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Abstract— We revisit the classical dissipativity theorem of
linear-quadratic theory in a generalized framework where
the quadratic storage is negative definite in a p-dimensional
subspace and positive definite in a complementary subspace.
The classical theory assumes p = 0 and provides an inter-
connection theory for stability analysis, i.e. convergence to a
zero dimensional attractor. The generalized theory is shown to
provide an interconnection theory for p-dominance analysis,
i.e. convergence to a p-dimensional dominant subspace. In
turn, this property is the differential characterization of a
generalized contraction property for nonlinear systems. The
proposed generalization opens a novel avenue for the analysis
of interconnected systems with low-dimensional attractors.

I. INTRODUCTION

Dissipativity theory [28] is a cornerstone of system theory.
A dissipation inequality relates the variation of the storage,
which relates to an internal system property, to the supply
rate, which expresses how much the environment can affect
the internal property. When the storage is positive definite,
the internal property at hand is Lyapunov stability, and
dissipativity theory provides an interconnection theory for
the analysis of stability. Dissipativity theory is constructive
for linear systems and quadratic storages, leading to stability
criteria that can be verified through the solution of linear
matrix inequalities [29].

In the present paper, we explore the significance of linear
quadratic dissipativity theory when the quadratic storage
is no longer positive definite but instead has a fixed in-
ertia, that is, p negative eigenvalues and n − p positive
eigenvalues. We show that the internal dissipation inequality
then characterizes p-dominance, that is, the existence of an
invariant p-dimensional subspace that attracts all solutions.
Dissipativity theory then becomes an interconnection theory
for the analysis of p-dominance. In this context, stability
can be interpreted as 0-dominance, in the sense that a zero-
dimensional subspace attracts all solutions.

Our interest in p-dominance as a system property stems
primarily from its significance in the differential analysis
of nonlinear systems. We use differential dominance, that
is, infinitesimal dominance along trajectories, to analyse
the asymptotic behavior of nonlinear systems with low-
dimensional attractors. Beyond p = 0, which corresponds to
the classical analysis of convergence to a unique equilibrium,
we focus on p = 1 as a relevant framework to study
multistability and on p = 2 as a relevant framework to
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study limit cycle oscillations. Hence we primarily think
of linear-quadratic dissipativity theory of p-dominance as
an interconnection theory for the differential analysis of
multistable or oscillatory nonlinear systems.

This paper concentrates on the main ideas of the pro-
posed approach, leaving aside many possible generaliza-
tions. Section II provides the linear-quadratic dissipation
characterization of p-dominant linear systems and explains
its link with the contraction of a rank p ellipsoidal cone.
Section III presents a straightforward extension of the fun-
damental dissipativity theorem to p-dominant linear sys-
tems. Section IV outlines the fundamental property of p-
monotone systems and how it generalizes contraction (in-
terpreted as 0-monotonicity) and monotonicity (interpreted
as 1-monotonicity), two system properties that have been
extensively studied in nonlinear system theory. Section V
extends p-dissipativity to the nonlinear setting and provides
a basic illustration of the potential of the theory with a
simple example of a 2-dominant system that has a limit cycle
oscillation resulting from the passive interconnection of two
1-dominant systems.

II. p-DOMINANT LINEAR TIME-INVARIANT SYSTEMS

Definition 1: A linear system ẋ = Ax is p-dominant with
rate λ ≥ 0 if and only if there exist a symmetric matrix P
with inertia (p, 0, n− p) such that

ATP + PA ≤ −2λP + εI . (1)

for some ε ≥ 0. The property is strict if ε > 0. y
Equivalent characterizations of p-dominance are provided

in the following proposition (the proof is in appendix).
Proposition 1: For ε > 0, the Linear Matrix Inequality (1)

is equivalent to any of the following conditions:
1) The matrix A + λI has p eigenvalues with strictly

positive real part and n − p eigenvalues with strictly
negative real part.

