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Abstract 

Understanding the processes underlying normal, impaired and recovered language performance has 

been a long-standing goal for cognitive and clinical neuroscience. Many verbally-described 

hypotheses about language lateralisation and recovery have been generated. However, they have not 

been considered within a single, unified and implemented computational framework, and the 

literatures on healthy participants and patients are largely separated. These investigations also span 

different types of data, including behavioural results and fMRI brain activations, which augment the 

challenge for any unified theory. Consequently, many key issues, apparent contradictions and 

puzzles remain to be solved. We developed a neurocomputational, bilateral pathway model of 

spoken language production, designed to provide a unified framework to simulate different types of 

data from healthy participants and aphasic patients. The model encapsulates key computational 

principles (differential computational capacity, emergent division of labour across pathways, 

experience-dependent plasticity-related recovery) and provides an explanation for the bilateral yet 

asymmetric lateralisation of language in healthy participants, chronic aphasia after left rather than 

right hemisphere lesions, and the basis of partial recovery in patients. The model provides a formal 

basis for understanding the relationship between behavioural performance and brain activation. The 

unified model is consistent with the degeneracy and variable neuro-displacement theories of 

language recovery, and adds computational insights to these hypotheses regarding the neural 

machinery underlying language processing and plasticity-related recovery following damage. 
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Significance Statement 

Studies of healthy and impaired language have generated many verbally-described hypotheses. 

Whilst these verbal descriptions have advanced our understanding of language processing, some 

explanations are mutually incompatible and it is unclear how they work mechanistically. We 

constructed a neurocomputational bilateral model of spoken language production to simulate a range 

of phenomena in healthy participants and patients with aphasia simultaneously, including language 

lateralisation, impaired performance after left but not right damage, and hemispheric involvement in 

plasticity-dependent recovery. The model demonstrates how seemly contradictory findings can be 

simulated within a single framework. To our knowledge, this provides the first coherent mechanistic 

account of language lateralisation and recovery from post-stroke aphasia. 
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Introduction 

Language is a key human ability and when impaired (e.g., after stroke or neurodegeneration), 

patients are left with significant disability. Aphasia (acquired language impairments that follow from 

brain injury, affecting comprehension, production, reading and writing) is common (1). Studies of 

healthy and impaired language have a long history, and these vibrant literatures have generated many 

verbally described hypotheses. The long-standing literature on aphasia dates back to seminal 

19th century studies (2-4). While these verbally-described hypotheses advanced our understanding of 

language processing both theoretically and clinically, it is not clear how they work mechanistically 

and they can be mutually incompatible. For instance, some notions propose good aphasia recovery 

only results from language returning to the left hemisphere (5-9) while others report that recovered 

language performance is positively correlated with activation in the right hemisphere (10-12). As a 

recent review (13) noted, the current situation is confusing because there are many individual 

findings, different types of data (e.g., patients’ language performance vs. fMRI activations) yet no 

unified mechanistic account. There is a pressing need to have an implemented neurocomputational 

model which can provide: (a) a unified framework in which findings from healthy participants and 

aphasic patients can be accounted for; (b) a computationally-instantiated framework to formalise and 

test verbally-described hypotheses; and (c) a framework that can bridge between different types of 

cognitive neuroscience data including language behaviour, lesion locations and task-related fMRI. 

This was the overarching aim of the current study. The puzzles and targets are set out briefly below. 

Lateralisation assumptions 

The first issue concerns lateralisation in healthy and impaired language. The very strongly 

held view that language is a left hemisphere function primarily arises from the long-standing 

neuropsychology literature showing that chronic aphasia is associated with left hemisphere damage 

but not with right hemisphere damage (14-16). However, the patient data are more graded than often 
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portrayed. Recent evidence has shown that right hemisphere lesions can generate language problems 

especially in the early phase and some mild remaining deficits can be measured in chronic cases 

(17). Several patient studies of semantic cognition (18-20) also show that bilateral damage is 

required to show more substantial deficits. 

Additionally, functional neuroimaging in healthy participants shows that many language 

tasks such as repetition, picture naming, comprehension and production might be bilaterally 

supported (21-26). Although the activation patterns are often leftward asymmetric, the degree of 

asymmetry largely depends on the nature of the tasks with a subset showing stronger forms of 

asymmetric bias. For instance, propositional speech production is more left lateralised whereas 

nonpropositional speech (e.g., counting) generates bilateral activations (27-29). Of course, 

identifying activations associated with language does not necessarily imply that the regions are 

necessary for language functions (30). Thus, it is important to note that a number of transcranial 

magnetic stimulation (TMS) studies of semantics (31-34) and phonology (35) also indicate that left 

and right areas contribute to healthy language. 

Thus, when considering both chronic aphasic patients and healthy participants, it appears 

difficult to reconcile the seemingly contradictory findings: how can the language network be strongly 

left lateralised in patients but be bilateral, albeit asymmetric, in healthy participants? We propose 

that these results could reflect the outcome of an intrinsically bilateral yet asymmetric language 

network. Indeed, it has been demonstrated that functional asymmetry could follow from hemispheric 

asymmetry in the healthy language system (36-42) and that, when the system is damaged (e.g., in 

patients with low-grade glioma), the degree of asymmetry can change through functional plasticity 

(43, 44).  For instance, using a combination of fMRI and diffusion tensor imaging, Vernooij et al 

(42) demonstrated a significant correlation between functional hemispheric lateralisation and the 

relative asymmetry of the arcuate fasciculus in healthy participants (see also (41)). Thus, within the 

language network, the majority of healthy participants show leftward asymmetry of brain volumes 
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and arcuate fasciculus (36, 40, 45), suggesting that more of the computational capacity is in the left 

than the right hemisphere. Such capacity imbalance might generate bilateral yet asymmetric 

lateralisation in fMRI activation and also greater likelihood of chronic impairment after left than 

right damage. The latter may reflect a combination of the premorbid division of labour for left over 

right in healthy language, and the potential for plasticity-related recovery. This was explored in past 

computational work by re-exposing the damaged model to its learning environment, generating 

plasticity-related recovery via “retuning” of the remaining computational capacity (46, 47). A 

straightforward hypothesis, from these earlier models, is that the potential for such recovery reflects 

the amount of computational capacity available. Thus, if the right hemisphere has insufficient 

capacity to learn all language functions by itself (see SI Appendix, S1) then, when the dominant left 

hemisphere is entirely damaged, language functions cannot be fully re-established by the right 

hemisphere alone – c.f. chronic aphasia. In contrast, if the weaker right hemisphere is lesioned then 

the dominant left hemisphere may have sufficient spare capacity to assimilate the extra work. 

The computational bases of language recovery 

A recent review (13) considered two mechanisms: degeneracy and variable neuro-

displacement. Although not mutually-exclusive, degeneracy (30) suggests that cognitive functions 

might arise from multiple, structurally-distinct neural networks resulting in a partially resilient 

system. Following damage, recovery of function could be achieved by upregulation of quiescent 

regions, alternative pathways or non-language regions that are not typically engaged in the healthy 

state [for a computationally-implemented example, see: (46)]. The second mechanism is variable 

neuro-displacement, a concept borrowed from automotive engineering (variable displacement: (48)). 

