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Abstract (255) 

Research question: The physiological processes of pregnancy and lactation require 

profound changes in maternal metabolism and energy balance. The timescale of 

metabolic reversion after pregnancy, in particular postpartum weight loss, is highly 

variable between individuals. Currently, mechanisms influencing postpartum metabolic 

recovery are not well understood. We hypothesize that, in common with other 

metabolic and obesity-related outcomes, capacity for postpartum weight-loss is 

influenced by developmental programming. 

Design: Adult female Wistar rats exposed to a maternal low-protein diet in utero then 

weaned onto a control diet postnatally (recuperated) were compared to controls. Adult 

females from both groups underwent pregnancy at 3 months of age. Weight changes and 

metabolic parameters during pregnancy and lactation were compared between control 

and recuperated groups, and also to non-pregnant littermates.  

Results: Pregnancy weight gain was not different between the control and recuperated 

groups, but postpartum recuperated animals remained significantly heavier than both 

postpartum control animals (p<0.05) and their non-pregnant recuperated littermates 

(p<0.05) at the end of lactation. Postpartum recuperated animals had increased intra-
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abdominal fat mass (p<0.05) and increased serum triglycerides (p<0.01) compared to 

controls. Postpartum recuperated animals also had increased expression of IL6, NRF2, 

and ALOX12 (key regulators of inflammation and lipoxygenase activity) in the intra-

abdominal adipose tissue compared to control groups.  

Conclusions: Mothers who themselves have been exposed to adverse early-life 

environments are likely to have slower metabolic recovery from pregnancy than 

controls. Failure to return to pre-pregnancy weight after delivery predisposes to 

persisting sequential inter-pregnancy weight gain, which can represent a significant 

metabolic burden across a life-course involving several pregnancies.  

 

Key message: 

Exposure to low-protein diet in utero influences post-partum metabolic recovery in 

female adult rats. 

 

Key words: post-partum weight; developmental programming; adipose mass; 

metabolism; inter-pregnancy weight gain; rat; animal model; ovarian reserve; 

primordial follicles; reproductive ageing 
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Introduction 

 

Healthy pregnancy requires major adaptations of maternal physiology to accommodate 

the needs of a growing fetus and to amass sufficient maternal energy reserves for 

delivery and lactation (Tan and Tan 2013). Key metabolic adaptations during pregnancy 

include increased adipose mass, reduced insulin sensitivity, increased propensity to 

fasting ketosis, and changes in body fluid composition (Lowe and Karban 2014, Lacroix 

et al. 2016, Staelens et al. 2016). A significant body of evidence suggests that an 

individual’s response to metabolic challenges of pregnancy can be viewed as a ‘stress 

test’ that reveal the individual’s underlying propensity to metabolic dysfunction 

(Williams 2003). For example, if the physiological reduction in normal glucose tolerance 

(due to placenta-derived insulin-resistance promoting peptides) provokes frank 

gestational diabetes, then the chance of developing type 2 diabetes in later life is at least 

7-fold higher than in women who were normo-glycaemic in pregnancy (Bellamy et al. 

2009). Thus the metabolic response to pregnancy can be viewed as both a window to 

future health, and an important opportunity to intervene to improve health over the life-

course.  

 

Over the course of a lifetime, failure to recover to baseline from the physiological 

challenges of each pregnancy can lead to gradual accumulation of fat mass and 

subsequent long-term metabolic derangement (Amorim et al. 2007, Lipsky et al. 2012). 

