte (blue) and subsequently dried for 45 minutes in air (red). Clear changes in 
the ex-pore and in-pore ion populations are observed after drying.  
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8. Electrochemical quartz crystal microbalance experiments 

YP-50F with 10-20% PVdF binder was drip-coated on a 5 MHz Maxtek 1-inch quartz crystal. 

Electrochemical measurements were conducted with simultaneous recording of the quartz 

resonance frequency (the details of cell assembly were reported previously[S7]). 

 

The shift of the resonance frequency of the quartz resonator (Δf) can be converted into a 

mass change (Δm) of the quartz crystal and electrodes by applying Sauerbrey’s equation (1): 

 

     (1)
 

 

where ρq is the density of quartz (2.648 g·cm–3), µq is the shear modulus of quartz (2.947 ×1011 g 

·cm·s2), fo is the fundamental resonance frequency of the quartz and Cf is the calibration constant 

(or sensitivity factor). The sensitivity factor of the resonator, Cf, was obtained by carrying out silver 

electroplating under constant current (chronopotentiometry) at -0.18mA·cm–2 on a bare quartz 

crystal soaked in an electrolytic solution containing 0.01 M silver nitrate and 0.1 M 

tetraethylammonium tetrafluoroborate in acetonitrile. The mass of the silver deposit (m) was 

calculated by applying Faraday’s law (eq. 2), assuming a 100% faradic efficiency: 

 

     (2)
 

 

where Q is the charge passed through the electrode in Coulombs, I is the current in Amps, t is 

the time in seconds, Mw is the molecular weight of silver (107.9 g·mol–1), F is the Faraday Constant 

(96485 C·mol–1), and n is the valence number of the ion. The calibration constant Cf was then 

determined from the slope of Δf versus Δm curve. The value of the calibration constant used in this 

work is 17.5 ng·Hz–1. 

 

Chronoamperometry tests were conducted at room temperature with simultaneous 

recording of the quartz resonance frequency. The potential was increased from the OCV in steps 

of 0.1 V and held for 120 seconds at each voltage. The capacitive charge Qc passed through the 

electrode was calculated by integrating the current (I) versus step duration time (t) during the 

potential hold (see Figure S9).  The total charge Qtotal was corrected from the contribution of the 

residual leakage current by subtracting the residual leakage charge Qleak = Ileak.t where t is the step 

duration and Ileak the residual stabilized current, so that Qc = Qtotal - Qleak.  
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Figure S9. Electrode potentials, E, currents, I, and mass changes, Δm, of the electrode plotted as 
a function of time during negative (left) and positive charging (right) 

 

Figure S9 details the chronoamperometry test on the YP50F-coated quartz crystal for 

positive and negative charging, showing the potential step profile (upper part), the corresponding 

current response (middle) and the in situ mass variation with time calculated using the Sauerbrey 

equation (equation 1). 

 

The Sauerbrey equation can be applied under the assumption that the additional mass or 

film deposited on the quartz has the same acousto-elastic properties as quartz crystal, which 

means that the carbon deposited needs to be thin and homogenous. Therefore, the carbon loading 

on the quartz was kept in the range 20 – 50 µg·cm–2. 

  

An important part of EQCM analysis is based on the calculated capacitive charge which 

further leads to theoretical mass and the average molar weight; thus it is essential to verify that the 

calculated charge only originates from capacitive processes. Figure S10 shows the change of the 

current measured at the end of the potential steps shown in Figure S9 (after 120 s of polarisation) 

versus the electrode potential during the potential hold; this mimics a steady state sweep 

voltammetry. The current passing across an ideal capacitor is null once the equilibrium state is 

reached; in our case, the presence of electrolyte explains the small – but not null - steady state 

current (< 1 µA) between 0 and +0.7 V vs reference. However, for large polarisations of –0.1 V and 

+0.8 V vs reference (circles), the current increase is linked with parasitic redox reactions 

associated with the electrolyte. The potential range where the charge storage can be considered 

as fully capacitive can thus be defined between 0 and +0.7 V vs reference. 
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Figure S10. The average of current during the last 60 seconds or 30 seconds of each polarisation 
step versus potential. 

 

Figure S11 presents the measured mass change with error bars calculated from the variation of 

quartz resonance frequency.!These errors are small enough such that they may be neglected in 

the mass calculation. 

 

 
Figure S11. The measured mass change plotted as a function of charge with error bars. Errors 
were obtained from the variation of the frequency during measurement. 
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The potential of zero change (PZC) of the system was studied using a conventional three-

electrode Swagelok cell: a YP-50F electrode film with a carbon loading of 7~7.5mg·cm–2 as 

working electrode, a silver wire as reference electrode (same as in EQCM set-up), and a heavy 

loading YP-50F electrode film (21 mg·cm–2) as counter electrode. The cyclic voltammograms (at 5 

mV·s–1) of the full window scan in 0.75 M and 1.5 M concentration are shown in Figure S12a. A 

minimum capacitance is found at around 0.5 V vs reference, highlighted by red frame. Figure S12b 

shows the enlarge view of the highlighted part in Figure a, and second order polynomial fitting 

curves (black line) for both concentration are also shown. The PZCs (defined at dC/dE = 0 which 

means the minimum of the curves) in 0.75 M and 1.5 M concentration are both 0.49 V vs 

reference, close to the OCV (0.43 V vs reference), thus validating the measurements. 

 

 
Figure S12. (a) CVs of 3-electrode Swagelok cell in 0.75 M and 1.5 M PEt4BF4/ACN; (b) shows 
the zoomed zone highlighted in (a). 
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9. Gas sorption experiments on YP-50F 

The porosity characteristics of YP-50F carbon were obtained from an argon sorption isotherm (Fig. 

S13a) measured at 77 K with a Micromeritics ASAP 2020 porosimeter. The specific surface area 

estimated by using Brunauer-Emmett-Teller (BET) method is 1730 m2·g–1. The pore size 

distributions (PSD) were calculated from the isotherm by using Quenched Solid Density Functional 

Theory (QSDFT) method[S9] as shown in Fig. S13b. The calculated average pore size is 0.9 nm, 

and the total pore volume is 0.75 cm2·g–1 with 92 % of the pores smaller than 2 nm. 

 

 
 

Figure S13. (a) Gas adsorption/desorption analysis of YP-50F (specific surface area ~ 
1732 m2·g–1). (b) Pore size distribution of YP-50F powder derived from QSDFT. 
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