Given that the brain is metabolically expensive, it seems very likely that energy consumption needs 

to be balanced against performance demand. This can be achieved in engines by ‘displacing’ 

(downregulating or turning off) a subset of cylinders when full power is not required. Returning to 
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the brain, it is well-established that higher neural activity is coupled with increased metabolic energy 

costs (cf. neurovascular coupling). If we assume that a cognitive function is supported by a dynamic 

distributed network then, when performance demand is not maximal, parts of this network could be 

“displaced” (downregulated) to save energy (31, 49). This displaced ‘spare capacity’ is used when 

performance demand is high but it could also be permanently upregulated, after partial damage to the 

network, to support recovered performance (returning to the engine analogy, if one cylinder’s 

function was compromised then the other cylinders’ output could be upregulated to compensate). 

Previous computational studies (46, 47) of plasticity-related recovery have provided some 

support for these principles, and highlighted two types of experience-dependent learning, each 

depending on remaining capacity in the model. In single pathway models, re-learning can retune and 

activate the ‘perilesional’ units and weights. Secondly, if there are multiple routes that support the 

task, re-learning can also shift the division of labour between different pathways. The potential for 

recovery-related changes is determined by the capacity available in different pathways and their 

engagement in the task prior to damage. Both mechanistic hypotheses about language recovery need 

to be specified in more detail within an implemented computational model that can simulate healthy 

and impaired language, as well as generate the different measures used to assess recovery of 

function, such as language performance and fMRI activations. 

Theories of aphasia recovery 

In the long-standing literature on language recovery, most hypotheses are verbally described 

or are verbal descriptions of observed phenomena (13). For example, upregulated activation in 

perilesional and contralesional areas has been associated with recovered performance in post-stroke 

aphasia (5, 50-55). Van Oers et al. (54), for instance, showed that recovery of picture naming was 

associated with activation in the remaining portion of the left inferior frontal gyrus (IFG) while 

recovery on more demanding tasks was associated with upregulated contralesional activation in the 
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right IFG in addition to the left IFG. There is also parallel evidence from combined TMS-fMRI 

studies in healthy participants that inhibition of left hemisphere regions upregulates activation in the 

right homologous regions (31, 32). 

Another notion is the right hemisphere hypothesis (RHH). Several neuroimaging studies have 

demonstrated that patients with left hemisphere damage recruit the right hemisphere during language 

tasks (8, 51, 56). These findings have been interpreted in terms of a right hemisphere juvenile 

language system, which can provide some function after significant left hemisphere damage but it is 

generally weaker and error prone. Despite being a commonly repeated hypothesis dating over a 

century, the computational mechanisms involved in the development of language and the shifts of 

function after damage remain unspecified and computationally unimplemented. More confusingly, 

the hypotheses and data in relation to the RHH are contradictory. Some notions suggest that aphasia 

recovery is supported by this right hemisphere system: language performance is correlated with 

activation in the right hemisphere (10-12) and, when aphasic patients have a second right hemisphere 

stroke, their language performance declines (2, 57). In contrast, the ‘regional hierarchy framework’ 

proposes that right hemisphere activation is maladaptive resulting from a release of transcallosal 

inhibition, and good recovery only results from language returning to the left (5-9). In a seminal 

study of very mildly aphasic patients with good recovery (51), left hemisphere activation for auditory 

comprehension greatly decreased a few days after stroke, was followed by increased bilateral 

activation with a significantly upregulated peak in the right hemisphere two weeks after stoke, and 

then the peak activation shifted back to the left hemisphere in the chronic phase. However, it remains 

unclear what mechanisms underlie the changes in brain activity and what the longitudinal patterns 

are for moderate and severe aphasia. 

These contradictory RHHs have inspired neurostimulation interventions with opposite aims: 

either promoting right hemisphere engagement (58) or trying to suppress it in favour of left 

hemisphere involvement (59-62). Without a better understanding of underlying mechanisms and a 
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formal implemented model, various foundational issues remain. These include: how a right 

hemisphere system can develop if it is suppressed by the left hemisphere; how the two systems might 

interact; whether the results of negative associations between right hemisphere activation and 

language are simply a reflection of severity, as mild aphasia is associated with small lesions which 

leaves more of the left hemisphere intact and able to be activated. Our working assumption is that 

there is an intrinsically bilateral, albeit asymmetrically-provisioned single functional network. That 

is, the left and right hemispheres both contribute to speech production with differential contributions 

arising from the effects of imbalanced capacity across the hemispheres. An implemented model 

would permit a proper investigation of how this division of labour might shift and under what 

conditions, after brain damage. 

Additionally, the hypothesis of the maladaptive right hemisphere activation supposes that the 

two hemispheres attempt to inhibit each other through transcallosal inhibition (6, 7, 9). There are 

several puzzles about this hypothesis including (a) why the healthy brain might spend most of its 

lifetime preventing regions from working (a biologically expensive implementation) and (b) how the 

less dominant system can develop even semi-useful representations if being persistently suppressed. 

We also note that, to the best of our knowledge, outside of the motor system (63-65) there are no 

demonstrations of transcallosal inhibitory connectivity. Conversely, there is even some evidence of 

excitatory connectivity (66, 67). With an implemented bilateral language model, we can explore the 

effect of transcallosal connectivity on model behaviour, task performance and recovery. 

Multiple measures 

The last issue concerns different types of data and measures. Classically, explorations of 

brain function relied on relating brain activations (8, 10-12, 53) or lesions (68-70) to patients’ 

performance. Functional neuroimaging now allows the healthy and damaged brain to be explored, in 

vivo. Thus we now have multiple measures to consider in parallel, including lesion location and size, 
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behavioural language performance, activations and connectivity. To make progress, the field needs 

to understand the relationship between these measures. It is tempting to assume that activated regions 

must be contributing to patients’ performance but activation does not prove necessity (30). 

Furthermore, different types of analyses, such as multiple voxel pattern analysis (71), have started to 

be used to explore and predict recovered performance. For instance, Fischer-Baum et al. (72) 

reported that, in a stroke patient with a severe reading impairment, the orthographic activation 

patterns in the right fusiform gyrus were more similar to stimulus patterns than in the left fusiform 

gyrus. Thus, it is critical that computational models are designed to accommodate multiple measures 

within a single framework, to allow formal explorations of the relationship between brain activations 

and contributions to the observed behavioural performance. 

To summarise, the primary aim of this study was to address four key issues by developing a 

unified, bilateral pathway model of spoken language production: (a) language lateralisation in 

healthy participants and post-stroke patients; (b) mechanistic accounts for language recovery; (c) 

dynamic shifts of activation in post-stroke aphasia and recovery with/without transcallosal 

connectivity; and (d) the relationship between multiple measures and recovered function. We directly 

compared the model to data derived from four important, exemplar studies of healthy individuals and 

post-stroke aphasia: Vernooij et al. (42), Gajardo-Vidal et al. (17), Saur et al. (51) and Fisher-Baum 

et al. (72), and used the model to make novel predictions for future exploration. Given the maelstrom 

of historical hypotheses, data, etc., we have provided a summary guide to the critical issues, 

alternative viewpoints, our working hypotheses and simulated effects in Table 1. 

