
Understanding Inflammatory Bowel

Disease using High-Throughput

Sequencing

Katrina Melanie de Lange

Trinity College

University of Cambridge

May 2017

Dissertation submitted for the degree of Doctor of Philosophy





Understanding Inflammatory Bowel Disease using

High-Throughput Sequencing
Katrina Melanie de Lange, Trinity College, University of Cambridge

For over two decades, the study of genetics has been making significant progress

towards understanding the causes of common disease. Across a wide range of

complex disorders there have been hundreds of associated loci identified, largely

driven by common genetic variation. Now, with the advent of next-generation

sequencing technology, we are able to interrogate rare and low frequency variation in

a high throughput manner for the first time. This provides an exciting opportunity

to investigate the role of rarer variation in complex disease risk on a genome-wide

scale, potentially o↵ering novel insights into the biological mechanisms underlying

disease pathogenesis. In this thesis I will assess the potential of this technology to

further our understanding of the genetics of complex disease, using inflammatory

bowel disease (IBD) as an example.

After first reviewing the history of genetic studies into IBD, I will describe the

analytical challenges that can occur when using sequencing to perform case-control

association testing at scale, and the methods that can be used to overcome these.

I then test for novel IBD associations in a low coverage whole genome sequencing

dataset, and uncover a significant burden of rare, damaging missense variation in

the gene NOD2, as well as a more general burden of such variation amongst known

inflammatory bowel disease risk genes. Through imputation into both new and

existing genotyped cohorts, I also describe the discovery of 26 novel IBD-associated

loci, including a low frequency missense variant in ADCY7 that approximately

doubles the risk of ulcerative colitis. I resolve biological associations underlying

several of these novel associations, including a number of signals associated with

monocyte-specific changes in integrin gene expression following immune stimulation.

These results reveal important insights into the genetic architecture of inflammatory

bowel disease, and suggest that a combination of continued array-based genome-

wide association studies, imputed using substantial new reference panels, and large

scale deep sequencing projects will be required in order to fully understand the

genetic basis of complex diseases like IBD.
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Chapter 1

Background and historical

perspective

The study of genetics o↵ers a unique opportunity to uncover the causes underlying

a wide range of human disease. By pinning down the genetic variations that

lead to an elevated risk of developing a given disorder, we can start to elucidate

some of the biological mechanisms that are contributing to disease pathogenesis.

Ultimately, it is hoped that an increased understanding of disease genetics will be

able to directly impact patient quality of life, by contributing to improved diagnosis,

the development of novel therapeutics, and the creation of highly personalised

treatment regimes.

It is an area full of promise, and we are already starting to reap some of the benefits

of early genetic studies. The causal genes underlying dozens of rare disorders

have been discovered, and are already being used in clinical settings for the rapid

diagnosis of patients, or to aid in the development of new therapeutics. Particularly

famous cases, like the identification of variants in the BRCA genes that can strongly

predispose an individual to breast cancer (Ford et al., 1998), or the discovery of

PCSK9 as a e↵ective drug target for the treatment of cardiovascular disease (Hall,

2013), have further fuelled the excitement around using genetics to aid in disease

management.

1



2 Chapter 1. Background and historical perspective

However, extending these successes to common disorders has proven to be chal-

lenging. In this chapter, I shall explain the history of genetic studies into common

disease, describing both the novel findings and the unique problems that have

arisen during this process. Throughout this discussion, and the remainder of this

thesis, I shall be using inflammatory bowel disease (IBD) as an exemplar common

disorder. Thus far, IBD has proven to be one of the most successful stories in

complex disease genetics, and it therefore provides a strong setting in which to

examine the successes and limitations of existing genetic studies. Looking forward,

our relatively good understanding of the genetics underlying inflammatory bowel

disease, compared to most other complex traits, also makes it an ideal disease with

which to explore the utility of novel technologies and methods.

1.1 Inflammatory bowel disease

1.1.1 Clinical presentation

Crohn’s disease (CD) and ulcerative colitis (UC), the two major subtypes of inflam-

matory bowel disease, are both chronic, debilitating disorders of the gastrointestinal

tract (Figure 1.1). A↵ected individuals experience a range of symptoms associated

with inflammation of the gut, including severe abdominal pain, fever, vomiting,

diarrhoea, rectal bleeding, anaemia and weight loss. There is currently no cure,

although symptoms can often be managed using steroids or immunosuppressants

to reduce inflammation. However, many patients experience side-e↵ects from these

potent immunomodulators, and some will eventually lose response to treatment or

develop complications. A subset of individuals never respond to these treatments

at all. Ultimately, many patients will require major surgery to remove severely

damaged portions of the bowel.



1.1. Inflammatory bowel disease 3

Figure 1.1: Disease localisation and appearance of Crohn’s disease and ulcerative colitis, the two

major forms of inflammatory bowel disease. Image sourced from Jin (2014)

Although Crohn’s disease and ulcerative colitis share a number of clinical fea-

tures, there are important distinctions in incidence patterns, disease localization,

histopathology and endoscopic features (Table 1.1) that suggest there are di↵erences

in the underlying pathways driving each disease (Baumgart and Sandborn, 2007;

Bernstein et al., 2010).
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Table 1.1: Distinguishing features of the two major inflammatory bowel disease subtypes, Crohn’s

disease and ulcerative colitis. Adapted from Baumgart and Sandborn (2007), and Bernstein

et al. (2010).

Crohn’s disease Ulcerative colitis

Incidence patterns

Age of onset Incidence rates peak in the third

decade of life

Stable incidence rates are seen

between the third and seventh

decades of life

Prevalence rates CD is more prevalent that UC in

developed countries

UC emerged before CD in

developed countries, and is more

prevalent in still-developing

countries

Disease localisation

A↵ected areas Entire gastrointestinal tract

(from mouth to anus)

Colon, plus some potential back-

wash ileitis

Inflammation pattern May occur as patchy, discontinu-

ous inflammation

Continuous inflammation in the

a↵ected area

Histopathology

Penetrance Transmural inflammation of the

entire bowel wall

Inflammation restricted to the

mucosal and submucosal layers

Appearance Thickened colon wall with gran-

ulomas, deep fissures and a cob-

blestone appearance

Distorted crypt architecture,

with shallow erosions and ulcers

Serological markers

Anti-Saccaromyces cerevisiae an-

tibodies

Anti-neutrophil cytoplasmic an-

tibodies

Complications

Fistulas, abdominal mass (lower

right quadrant), colonic and

small-bowel obstructions, stom-

atitis

Haematochezia (rectal bleeding

associated with the passing of

stool), passage of mucus or pus
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1.1.2 Epidemiology

The prevalence of inflammatory bowel disease is currently highest in Europe (UC,

505 per 100,000 persons; CD, 322 per 100,000 persons) and North America (UC,

249 per 100,000 persons; CD, 319 per 100,000 persons), according to a systematic

review by Molodecky et al. (2012). The disorder is more common in Ashkenazi

Jews, who are five to eight times more likely to develop IBD compared to non-

Jewish populations (Sands and Grabert, 2009). More broadly, global prevalence is

rising, with rapid increases in incidence rates occurring as more countries adopt

a Westernised lifestyle (Loftus, 2004). Incidence rates are also rising in younger

people, which is placing an increased strain on healthcare resources, particularly

as early-onset IBD has been associated with a higher risk of developing colorectal

cancer (M’Koma, 2013). Overall, IBD represents a significant global health burden

that is of growing concern (Figure 1.2).

Figure 1.2: Global prevalence of inflammatory bowel disease in 2015. Image sourced from Kaplan

(2015).
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1.2 The early days of IBD genetics

1.2.1 Twin studies

Inflammatory bowel disease is characterised by a dysregulated immune response

to unknown environmental triggers in a genetically susceptible individual, and

a heritable component to the disease is well recognised. Early epidemiological

observations showed clear familial clustering, which was reflected in high sibling

risk ratios. Specifically, it was estimated that the siblings of an individual with

ulcerative colitis are 7-17 times more likely to develop the disease themselves,

compared to the general population; for Crohn’s disease the elevated risk is as

high as 15-42 times (Halme et al., 2006). Twin studies have since conclusively

shown these observations to be at least partly attributable to genetics, rather than

shared environmental factors, by comparing disease concordance rates between

pairs of monozygotic (MZ) and dizygotic (DZ) twins. This assumes that both

individuals in a twin pair have been exposed to roughly the same environment,

and thus variation in concordance is due to genetics. It is worth noting that

this assumption is not always strictly true: for example, in a prenatal setting

monozygotic twins often share a placenta, while dizygotic twins do not (Marceau

et al., 2016). However, using height as an example, a more recent estimation of

heritability using an assumption-free model (based directly on the genetic data)

has shown remarkable consistency with the original twin studies (Visscher et al.,

2006). In a large meta-analysis of 6 IBD twin studies the resulting rates of 30.3%

vs 3.6% for Crohn’s disease (112MZ vs 196DZ), and 15.4% vs 3.9% for ulcerative

colitis (143MZ vs 206DZ), support the importance of genetics in IBD risk (Brant,

2011).