2) there exists an invariant splitting of the vector space Rn
into dominant Ep and non-dominant En−p eigenspaces
such that any solution of the linear system ẋ = Ax can
be written as x(t) = xp(t)+xn−p(t) with xp(t) ∈ Ep,
xn−p(t) ∈ En−p and for some 0 < Cp ≤ 1 ≤ Cn−p
and λp < λ < λn−p,

| xp(t) | ≥ Cp e
−λpt | xp(0) |

| xn−p(t) | ≤ Cn−p e
−λn−pt | xn−p(0) | .

y
The property of p-dominance ensures a splitting between

n − p transient modes and p dominant modes. Only the p
dominant modes dictate the asymptotic behavior.



Example 1: Consider a simple mass-spring-damper sys-
tem with mass m = 1, elastic constant k = 1 and damping
coefficient c = 4, that is, ẋ =

[
0 1
−1 −4

]
x . Eigenvalues are

in −0.2679 and −3.7321. The system is p-dominant with
P =

[−0.4338 0.6535
0.6535 1.4338

]
solution to (1) with λ = 0.2679 + 1

computed using Yalmip [15]. P has inertia (1, 0, 1). Follow-
ing Proposition 2, the system is positive with respect to the
cone represented in Figure 1, left.

Note that the eigenvector of P related to the nega-
tive eigenvalue belongs to the interior of the cone {x ∈
Rn |xTPx ≤ 0}, closer to the position axis. The other
eigenvector characterizes the direction transversal to the
cone, closer to the velocity axis, as expected. The tendency
of these two eigenvectors to align with position and velocity
axes becomes clear for large damping values. For example,
for ẋ =

[
0 1
−1 −8

]
x we get P =

[−0.9193 0.2177
0.2177 1.9193

]
, whose cone

is in Figure 1, right. y

-0
.3

5

-0
.3

5

-0
.2

5

-0
.2

5

-0
.1

5-0
.1

5

-0.05

-0.05

0

0

0

0

-1 -0.5 0 0.5
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

dx
/d

t

-0
.3

5

-0
.3

5

-0
.2

5

-0
.2

5

-0
.1

5

-0
.1

5

-0.05

-0.05

0

00

0

-1 -0.5 0 0.5
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

dx
/d

t

Fig. 1. Cones for the mass-spring-damper system for c = 4 (left) and
c = 8 (right).

p-dominance is a generalization of the classical property of
exponential stability, which corresponds to p = 0: all modes
are transient and the asymptotic behavior is 0-dimensional.
In contrast, for p > 0, the property of p-dominance is closely
connected to the the classical property of positivity [3], [17],
[27]. We recall that a linear system ẋ = Ax is positive with
respect to a cone K ⊆ Rn if eAtK ⊆ K for all t ≥ 0. Strict
positivity further requires that the system maps any nonzero
vector of the boundary of K into the interior of the cone, for
t > 0.

Proposition 2: For any 0 < p < n, a p-dominant system
is strictly positive with respect to the cone

K := {x ∈ Rn |xTPx ≤ 0} (2)

where P is any solution to (1). y
Proof: We have to prove that any vector on the

boundary of the cone V (x) := xTPx = 0 is mapped in the
cone. Clearly, V̇ (x) = xT (ATP +PA)x < −2λxTPx = 0,
which shows the invariance of K. It also shows that any
nonzero vector on the boundary is mapped into the interior
of K, for t > 0.

For p = 1, (1) expresses the contraction of an ellipsoidal
cone. The 1-dimensional dominant subspace is spanned by
the Perron-Frobenius eigenvector. For p > 1, p-dominance is
also a positivity property with respect to higher order cones
[9], [21], [22], [18].

The reader will notice that there is an important distinc-
tion between positivity in the sense of Proposition 2 and
dominance in the sense of Definition 1. For p > 0, any
dominant system is strictly positive but the converse is not
true. This is due to the extra requirement of a nonnegative
dissipation rate λ ≥ 0 in the definition of p-dominance.
The difference is significant because if affects the type of
contraction associated to each property. From Proposition 1,
p-dominance is a form of horizontal contraction in the sense
of [7]: the vector space is splitted into a vertical space of
dimension p and a horizontal space of dimension n − p;
contraction is imposed in the horizontal space only. This
property requires a nonnegative dissipation rate λ ≥ 0. In
contrast, positivity is only a form of projective contraction,
which does not require a nonnegative dissipation rate. For
p = 1 the projective contraction is captured by the contrac-
tion of the Hilbert metric [3], [14], [2]. The next proposition
provides a projective contraction measure for a general p.