--------- Table 1 Insert Here --------- 
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Results 

Hemispheric asymmetry and language lateralisation 

The bilateral model was implemented as a simple recurrent network, consisting of two 

parallel pathways trained to perform word repetition (see Methods). We investigated if the model 

could simulate language lateralisation that follows hemispheric asymmetry, similar to the correlation 

pattern between functional hemispheric asymmetry in parietotemporal regions and structural 

asymmetry in arcuate fasciculus during the spoken production task reported in Vernooij et al (42). 

Specifically, we varied the proportion of hidden units in the left versus the right pathways in the 

model (see Fig. 1A) to simulate the relative capacity of the two pathways (73) while the total number 

of hidden units remained unchanged. The number of units for the two consecutive hidden layers in 

each pathway was the same. After training, the model was also tested on nonword repetition (an 

assessment of generalisation to novel phonological forms). 

In imaging studies, a laterality index is commonly estimated using BOLD or cerebral blood 

flow (CBF) in the left and right homologue language areas (42, 74). In our model, two different 

measures were used to compute the degree of lateralisation: functional contribution and output unit 

activation. Functional contribution measured the relative contribution from the left or right pathway 

to output activation, as a proxy of effective connectivity analyses (47, 75). Output unit activation 

measured average unit activation at the output layer from either the left or right pathway, as a proxy 

of fMRI activation (76). A positive laterality score indicated that the model showed a left lateralised 

pattern; conversely, a negative score indicated a right lateralised pattern. An asymmetry index for 

computational capacity (number of left vs. right hidden units) was calculated in the same way as the 

laterality index. We also investigated average hidden unit activation in the left and right pathways 

across different conditions, during development and in recovery. 

Results are summarised in Fig. 1. All models performed well on word repetition and 

generalised to nonwords (Fig. 1B). There was a clear lexicality effect with the highest accuracy for 
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high frequency words followed by low frequency words and then nonwords. Importantly, the 

performance level achieved by the model with differential capacities in the left and right was very 

similar because the total number of units was the same. These observations were confirmed by a 

repeated ANOVA. There was a significant word type effect [HF vs. LF vs. nonwords: F(2, 278) = 

33.8, p < .001], while both model type (p = 0.44) and its interaction with word type (p = 0.18) were 

not significant. This means that the model was able to exploit the computational capacity flexibly to 

learn the task and to generalise. In contrast, the underlying processing changed. Figure 1C shows that 

more hidden units along a pathway resulted in higher average hidden unit activation. Thus, the 

emergent functional division of labour in the model was not solely based on there being more units 

in the “dominant” processing pathway but they also resultantly worked harder on average. Critically, 

Figure 1D shows that the model with more processing units in the left pathway (i.e., a larger 

asymmetry index) produced a more left lateralised pattern. Laterality indices based on functional 

contribution and output unit activation were both positively correlated with asymmetry index for 

model capacity, Pearson’s r = 0.929, p < .001, and Pearson’s r = 0.917, p < .001, respectively. The 

results are consistent with the function-structure pattern reported in Vernooij et al. (42). 

--------- Fig. 1 Insert Here --------- 

Chronic aphasia after left but not right hemisphere stroke 

We next investigated whether damage to the left hidden layer in the model would be more 

likely to result in permanently impaired language performance (chronic aphasia) compared to 

damage to the right. Gajardo-Vidal et al. (17) found that approximately half of patients 49% 

(151/307) with left hemisphere stroke showed impaired repetition performance, whereas the 

incidence for patients with right hemisphere stroke was about 5% (5/93). In the preceding section, 

we demonstrated that the model with more computational capacity in the left pathway produced a 
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bilateral, left-asymmetric activation pattern similar to fMRI brain activations observed in most 

healthy individuals during language production. Thus, we opted to use a model with an asymmetrical 

structure where the computational capacity in the left was twice as large as that in the right (60 vs. 30 

units). The 30 units in a hidden layer also met the minimum number of units required for a unilateral 

model to support the production task (see SI Appendix, S1). 

Fig. 2A shows both the developmental learning trajectory before lesioning (the intact model) 

and an example recovery profile of the model with a left or right moderate lesion. During 

development, the model learned high frequency words more accurately and quickly than low 

frequency words. Generalisation to nonwords was very good though lower than performance on 

words. Then, a moderate lesion was applied to the left or right hidden layer 1 in the model. A 

moderate lesion 50%[0.5] meant that 50% of the units were damaged and noise with the variance of 

0.5 was added to the links connecting to and from the left hidden layer 1. After damage, the model 

was re-exposed to its learning environment for 100,000 word presentations to allow for a period of 

experience-dependent, plasticity-related recovery (based on a re-optimisation of the remaining 

processing units) (47). To mimic the loss of function and missing activation in the damaged brain 

regions immediately after stroke (51), a period of initial inefficient learning for the surviving units 

was implemented (i.e., their learning abilities were initially limited and then gradually regained, 

whereas for the units in the unaffected layers learning efficiency was normal). Inefficient learning 

was implemented by varying unit gain from 0 to 1 in steps of 0.1 over the early stage of retraining 

(the first 10,000 word presentations in the recovery phase). Note that the model behaved similarly 

without the implementation of a period of inefficient learning (see SI Appendix, S2). Immediately 

after left damage, the performance of the model was at floor. Then, the model started to re-optimise 

the weight connections and re-learned the task. In the later stage of recovery, performance gradually 

increased up to an asymptote (i.e., partial function recovery as found in chronic aphasia). In contrast, 
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the right damage only caused minor disruptions to the performance and it recovered rapidly (i.e., full 

function recovery akin to transient aphasia). 

Obviously, patients have different lesion severities in the left or right hemisphere, leading to 

different recovery profiles. To capture this, different levels of damage were applied to the left or 

right hidden layer 1. Specifically, ten lesion levels were implemented by damaging hidden units from 

10% to 100% with step increment of 10%, plus adding Gaussian noise with variance from 0.1 to 1 

with step increment of 0.1 to the links that were connected to and from the target hidden layer. All 

re-training procedures were the same as described above. Fig. 2B shows the final recovered 

performance as a function of different levels of damage to the left or right hidden layer 1. For left 

lesions, the recovered performance varied with lesion levels. We divided the models into three lesion 

groups, 10%[0.1]-30%[0.3] for the mild group, 40%[0.4]-60%[0.6] for the moderate group, and 

70%[0.7]-100%[1] for the severe group. The mild group showed the best recovered performance 

while the severe group was the worst with the moderate group in the middle. For the right lesions, 

the model generally recovered very well regardless of lesion levels. These results demonstrated that, 

following damage and recovery, performance of the left lesioned model was much more impaired 

than the right lesioned model. The simulation data were generally consistent with the patients’ 

studies reported in Gajardo-Vidal et al. (17), showing a stroke in the left hemisphere is more likely to 

lead profound, chronic language impairment (Fig. 2B), albeit the right lesion may have 

underestimated the mild level of aphasia that is sometimes observed (see Discussion). 