Motivated by these findings, there have been a number of studies aimed at identi-

fying the specific genomic loci that explain IBD heritability. Ideally, each of these

associated loci would identify a single gene, or indeed a causative genetic variant,

to help understand the biological processes involved in inflammatory bowel disease.
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1.2.2 Linkage studies

Technological limitations around obtaining data on an individual’s genotype at

any given position has, however, been a major hurdle for these genetic studies.

Although it has been possible to sequence fragments of DNA with relative ease since

the advent of the dideoxy ‘chain-termination’ technique (widely known as Sanger

sequencing) by Sanger et al. in 1977, this is a prohibitively expensive process.

Initial studies therefore relied instead on restriction fragment length polymorphisms

(RFLPs), which use restriction enzymes that can recognise and cut DNA at certain

short sequences (Botstein et al., 1980). Where a genetic variant creates or disrupts

this sequence, fragments of di↵ering lengths will be created. If a DNA probe is then

used to pull out a specific fragment, the various lengths seen amongst a group of

individuals represent di↵erent alleles at that particular marker. A related method

was later developed that instead tests the length of naturally varying microsatellite

repeat regions, using polymerase chain reaction (PCR) primers that flank the

microsatellite, followed by amplification and gel electrophoresis (Weber and May,

1989).

While these methods had the advantage of being relatively cheap, they were very

low throughput. As a result, early studies into the genetics of IBD were by necessity

coarse-grained, as data collection was limited to just a handful of genetic variants

within a small number of individuals. To maximise the information that could be

gleaned from this sort of dataset, most investigators restricted their analyses to

family groups. This is because closely related individuals share longer stretches of

DNA than unrelated individuals (as they are separated by fewer recombination

events, where the chromosomes cross over during meiosis), and therefore fewer

genetic markers are required to fully capture the pattern of DNA inheritance

within a family. Maps with a density as low as one microsatellite marker every 1

or 2 centimorgans (cM) are su�cient to extract nearly 100% of the inheritance

information available, and even very sparse maps of just 300-400 markers distributed

roughly every 10cM across the genome can capture approximately 70% of the

information content (Evans and Cardon, 2004). By using these markers to trace

the DNA segments that segregate with disease status (such as variant alleles only
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seen in a↵ected individuals, and not in their una↵ected relatives), sections of the

genome that confer risk to the disease can be identified (Figure 1.3). This linkage

analysis approach is good for detecting highly penetrant variants (i.e. those that

are extremely likely to cause disease whenever present) that segregate well with

disease status.

Figure 1.3: Overview of the linkage analysis study design for identifying disease-associated loci

within a family containing multiple a↵ected individuals.
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Linkage studies successfully identified hundreds of highly penetrant variants for

rare disorders (Gusella et al., 1983; Tsui et al., 1985; Seizinger et al., 1987; Vance

et al., 1989; Siddique et al., 1991; Kandt et al., 1992; Speer et al., 1992), and were

subsequently applied to a range of more common diseases. In 1996, the first such

study in IBD linked a portion of chromosome 16 (dubbed IBD1) with Crohn’s

disease (Hugot et al., 1996), which was successfully replicated in a number of

subsequent studies (Ohmen et al., 1996; Parkes et al., 1996; Curran et al., 1998;

Brant et al., 1998; Cavanaugh et al., 1998; Cavanaugh and The International IBD

Genetics Consortium, 2001). This finding was followed up using more closely packed

markers within a small number of genes, and the IBD1 linkage on chromosome 16

was found to be caused by multiple disease risk alleles in the gene NOD2, whose

role in the recognition of bacterial peptidoglycans and subsequent stimulation of an

immune response (Figure 1.4) supports its association with the development of CD

(Hugot et al., 2001; Ogura et al., 2001; Philpott et al., 2014). These variants are

especially common in Ashkenazi Jews, partially explaining the increased burden of

CD in that group.

Figure 1.4: The signalling pathways through which NOD2 responds to microbial peptidoglycan

stimuli to promote innate mucosal defence and an autophagic response. Figure adapted from

Philpott et al. (2014).
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1.2.3 Limitations of linkage studies and the common dis-

ease, common variant hypothesis

Unfortunately, however, successes like NOD2 were rare: it remained one of the few

robustly replicated genetic risk loci discovered via linkage, not just in IBD, but

across common diseases. This widespread disappointment reflected a fundamental

property of the genetic architecture of common disease: they did not have a single,

highly penetrant genetic cause. Instead, it was proposed by Risch and Merikangas

(1996) that complex diseases were driven by the accumulation of many risk factors

of only modest e↵ect (the common disease, common variant hypothesis). Finding

associations via linkage under this scenario is di�cult, as the genetic risk may

be spread throughout the genome rather than concentrated in a single locus. An

alternative association analysis approach (which tests if the population-level allele

frequencies of cases and controls are statistically di↵erent) is much more powerful.

For example, Risch and Merikangas (1996) calculated that 17,997 a↵ected sibling

pairs would be needed to detect a risk allele with 50% frequency and an odds ratio

of 1.5 using linkage, as opposed to just 484 using an association analysis. However,

this approach requires the right variant to be chosen for testing among the millions

known to exist in the human population.

One means of choosing variants to test was to select candidate genes based on

prior biological hypotheses. Unfortunately, this produced a deluge of association

claims with weak statistical evidence that did not replicate in subsequent studies

(Ioannidis, 2003). Genetic studies had reached an impasse: although case-control

association studies could theoretically detect signals too weak to show linkage,

scanning the entire genome in an unbiased way in order to identify robust genetic

associations was proving di�cult.



1.3. The GWAS era 11

1.3 The GWAS era

1.3.1 Technological developments that made GWAS possi-

ble

Three developments upended this stasis in gene discovery, and fundamentally

changed gene mapping. First, by 2005, the public database of the most common

type of genetic variant, single nucleotide polymorphisms (SNPs, where a single

letter of DNA is variable), contained 9.2 million sites that had been catalogued by

projects such as the SNP Consortium and the International HapMap Consortium

(Sachidanandam et al., 2001; The International HapMap Consortium, 2005). Second,

these catalogues of population-level genetic variation had also shown that variants

common in the general population (minor allele frequency [MAF] > 5%), and in

physical proximity, were highly correlated, or in linkage disequilibrium (LD), with

each other. Human population history had left a pattern of long LD blocks of high

correlation, separated by small hotspots where most historical recombination events

tended to cluster (McVean et al., 2004). This uneven LD pattern meant that it was

possible to test the majority of common variants by carefully selecting markers in

each long LD block. Approximately 500,000 well chosen SNPs could capture nearly

5 million common SNPs in Europeans and East Asians; unsurprisingly, the more

genetically diverse African populations required almost twice as many markers

to capture the same amount of variation (Barrett and Cardon, 2006). Finally, in

the mid-2000s, it became economically feasible to genotype hundreds of thousands

of variants using new microarray technologies. These key advances opened the

way for genome-wide association studies (GWAS) that could be used to detect

the diverse genomic loci associated with a given complex trait. GWAS combined

the hypothesis-free ability to scan the whole genome of linkage with the statistical

power to detect associations of smaller e↵ect size.
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1.3.2 GWAS: a revolution in IBD genetics

Crohn’s disease was among the first diseases studied using GWAS, beginning in

2006. In addition to confirming the established NOD2 association, these early

studies identified four new loci at genome-wide levels of statistical significance

(P < 5 ⇥ 10�8), demonstrating the power of the GWAS approach (Duerr et al.,

2006; Hampe et al., 2007; Libioulle et al., 2007; Rioux et al., 2007). The strongest

new association was a protective low frequency allele in IL23R (Duerr et al.,

2006), which encodes a receptor protein that is embedded in the cell membrane of

many di↵erent types of immune cells and, upon binding of IL23, starts a signaling

cascade that promotes inflammation and coordinates an adaptive immune response

(Figure 1.5). A more surprising discovery was an association to a protein-coding

variant in ATG16L1 (Hampe et al., 2007), which encodes a protein involved in the

autophagosome pathway (Figure 1.4), and provided the first strong evidence for

the importance of autophagy in CD. This pathway is responsible for processing

intracellular bacteria, and so the ATG16L1 association contributed to further

understanding of the dysfunction of the intestinal barrier in Crohn’s disease. Finally,

these early studies discovered a pair of associations on chromosomes 5p13 and

10q21 that were far from any genes (Libioulle et al., 2007; Rioux et al., 2007).