Proposition 3: For any given p-dominant system of di-
mension n, there exist positive semidefinite matrices Pu and
Ps of rank p and n− p respectively such that, given |x|u :=√
xTPux and |x|s :=

√
xTPsx, the ratio |x(t)|s/|x(t)|u

is exponentially decreasing along any trajectory x(·) of the
system from |x(0)|u 6= 0. y

Proof: By Proposition 1, A+λI has p unstable eigen-
values and n−p stable eigenvalues. Thus, there exist matrices
Pu and Ps of rank p and n−p respectively, and a small ε > 0,
such that ATPu+PuA ≥ (−2λ+ ε)Pu and ATPs+PsA ≤
(−2λ − ε)Ps Define U(x) = xTPux and S(x) = xTPsx.
Then, by comparison theorem, along any trajectory of the
system we have U(x(t)) ≥ e(−2λ+ε)tU(x(0)) and S(x(t)) ≤
e(−2λ−ε)tS(x(0)). It follows that

S(x(t))/U(x(t)) ≤ e−2εtS(x(0))/U(x0)) (3)

which guarantees that the ratio |x(t)|s/|x(t)|u is strictly
decreasing and converges to zero as t→∞.

III. p-DISSIPATIVITY

The internal property of p-dominance is captured by
the matrix inequality (1) which enforces a conic constraint
between the state of the system and its derivative of the form[

ẋ
x

]T[
0 P
P 2λP + εI

] [
ẋ
x

]
≤ 0 (4)

where P is a matrix with inertia (p, 0, n − p) and ε > 0.
A system is p-dominant if the linear relationship between ẋ
and x satisfy (4).

Dissipativity theory extends p-dominance to open systems
by augmenting the internal dissipation inequality with an
external supply. The external property of p-dissipativity is
captured by a conic constraint between the state of the system
x, its derivative ẋ, and the external variables y and u of the
form[

ẋ
x

]T[
0 P
P 2λP + εI

][
ẋ
x

]
≤
[
y
u

]T[
Q L
LT R

][
y
u

]
(5)



where P is a matrix with inertia (p, 0, n−p), λ ≥ 0, L,Q,R
are matrices of suitable dimension, and ε ≥ 0. The property
is strict if ε > 0. We call supply rate s(y, u) := yTQy +
yTLu+uTLT y+uTRu the right-hand side of (5). An open
dynamical system is p-dissipative with rate λ if its dynamics
ẋ = Ax+Bu, y = Cx+Du satisfy (5) for all x and u.
p-dissipativity has a simple characterization in terms of

matrix inequalities.
Proposition 4: A linear system ẋ = Ax+Bu, y = Cx+

Du is p-dissipative with rate λ if and only if there exist a
symmetric matrix P with inertia (p, 0, n− p) such that[
ATP+PA+2λP−CTQC+εI PB−CTL−CTQD

BTP−LTC−DTQC −DTQD−LTD−DTL−R

]
≤ 0 . (6)

y
Proof: [⇒] Just replace ẋ = Ax+Bu and y = Cx+Du

in (5) and rearrange. [⇐] Multiply (6) by [xT uT ] on the left,
and by [xT uT ]T on the right. Then we get ẋTPx+xTPẋ+
2λxTPx < s(y, u) as desired.

An interconnection theorem can be easily derived.
Proposition 5: Let Σ1 and Σ2 p1-dissipative and p2-

dissipative systems respectively, with uniform rate λ and with
supply rate

si(yi, ui) =

[
y
u

]T[
Qi Li
LTi Ri

] [
y
u

]
(7)

for i ∈ {1, 2}. The closed-loop system given by negative
feedback interconnection

u1 = −y2 + v1 u2 = y1 + v2 (8)

is (p1 + p2)-dissipative with rate λ from v = (v1, v2) to
y = (y1, y2) with supply rate

s(y, v) =

[
y
v

]T Q1 +R2 −L1 + LT
2 L1 R2

−LT
1 + L2 Q2 +R1 −R1 L2

LT
1 −R1 R1 0
R2 LT

2 0 R2

[y
v

]
.