--------- Fig. 2 Insert Here --------- 

Dynamic activation shifts in post-stroke aphasia and recovery 

 An important aspect of this study was to investigate the relationship between simulated 

behavioural performance and underlying metrics of unit function (to mimic functional neuroimaging 



15 

data). Three levels of left lesions (20%[0.2], 50%[0.5], and 80%[0.8]) were selected to simulate 

mild, moderate and severe aphasia. Additionally, the severe right lesion (80%[0.8]) was included to 

understand what compensated the effects of right damage. Four measures were used to reveal the 

mechanisms underlying recovery in the damaged model. First, as before, the damaged model’s 

accuracy on word and nonword repetition was used to simulate post-stroke aphasic patients’ 

behavioural performance. Second, we used output unit activation in the left and right pathways as a 

proxy of fMRI activation (76). Additionally, we investigated whether the model could produce 

similar activation patterns to that observed by Saur et al. (51) during three phases of language 

recovery. Specifically, we investigated whether a mildly lesioned model could produce: (a) from the 

acute phase to the subacute phase, an increase of the output unit activation in the undamaged left 

pathway and the right pathway with the highest increase in the right; (b) from the subacute phase to 

the chronic phase, a decrease of the output unit activation in the right pathway but the output unit 

activation in the left remained stable. Accordingly, the re-learning time in the model was divided into 

three recovery periods (acute, subacute, and chronic) approximating different stages of patient 

recovery, and the average output unit activations were computed. Third, we measured the 

perilesional and contralateral hidden unit activations to examine which undamaged units in the 

model were reformulated to support during recovery. Lastly, we conducted representation similarity 

analysis (RSA) comparing the activation similarity patterns in the hidden layers to the output 

similarity for the words. To our knowledge, there is only one stroke patient study that has utilised 

RSA (72). This study found that, when reading, a patient with a severe lesion to the left VWFA 

relied more on the right VWFA for orthographic processing, indexed by the RSA similarity scores, 

while the healthy participants generally relied more on the left VWFA than the right. As this 

investigation was a single case study of reading (not repetition), we report analogous data based on 

the closet settings to Fischer-Baum et al. (72) and investigated whether the reliance of the processing 

shifted from the left to right after severe damage to the left in the model.   
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In addition to these four measures, two additional measures were related to the model’s 

relearning: average weight strength and weight change. Both measures were helpful for 

understanding how the model re-learned the task during recovery and what the links were between 

recovery performance and re-learning processes (see SI Appendix, S3 for details). 

Fig. 3 summarises several key phenomena. We can first look at performance accuracy and 

output unit activation. For the left lesion, the recovered performance of the model aligned with lesion 

severity with the mild lesion model showing the best performance. Importantly, for the mildest 

lesion there was a transient pattern of output unit activation shifting from left to right at the early 

stage of recovery and then back to left at the later stage of recovery, similar to the finding observed 

in the mild aphasic patients (51). To test these observations, we compared the simulation data against 

Saur et al. (51) by computing the differential output unit activations between the acute and the 

subacute phases, and between the subacute and the chronic phases. As can be seen in Fig. 4A, the 

output unit activations significantly increased for both the left and right pathways, t = 8.11, p < .001, 

and, t = 8.56, p < .001, respectively, from the acute to the subacute phase. The increase of activation 

was numerically higher for the right than for the left pathway. The comparison of the subacute and 

chronic phases showed a significant decrease of activation in the right pathway, t = -3.55, p = 0.002, 

but not in the left pathway (p = 0.14). All the statistics were corrected for multiple comparisons.   

As for the moderate and severe lesion, the models in Fig. 3 showed right lateralised activation 

patterns, and the recovered performance was worse than that in the mild lesion. In contrast, even 

after a severe right lesion, accuracy was only slightly disrupted but quickly recovered, and the output 

activation pattern during recovery largely remained unchanged with a small rise in right output unit 

activation. 

We investigated how undamaged perilesional and contralesional units supported recovery. 

The results showed that, for both mild and moderate lesions, the LH1 perilesional activation initially 

decreased following damage but then gradually increased during re-learning, reflecting a re-
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optimisation process. A similar but larger initial decrement followed by a slower increment pattern 

was observed for LH2 hidden unit activation. For a severe lesion, both the LH1 and LH2 hidden unit 

activation decreased following damage but did not rise again, presumably because there were 

insufficient processing units available in the LH1 layer for the model to re-optimise. This pattern was 

also observed for the right severe lesion comparison, where both the RH1 perilesional activation and 

RH2 hidden unit activation gradually decreased and remained in a low activity level. Turning to 

contralateral activation, for all severities of the left lesion, the contralateral hidden unit activations at 

RH1 and RH2 increased very quickly following damage. The degree of increment was varied and 

depended on lesion severity, with the largest increment for the severe condition. By contrast, for the 

right severe condition, there was no clear increment of the contralateral hidden unit activations at 

LH1 and LH2. 

For the correct interpretation of the relationship between patient behavioural performance and 

underlying activation, it may be important to note that there were differential associations between 

model accuracy and the various unit metrics. Fig. 3 shows that the RSA measure closely shadowed 

the changing model accuracy, quite unlike simple unit activation (a proxy to BOLD levels) which 

show a complex nonlinear relationship. Taking the left moderate lesion as an example, even when 

the right output unit activation was building up quickly during the initial recovery period, change in 

model performance was minimal. Subsequently, long after the point when the right output unit 

activation reached a relatively stable level, there was a much larger and gradual increase in model 

accuracy. By contrast, the change in the RSA pattern was closely aligned with model performance. 

Interestingly, although the right output unit activation was higher than the left output unit activation 

throughout recovery, the RSA results showed the left unit correlation was initially lower than the 

right unit correlation but returned to a higher level later in recovery. 

To examine, formally, the relationships between model performance with output unit 

activation and the RSA measure, we conducted correlation analyses. Model performance was 
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correlated with output unit activation and the RSA scores at hidden layers 1 and 2 separately. 

Correlation analyses were conducted across the developmental learning period in the intact model 

and the re-learning period in the lesioned model. Results are summarised in Table 2. The correlations 

between output unit activation and model performance were mostly negative in particular for the 

lesioned conditions, except for the positive correlations for the left output unit activation in the intact 

condition and for the right output unit activation in the left severe lesion condition. When 

considering all intact and lesion conditions, the pattern of change in correlation for output unit 

activation was difficult to interpret. By contrast, the correlation with the RSA scores was more 

interpretable. The pattern of correlation change was moderated by lesion severity, revealing the 

sources of contribution to model performance. For the left lesions, left RSA unit correlations were 

much higher than the right RSA unit correlations in the milder lesion conditions. With increasingly 

severe lesions, the right RSA unit correlations increased with the decrease in the left RSA unit 

correlations. For the right severe condition, the left RSA unit correlations remained higher than the 

right RSA unit correlations. Fig. 4B shows that the intact model produced a higher RSA unit 

correlation for the LH1 than the RH1 and the opposite pattern was found for the left severe model. 