Figure 1.5: The IL23R signalling pathway used to activate the adaptive immune response, and

the downstream TH17 cell di↵erentiation program (Weaver and Hatton, 2009; Zhernakova et al.,

2009; Khor et al., 2011; Parkes et al., 2013).
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Unlike the previous associations, these new results highlighted the important role

of regulatory and non-coding elements in complex disease. Motivated by these

early successes, further GWAS used increasingly larger sample sizes to implicate

both the innate (NKX2-3, CARD9 ) and adaptive (TNFSF15, PTPN2, IL-12B)

immune response pathways in inflammatory bowel disease, and recapitulate the role

of autophagy and intracellular bacteria management (NOD2, ATG16L1, IRGM ) in

Crohn’s disease (Parkes et al., 2007; Van Limbergen et al., 2009). These initial CD

studies also suggested a partial overlap of genetic risk for ulcerative colitis: of the

Crohn’s disease associations discovered, about 30% were also found to be associated

with UC via replication studies (Liu and Anderson, 2014). Additional GWAS in

ulcerative colitis cohorts lead to the discovery of multiple novel UC-specific loci

(Fisher et al., 2008; Franke et al., 2008; Silverberg et al., 2009; Barrett et al., 2009).

These UC-specific studies also confirmed the long-established association between

UC and the classical human leukocyte antigen (HLA) locus (Satsangi et al., 1996),

which contains genes encoding antigen-presenting proteins on the surface of the cell,

and plays a crucial role in the regulation of the adaptive immune system. Despite

the HLA being strongly associated with many other chronic inflammatory and

autoimmune disorders, the association with CD is much weaker (Zhernakova et al.,

2009). Overall, the pattern of association to IBD in the HLA region is the most

complicated in the genome. While the most recent study of HLA in IBD conclusively

showed that the HLA-DRB1*01:03 allele is the most strongly associated in both

CD and UC, it also identified more than ten additional risk alleles associated

with one or both diseases (Goyette et al., 2015). Most of these associations are

disease-specific; HLA class I and class II variation contributes equally to CD, while

class II variation is more important in ulcerative colitis. In addition, evidence of

decreased heterozygosity in HLA genes was observed for ulcerative colitis only.

This non-additive e↵ect, similar to that observed by Nejentsev et al. (2007) in HLA

alleles associated with Type 1 diabetes, highlights the importance of being able to

detect a wide range of antigens for protective immunity.
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1.3.3 Meta-analyses and the importance of sample size

While this flurry of discoveries generated new biological hypotheses for IBD, it

became clear that these relatively weak associations cumulatively explained only a

fraction of the heritability expected from twin studies. This missing heritability

problem was universal amongst complex diseases during the early GWAS era, and

was partially attributed to types of variation not captured by GWAS, such as

non-European, rare and structural variants (Maher, 2008; Manolio et al., 2009).

However, as Figure 1.6 shows, these early studies were in fact poorly powered,

because the true genetic architecture of IBD includes many variants with odds

ratios < 1.2 or even 1.1.

Figure 1.6: Power to detect associations of di↵erent e↵ect size (odds ratio, OR) are compared

for rare variants (MAF = 0.01, panel A) and common variants (MAF = 0.2, panel B). E↵ective

sample sizes of several key studies are indicated along the x-axis, to reflect the power of the

GWAS studies (blue), meta-analyses (green) and Immunochip-based studies (yellow). [1] Duerr

et al. (2006); [2] The Wellcome Trust Case Control Consortium (2007); [3] Barrett et al. (2008);

[4] Anderson et al. (2011); [5] Liu et al. (2015).

To increase power to search for these small e↵ects, the International IBD Genetics

Consortium (IIBDGC) was formed to pool thousands of already genotyped samples

from previous GWAS. The merging of data from di↵erent genotyping chips was

enabled by imputation, which infers missing data by comparing known genotypes
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to those in a representative reference set with more complete data, such as the

HapMap or 1000 Genomes resources (The International HapMap Consortium,

2005; Abecasis et al., 2010). Other between-study variation, such as population

di↵erences, could be accounted for by using a meta-analysis approach, which jointly

analyses the summary statistics from each study, as opposed to the raw data.

The first of these IIBDGC meta-analyses e↵ectively tripled the number of known

Crohn’s disease susceptibility loci with the identification of 21 novel associations,

including LRRK2, another autophagy gene (Barrett et al., 2008). This was followed

by a meta-analysis of ulcerative colitis studies, which identified 29 new UC risk loci

(Anderson et al., 2011), and a second Crohn’s disease meta-analysis that brought

the total number of CD susceptibility loci to 71 (Franke et al., 2010). This rapid

accumulation of IBD risk loci culminated in 2012 with a meta-analysis containing

over 75,000 cases (including both CD and UC for the first time) and controls, that

brought the total number of IBD loci to 163 (Jostins et al., 2012). Numerous

pathways were implicated through multiple genetic associations, including those

involved in innate mucosal defence, JAK/STAT signaling, cytokine production

(particularly interferon-�, interleukin (IL)-12, tumour-necrosis-factor-↵ and IL10

signalling) and lymphocyte activation.

This dramatic growth in the number of IBD-associated loci, together with the first

large-scale joint analyses of CD and UC, revealed that the genetic risk for Crohn’s

disease and ulcerative colitis substantially overlap. Although early GWAS data

had suggested quite disparate underlying pathways, of the 163 loci identified in the

Jostins et al. (2012) paper, 110 were associated with both phenotypes (Figure 1.7).

Furthermore, of the 30 CD-specific and 23 UC-specific loci, 43 show the same

direction of e↵ect in the non-associated disease, suggesting that only a tiny minority

truly have zero e↵ect in the other disease. This considerable overlapping genetic

risk implies that the two diseases are likely to share many biological mechanisms.

However, the few loci that are CD- or UC-specific, as well as the relative size of

e↵ects at shared loci, might reveal clues about the distinct pathologies of the two

diseases.
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Figure 1.7: Belgravia plot of the 163 loci identified by Jostins et al. (2012), showing the shared

genetic overlap between Crohn’s disease and ulcerative colitis. The width of each bar is proportional

to the variance explained by a given locus for the disease indicated, and bars are linked if they are

associated with both CD and UC. Note the extensive genetic overlap between the two diseases,

even though many of the loci with the largest e↵ect sizes are disease-specific. Figure sourced from

Jostins et al. (2012).

1.3.4 IBD genetics in the context of other diseases

Understanding both the shared and private genetics of related disorders can be useful

for constructing hypotheses about the underlying biological pathways that may be

driving each disease, and how distinct clinical phenotypes may arise. For example,

known IBD loci are enriched for genes involved in primary immunodeficiencies,

including those linked to reduced levels of circulating T cells (ADA, CD40, TAP1,

TAP2, NBN, BLM, DNMT3B), and to T-helper cells responsible for producing

TH17, memory, and regulatory T cells (STAT3, SP110, STAT5B). It is interesting

to note that the same genes can be a↵ected both by the damaging protein coding

variants that cause these severe disorders, and by much more subtle (presumed

regulatory) variants that slightly a↵ect risk of complex diseases like IBD.

Several studies have extended these cross-disease genetic comparisons to poten-

tially related complex diseases, such as the common immune-mediated disorders

(ankylosing spondylitis, coeliac disease, multiple sclerosis, psoriasis, rheumatoid

arthritis, systemic lupus erythematosus, and type I diabetes). Early analysis of

GWAS results from across these diseases (together with IBD) suggested that the

innate immune response, as well as the general immune pathways involved in T-cell
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di↵erentiation and signalling, are shared between many of them (Zhernakova et al.,

2009), as summarised in Table 1.2.

This observed overlap of risk loci among common immune mediated diseases

motivated the design of a new genotype array, called Immunochip, which con-

tained markers densely covering loci with known associations to at least one of 11

immune-mediated diseases, or with suggestive significance in the early immune-

related GWAS studies. This targeted array, which cost approximately 20% of

the price of contemporary GWAS chips, made the genotyping of large samples of

immune-mediated disorders possible, and also paved the way for more extensive

disease subphenotype and cross-disease studies (Parkes et al., 2013). Indeed, the

Immunochip formed the basis of the Jostins et al. (2012) IBD meta-analysis, which

showed that 70% (113 out of 163) of the IBD loci identified are also shared with

other complex diseases or traits, including 66 loci shared with other immune-

mediated disorders. Sharing is particularly strong between IBD and the other

seronegative diseases, ankylosing spondylitis and psoriasis. Interestingly, across

the immune-mediated diseases those loci that are not shared tend to have large

e↵ect sizes, which would explain why the genetic underpinnings of CD and UC

appeared so misleadingly disparate prior to the large meta-analysis e↵orts (Parkes

et al., 2013). Extending this analysis to more distantly related diseases, Jostins

et al. (2012) observed an enrichment in genes previously linked with Mendelian

susceptibility to mycobacterial disease (MSMD) and leprosy (a complex mycobac-

terial disease): these overlaps suggest that the genetic architecture of IBD may

have been shaped by selection pressures arising from mycobacterial infection.