(9)
The closed loop is (p1 + p2)-dominant with rate λ if[

Q1 +R2 −L1 + LT2
−LT1 + L2 Q2 +R1

]
≤ 0 . (10)

y
Proof: By standard steps on interconnection of dissipa-

tive systems. Define P :=
[
P1 0
0 P2

]
which, by construction,

has inertia (p1 + p2, 0, n1 + n2 − p1 − p2), where ni is the
dimension of the state of system i ∈ {1, 2}. Then, a simple
computation shows that the closed-loop system given by (8),
satisfies (5) from v to y with supply rate (9). Furthermore,
denote by S the left-hand side of (10) and take v = 0. Then,
using the aggregate state x = (x1, x2), (10) guarantees p-
monotonicity since[

ẋ
x

]T[
0 P
P 2λP+εI

][ẋ
x

]
≤
[
y1
y2

]T
S

[
y1
y2

]
≤ 0 .

For p1 = p2 = 0 and λ = 0 the proposition reduces to
the standard interconnection theorem for dissipative systems,
[29]. Like classical dissipativity is related to the internal
property of stability, p-dissipativity is tightly related to the
internal property of p-dominance. Thus, for uniform rate λ,

Proposition 5 provides interconnection conditions that lead
to p-dominant closed loop systems.

Example 2: We say that a system is p-passive with rate
λ when the dissipation inequality (5) is satisfied with supply
rate

s(y, u) =

[
y
u

]T[
0 I
I 0

] [
y
u

]
. (11)

For D = 0, taking ε = 0 for simplicity, (6) reduces to{
ATP + PA ≤ −2λP

PB = CT .
(12)

For the open mass-spring system ẋ =
[

0 1
−1 −8

]
x + [ 01 ]u,

y = [ 0 1 ]x, the matrix P =
[−1 0

0 1

]
satisfies (12) with λ =

1.2679, which gives 1-passivity from u to y. Proposition 5
guarantees that the negative feedback interconnection u =
−ky+v is 1-passive system with rate λ, for any gain k ≥ 0.
Indeed, the closed-loop system is 1-dominant for any k ≥ 0.

A generalized small gain theorem can also be illustrated.
We say that a system has p-gain γ from u to y with rate λ
when the dissipation inequality (5) is satisfied with supply
rate

s(y, u) =

[
y
u

]T[ −I 0
0 γ2I

] [
y
u

]
. (13)

For the open mass-spring system, the matrix P above satis-
fies (5) with L = −I , Q = 0 and R = γ2I for γ = 0.3.
Thus, Proposition 5 guarantees that the closed loop given by
the feedback interconnection u = ±ky is 1-dominant for any
−3.3 < k < 3.3.

The resulting internal dominance is the analog of the
resulting stability in classical applications of the passivity
theorem and of the small gain theorem [23], [26]. y

IV. DIFFERENTIAL ANALYSIS AND p-DOMINANCE

p-dominance and p-dissipativity are not limited to linear
systems. In nonlinear analysis it makes sense to study these
properties infinitesimally or differentially, see e.g. [6]. In
what follows we will see how p-dominance of the system
linearization restricts the asymptotic behavior of the nonlin-
ear system.

The nonlinear system ẋ = f(x) (f smooth, x ∈ Rn)
is (differentially) p-dominant with rate λ ≥ 0 and constant
storage P = PT if the prolonged system [4]

ẋ = f(x) ˙δx = ∂f(x)δx (14)

satisfies the conic constraint[
˙δx
δx

]T[
0 P
P 2λP + εI

] [
˙δx
δx

]
≤ 0 (15)

for every δx ∈ Rn, where P is a matrix with inertia (p, 0, n−
p) and ε ≥ 0. The property is strict if ε > 0. From (15),
the reader will recognize that differential dominance is just
dominance of the linearized dynamics. In this paper, we only
consider the case of a constant matrix P , but generalizations
might be considered.

Differential dominance for p = 0 is another synonym
of differential stability, or contraction, or convergence [16],



[19], [20], [7]. The trajectories of the nonlinear system
converge exponentially towards each other. In fact, (15)
reduces to the inequality

∂f(x)TP + P∂f(x) ≤ −εI ∀x ∈ Rn (16)

where P is a positive definite matrix. This is a typical condi-
tion for contraction with respect to a constant (Riemannian)
metric P [7]. The following proposition is a straightforward
consequence of (16).