These results were conceptually similar to the findings of Fischer-Baum et al. (72), in which the 

healthy controls relied more on the left VWFA for orthographic processing in contrast to the patient 

with severe damage to left VWFA relied more on the right VWFA. Obviously, the tasks in the 

present study and Fischer-Baum et al.’s study are different. Thus, the patterns produced by the model 

can be considered as predictions for future patient studies in spoken production. Collectively, these 

results demonstrated that the RSA could potentially provide a more direct measure to relate model 

performance to the underlying computations. 

--------- Fig. 3 Insert Here --------- 
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--------- Fig. 4 Insert Here --------- 

--------- Table 2 Insert Here --------- 

Interconnectivity between the left and right hemispheres 

Thus far, the implemented model did not have interconnections between the left and right 

pathways. Cortical hemispheres, however, are connected by the corpus callosum as well as various 

subcortical routes (77). Given that the corpus callosum and interhemispheric connectivity are 

complex, a detailed neuroanatomically-constrained simulation is beyond the scope of this study. 

However, we explored a simplified simulation by adding direct ‘homotopic’ interconnections 

between the left and right pathways to investigate whether (a) this changed the patterns of simulated 

recovery reported above, and (b) if the model would develop transcallosal inhibitory connectivity as 

proposed in various classical hypotheses (6, 7, 9). Transcallosal connectivity in the model was 

implemented as sparse, bidirectional cross-connections between the left and right hemispheres 

without imposed positive or negative connections (all weight connections were allowed to develop 

freely). As there is no prior knowledge about inter-hemispheric connectivity density, we 

implemented two connectivity levels (30% and 70%). The training and testing procedures were 

exactly the same as previously described. We also ran additional comparison simulations in which 

the connections were constrained to be negative only (see SI Appendix, S4). This constrained model 

produced stronger left lateralised patterns and it was less resilient to damage. Analyses of the weight 

values demonstrated that the vast majority were close to zero – i.e., the model effectively became 

one with independently functioning pathways. This was not true when the connection values were 

unconstrained. 

Fig. 5 shows the resulting patterns produced by the left mild, left moderate and left severe 

and right severe lesioned models with different levels of interconnection (unconstrained). For 
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comparison, the pattern produced by the model without interconnections is included in Fig. 5. 

Overall the patterns were similar. There was transient right unit activation for the left mild lesion 

condition but not for more severe left lesion conditions. In addition, the model could recover to a 

similar accuracy level regardless of the levels of interconnection. But, when the model had more 

interconnections, it showed a more bilateral pattern following damage and recovery, increasingly 

behaving like a single functional pathway model. This observation was confirmed by the results from 

the right severe lesion condition, where the model with more interconnections exhibited a more 

pronounced impairment in the early recovery phase. 

--------- Fig. 5 Insert Here --------- 

Discussion 

Understanding the brain mechanisms underlying language processing is critical, both 

theoretically and clinically. To tackle various key issues that appear to be contradictory in healthy 

and impaired language processing (see Table 1), we developed a single, unified neurocomputational 

model of spoken language production with bilateral pathways. The key features of this modelling 

work include: the importance of considering healthy and impaired language within an intrinsically 

bilateral but asymmetric language network; to conceptualise recovery of function after damage as an 

experience-dependent plasticity-related learning process; and, to provide a platform to simulate 

behavioural and neuroimaging data from different populations. A list of the key findings is provided 

in Table 1 and each are discussed briefly below. 

In an otherwise computationally-homogenous model, an initial imbalance in the processing 

capacity (number of hidden units) in the left and right hemisphere pathways was sufficient to explain 

the pattern of data observed in healthy participants and patients with chronic aphasia. Specifically, 

the capacity imbalance drives an emergent division of labour across the pathways such that the left 
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hemisphere pathway picks up more of the computational work (i.e., each unit, on average, is more 

highly activated and contributes more to the final spoken output response than each corresponding 

right hemisphere unit). As a result, the undamaged model shows bilateral but asymmetric 

“activation” as observed in healthy participants. When this capacity imbalance is combined with 

plasticity-related recovery, the model provides an explanation for why left hemisphere stroke is more 

likely to result in chronic aphasia than right hemisphere stroke. Plasticity-related recovery reflects a 

re-optimisation of the remaining connection weights to maximise behavioural performance. This 

occurs in both ‘perilesional’ units and the contralateral pathway. The greater computational capacity 

in the left hemisphere means that, when the right hemisphere is damaged, there is greater capacity 

for the left hemisphere pathway to pick up the extra representational work previously undertaken by 

the (damaged) right hemisphere pathway (meaning that there is only transient aphasia). The same 

recovery process occurs following left hemisphere damage except that (a) the greater left hemisphere 

capacity means that, at least for mild levels of damage, there is still enough spare capacity in the 

remaining ipsilateral units to pick up the additional computational work (i.e., there is good or 

recovered function, and left hemisphere activation still dominates, even after mild levels of left 

hemisphere damage) and (b) there is insufficient capacity in the right hemisphere to compensate 

completely if the left hemisphere damage is too severe. In such circumstances, the model mimics 

chronic aphasia. In all cases, plasticity-related recovery means that there is a dynamic shift in the 

division of labour to ipsilateral ‘perilesional’ and contralateral areas, as is observed in fMRI studies 

of recovered patients. The model also demonstrates that there can be complex, nonlinear 

relationships between behavioural performance and levels of unit activation (a proxy for BOLD) 

whereas the relationship is much more direct when comparing performance to the accuracy of the 

representations coded in the pathway (implying that MVPA-type neuroimaging analyses may be a 

better way to assess and track the neural bases of recovery in aphasic patients). 
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Leftward hemispheric asymmetry has been shown in several brain regions and white matter 

tracts (36-40). However, there remains some controversy regarding a positive correlation between 

structural asymmetry and functional lateralisation (25, 41, 42, 78). The discrepancy could be related 

to individual differences among participants (e.g., age, education, handedness, and gender) or it 

could be because most studies have relatively small sample sizes (79). In a more controlled 

computational environment, our bilateral model with differential pathway revealed the impact of 

model capacity on the functional division of labour underlying performance and demonstrated a link 

between hemispheric asymmetry and language lateralisation. The simulation results are consistent 

with the positive correlation patterns reported in most right-handed healthy participants (41, 42). The 

model also shows that this structural difference could be fundamentally important for explaining 

patient data. By explicitly incorporating a leftward asymmetric but bilateral structure in the model, 

the model synthesises the seemingly contradictory patterns observed in both healthy participants and 

aphasic patients (Fig. 2): specifically, a leftward asymmetric but bilateral pattern in the intact model, 

and the much stronger lateralisation picture that is observed in chronic patients after left (aphasic) vs 

right (recovered) lesions. Additionally, the relationship between the severity of the left lesion and 

recovered performance is non-linear (see Fig. 2B), suggesting that the model had developed some 

resilience to mild damage (up to ~35%) but, beyond a “tipping point” the effects of damage cannot 

be overcome through plasticity-related re-learning, leading to more permanent language impairment 

as observed in chronic aphasia. It is important to note that there was a small divergence between the 

simulation results and Gajardo-Vidal et al.’s (17) patient data: that is, the model is more robust to 

right hemisphere damage (Fig. 2B). It is possible that this highlighted version of the model might 

possess a division of labour too biased to the left hemisphere pathway, making the contribution of 

the right hemisphere a little too weak. From our explorations of the key computational parameters, 

we know that the division of labour is governed in part by (a) the asymmetry in the balance of 
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computational resources (Fig. 1) and (b) the degree of interconnectivity between the left and right 

pathways (Fig. 5).    