A recent study has also exploited the overlap between IBD and other immune-

mediated diseases to increase the power to detect associated loci. By jointly

analysing Immunochip data from across five related disorders (ankylosing spondyli-

tis, Crohn’s disease, psoriasis, primary sclerosing cholangitis and ulcerative colitis),

Ellinghaus et al. (2016) successfully identified an additional six Crohn’s disease

loci.
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The large cross-phenotype dataset described by Ellinghaus et al. (2016), containing

in excess of 86,000 individuals, also o↵ered a unique opportunity to explore the

genetic basis underlying the co-morbidity of many of these diseases. The authors

note that, although the overall co-morbidities of the five diseases are best explained

by pleiotropy (whereby two diseases share a number of risk alleles), there is evidence

that the particularly strong co-morbidity between primary sclerosing cholangitis

(PSC) and ulcerative colitis may in fact be indicative of a subset of patients with

a unique PSC-IBD disease. This conclusion is supported by observed clinical

di↵erences between PSC-IBD and classical inflammatory bowel disease, including

an increased risk of pancolitis and colorectal cancer (de Vries et al., 2015).

1.3.5 Expanding into non-European populations

Up until this point, GWAS in IBD had largely focused on samples of European

ancestry. One notable exception was a Crohn’s disease study in 2005 (Yamazaki

et al., 2005), performed in a Japanese population after it was noted that NOD2 did

not appear to play a significant role in the pathogenesis of CD in Japan (Yamazaki

et al., 2002; Negoro et al., 2003; Yamazaki et al., 2004). This study identified a

strong association between the gene TNFSF15 and CD, despite an initial sample

size of fewer than 100 patients. Additional genome wide association studies of IBD

within Indian, Japanese and Korean populations showed that most IBD genetic risk

is shared regardless of ancestry (Asano et al., 2009; Juyal et al., 2015; Yamazaki

et al., 2013; Yang et al., 2013; Yang et al., 2014b). However many of these studies

were small, preventing informative comparisons across populations.

A large IBD study of multiple ancestries was conducted by the IIBDGC both

to study IBD associations apparently unique to one population, and to boost

power for detection in all populations using meta-analysis techniques that account

for population stratification. GWAS and Immunochip data were analysed from

96,486 individuals of European, East Asian, Indian and Iranian descent, yielding

a total of 200 IBD associated regions (Liu et al., 2015). For the vast majority

of these loci, the direction and magnitude of the e↵ect is consistent between the

European and non-European cohorts, implying that the underlying casual variants
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at these shared loci are likely to be common, as rare alleles are more likely to be

population-specific. For the handful of associations that appear to be heterogeneous

between populations, nearly all are due to di↵erences in allele frequency between

populations. For example, NOD2 is not biologically less relevant in Japan, but

rather the IBD risk variants are simply absent in that population. Only TNFSF15,

which exhibits microbial-induced expression (Shih et al., 2009), and the autophagy

gene ATG16L1 are common in all populations but appear to have di↵erent e↵ect

sizes, possibly reflecting di↵erences in gene-environment interactions between the

populations.

1.4 Beyond GWAS

Combined, the meta-analyses and trans-ancestry study contributed to an almost

20-fold increase in the number of known IBD-associated loci (Figure 1.8). However,

as with many complex diseases, this approach of analysing ever-larger genotype

array-based datasets still captures only the fraction of IBD heritability explained

by common variants, mostly in European populations. In fact, the latest estimates

by Chen et al. (2014) suggest that common variants explain only 26% of the

heritability of Crohn’s disease, and 19% of the heritability of ulcerative colitis.

Some of this missing heritability may be found in regions sometimes overlooked

by GWAS, such as the sex chromosomes. A recent study by Chang et al. (2014)

utilized X-chromosome data from existing datasets to identify a new IBD-associated

gene, ARHGEF6, which interacts with a major surface protein on H. pylori (a

gastric bacterium). Rare loss-of-function variants in the X-chromosome gene

XIAP, which encodes a protein that inhibits apoptosis, have also been identified

as strongly predisposing for early-onset Crohn’s disease in males (Uhlig, 2013;

Zeissig et al., 2015). However, uncovering rare variants associated with complex

disease will require the development of new study designs, as rare variants generally

have low correlation to the marker SNPs used (which usually have much higher

allele frequencies, MAF>0.05, to better capture other common variation) and are

therefore not well tagged (Li et al., 2013a).
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Figure 1.8: Panel A) describes the number of loci identified with di↵erent study designs (link-

age=green; GWAS=orange; meta-analysis=yellow; Immunochip=blue), with each dot representing

a novel locus. The number of samples required to identify these loci are shown in grey. Panel

B) plots the odds ratio versus MAF for each IBD-associated variant, with the size of each circle

representing the variance explained by that variant. The colours from panel A) are used to

indicate the areas of the search space captured by each study design.

1.4.1 Rare and low frequency variation

To successfully identify a rare or low frequency disease-associated allele it is

necessary to directly test the variant site itself, as such variants are not in high LD

with many others, preventing the capture of their signal by a proxy variant (the

method which drove the success of GWAS). Furthermore, because such alleles are

by definition observed infrequently in the population, even the largest catalogues of

human variation are unlikely to contain all variants of interest. Instead, discovery

tends to require sequencing of an entire region (not just the known variable sites):

something that became possible with the emergence of high-throughput (also known

as ‘next-generation’) sequencing technology in the mid-2000s. These sequencing

techniques typically produce short reads of genomic sequence, approximately 35-700

base pairs (bp) in length, which are then reassembled into a complete sequence

by mapping to a reference genome (Goodwin et al., 2016). At any one position,

the distribution of bases observed across a number of overlapping reads is used



22 Chapter 1. Background and historical perspective

to determine the presence or absence of a variant: the more contributing reads

(referred to as the read depth, or coverage), the more confident the variant call will

be (Sims et al., 2014).

In its infancy, next-generation sequencing was still expensive, so sequencing was

limited to a handful of genes in small numbers of samples. One approach to

maximize the e↵ectiveness of IBD sequencing studies was to consider early-onset

IBD, as the XIAP studies did. Early-onset IBD tends to be more severe, and may be

more similar to single-gene, or Mendelian, disorders than adult-onset IBD. Glocker

et al. (2009) identified rare recessive variants a↵ecting IL10R protein subunits using

a combination of linkage analysis and candidate gene sequencing in early-onset

IBD cases from unrelated consanguineous families. Similarly, Blaydon et al. (2011)

identified a rare loss-of-function mutation in the gene ADAM17 (necessary for

the cleavage of the epithelial-cell mitogen TGF-↵ from the cell membrane) that

was homozygous in a consanguineous sibling pair a↵ected by inflammatory bowel

disease and skin lesions. As the cost of sequencing started to fall, several studies

used next-generation sequencing to search for rare and low frequency variation in

candidate IBD loci using case control cohorts. One of the earliest such studies

sequenced 56 candidate genes identified by GWAS in 350 CD cases and 350 controls

(with follow up genotyping in tens of thousands of IBD patients), identifying four

additional risk variants in NOD2, two protective variants in IL23R, and a protective

splice variant in CARD9 (Rivas et al., 2011). A similar study of 55 candidate genes

in 200 UC cases and 150 controls recapitulated the presence of rare variants in

CARD9 and IL23R, and identified a new association in RNF186 (Beaudoin et al.,

2013). This association to RNF186 has since been followed up in a much larger

cohort, where it has been shown to be highly protective for ulcerative colitis (OR

= 0.30), representing the strongest association to UC seen outside of the major

histocompatibility complex (Rivas et al., 2016).

Just as was seen during the GWAS era, the logical next step is to scale these

candidate-gene sequencing studies up to genome-wide projects: however, deep

sequencing of whole genomes across su�ciently large case/control cohorts is cur-

rently too expensive. Because the minor allele of a given rare variant is observed

so infrequently, obtaining a significantly large di↵erence in minor allele frequency
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between cases and controls is not possible with achievable sample sizes. One

approach is to use burden testing, which reduces the number of samples needed to

detect a rare variant association by aggregating information across all variants in a

given target region (such as a gene or exon). Every occurrence of a variant at any

position in the region contributes to the overall count, and the di↵erence in these

counts between cases and controls is then tested as though they were from a single

site of variation. In this way, rare variant associations can be detected with sample

sizes that are more comparable to those used to test common variation.