This cycle of inter-gestational weight gain leads to an increasingly higher BMI with each 

successive pregnancy, to the detriment of both the mother (Abrams et al. 2017) and 

potentially her subsequent offspring (Oostvogels et al. 2014). Evidence suggests that 

around half of women have regained their pre-pregnancy weight by 12 months 

postpartum (Sagedal et al. 2017) although this is highly dependent on factors such as 

maternal age, socio-economic status, pre-pregnancy BMI, stress, and breast-feeding 

(Jarlenski et al. 2014, Endres et al. 2015, Straub et al. 2016). Trials in human pregnancy 

show that diet and exercise interventions can be effective in limiting gestational weight 

gain (Muktabhant et al. 2015) and that these interventions may also be partially 

effective in promoting postpartum weight loss and altering maternal dietary behaviour 

(Ehrlich et al. 2014, Horan et al. 2014, Patel et al. 2017, Sagedal et al. 2017). However, 

very little is known about the molecular mechanisms that influence the propensity to 

post-partum weight loss in individuals. 
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Risk of obesity in adult life is increased by exposure to a suboptimal intrauterine 

environment (Bouret et al. 2015). We have previously demonstrated using a rat model 

that adult offspring exposed to low protein maternal diet during pregnancy followed by 

postnatal catch-up growth (recuperated) are prone to later life obesity (Cripps et al. 

2009, Berends et al. 2013) and metabolic derangement (Martin-Gronert et al. 2008). We 

therefore hypothesized that an adult female who was exposed to a suboptimal early life 

environment (with resulting programmed energy and glucose handling deficits) might 

have reduced capacity for metabolic recovery postpartum in addition to an increased 

risk of obesity in later adulthood, compared to control counterparts..  

 

The aetiology of post-partum adipose mass retention might also be explored by 

examining adipocyte gene expression in the immediate post-weaning period. Gene 

expression of key metabolic, endocrine and reproductive pathways may provide insight 

into the molecular pathways that regulate post-partum weight loss. In addition to 

quantifying intra-abdominal fat mass in the post-partum period, we also aimed to assay 

the relative expression levels of a panel of key candidate genes, including those involved 

in the inflammatory adipose response (Il1, Il6, Tnfa, Il10), oxidative stress response 

(Hmox1, Xo, NfkB, Gp91phox), lipoxygenase activity (Alox12, Alox15), macrophage 

infiltration (Mcp1, Cd68), and master transcriptional regulators thought to be involved 

in the pathogenesis of obesity (Tgfb, Tnfa, Nrf2). These genes were chosen based on (i) 

previous work on the effects of developmental programming on ovarian and adipose 

gene expression (Aiken et al. 2016) (ii) knowledge of programming mechanisms in 

other organ systems in the same recuperated animal model (Aiken et al. 2016, Tarry-

Adkins et al. 2016) and (iii) relevant literature review based on searching the Pubmed 

and Medline databases using the MeSH terms: “Postpartum period” AND “Body Weight 

Change”. 

 

We have previously shown a significant relationship between developmentally 

programmed obesity and reduced primordial follicular reserve (Aiken et al. 

2016)  in adult females. It is not currently known whether this is a result of 

reduced follicular endowment in the perinatal period or an accelerated decline in 

follicular reserve during reproductive life. Understanding whether primordial 
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follicular reserve is further reduced after the metabolic and endocrine challenge 

of pregnancy and lactation could give important insight into the dynamics of 

reduced ovarian reserve and hence future reproductive potential in 

developmentally-programmed animals. 

 

Our aim in this study was therefore to determine whether postpartum weight loss and 

metabolic recovery from pregnancy was significantly different between control animals 

and those with programmed energy and glucose handling deficits resulting from 

exposure to a suboptimal intrauterine environment (recuperated group). 

 

Materials and methods 

Experimental Design 

All animal experiments were approved by the University of Cambridge Animal 

Welfare and Ethical Review Board. All animal experiments were conducted in 

accordance with the British Animals (Scientific Procedures) Act (1986) and were 

compliant with EU Directive 2010/63/EU. The aim of the study was to test 

whether post-partum metabolic recovery and weight loss was impaired in adult 

females that had been exposed to a maternal low-protein diet in utero. Wistar rat 

dams (F0 generation, n=16) were fed a standard laboratory chow diet (20% 

protein) and fed ad libitum until pregnancy was confirmed through the 

observation of vaginal plugs. Pregnant animals were then randomly assigned to a 

20% protein diet (control) or an 8% isocaloric low protein (LP) diet (n=8 in each 

group), as described previously (Martin-Gronert et al. 2008). Both diets were 

purchased from Arie Blok (Woerden, The Netherlands). Pups born to LP-diet-fed 

dams were cross-fostered to control-fed mothers at postnatal day 3, in order to 

create recuperated offspring. Each recuperated litter was culled to 4 female pups 