Taking a step back, this explanatory framework for aphasia and recovery, raises some 

fascinating fundamental questions about higher cognition more generally: (a) why is it good for 

cognitive functions to be supported bilaterally; and (b) if so, why is it beneficial for some functions 

to remain at least partially dominated by one hemisphere (cf. the asymmetric yet bilateral 

architecture of the language production system)? Complete answers to these questions will have to 

wait for future research but there are some initial ideas in the literature. With regards to the benefits 

of bilateral implementation, a recent computational model and formal mathematical analysis 

demonstrated that bilateral systems are much more robust to the effects of damage than a singular 

system with the same resources (80). The second question is more difficult to answer. One 

possibility is that a bilateral system’s resources might be pulled asymmetrically if that cognitive 

function has to interact with other computations/representations that, themselves, are unilaterally 

expressed (though, of course, the begs the same question of why these are asymmetrically 

supported). A second possibility comes from a potential downside of distributing the same function 

across multiple brain regions. Whilst the distributed system may engender greater robustness to the 

effects of damage, it might induce a need for heightened synchronisation. Previous proposals (81) 

noted that human connected speech is highly demanding in terms of the rapid, accurate motor 

executions required, as well as the fast conceptual-to-speech transformations (82). When output 

signals need to change rapidly and accurately then, in the situation of bilateral systems, the need for 

synchronisation also increases (81). In the limit, sufficient synchronisation across distributed brain 

regions may be impossible to achieve and thus the ‘compromise’ is to let one side of the computation 

dominate, cf. an asymmetric, bilateral system. 

Two potential mechanistic frameworks have been proposed for language recovery: 

degeneracy and variable neuro-displacement (13). Both mechanisms allow the language system to be 
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at least partially resilient to damage and for recovery of function. Recovery can be accomplished by 

a permanent reformulation of the remaining multiple codes (degeneracy) or upregulation of systems 

(variable neuro-displacement), or both. The present neurocomputational model demonstrates that 

both mechanisms are not mutually exclusive and they can be utilised as a part of the recovery 

process. Immediately after dominant pathway damage, the model rapidly activates contralesional 

activation and also starts to re-formulate the perilesional unit contributions. If the perilesional units 

are capable of re-supporting the function, then later in recovery, both perilesional and contralateral 

contributions increase; otherwise, the perilesional contribution is decreased and the enhanced 

contralateral contribution continues. As such, it would appear that the recovery process follows the 

two proposed principles but the actual mechanisms involved depend on the level of task engagement 

by the units before damage and whether there is sufficient capacity in the remaining perilesional or 

contralateral areas to support recovery. As a result, there are differential output activation recovery 

profiles depending solely on lesion severity. With a mild left lesion, the perilesional units are largely 

persevered and can be re-formulated for recovery, leading to good recovery and left lateralised 

output activation patterns. With a more severe left lesion to the model, perilesional support is 

reduced and partial recovery relies mainly on the contralateral units. Accordingly, there is a co-

occurrence of slow and imperfect recovered performance with right-lateralised activation patterns. 

These simulations collectively mirror the patient results reported in the literature: good performance 

is associated with left lateralised activations while worse performance is associated with more right 

lateralised activations (5); and, left-right-left changing brain activation patterns are observed in 

patients with mild brain lesions in the left hemisphere (51). This finding emphasises the importance 

of considering lesion severity when interpreting associations between good recovery and left 

lateralised brain activation patterns (5, 51) and the association between imperfect recovery and right-

lateralised brain activation patterns (83). 
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The present bilateral model also provides a potential explanation for why the right 

hemisphere provides some but not perfect language support. The classical right hemisphere 

hypothesis (RHH) proposes that the right hemisphere is normally suppressed, via transcallosal 

inhibition, by the dominant left hemisphere system, but it can be released to provide some function 

after significant left hemisphere damage (6, 7, 9). As noted previously (2, 5, 8, 10-13, 27, 51, 57), the 

RHH leaves many puzzling questions open, including: how the RH can develop language 

representations under lifelong suppression; how left and right language systems might contribute to 

normal function; what bilateral yet asymmetric BOLD activation in healthy participants represents; 

and, why this biologically-expensive organisation for all people is an optimal solution for the 

minority of people who happen to suffer from the right kind of brain damage to induce aphasia. The 

current simulations provide a much more straightforward proposal for the data. The premorbidly 

bilateral albeit asymmetric system supports healthy function but can partially re-optimise following 

damage. This can all be achieved without any recourse to notions of juvenile RH language systems 

and interhemispheric inhibition. Instead, the RH subsystem is less efficient because it has less 

computational capacity and, in turn, learning in the left hemisphere over-shadows that in the right, 

resulting in the left hemisphere units taking up more of the representational work (Fig. 1C). These 

results follow even without interhemispheric connection. Even if included (Fig. 5), then (a) they do 

not all become inhibitory and (b) with increasing connectivity the model evolves into a single 

functional system. Of course, it should be acknowledged that the connections within corpus callosum 

are much more complex than the simple parallel connections implemented in the present model. 

Whilst interhemispheric connectivity has been shown to be inhibitory within the motor network (63-

65), to our knowledge, there is currently no evidence of transcallosal inhibitory in language or other 

higher cognitive networks; in contrast, a few studies have demonstrated interhemispheric excitatory 

connectivity (66, 67). Finally, in a third variant in which inhibitory-only interhemispheric 

connections were enforced, the model set their value close to zero. 
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We should note that one previous study (9) applied TMS to left inferior frontal gyrus in 

healthy participants during a verbal fluency task, and showed decreased brain activity in the left but 

increased activity in the right homologue. These findings were interpreted as supportive evidence for 

transcallosal inhibition from the left to right hemispheres, however, the changes in the effective 

connectivity between the left and right inferior frontal gyri after TMS were not examined. 

Alternatively, the upregulation of homologue language areas after brain stimulation could be 

considered as a form of adaptive plasticity based on an interhemispheric compensatory mechanism 

(31, 32, 35, 84). For example, a recent study of semantic processing, combining theta-burst 

stimulation (cTBS) and DCM (32) found increased right ventral anterior temporal lobe (vATL) in 

response to cTBS to the left vATL. The DCM results revealed an increase in the facilitatory drive 

from the right to the left vATL. There was no evidence of negative inter-ATL connectivity with or 

without stimulation. Similar results have been reported in another brain stimulation study targeting 

Broca’s area during speech processing (35). 