Despite this, obtaining su�ciently large sequenced datasets is still di�cult. Zuk

et al. (2014) suggest at least 25,000 cases and an equivalent number of controls are

needed for a well-powered study. While ultimately deep whole genome sequencing

will become a↵ordable, two distinct intermediate approaches exist to sequence large

numbers of individuals. First, borrowing the most popular approach in Mendelian

genetics, is to only sequence the so-called exome (all exons, or coding regions, in

the genome), as this represents less than 2% of the complete genome (Ng et al.,

2009). However, the majority of IBD-associated loci identified during the GWAS

era actually implicate non-coding regions, and it is likely that rare variants a↵ecting

gene regulatory pathways will be of interest. The second design is to spread a

fixed amount of sequence data across the whole genomes of many individuals. This

produces lower quality data per individual, but the increased sample size improves

power to detect low frequency and rare variation in a fixed-cost study (Li et al.,

2011). As an added advantage, such cohorts of sequenced individuals then provide

useful disease-specific reference panels for imputing rarer variants into new and

existing GWAS datasets.

1.4.2 Identifying the casual mutations

With a total of 215 loci associated with Crohn’s disease and ulcerative colitis

over the past two decades (Parkes et al., 2007; Anderson et al., 2011; Kenny

et al., 2012; Yamazaki et al., 2013; Julià et al., 2014; Yang et al., 2014b; Liu

et al., 2015; Ellinghaus et al., 2016), and the promise of more to come as next-

generation sequencing studies grow, attention is now turning to the identification
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of casual genes and variants within these loci (a process known as fine-mapping).

Historically, follow-up of genetic associations has proceeded via time-consuming

experimental validation of proposed genes using cellular or mouse models. While

such functional evidence is essential to fully understand the biology implicated

by genetics, it is also possible to leverage the huge sample sizes put together for

GWAS to improve fine-mapping before undertaking these experiments. A recent

attempt was made to fine-map casual variants in a high-throughput way using

the IIBDGCs large Immunochip cohorts, aiming to replicate the success seen in

coeliac disease, where the densely packed markers on the Immunochip were used

to narrow approximately half of the known signals to an individual gene, or in

some cases even subregions of genes (Trynka et al., 2011). The IBD-focused e↵ort

was able to resolve 45 associations to a causal variant with greater than 50%

certainty, and it is notable that this set is significantly enriched for variants that

a↵ect protein-coding regions, transcription factor binding sites and tissue-specific

epigenetic marks. This enrichment amongst fine-mappable variants is particularly

strong for non-synonymous variation, likely reflecting stronger e↵ect sizes associated

with coding variants (Huang et al., 2015).

Further prioritisation of candidate SNPs can be improved by the availability of

quality functional annotations from e↵orts such as the ENCODE Project Consor-

tium (2012), samples from multiple populations (as LD patterns di↵er between

groups of di↵ering ancestry), and combined datasets of huge sample size. Various

algorithms have been developed to rank variants within a locus (Huang et al., 2015;

Farh et al., 2015; Kichaev et al., 2014), but no definitive method for identifying

the disease risk allele exists.

A recent study by Farh et al. (2015) highlights some of the potential challenges

in fine-mapping loci given the current knowledge of the e↵ects of di↵erent types

of genetic variation, with the observation that as much as 90% of causal IBD

variants may be non-coding. It was noted that, while casual variants often occurred

near the binding sites of master regulators of immune di↵erentiation and stimulus-

dependent gene activation, only 10-20% alter a known transcription-factor binding

motif. Gaining a more complete understanding of this regulatory code remains an

important challenge in both IBD and complex disease genetics more generally.
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1.5 Aims and overview

In the previous sections I have provided an overview of the history of complex disease

genetics, from the twin studies that first suggested a role for the genome in disease

susceptibility to the latest genome-wide association studies that have identified

hundreds of associated loci, using inflammatory bowel disease as an example.

Through these studies it has become evident that the substantial heritability of

such traits cannot be explained by just a handful of high-impact genetic variants,

arising instead through the cumulative contribution of hundreds of variants of

relatively small e↵ect. While this means that the accurate genetic diagnosis of

disorders like IBD is still a distant prospect, the steady collection of genetic clues has

already started to o↵er insights into the biological mechanisms underlying disease

biology, such as the role of autophagy, barrier defense and T-cell di↵erentiation

signalling in IBD. The power of sample size has repeatedly been underscored during

this process, as increases in sample sizes continue to contribute to relevant disease

associations of ever-smaller e↵ect.

The course of these genetic studies over the past twenty years has been constantly

shaped by attempts to maximise the scientific questions that can be answered

within tight financial and technical constraints, interspersed with occasional techno-

logical advances that have produced large leaps forward in discovery. We are now

in the early days of one such technological advance, as next generation sequencing

o↵ers the first opportunity to capture rarer variation in a high-throughput man-

ner. Already, the benefit of performing large-scale sequencing studies has been

demonstrated through e↵orts such as the 1000 Genomes Project (1000 Genomes

Project Consortium et al., 2015), which provide valuable resources of variation in

the human population. However, how this ability will translate to the identification

of rare variation associated with disease risk remains to be seen. In theory, the use

of high-throughput sequencing in a case-control setting will o↵er a unique oppor-

tunity to answer unresolved questions about the genetic architecture of complex

disease. In particular, the previously unexplored role of rare, low frequency and

structural variation can be assessed, to determine how much missing heritability
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can be attributed to these types of variation not captured using GWAS, as opposed

to still more common variant associations of small e↵ect.

We are therefore faced with several key questions going forward. Firstly, how can

we best use the available technologies to better understand the genetic architecture

of complex disease, and eventually capture the full breadth of genetic variation

contributing to an individual’s risk. Furthermore, how can we convert the successful

identification of hundreds of disease associated loci into useful biological insights

and, ultimately, directly impact the treatment and clinical diagnosis of these

disorders. In this thesis I will begin to address some of these questions, continuing

to use inflammatory bowel disease as an exemplar complex trait.

In chapter 2, I will describe some of the challenges of performing large-scale

sequencing studies in a case-control setting. In particular, I focus on the bias

in sensitivity and specificity of variant calling that can arise when cohorts are

sequenced to a di↵erent average read depth, and the methods that can be used to

overcome this. Through the implementation of a new association test statistic, and

the development of several sequencing-specific filtering metrics, I show that it is

possible (albeit di�cult) to perform large-scale association testing in sequencing

data that su↵ers from widespread systematic biases between cases and controls.

This opens up the opportunity for researchers to perform case-control analyses on

datasets that have been obtained from multiple sources, such as can often occur

when merging datasets in large-scale e↵orts by disease consortia, or when looking

to maximise sample sizes in a fixed-cost study through the use of publicly available

control datasets.

In chapter 3, I analyse such a dataset, which consists of low coverage whole genome

sequences from 4,280 IBD cases and 3,652 controls sourced from the UK10K project.

In order to maximise the number of IBD patients included in this study, the cases

were sequenced to a lower average depth (2-4x) than the controls (7x). Using

the methods described in chapter 2, I investigate the role of rare, low frequency

and structural variation in inflammatory bowel disease risk. Notably, I observe a

significant burden of rare, damaging missense variation in the gene NOD2, as well

as a more general burden of such variation amongst known inflammatory bowel
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disease risk genes. Through imputation into both new and existing GWAS cohorts,

I also describe the discovery of a low frequency missense variant in ADCY7 that

approximately doubles the risk of ulcerative colitis.

In chapter 4, I meta-analyse these low coverage whole genomes and imputed GWAS

datasets with publicly available summary statistics to perform the largest genome-

wide association study of common variation in IBD to date. This leads to the

identification of 25 novel IBD susceptibility loci, which I then evaluate using fine-

mapping and eQTL co-localization in order to resolve the biological mechanisms

underlying several of these associations. In particular, I describe likely causal

missense variants in the genes SLAMF8, a negative regulator of inflammation, and

PLCG2, a gene that has been implicated in primary immune deficiency. A further

four signals are shown to be associated with monocyte-specific changes in integrin

gene expression following immune stimulation. Interestingly, these genes encode

proteins in pathways that have been identified as important therapeutic targets in

IBD. Overall, I note that new associations at common variants continue to identify

genes that are relevant to therapeutic target identification and prioritization.