(F1 generation, recuperated group, n=8 litters) at random to maximize their 

plane of nutrition. The control group was the offspring of mothers fed the 20% 

protein diet during gestation and suckled by 20%-protein-fed dams during 

lactation (F1 generation, control group, n=8 litters). Each control litter was 

culled to 8 female pups. After weaning, all first-generation offspring were 
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maintained on standard laboratory chow fed ad libitum. At 12 weeks of age, two 

first-generation females from each litter were randomly selected. One F1 female 

from each F0 litter (n=8 in each group) was paired with a stud male and the day 

of mating confirmed by the presence of a vaginal plug. The other female from 

each litter was not mated and maintained in standard conditions as described 

previously. 

 

During pregnancy, serial body weights were obtained every 4 days from both the 

pregnant female and her non-pregnant littermate. After giving birth, the second-

generation (F2) litters were all culled to 8 pups (both F2 control and F2 recuperated 

groups) on day 3 and were all suckled by their own mothers. At day 3 the first postnatal 

body weights were obtained, and thereafter every 7 days until weaning. There was no 

significant difference in birth-weight or litter size in the F2 offspring between 

experimental groups. Detailed phenotyping of the F2 generation of this cohort is 

described elsewhere (Aiken et al. 2015, Tarry-Adkins et al. 2018). At weaning of the 

second-generation litter (postnatal day 21), all first-generation females (n=8 post-

partum mothers and their 8 non-pregnant littermates, in each of the control and 

recuperated groups) were fasted overnight and fasting blood glucose levels were 

determined using a glucometer (Hemocue, Angelholm, Sweden). The first-generation 

females were culled by carbon dioxide asphyxiation and cervical dislocation. At 

postmortem serum samples, ovaries, ovarian fat pads, and other solid intra-abdominal 

organs were harvested and weighed fresh, immediately after dissection. One ovary from 

each animal was snap-frozen in liquid nitrogen and the other fixed in 

formalin/paraldehyde. The fixed ovaries were sectioned and subjected to haematoxylin 

and eosin (H&E) staining to ensure equal distribution of estrous stages in each 

experimental group (data not shown). Sample analysis was performed using project 

codes to blind the investigators to the experimental groups. Seven samples per group 

were analyzed at each time-point, each sample representing a different litter. The 

sample size was determined via a power calculation based on the effect sizes seen in our 

previous studies (Aiken et al. 2013, Aiken et al. 2015), using an alpha level of 0.05 to 

give power of 0.8. 

 

Serum analyte measurements 
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Blood was obtained from the tail vein into EDTA tubes and centrifuged for 3 min at 

955xg at 4° Celsius to isolate serum. Fasted blood glucose measurements were obtained 

using a glucose analyzer (Hemocue, Angelholm, Sweden). The serum lipid profiles were 

performed using an auto-analyzer (MRC MDU Mouse Biochemistry Laboratory). Serum 

leptin was measured using an ELISA kit from Crystal Chem (Zaandam, The Netherlands), 

which was used according to the manufacturer’s instructions. 

 

Primordial follicle counts 

Fixed ovaries were processed for microscopy and the entire ovary sectioned at 8μm. 

Every 9th section was stained with H&E for morphometric analysis (72μm between 

analysed sections). Only follicles with a visible oocyte nucleus were counted, in order to 

avoid repeat counts of the same follicle (Bernal et al. 2010). Primordial follicles were 

identified morphologically by the presence of a single layer of flattened granulosa cells 

surrounding the oocyte (Picut et al. 2014). Total volume of each ovary was calculated 

(section areas x section thickness x number of sections) and the follicle count expressed 

as follicles/mm3 of ovarian tissue. 