Lastly, the model investigated multiple measures within a single framework and their 

sometimes complex relationships. The simulation results suggest that, in task-based fMRI studies, 

BOLD signals and RSA measures may provide different information: although increase unit 

activations (cf. BOLD increases) are a necessary pre-cursor to behavioural recovery, higher unit 

activations do not necessarily imply that the units are contributing to improved performance. In the 

model, the performance improvement required both increasing unit activation and tuning weight 

connections. Immediately after damage, the activation level of the units in the model was generally 

low. Thus, the first step toward re-learning was to increase the activation level via a generalised 

weight connection increase. This was followed by re-tuning weight connections in order to minimise 

the errors between the target and actual patterns at the output layer. The implication is that fMRI 

BOLD signals in patients during recovery have an ambiguous interpretation; they could reflect the 

neural basis for recovered performance (as occurs, for example, in the right hemisphere pathway 
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after severe left hemisphere lesions: BOLD-type and then RSA-type measures increase, see Fig. 3) 

or alternatively generalised but untuned activation (e.g., after a moderate lesion: right hemisphere 

activation increases but performance recovers only after the left hemisphere RSA has bounced back, 

see Fig. 3). In contrast, RSA might provide a more direct measure to link recovered performance 

with neuronal pattern information in different phases of aphasia recovery. This result is consistent 

with a growing interest in using different types of neuroimaging analyses to investigate the right 

hemisphere activation patterns in post-stroke aphasia and how it is related to recovered performance 

(71, 72). Given that, to date, there have not been any RSA-based studies of spoken language 

production in aphasic patients, the current simulations serve as model predictions for future 

neuroimaging studies. By extension, the same techniques might also be helpful in clarifying the 

(dis)advantages of using brain stimulation techniques (TMS or tDCS) to alter brain activation for 

effective treatments. 

To finish we note explicitly that there were at least three deliberate simplifications adopted in 

the model which can be addressed in future work. First, the model focused on speech production 

along the dorsal pathway. Obviously, there are multiple pathways in the language network (16, 40, 

85-88). For example, we have not considered the ventral pathway that includes a semantic system for 

comprehension. A previous neurocomputational model (46) demonstrated that a dual-pathway neural 

network model could simulate different types of aphasia (including receptive and expressive 

language) based on damage to a corresponding lesion site. Secondly, the psycholinguistic and 

cognitive science literatures contain many sophisticated models of individual language tasks 

(typically in relation to healthy performance) that embrace large word corpora and linguistic detail. 

We deliberately adopted a much more psycholinguistically-simple model so that we could more 

easily explore the potential relationship between behavioural performance and brain 

structures/pathways, and thus allow us to distil some principal mechanisms about the emergent 

division of labour between the two hemispheres and how this can change in recovery. Third, we 
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acknowledge that the backpropagation algorithm has commonly been viewed as biologically 

problematic even though it is the most efficient and effective for deep neural networks (89). 

However, this view may be changing: a very recent review (90) proposed that there could be a more 

direct neural analogue of backpropagation: in simple terms, top-down feedback/prediction could be 

compared at the local level against the bottom-up sensory input. Clearly, however, more empirical 

evidence connecting the backpropagation algorithm and learning in the brain is needed. Future 

models can merge and elaborate these approaches to provide further systematic investigations, 

thereby elucidating the neural bases of healthy language and partial recovery in post-stroke aphasia. 

Methods 

Model architecture 

The bilateral model was implemented as a simple recurrent network. The dual pathway 

architecture of the model is shown in Fig. 1A.  Each processing pathway consisted of two hidden 

layers. For the first hidden layers, there was a copy of the hidden layer, shown as dashed lines in Fig. 

1A, known as an Elman layer (91); this allows a copy of the hidden layer from the previous time tick 

to influence the current unit activations, functioning as a memory buffer in the model. 

The input phonological layer was connected to the first left and right hidden layers with 

Elman connections and then to the second left and right hidden layers and then to the single, final 

output layer. All layers were fully connected and the connections were unidirectional unless stated 

otherwise. 

Representation 

100 three-phoneme high frequency and 100 three-phoneme low frequency monosyllabic 

words with consonant-vowel-consonant structures were included in the training set. Each word was 
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represented by three phoneme slots, with each slot consisting of 25 phonetic features (92, 93) (for 

details, see SI Appendix, Methods). The nonword list comprised 25 items creating by changing the 

first consonant, the vowel or the final consonant in a word. 

Training and testing 

The model was trained on word repetition. For each word, the model was run for six time 

ticks. In the first three time ticks, each phoneme was presented in the input layer sequentially. There 

was no output target until all the phonemes were presented. From the fourth time tick to the sixth 

time tick, the model was required to produce the target phonemes sequentially. Which word was 

presented to the model was determined by its logarithmic frequency (94). The model was trained 

using a standard back-propagation algorithm. Weight connections were updated after each word 

presentation on the basis of cross-entropy error. 

All words were used for training and the nonword list was used for testing generalisation. 

The model was trained for 300,000 word presentations, at which point the model repeated words 

accurately (> 98%) and generalised to nonwords (> 96%) (Fig. 2A). The model’s performance was 

assessed by comparing the output phonological pattern with the sequential phoneme target. The 

model was judged to be correct only when all phonemes were correct. Twenty versions of the model 

with different random initial weights were trained to simulate different participants and to prevent 

the results emerging from idiosyncratic random initial weights. More detailed training environment 

and testing procedures are reported in SI Appendix, Methods. 

Neuroimaging correlates 

In neuroimaging studies, a laterality index was computed by subtracting the signal obtained 

in the right language areas from the corresponding left language areas and then dividing the score by 
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the sum of the signals (42, 74). For the simulation, two measures were used: one was functional 

correlation (47, 75) as a proxy of effective connectivity signals, and the other was output unit 

activation (76), as a proxy of fMRI activation. For functional correlation, we recorded the unique 

contribution from the left pathway to the output phonological layer for all words (from the fourth to 

the sixth time ticks). This was achieved by lesioning the links between input and the right hidden 

layer 1 so that there was no input signal from the right pathway. Similarly, the right pathway 

contribution was obtained by lesioning the links between input and the left hidden layer 1. We then 

correlated the activation patterns from each pathway with the patterns when both pathways were 

utilised. For output unit activation, the same lesioning technique was used to isolate the unique 

contributions from the left or right pathway to the output layer activations. Both measures were used 

to compute the lateralisation index (a positive score indicates a left-lateralised pattern). 

Representational similarity analysis 

For each word, the model produced three phonemes sequentially. To conduct representational 

similarity analyses (95), we concatenated the three output activations into one output pattern for each 

word. We then computed a target representational dissimilarity matrix (RDM) based on the 

correlation distance of all word pairs. Similarly, for model RDMs, we computed the matrices based 

on the correlation distance of hidden unit activation patterns at hidden layers 1 and 2 in the left and 

right pathways of the model independently. The hidden unit activation pattern for each word 

consisted of hidden unit activations of the constituent phonemes. The RSA correlation scores 

between the target RDM and the model RDMs of hidden unit activations were reported. 
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Figure Legends 

Fig. 1. The model architecture, repetition performance, average hidden unit activation, and 

lateralisation patterns produced by the bilateral model with differential capacity in the left and right 

pathways. (A) The model with five different numbers of hidden units in the left and right pathways 

including 15-75, 30-60, 45-45, 60-30, and 75-15. The number of units in hidden 1 layer and hidden 2 

layer was the same. The dashed lines indicate Elman connections (see Methods); (B) The repetition 

performance of the model on high frequency words, low frequency words and nonwords; (C) Hidden 

unit activation produced by the model across the hidden layers along the left and right pathways; (D) 

The lateralisation patterns based on functional contribution and output unit activation produced by 

the model and the behavioural data reproduced from Vernooij et al. (42). HF: high frequency; LF: 

low frequency. Error bar represents 1 standard error; RFD: relative fibre density. 