Finally, in chapter 5, I turn to the future of studies into the genetics underlying

complex diseases such as IBD. I outline some thoughts on the role of next-generation

sequencing in understanding disease risk, and consider the implications of these

types of study for translation into clinical practice. To conclude, I then present

potential opportunities for improving our understanding of environmental risk

factors, such as the human microbiota, in the context of complex disease genetics.





Chapter 2

Case-control association testing

using sequencing data

2.1 Introduction

The emergence of ‘next-generation’ technology has caused the cost of DNA sequenc-

ing to plummet over the last ten years. This has already led to a number of very

successful large-scale sequencing studies using healthy human populations, such as

the 1000 Genomes, UK10K, and Exome Aggregation Consortium projects. However,

researchers are now looking to extend this success to the identification of disease

risk variants using case-control cohorts. Through the direct capture of millions of

rare and low frequency variants, such studies o↵er an unprecedented opportunity

to better understand the genetic architecture of complex disease, uncover novel

associations underlying disease risk, and further resolve signals down to causal

variants of potential therapeutic relevance.

Despite the promise o↵ered by such studies, in practice they are hampered by the

high costs associated with sequencing at scale, and the complexity of analysing such

data. One cost-saving approach that has been used very successfully in array-based

genome wide association studies is to borrow control samples from publicly-available

datasets, allowing a maximal number of disease cases to be assayed. However,

29
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attempts to use the same study design in a sequencing setting are faced with a

number of di�culties associated with combining multi-source sequencing data at

scale. In particular, systematic biases in exome capture technology and sequencing

depth lead to crucial sensitivity and specificity di↵erences when performing variant

calling; for case-control studies, the e↵ects of these systematic biases can be observed

as a slew of false associations.

2.1.1 Chapter overview

In this chapter, I shall describe methods that can be used for the case-control

analysis of sequencing data in the presence of a known bias in sensitivity and

specificity between the cohorts, as may arise through systematic di↵erences in,

amongst other things, sequencing depth. Existing methods to approach this problem

include the incorporation of population-level information, through the use of joint

calling, genotype refinement, and imputation into GWAS datasets, in order to

improve the ability to test for association at sites of low frequency variation.

For rare variation, where the minor allele is observed too infrequently for population-

based methods to be e↵ective, I implement a new statistic proposed by Derkach

et al. (2014) that is able to account for systematic biases between cases and controls

directly in the association test. In order to obtain a well-behaved test statistic on

real data, I develop a number of additional filtering recommendations that can be

used to identify both errors and variants that are likely to be true sites of variation

but have been poorly captured in one of the groups due to systematically lower

sequencing depth.

Together, these methods demonstrate that it is possible, albeit di�cult, to perform

large-scale association testing in sequencing data that su↵ers from widespread

systematic biases between cases and controls. This opens up the opportunity for

researchers to perform case-control analyses on datasets that have been obtained

from multiple sources, such as can often occur when merging datasets in large-scale

e↵orts by disease consortia, or when looking to maximise sample sizes in a fixed-cost

study through the use of publicly available control datasets.
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2.1.2 Contributions

In order to test the methods described here, I used a low coverage sequencing study

of inflammatory bowel disease performed by the UK IBD Genetics Consortium.

Variant calling, genotype refinement, and many of the quality control analyses on

this dataset were performed by Yang Luo. Further details on this dataset, and

those who contributed to preparing it, will be provided in Chapter 3. Of particular

relevance to the work in this chapter, the analysis of low quality sites using support

vector machines was performed by Yang Luo. Unless stated, I carried out all other

analyses.
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2.2 Next-generation sequencing studies

2.2.1 Study design considerations

Next-generation sequencing o↵ers an exciting opportunity to improve our un-

derstanding of the genetics underlying complex traits. However, in reality this

excitement is tempered by the high costs still associated with sequencing. Because

expenditure increases approximately linearly with the number of short sequencing

reads produced, a crucial design decision in a fixed cost study revolves around how

best to distribute these reads to maximise information: towards increased sample

size, increased individual coverage, or an increased number of interrogated sites.

To date, the majority of sequencing studies have focused on the exome. This

cost-e↵ective approach to sequencing captures just the protein-coding portion

of the genome to high coverage, which makes it well suited for use in clinical

diagnostics and the discovery of rare, coding disease variants. Initial studies were

therefore focused on individuals or small family groups with unexplained Mendelian

disorders. However, exome sequencing has seen an explosion in popularity over the

past decade, culminating in the recent release of over 60,000 exomes by the Exome

Aggregation Consortium (Lek et al., 2016). During this time, exome studies have

o↵ered important insights into a number of aspects of human health and disease,

ranging from the identification of causal mutations in rare disorders (Choi et al.,

2009; Ng et al., 2010; Wright et al., 2015) and driver mutations in cancers (Barbieri

et al., 2012; Stephens et al., 2012), through to more general characterisations of

rare coding variation across large cohorts (Walter et al., 2015; Lek et al., 2016).

An alternative study design involves redistributing the sequencing reads to capture

the whole genome, but to much lower coverage. This allows for large sample sizes,

and the detection of potentially interesting non-coding variation, but comes at

the cost of data quality at the individual sample level. This type of study has

proven to be a valuable way of obtaining comprehensive genome-wide catalogues

of variation across human populations, via studies such as the 1000 Genomes and

UK10K projects (1000 Genomes Project Consortium et al., 2015; Walter et al.,

2015). Furthermore, through the cost-e↵ective collection of large whole genome
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cohorts, such studies have led to the development of a haplotype reference panel

containing over 32,000 individuals, providing a very important public resource that

can be used for the accurate imputation of low frequency variants from existing

genotyping arrays (McCarthy et al., 2016).

2.2.2 Challenges of performing case-control analyses

These large-scale exome and low coverage whole genome e↵orts have highlighted not

only the importance of generating very large sequencing cohorts, to reveal patterns

of human population biology and provide vital resources for interpreting the clinical

relevance of variation, but also the practical di�culties in managing multi-source

data at this scale. The lack of a standardised approach for the generation of

sequencing data has resulted in a number of slight variations on the basic study

design, whether it be high-coverage exomes or low-coverage whole genomes, as

investigators try to fine-tune their designs to answer a variety of scientific questions.

As a result, when combining data from 14 di↵erent studies, the Exome Aggregation

Consortium pointed out that variations in exome capture technology and sequencing

depth across their 60,706 exomes required a joint analysis of such computational

intensity and analytical complexity that it would be impossible using the limited

resources available to most research centres (Lek et al., 2016).

I will note here that the systematic di↵erences between cohorts being referred to

here are not the same as the batch e↵ects that can arise through the course of

an experimental study. Just as is often seen with genotyping data, sequencing

studies are still plagued by such issues: the specific reagents and machines used,

slight variations in experimental conditions, or even the day on which a sample was

processed can all lead to di↵erences in the quality of the data produced (Figure 2.1).

Naturally, these problems are important to consider, and indeed if samples are

processed at multiple sequencing facilities then these e↵ects can become even more

pronounced. However, generally, these sorts of batch e↵ects can be accounted for

using careful quality control.
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Figure 2.1: Batch e↵ects observed in the 1000 Genomes project sequence data. Each row repesents

a di↵erent HapMap sample, sorted by processing date. Every sample was processed in the same

sequencing facility, using the same platform. Colours represent the standardised coverage data

for each sample: blue indicates three standard deviations below average, and orange indicates

three standard deviation above average. A large batch e↵ect is observed between days 243 and

251. Figure sourced from Leek et al. (2010).

Of greater concern when combining sequence data from multiple sources are more

widespread systematic di↵erences that have arisen due to variation in the study

designs. One example of this is the exome capture kit used, which defines the

regions of the genome that will be sequenced and (through variable probe e�cacies)

the relative read depth that is likely to be obtained for certain regions. Systematic

di↵erences in read depth can also be observed on a more global scale, when data

has simply been collected to di↵erent average coverages.

Because variants are detected in sequence data using the distribution of alleles

across all the reads that overlap at a given position, sequencing depth has a direct

impact on the sensitivity and specificity of variant calling. In particular, increased

read depth leads to both improved sensitivity (the detection of true variant sites)
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and improved specificity (the ability to distinguish true variants from sequencing

errors). As a result, a cohort sequenced to higher depth (whether that be globally

or locally) can be expected to contain more sites of true variation, and fewer errors,

than a cohort sequenced to lower average depth across the same regions.

This observation is likely to be a serious problem as we extend the success of

sequencing-based studies in healthy human populations to explore disease associa-

tions in case-control cohorts. I shall describe one such e↵ort in Chapter 3, where

we use low coverage sequencing to search for rare and low frequency variation

associated with IBD. In that example, the cases were sequenced to a lower average

depth than the controls (which were sourced from the UK10K project), in order

to maximise sample size and therefore power to detect associations. Although

this study may represent a particularly extreme example of di↵ering read depths

between cases (2-4x) and controls (7x), we envision that similar issues are likely

to arise in other studies that use publicly available controls to save on costs. In

this sort of case-control setting, any systematic di↵erences between sequencing

data from di↵erent sources is likely to heavily bias attempts to perform association

testing.