 

Gene expression analysis 

A panel of 15 candidate genes was developed to test which molecular pathways might 

be involved in post-partum metabolic recovery. RNA was extracted from snap-frozen 

para-ovarian fat pads using a miRNeasy mini kit (Qiagen, Hilden, Germany) following 

manufacturers' instructions, with the addition of a DNaseI digestion step to ensure no 

genomic DNA contamination. RNA quantification was performed using a NanoDrop 

spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA). RNA (1 μg) was 

used to synthesize cDNA using oligo-dT primers and M-MLV reverse transcriptase 

(Promega, Madison, Wisconsin, USA). Gene expression was determined using custom 

designed primers (Sigma, Poole, Dorset, UK) and SYBR Green reagents (Applied 

Biosystems, Warrington, UK) as previously described ((Tarry-Adkins et al. 2009). 

Quantification of gene expression was performed using a Step One Plus RT-PCR machine 

(Applied Biosystems, Warrington, UK). Equal efficiency of the reverse transcription of 

RNA from all groups was confirmed through quantification of expression of the house-

keeping gene ppia, the expression of which did not differ between groups. 
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Statistical Analysis 

All data were analyzed using hierarchical linear models with a random effect for litter of 

origin. Maternal diet and pregnancy status were included as fixed effects. This structure 

accounted for the fact that post-partum and non-pregnant littermates are derived from 

a single pregnancy, and these data are therefore effectively paired and cannot be treated 

as fully independent. Multiple hypothesis correction testing was performed using the p 

values obtained from the regression models, correcting for the false discovery rate 

(FDR). All bodyweights were expressed as a ratio of current weight/weight on study day 

0. Data are represented as means ± SE. A value of p < 0.05 was considered statistically 

significant. All data analysis was conducted using the R statistical software package 

version 2.14.1 (R Foundation for Statistical Computing, Vienna, Austria). In all cases, n 

refers to the number of litters. 

 

 

Results 

 

Peripartum bodyweights 

There was no significant difference in average weight gain during pregnancy in the 

control versus the recuperated group (Figure 1). At full term (day 20 after conception), 

the control and recuperated pregnant mothers were both approximately 40-50% 

heavier than their pre-pregnancy weights (control pregnant 1.38-fold ±0.06 versus 

recuperated pregnant 1.47-fold ±0.04). There was no difference in litter size or pup 

weight in the control versus the recuperated groups (full characterization of the F2 

generation has been previously reported (Aiken et al. 2015)). However, by the end of 

lactation (day 45 post-conception and day 24 post-delivery), the recuperated 

postpartum mothers remained heavier than their control postpartum counterparts 

(control postpartum 1.13-fold ± 0.03 versus recuperated postpartum 1.24±0.01, 

p<0.01). Compared to their control non-pregnant littermates the control postpartum 

mothers were not significantly heavier (control postpartum 1.13-fold ± 0.02 versus 

control non-pregnant 1.15-fold ± 0.02), however the recuperated mothers were 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

significantly heavier than their recuperated non-pregnant littermates (recuperated 

postpartum 1.24 ± 0.01 versus recuperated non-pregnant 1.19 ± 0.01, p<0.05).  

 

Organ weights 

Para-ovarian fat pad weights were significantly higher in recuperated groups compared 

to controls (p<0.05), and non-significantly higher in the post-partum groups compared 

to the non-pregnant littermates (p=0.07) (Figure 2A). Overall, there was a significant 

interactive effect of recuperated status and post-partum status (p<0.05), indicating that 

intra-abdominal fat mass is more likely to be retained post-partum in recuperated 

animals. Uterine weights were not significantly different between any of the 

experimental groups (Figure 2B). This suggests that complete involution of the uterus 

had occurred by the time of study sampling, and thus the effects observed during the 

study were not the rapid dynamic changes of the early post-partum period, but a stable 

phenotype in the post-delivery phase.  