Proposition 6: If ẋ = f(x) is strictly 0-dominant, then all
solutions exponentially converge to a unique fixed point. y

Proof: Denote by ψt(x) the semiflow of ẋ = f(x),
characterizing the trajectory of the system at time t from
the initial condition x at initial time zero. Then, contrac-
tion guarantees that the distance dP (x1, x2) := ((x1 −
x2)TP (x1 − x2))1/2 is exponentially decreasing along any
pair of trajectories x1(·), x2(·), [19], [7]. Indeed, for any t >
0, ψt(·) is a contraction mapping on Rn with respect to dP .
By Banach fixed point theorem ψt(·) admits a unique fixed-
point x∗ in Rn. By contraction every trajectory converges to
x∗ exponentially.

For p = 1, differential dominance is closely related to
differential positivity with respect to a constant ellipsoidal
cone K ⊆ Rn, [8]. A straightforward adaptation of Proposi-
tion 2 shows that the linearized trajectories of a differentially
1-dominant system map the boundary of the cone K :=
{δx ∈ Rn | δxTPδx ≤ 0} into its interior, as required
by strict differential positivity. We observe that K is the
union of two pointed convex cones K = K+ ∪ K− such
that K+ ∩ K− = {0}1. Then, differential 1-dominance also
guarantees strict differential positivity with respect to K+

(and to K−), which follows from strict differential positivity
with respect to K and from the fact that the contact point
between K+ and K− is δx = 0, which is a fixed point of
the linearization. Thus, differential 1-dominance guarantees
strict differential positivity with respect to a constant solid,
pointed, convex cone in Rn, which leads to the following
result.

Proposition 7: If ẋ = f(x) is strictly 1-dominant, then
all bounded solutions exponentially converge to some fixed
point. y

Proof: The details of the proof are omitted but the the
proof closely follows the arguments in [8, Corollary 5].

Differential 1-dominance also closely relates to mono-
tonicity [24], [12], [1], [13] with respect to the partial order
� induced by K+: x � y iff y−x ∈ K+. In fact, differential
1-dominance guarantees that any pair of trajectories x1(·),
x2(·) of the nonlinear system from ordered initial conditions
x1(0) � x2(0) satisfy x1(t) � x2(t) for all t ≥ 0, as
required by classical monotonicity (a direct consequence of
the relation with differential positivity [8]). In this sense,
Proposition 7 is the counterpart of the well know property
that almost every bounded trajectory of a monotone system

1Consider any hyperplane W ∈ Rn such that W ∩ K = {0}. Let w
be the normal vector to W then K+ := {δx ∈ K |wT δx ≥ 0} and
K− := {δx ∈ K |wT δx ≤ 0} are solid, pointed and convex cones.

converges to a fixed point [11], [24]. The fact that the prop-
erty holds for all trajectories in differentially 1-dominant
systems follows from the nonnegative dissipation rate λ ≥ 0,
which is not necessary for monotonicity.

For p = 2, differential dominance closely relates to the
notion of monotonicity with respect rank-2 cones of [21],
[25], see [21, Equations (7) and (8)].

Proposition 8: If ẋ = f(x) is strictly 2-dominant, then
all bounded solutions whose ω-limit set does not contain an
equilibrium point exponentially converge to a closed orbit.

y
Proof: The details of the proof are left to an extended

version of this paper but the the proof closely follows the
arguments in [21, Theorem 1].

Proposition 8 shows that differentially 2-dominant systems
enjoy properties akin to the Poincare-Bendixson theory of
planar systems.

V. DIFFERENTIAL ANALYSIS AND p-DISSIPATIVITY

In analogy with the previous section, we use the prolonged
system to define p-dissipativity in a nonlinear setting. For
simplicity we will consider systems of the form ẋ = f(x) +
Bu, y = Cx (f is smooth, x ∈ Rn, u ∈ Rm), whose
prolonged system [4] is given by{

ẋ = f(x) +Bu
y = Cx

{
˙δx = ∂f(x)δx+Bδu
δy = Cδx .