Fig. 2. (A) The developmental learning trajectory of the model before damage, and the recovery 

profile after damage (Moderate lesion 50%[0.5]) to the left or right hidden layer 1, simulating a left 

or right hemisphere stroke and recovery. Note that the unequally spaced time scales for the re-

learning period were made to clearly demonstrate the model’s re-learning in different periods; (B) 

The recovered performance of the left lesioned model and the right lesioned model as a function of 

lesion levels (a combination of unit damage and noise – see text for details). ‘Intact’ means the 

model without lesion. The behavioural data of unimpaired repetition performance were reproduced 

from Gajardo-Vidal et al. (17). HF: high frequency words; LF: low frequency words; NW: 

nonwords; LH: left hemisphere; RH: right hemisphere. 

Fig. 3. Simulation patterns of post-stroke aphasia and recovery: left mild (20%[0.2]), left moderate 

(50%[0.5]), left severe (80%[0.8]) and right severe (80%[0.8]) conditions. The lesion level was a 

combination of the proportion (%) of the units was damaged and the range of noise (bracket) added 
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to the connections to and from the hidden layer. For each lesion condition, the first panel shows 

model performance; the second panel shows output unit activation generated from the left and right 

pathway of the model separately; the third panel shows hidden unit activation for the left and right 

hidden layers 1 and 2. The activations for lesioned and perilesional units are plotted separately; the 

last panel shows the RSA scores obtained in the left or right hidden layers 1 and 2 in the model. HF: 

high frequency words; LF: low frequency words; NW: nonwords; L: left; R: right; LH: left hidden 

layer; RH: right hidden layer. 

Fig. 4. (A) The increment and decrement of the activations in the model with a left mild lesion. 

Direct comparisons of output unit activations between the acute (300K-301K) and subacute (301K-

305K) phases and between the subacute and chronic (305K-340K) phases. The fMRI data of 

upregulation and downregulation in the language network from Saur et al. (51). Ex1: Acute; Ex2: 

Subacute; Ex3: Chronic. (B) RSA similarity indices of the left hidden layer 1 for both the intact 

model and the model with a severe left lesion. The orth-visual similarity indices for both the controls 

and the patient in the left VWFA and the right VWFA from Fischer-Baum et al. (72). VWFA: Visual 

word form area. 

Fig. 5. Simulation patterns of post-stroke aphasia and recovery produced by the model with three 

levels of interconnections (0%, 30% and 70%) between left and right sides for the left mild 

(20%[0.2]), left moderate (50%[0.5]), left severe (80%[0.8]) and right severe (80%[0.8]) lesion -

conditions. The lesion level was a combination of the proportion (%) of the units was damaged and 

the range of noise (bracket) added to the connections to and from the hidden layer. For each lesion 

and interconnection conditions, the first panel shows model performance and the second panel shows 

output unit activation generated from the left and right pathway of the model separately. HF: high 

frequency words; LF: low frequency words; NW: nonwords; L: left; R: right. 
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Table 1.  Overview of critical issues, key issues, alternative viewpoints, working hypotheses and simulated 

effects/model explorations. 

Critical 

Issues 

Key Issues Alternative Viewpoints Working Hypotheses Simulated 

Effects/Explorations 

Lateralisation 

assumptions 

How can the 

language network be 

strongly left 

lateralised in patients 

but be bilateral, 

albeit asymmetric, in 

healthy participants? 

(a) Impaired language 

function after left but not 

right hemisphere damage 

(14-16). 

(b) Bilateral and 

asymmetric brain 

activations in healthy 

individuals during 

language tasks (21-29). 

Leftward hemispheric 

asymmetry generates 

bilateral yet asymmetric 

lateralisation in 

simulated BOLD and 

also greater likelihood 

of chronic impairment 

after left than right 

damage. 

(a) Functional asymmetry 

followed computational 

capacity; (b) A function-

structure pattern (42); (c) 

Impaired performance after 

left but not right damage to 

the model (17). 

The 

computational 

bases of 

language 

recovery 

A lack of an 

implemented model 

for the computational 

bases of language 

recovery.  

(a) Degeneracy (13, 30). 

(b) Variable neuro-

displacement (13). 

The mechanisms are not 

mutually exclusive and 

they can be utilised as a 

part of the recovery 

process. 

Various analyses on model 

behaviour and explorations 

of the underpinning 

computations in both damage 

and undamaged conditions. 

Theories of 

aphasia 

recovery 

(a) What are the 

dynamic activation 

shifts in post-stroke 

aphasia and 

recovery? 

(b) What is the effect 

of transcallosal 

connectivity on 

healthy and impaired 

function? 

(a) Perilesional 

upregulated activation (5, 

50-55). 

(b) Right hemisphere 

activation (2, 8, 10-12, 51, 

56-57). 

(c) The ‘regional 

hierarchy framework’ (5-

9). 

Patterns of recovery are 

related to the differential 

capacity available in left 

and right hemisphere 

systems and lesion 

severity. 

(a) Dynamic patterns of 

activation shifts during 

recovery (51); (b) Lesion 

severity as a determiner for 

recovered performance and 

brain activation patterns; (c) 

Different types of 

interconnectivity. 

Multiple 

Measures 

What is the 

relationship between 

multiple brain 

measures and 

recovered function in 

patients? 

(a) Behavioural measures 

compared with fMRI 

activation (8, 10-12, 53). 

(b) Potential applications 

of multiple voxel pattern 

analysis (71, 72) in the 

patient studies. 

Different measures 

provide different types 

of information.  

(a) Model accuracy better 

tracked by the RSA than unit 

activation (cf. BOLD); (b) A 

conceptually similar RSA 

pattern to data in (72). 



Table 2. The correlations between model performance and output unit activations and RSA 

scores across the developmental learning period in the intact model and the re-learning period 

in the lesioned models  

Intact L Mild L Moderate L Severe R Severe 

L Output Unit Act     0.23*** -0.29*** -0.20*** -0.1* -0.23*** 

R Output Unit Act     -0.48*** -0.37***     -0.04 0.09*     -0.06 

L RSA H2     0.84*** 0.92*** 0.82***   0.33*** 0.42*** 

R RSA H2    -0.08   -0.04 0.40***   0.69***      -0.08 

L RSA H1     0.82*** 0.92*** 0.81***   0.29*** 0.44*** 

R RSA H1    -0.04   -0.05 0.28***   0.64***     -0.08 

p < .05; *** p < .001; L: left; R: right; Act: activation; RSA: representational similarity 

analysis. 
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