 

Serum analytes 

There was no difference in blood glucose or serum insulin levels between any of the 

experimental groups (Table 1).  There was a trend towards lower leptin in the 

postpartum groups (p=0.08), which likely represents lactational hypoleptinaemia, but 

no significant effect of recuperated versus control status (p=0.11). The relative 

suppression of leptin during lactation is a previously characterized effect, which drives a 

chronic hyperphagia to meet the metabolic demands of milk production (Smith et al. 

2010). 

There was a significant rise in serum cholesterol in both post-partum groups compared 

to their non-pregnant littermates (p<0.01), but no effect of recuperated status (Figure 

3A). Fasting serum triglycerides were elevated in both the post-partum groups (p<0.01) 

and in the recuperated maternal dietary groups (p<0.01) (Figure 3B). Fasting free fatty 

acids were higher in the recuperated groups than in the controls (p<0.01), but 

unaffected by pregnancy status. 

 

Primordial follicle counts 
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Ovary weights were significantly higher in the postpartum groups than in the non-

pregnant littermates (p<0.001), but there was no difference between recuperated and 

control groups (Figure 2C). Primordial follicle counts per cubic millimeter of ovarian 

tissue were significantly higher in the control than in the recuperated groups (p<0.05), 

an effect that has previously been described in this model at 6 months of age ((Aiken et 

al. 2013). There was no effect of having recently been pregnant on primordial follicle 

counts (Figure 4), which is to be expected, given the relatively short duration of the 

gestation period. 

 

Screening for differences in para-ovarian fat pad gene expression 

A candidate screen on 15 genes was developed, and the screening results were 

corrected for multiple hypothesis testing. There were no significant interactive effects 

between postpartum status and recuperated versus control status on expression levels 

of any of the candidate genes in para-ovarian adipose tissue (Table 2). 

 

(i) Effect of recuperated versus control status on gene expression in para-ovarian adipose 

tissue 

Recuperated versus control status in postpartum rats had a significant effect on 

expression levels of two candidate genes (Table 2). Nrf2, an important DNA-binding 

transcription factor that regulates mitochondrial biogenesis, was increased in 

recuperated adult females compared to controls (p<0.05). This is particularly 

interesting in light of other evidence that suggests Nrf2 may be up-regulated in other 

maternal dietary models of developmental programming (Aiken et al. 2016). Il6, which 

is a major pro-inflammatory cytokine, was also up-regulated in adipose tissue in the 

recuperated group (p<0.05). This is important as it suggests not only is the total mass of 

intra-abdominal tissue increased, but that one of its major detrimental effects, i.e. 

producing a phenotype of chronic inflammatory response, may be exacerbated in this 

developmental programming model. 

 

(ii) Effects of recent pregnancy on gene expression in para-ovarian adipose tissue 
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Expression of Cd68, a marker of monocyte lineage, was elevated in animals that had 

recently been pregnant (p<0.05) (Table 2), compared to their non-pregnant littermates. 

Increased monocyte infiltration following pregnancy suggests increased inflammation in 

the adipose tissue. Furthermore, there was a significant increase in Gp91phox expression 

in the postpartum group (p<0.05), which potentially reflects an increase in oxidative 

stress in the para-ovarian adipose tissue. 

 

Discussion 

In this study we show that post-partum weight loss is influenced by early life exposure 

to an undernourished intrauterine environment. It has previously been established in a 

variety of animal developmental programming models (Samuelsson et al. 2008, 

Samuelsson et al. 2013, Sun et al. 2014), and suggested by human epidemiological data 

(Finer et al. 2016, Mitanchez and Chavatte-Palmer 2018), that adult females who have 

been exposed to adverse early life environments, e.g. via suboptimal maternal diet, are 

more likely to become obese in later life. This study advances our understanding of how 

pregnancy and post-partum recovery can be an important factor in influencing the 

propensity to obesity in developmentally programmed females.  