(17)
A nonlinear system is differentially p-dissipative with rate

λ ≥ 0 if its prolonged system satisfies the conic constraint[
˙δx
δx

]T[
0 P
P 2λP+εI

][
˙δx
δx

]
≤
[
δy
δu

]T[
Q L
LT R

][
δy
δu

]
(18)

for every δx ∈ Rn and every δu ∈ Rm, where P is a matrix
with inertia (p, 0, n − p), L,Q,R are matrices of suitable
dimension, and ε > 0.

The following interconnection result easily follows.
Proposition 9: Let Σ1 and Σ2 differentially p1-dissipative

and differentially p2-dissipative respectively, with uniform
rate λ and with differential supply rate

si(δyi, δui) =

[
δy
δu

]T[
Qi Li
LTi Ri

] [
δy
δu

]
(19)

for i ∈ {1, 2}. The closed-loop system given by negative
feedback interconnection (8) is differentially (p1 + p2)-
dissipative with rate λ from v = (v1, v2) to y = (y1, y2)
with differential supply rate with supply rate

s(y, v)=

[
δy
δv

]T Q1 +R2 −L1 + LT
2 L1 R2

−LT
1 + L2 Q2 +R1 −R1 L2

LT
1 −R1 R1 0
R2 LT

2 0 R2

[δy
δv

]
.

(20)
The closed loop is differentially (p1 + p2)-dominant if (10)
holds. y

Proposition 9 provides an interconnection result for dif-
ferential p-dominance. For example, under the assumptions
of the proposition, the closed loop of a 1-dominant system



(typically a monotone system) with a 0-dominant system
(typically a contractive system) is necessarily 1-dominant.
In a similar way, the closed loop of two 1-dominant systems
leads to 2-dominance. In this sense, Proposition 9 provides
an interconnection mechanism to generate periodic behav-
ior (2-dominance) from the interconnection of multi-stable
components (1-dominance).

Remark 1: Both p-dominance and p-dissipativity can be
tested algorithmically via simple relaxations. From (14) and
(15) p-dominance requires that

∂f(x)TP + P∂f(x) < −2λP ∀x ∈ Rn . (21)

From (17) and (18) differential p-dissipativity requires that[
∂f(x)TP+P∂f(x)+2λP−CTQC+εI PB−CTL

BTP−LTC −R

]
≤0 .

(22)
Let A := {A1, . . . , AN} be a family of matrices such that

∂f(x) ∈ ConvexHull(A) for all x. Then, by construction,
any (uniform) solution P to

ATi P + PAi < −2λP 1 ≤ i ≤ N (23)

is a solution to (21). Also, any (uniform) solution P to[
AT

i P + PAi + 2λP − CTQC + εI PB − CTL
BTP − LTC −R

]
≤ 0 (24)

for 1 ≤ i ≤ N is a solution to (22).
We recall that if λ is chosen in such a way that each Ai+

λI has exactly p unstable eigenvalues, then P necessarily
have inertia (p, 0, n− p). y

Example 3: We revisit Examples 1 and 2 by replacing the
linear spring with a nonlinear active component φ(x1){

ẋ1 = x2
ẋ2 = φ(x1)− 8x2 + u .

(25)

A strictly monotone nonlinear spring −2 ≤ ∂φ(x1) < −1/2
makes the system 0-dominant with rate λ = 0. For instance,
the linearization reads ˙δx = A(x)δx+Bu with

A(x) :=

[
0 1

∂φ(x1) −8

]
, B :=

[
0
1

]
, (26)

and the matrix P := [ 1 0.5
0.5 1 ] satisfies the inequality

A(x)TP + PA(x) < −λP uniformly in x for λ = 0. By
Proposition 6 the trajectories of the system exponentially
converge to the unique fixed point of the system.

A non-monotone spring −3 ≤ ∂φ(x1) < 1 shifts the
eigenvalues of A(x) to the right-half complex plane. 0-
dominance can no longer hold. However, the matrix P :=[−1 0

0 1

]
satisfies A(x)TP + PA(x) < −λP uniformly in x

for λ = 1, which makes the system 1-dominant. The system
is differentially 1-passive with rate λ from u to y = Cx = x2
since [ 0 1 ]T =: CT = PB. Propositions 7 and 9 guarantee
that the closed loop system given by u = −ky is 1-dominant
for any k ≥ 0. All trajectories of the closed loop converge
to a fixed point.