In the following sections, I shall describe a range of methods that can be used to

overcome systematic di↵erences in sequencing depth between cases and controls.

These consist of two broad approaches, depending on the prevalence of the variant

of interest in the population. Firstly, for more common variants, population level

information can be used to improve the overall sensitivity of both datasets and

reduce di↵erences between cohorts, thereby allowing standard association testing

methods to be used. For rare variants, where this information is not available, I

instead describe the development of a new approach to perform association testing

in the presence of coverage bias between cases and controls.
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2.3 Low frequency and common variants

2.3.1 Joint calling across samples

A powerful means of overcoming systematic sequencing di↵erences between cases

and controls at sites of low frequency and common variation is to perform joint

variant calling (Figure 2.2). This method uses population-level detail about a given

site to improve sensitivity to detect variation in carriers that have only intermediate

levels of sequence support. It also allows for better specificity in variant detection:

essentially, when more information is incorporated, it becomes easier to model

errors and detect false positives. This is particularly important for sequencing data

where, unlike the extensively curated variant lists that are included on genotyping

arrays, there has been no pre-selection for true sites of variation.

Figure 2.2: Calling variants jointly across a number of individuals can increase both the sensitivity

and specificity of variant detection. While some variants may be accurately captured through

variant calling on a single sample (A), for some individuals a lack of sequence support can cause

the variant to be missed (B). However, if the variant is jointly called across reads pooled from a

number of samples, these variants can be more accurately detected (B). Joint calling also helps

to improve the detection of errors (C).
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By performing variant calling jointly across the entire case-control cohort, the

genotype calls for all samples will utilise information from reads accumulated over

both cases and controls. This can greatly improve the sensitivity and specificity of

variant calling for both groups, and reduce calling di↵erences that may have arisen

due to variations in average sequencing depths.

2.3.2 Genotype refinement

After joint calling, some variants that have been poorly captured for a given

individual can be improved using genotype refinement (Figure 2.3), which infers

specific genotypes by imputing from other individuals and neighbouring variation.

As Li (2011) explains, this method improves the genotype call for an individual, I,

who happens to have poor sequence coverage at the site of interest, S0. If there

are other samples that have high coverage at S0 then, if there exists a second site

S1 which is in high linkage disequilibrium with S0, and for which both I and the

other samples have su�cient sequence support, the likely genotype for individual I

at position S0 can be inferred.

Figure 2.3: Genotype refinement through imputation, where the poor quality genotype at position

S0 for individual I is improved by imputing from position S1.
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2.3.3 Imputation of GWAS cohorts

A combination of joint variant calling and genotype refinement is an e↵ective

way of improving variant calls in sequencing data, particularly when the average

read depth is low. Both methods were used successfully in the 1000 Genomes

and UK10K projects to generate high-quality variant call sets, and when applied

simultaneously to both case and control cohorts they are also able to help alleviate

the variable sensitivity and specificity that can arise from systematic di↵erences in

sequencing coverage (Figure 2.4).

Figure 2.4: I investigate the e↵ect of read depth on sensitivity and specificity across the allele

frequency spectrum, for a range of average sequencing depths as shown with blue (2x), red (4x)

and yellow (7x) lines. Variants have been jointly called across three cohorts (1,767 2x, 2,513 4x,

and 3,652 7x samples), followed by genotype refinement. Sensitivity is then approximated as the

median number of variants called per individual. Compared to rare variant calls, which do not

have su�cient population-level information to be improved through joint calling and genotype

refinement, the di↵erences in sensitivity between each cohort have been notably improved for low

frequency and common variation.

However, association testing using low frequency and common variation (MAF

� 0.1%) is still susceptible to residual bias due to sequencing depth. As will

be discussed in more detail in section 3.5, despite using joint calling, genotype

refinement, and very stringent quality control on our low coverage IBD sequences,

there was still an excess of extremely significant sites (P < 1⇥10�15) falling outside
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of known IBD-associated loci, the majority of which had a MAF < 5%. Most (if

not all) of these are likely to be false associations that simply reflect the greater

number of observations in the higher coverage group due to better sensitivity, rather

than any true e↵ect on disease risk.

Although residual bias from sequencing depth di↵erences can prevent case-control

association testing of low frequency variation in di↵erentially sequenced cohorts

alone, these datasets still provide valuable imputation reference panels. With

quality variant call sets produced using joint calling and genotype refinement,

a set of haplotypes from across both cases and controls can be used to impute

these variants into large panels of genotyped individuals. This approach not only

increases sample size, and therefore power to detect associations, but will also

produce case-control datasets that are not a↵ected by the original coverage bias

present in the sequenced reference panels. For example, imputation into GWAS

was used successfully by a recent case-control association study of Type 2 diabetes

to increase the utility of their low-coverage whole genome sequences (Fuchsberger

et al., 2016).

2.4 Rare variant association testing

Because the minor allele of a given rare variant is observed so infrequently, methods

that rely on the incorporation of population-level information, such as joint calling,

genotype refinement, and imputation, cannot be usefully applied (Figure 2.4).

This leads to two major issues when performing rare variant association studies in

case-control cohorts. Firstly, testing can only be performed in directly sequenced

individuals, limiting sample sizes. Given the scarcity of these variants in the

population, obtaining a significantly large di↵erence in minor allele frequency

between cases and controls is simply not possible with achievable sample sizes.

Secondly, any systematic bias in read depth between the cohorts cannot be overcome

by processing the data prior to association testing, requiring new association test

statistics that are tailored to this specific situation. I shall discuss the development
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of an approach that can be used to address each of these problems in the following

sections.

2.4.1 Increasing power using burden testing

Single-variant association tests can only be successfully applied to rare variants if

the sample sizes are su�ciently large, or the variant e↵ects are particularly strong.

Because of this, rare variant association testing generally relies on the aggregation of

signals from across multiple variants in order to increase power. The most common

methods by which variants are aggregated and their cumulative e↵ects are tested

can be broadly broken into three categories: burden tests, variance-component tests,

and combined tests (Lee et al., 2014b; Moutsianas and Morris, 2014). Depending

on the underlying genetic architecture of the disease being tested, di↵erent methods

will be better powered to detect an association (Table 2.1).

The simplest approach is to perform a burden test, which combines information

across a number of variants in a target region (e.g. by counting the number of

occurrences of each minor allele) and then tests the resulting summary score.

However, such methods only work well if the majority of variants included are

causal, and all have the same direction of association with the trait. One way to

overcome these limitations is to use a variance component test, which compares the

observed variance with the expected variance of the distribution of allele frequencies

in a target region. If the variance is over-dispersed, meaning an increase from

the expected binomial variance, this can indicate a subset of variants that are

preferentially observed in either cases or controls (Figure 2.5). In this way, it is

possible to e�ciently test for a combination of e↵ect directions (risk, neutral or

protective), although this does come at the cost of reduced power if all variants do

in fact act in the same direction (Neale et al., 2011).
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Figure 2.5: An example of the distribution of recurrent, low frequency non-synoymous variants in

NOD2, comparing 350 CD cases to 350 controls. Each row defines variants observed n times in

the dataset, with the observations split between controls (left of the vertical line) and cases (right

of the vertical line). As an example, the n = 3 row describes three observed variants in red, one

seen in 3 cases and 0 controls, one seen in 2 cases and 1 control, and one seen in 1 case and 2

controls. The variance component test determines if there is a di↵erence in the variance of the

observed data (red) and the binomial probability distribution (grey). Figure sourced from Neale

et al. (2011).

While variance component tests are generally the preferred approach when faced

with the aggregation of variable e↵ect sizes and directions, their loss of power

compared to simple burden tests when e↵ect direction is consistent means that

many people who are testing data of unknown genetic architecture will turn to

tests that combine both burden and variance component approaches. Rather than

simply applying each test separately and taking the minimum p-value, which can

lead to an inflated type I error rate, these combined tests attempt to find the

optimal linear combination of both the burden and variance-component tests (Lee

et al., 2012b).
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2.4.2 Accounting for di↵erences in sensitivity and

specificity between cases and control

In general, the rare variant association tests discussed above assume the case and

control datasets have been well matched. In particular, the minor allele frequencies

to be tested are derived directly from genotype calls, thereby assuming that these

calls are equivalent for the two datasets. Unfortunately, when there are systematic

biases in coverage between the cohorts this assumption does not hold. In practice,

there is increased sensitivity to detect variation in the higher coverage group, and

decreased specificity to avoid errors in the lower coverage group (Figure 2.6). This

can lead to two types of false association signals: an excess of erroneous variants

that have been called in the lower coverage group, and an excess of true variant

calls in the higher coverage group that failed to be detected in the lower coverage

cohort. Depending on how di↵erent subsets of these variants (which have opposing

false signals) are selected for aggregation into a burden test, it is possible that

significant false associations may be observed.