 

In our rodent model, suboptimal in utero nutrition significantly increased postpartum 

weight retention at the end of lactation. In particular, adult females exposed to a 

maternal low-protein diet in utero were on average 24% heavier than their own pre-

pregnancy weights at the end of lactation (compared to 13% heavier in the control 

group). We demonstrated that developmentally programmed animals that undergo 

pregnancy have a prolonged exposure to increased intra-abdominal fat mass compared 

to controls, a conclusion that is reflected in both direct measurement of the intra-

abdominal fat pad and in elevated concentrations of serum triglyceride compared to 

control postpartum animals. Increased visceral adiposity is known to be detrimental to 

long-term health via a variety of mechanisms including a chronic inflammatory response 

(Schlecht et al. 2016) which is in keeping with our observations of increased Cd68 and 

Il6  gene expression. However there was no evidence of any interaction between 

postpartum status and maternal diet in any particular gene expression pathway that 

could provide a clear insight into the molecular mechanism of postpartum weight 
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retention in the programmed animals. However, the observed elevation in free fatty 

acids in the recuperated group is in keeping with adipose tissue insulin resistance.  

 

Over 80% of adult females in the UK experience a viable pregnancy during their lifetime 

(ONS 2016). Despite the fact that pregnancy is an extremely common life-event, the 

majority of female animals in developmental programming studies do not experience 

pregnancy as part of the longitudinal cohort structure. Even when animal models are 

bred to produce an F2 generation, it is rare that the postpartum outcomes of the F1 

mothers are reported. However, it is increasingly understood that the physiological 

response to pregnancy and post-partum recovery can provide a useful window into 

later metabolic health (Drost et al. 2013, Visser et al. 2014). In common with gestational 

diabetes (Bellamy et al. 2009) and hypertension in pregnancy (Hermes et al. 2012), 

peripartum body-weight changes could be a useful parameter to help identify 

individuals at high risk of later weight gain and poor cardiovascular and metabolic 

health. In addition to enabling identification of individuals at risk of obesity, postpartum 

weight retention may be an important factor in the causal mechanism of obesity in adult 

females (Ketterl et al. 2018). Post-partum weight loss and its inverse effect, inter-

gestational weight gain, are becoming increasingly recognized as major determinants of 

women’s health across the life-course (Oteng-Ntim et al. 2018). A recent human study 

found that, in normal weight women who received standard pregnancy care, only 20.7% 

had regained their pre-pregnancy weight at 6 months post-partum, and that the average 

weight retention was 3.3 ± 3.5 kg (Phelan et al. 2011). Among those who had not 

returned to pre-pregnancy weight by 12 months, the average weight retention remained 

relatively stable at 3 ±5.7 kg (Phelan et al. 2014). Over the course of several full-term 

pregnancies, each additional weight gain can thus accumulate to produce a significant 

metabolic burden (Hutcheon et al. 2017) in the mother, with additional potential 

detrimental consequences for children born from subsequent pregnancies. It is thus an 

important facet of life-course health in women to understand as much as possible about 

factors that influence post-partum weight loss. It is not possible to say whether the 

findings from our rodent population will be directly applicable to human pregnancy 

cohorts, hence the need for further study of factors influencing post-partum weight loss 

in human pregnancy cohorts. 
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A major advantage of the study design was the ability to compare each animal with a 

non-pregnant littermate, which allowed us to control for observable and non-observable 

factors related to the early-life environment, and hence isolate specifically the 

implications of pregnancy. Furthermore, we were able to successfully control for the fact 

that these early-reproductive life animals were still themselves growing during the 

study period. 