Different outputs can also be considered. For example,
again for −3 ≤ ∂φ(x1) < 1, the dissipation inequality is

satisfied uniformly in x by the matrix P :=
[−2 1

1 2

]
which

makes (25) differentially 1-passive from u to y = Cx =
x1 + 2x2 since [ 1 2 ]T =: CT = PB. By Proposition 9,
the negative feedback interconnection of two mass-spring-
damper systems is differentially 2-passive with rate λ = 1.
The 4-dimensional system is 2-dominant and, with some
extra work, it can be proven that all solutions converge
either to the unstable equilibrium or to a limit cycle, as
illustrated by the simulation in Figure 2, where φ(x1) =
x1 − 1

3 min(x21, 4)x1. y
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Fig. 2. Left: position and velocity of the single nonlinear mass spring
damper system with nonlinear spring φ(x1) = x1 − 1

3
min(x21, 4)x1.

Unforced behavior (stable fixed point) from the initial condition x1 = 1,
x2 = 1. Right: positions variables of the closed loop of two mass spring
damper systems with nonlinear spring φ(x1) in feedback interconnection
from the input u to the output y = x1 + 2x2. Trajectories converge to a
limit cycle.

VI. CONCLUSIONS

We introduced the notions of p-dominance and p-
dissipativity both in the linear and nonlinear settings. They
provide a conceptual and algorithmic framework for the anal-
ysis of multi-stable and periodic behaviors. Interconnection
theorems are provided which extend classical dissipativity
theory with indefinite storages. The example illustrates the
potential of the approach.

The paper only exposes the basic ideas of the proposed
approach. Future research directions will include a frequency
domain characterization for p-dominance and p-dissipativity.
In the nonlinear setting it is relevant to extend the framework
to the case of non-constant matrix P (x) and rate λ(x),
following the lead of differential stability [7] and differential
positivity [8], [5]. Finally, the interconnection theorems in the
paper only consider quadratic supplies and storages but the
concept of p-dissipativity is of course more general.
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APPENDIX

Proof of Proposition 1.
[1) implies LMI (1)] Given the splitting of eigenvalues,

by coordinate transformation A + λI can be expressed in

the block diagonal form A+ λI =

[
Au + λI 0

0 As + λI

]
,

where Au + λI has p unstable eigenvalues and As + λI has



n − p stable eigenvalues. Thus, there exist positive definite
matrices Pu and Ps of rank p and n−p respectively such that

P :=

[
−Pu 0
0 Ps

]
satisfies (A+λI)TP +P (A+λI) < 0.

(1) follows.
[LMI (1) implies 1)] By coordinate transformation,

without loss of generality, consider the block diagonal

representation A+ λI =

[
Au 0
0 As

]
where Au is a r × r

matrix whose eigenvalues have positive real part and of
As is a q × q matrix whose eigenvalues have non-positive
real part. Clearly r + q = n. In the same coordinates,

consider P =

[
Pu ?
? Ps

]
and note that the LMI (1) reads[

Au 0
0 As

]T[
Pu ?
? Ps

]
+

[
Pu ?
? Ps

][
Au 0
0 As

]
< 0

which entails ATuPu+PuAu < 0 and ATs Ps+PsAs < 0. The
strict inequality of the latter guarantees that the eigenvalues
of As are strictly negative. Furthermore, necessarily, Pu has
r negative eigenvalues and Ps has q positive eigenvalues.
By the assumption on the inertia of P and by [10, Lemma
2], r ≥ p and q ≥ n − p. Since n = r + q, it follows that
r = p and q = n− p.

[1)⇔ 2)]. The equivalence between 1) and 2) follows from
standard properties of linear systems, using the fact that the
trajectories of ˙̄x = (A+λI)x̄ and of ẋ = Ax from the same
initial condition x(0) = x̄(0) satisfy x(t) = e−λtx̄(t) for
each t ∈ R. �
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