 

Limitations of the current study include the inability to follow these animals through a 

subsequent pregnancy and into reproductive senescence to measure whether post-

partum weight loss directly influenced the extent of later life weight gain. Unfortunately 

this was beyond the scope of the design of the current cohort. Other limitations include 

the inability to vary the length of the lactation period, which may have a significant 

influence on postpartum weight loss or to study post-partum weight loss in mothers 

who did not suckle their offspring (which is common in human populations). This was 

not possible because of the need to standardize conditions for the F2 generation, whose 

outcomes have been reported elsewhere (Aiken et al. 2015).  

 

In conclusion, we have shown that exposure to a suboptimal early life environment 

influences the rate of post-partum weight loss. Understanding the factors that make 

post-partum weight loss more difficult represents the first key step towards developing 

interventions that can improve the percentage of women who have regained their pre-

pregnancy weight by the start of the next pregnancy, and hence reduce their chances of 

obesity over their lifetime. 
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Table and Figure Legends: 

 

 

Figure 1 Body weights of adult females during pregnancy and lactation. All bodyweights 

are normalized to the weight at the start of the study. There was no significant 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

difference in starting body weights between groups. Open circles: pregnant recuperated 

group, Closed circles: pregnant control group, Open triangles: non-pregnant recuperated 

group, Closed triangles: non-pregnant control group. At the final study time point, the 

post-partum recuperated group was significantly heavier than any other study group. 

 

 

 

Figure 2 Organ weights in the postpartum period. Open bars: non-pregnant littermates, 

grey bars: post-partum females. A) Para-ovarian fat pad, B) Uterus weight, C) Ovary 

weight *p<0.05, ***p<0.001. 

 

 

 

Figure 3 Maternal serum lipid profiles. All testing was performed following a period of 

overnight fasting. Open bars: non-pregnant littermates, grey bars: post-partum females. 

A) Serum cholesterol (mmol/L), B) Serum triglycerides (mmol/L), C) Serum free fatty 

acids (mmol/L). **p<0.01. 
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Figure 4 Primordial follicular reserve. Open bars: non-pregnant littermates, grey bars: 

post-partum females. Primordial follicular reserve was higher in the control than the 

recuperated groups, but there was no significant difference by postpartum status. 

*p<0.05. 

 

Table 1 Levels of glucose, insulin and leptin in maternal serum by pregnancy and 

dietary group 

 Control 

Postpartum 

Control 

Non-pregnant 

Recuperated 

Postpartum 

Recuperated 

Non-pregnant 

Effect of 

pregnancy 

Effect of 

maternal diet 

Blood glucose 

(mmol/L) 

5.5 ± 0.4 5.3 ± 0.4 5.6 ± 0.3 5.4 ± 0.3 p=0.88 p=0.72 

Serum insulin 

(ng/ml) 

0.8 ± 0.04 0.8 ± 0.03 0.9 ± 0.06 0.8 ± 0.08 p=0.22 p=0.64 

Serum leptin 

(ng/ml) 

5.2 ± 0.71 7.1 ± 1.5 7.3 ± 0.1 10.5 ± 1.29 p=0.11 p=0.08 

 

 

Table 2 Effect of pregnancy and maternal diet on gene expression in the para-ovarian 

fat pad of adult female rats. All reported p values have been adjusted to take account of 

multiple hypothesis testing. *p<0.05 
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Gene  Pregnancy effect Maternal diet effect Interaction effect 

Ppia 0.22 0.23 0.60 

Nrf2 0.01* 0.16 0.59 

Hmox1 0.14 0.46 0.28 

Xo 0.56 0.35 0.62 

Alox12 0.51 0.32 0.05 

NfkB 0.97 0.09 0.13 

Il6 0.02* 0.58 0.65 

I1b 0.46 0.24 0.36 

Tnfa 0.57 0.29 0.83 

Tgfb 0.78 0.40 0.50 

Il10 0.22 0.23 0.60 

Alox15 0.41 0.62 0.29 

Mcp1 0.06 0.05 0.83 

Cd68 0.77 0.03* 0.27 

Gp91phox 0.87 0.03* 0.51 
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