Figure 2.6: The e↵ect of read depth on the sensitivity and specificity of calling genotypes for rare

variants. Variants were jointly called across three cohorts (1,767 2x (blue), 2,513 4x (red), and

3,652 7x (yellow) samples), followed by genotype refinement. For singletons, which are observed

just once in the population, there is an excess of variants called in the 2x cohort, indicating a

loss of specificity at low coverage (panel A). For doubletons, which are observed twice in the

population, we see a more general pattern of increasing sensitivity as read depth is increased

(panel B).
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One way to overcome this issue would be to down-sample the higher coverage

group so that the average read depth is consistent across both cases and controls

prior to variant calling, and then perform association testing using one of the

standard methods from Table 2.1. However, this requires the removal of potentially

useful sequence information. To avoid the loss of valuable data, another commonly

proposed solution is to test for association using a logistic regression analysis that

includes the read depth as a covariate (Garner, 2011), or weights variants based

on quality scores (Daye et al., 2012). However, if the cases and controls can be

perfectly separated by read depth then it cannot be used as a covariate, as it will

cause the parameters of the logistic regression to no longer be estimable (Derkach

et al., 2014).

Instead, the solution I use here is to account for known di↵erences in the sensitivity

and specificity of variant calling by replacing the hard genotype calls with genotype

dosages. Rather than discrete counts of the minor allele, such that a genotype

call for individual i at position j can be defined as Gij 2 {0, 1, 2}, the dosage

is calculated as the expected genotype given the sequencing data D, such that

E (Gij|Dij) =
P2

g=0 gP (Gij = g|Dij). Here, P (Gij = g|Dij) is the probability of

each genotype given the sequencing data. The resulting dosage estimate better

reflects the confidence of a variant call, allowing for the e↵ects of read depth to be

incorporated into the test.

Association testing using genotype dosage

Skotte et al. (2012) developed a score statistic that performs association testing

using this genotype dosage data. Their statistic is derived from the joint likelihood of

phenotype and sequencing data across all individuals at a given locus (Equation 2.1).

This assumes that, across n samples, for any one individual i their phenotype Y

depends on the observed sequencing data D through the unobserved genotype G

at locus j.

P (Y = (Y1, ..., Yn) ,D = (D1j , ..., Dnj)) =
nY

i=1

 
2X

g=0

P (Yi|Gij = g)P (Gij = g,Dij)

!
(2.1)
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The main component of interest in this likelihood is the relationship between the phe-

notype and the genotype, P (Yi|Gij = g): if we were to consider logit (P (Yi|Gij = g)) =

B0 + B1g then a test to determine if the slope is null (H0 : B1 = 0) can be used to

indicate if there is any association between the two. Sj, the score statistic for B1,

has been derived in Equation 2.2, and has the variance as shown in Equation 2.3.

The corresponding test statistic Tj = Sj
2

V ar(Sj)
is chi-squared, with one degree of

freedom. Under the null hypothesis, Sj = 0.

Sj =
nX

i=1

�
Yi � Ȳ

�
E (Gij|Dij) (2.2)

V ar (Sj) =
X

cases

�
1� Ȳ

�2
V ar (E (Gij|Dij)) +

X

controls

�
Ȳ
�2

V ar (E (Gij|Dij))

(2.3)

Importantly, the variance of E(Gij|Dij) is read depth dependent. Intuitively,

as read depth increases the data will better reflect the true genotype, so that

E(Gij|Dij) will approach the true Gij while V ar(E(Gij|Dij)) approaches the true

V ar(Gij). This is because we obtain less information about the true genotype at

lower coverages, and thus the expected variance of the genotype given the data,

E(V ar(Gij|Dij)), is greater. At su�ciently high coverage, when we can consider

the data to perfectly reflect the true genotype, this value should converge to 0.

Therefore, by the law of total variances (Equation 2.4), estimating the variance

of the true genotypes using V ar(E(Gij|Dij)) will lead to an underestimate of this

value at low depths.

V ar(Gij) = V ar(E(Gij|Dij)) + E(V ar(Gij|Dij)) (2.4)

How this corresponds to the variance component of the test statistic depends on

the relative depths and sample sizes of the two groups, as the group with the

smallest sample size will contribute the most to the variance calculation, due to

the inclusion of the average phenotype Ȳ in the weights (see Equation 2.3). For
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example, if we assume that the high coverage group has su�cient information

to obtain reasonable variance estimates, while the lower coverage group does

not, then when NLow >> NHigh the variance component will be underestimated,

while if NHigh >> NLow the variance component may actually be overestimated.

Underestimation of the variance component will lead to an overinflated test statistic,

and vice versa.

Derkach et al. (2014) therefore proposed that, in the presence of systematic read

depth di↵erences between cases and controls, a more accurate test statistic could

be obtained by calculating the variance components for the two groups separately

(Equation 2.5).

V̂ ar (Sj) = Ncase

✓
Ncontrol

N

◆2

V̂ arcase
�
E(Gij|Dij)

�

+Ncontrol

✓
Ncase

N

◆2

V̂ arcontrol
�
E(Gij|Dij)

�
(2.5)

This ‘Robust Variance Score’ (RVS) statistic can be extended to perform a burden

test for multiple rare variants, using a similar approach as standard burden tests

like CAST and CMC. The individual variant score statistics are simply summed

together to given an overall score, while the variance component is calculated

by combining the covariance matrices of the cases and controls, after estimating

them separately. Unfortunately, however, the distribution of the resulting test

statistic for the joint variant analysis is unknown. Instead, a permutation-style

procedure needs to be used, whereby a p-value is generated by creating X bootstrap

samples and counting up the number of times they generate a test statistic that is

more significant than the original sample. Usually, evaluating significance using

permutation would involved randomly permuting case and control status, but the

di↵erent read depths between the groups precludes this. Instead, both the case

and control groups are separately centred around their respective means, and then

(still separately) sampled with replacement from these centred values, maintaining

the same numbers of cases and controls as the original sample. In this way, the

di↵erence between the groups is reduced to one dimension (variance only), forming
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an empirical null set from which bootstrap samples can be generated without

swapping case and control status (Derkach et al., 2014).

2.4.3 Testing in a dataset with systematic read depth bias

between cases and controls

In order to test the performance of the RVS in the presence of a known systematic

bias in read depth between cases and controls, I considered a low coverage whole

genome sequencing study of inflammatory bowel disease. The sample collection,

sequencing and quality control procedures used to generate this dataset will be

described in more detail in Chapter 3. However, briefly, it consists of 1,767 patients

with ulcerative colitis (median coverage of 2x), 2,513 patients with Crohn’s disease

(4x), and 3,652 population controls (7x).

Implementing the RVS statistic in C++

Testing a dataset of this size using the original R implementation of the RVS

statistic as provided by Derkach et al. (2014) would lead to extensive computer

memory demands and excessive run times, such that it was not possible even

given the sizeable computational resources available at the Wellcome Trust Sanger

Institute. I therefore had to first implement the RVS statistic as an extension to

the software ANGSD (Korneliussen et al., 2014), which makes use of the compiled

language C++ and multi-threading to generate much more e�cient run times. My

implementation can be found at https://github.com/katiedelange/angsd.

I developed the algorithm described in Box 2.1 to perform the RVS association test

within the framework defined by ANGSD. I optimised this solution to minimise

memory requirements (currently the most limiting resource within the cluster

computer framework to be used for association testing) and made use of multi-

threading in order to parallelise steps wherever possible.
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Box 2.1: Algorithm used to implement the RVS statistic within the ANGSD framework.

// Request the f o l l ow i n g inpu t s from the user

� The number o f burn�in boots t rap resampl ing permutat ions to

perform be fo r e s i g n i f i c a n c e i s eva luated

� The number o f boots t rap resampl ing permutat ions to perform

(�1 s p e c i f i e s that adapt ive permutation should be used )

// Extrac t the r e l e v an t summary data from the genotype p r o b a b i l i t i e s

For each s i t e j

For each i nd i v i dua l i

Compute and s t o r e the expected genotype

E(Gij |Dij) =
P

g P (Gij = g|Dij) , f o r g=0 ,1 ,2

Compute and s t o r e the expected var iance

V ar(Gij = g|Dij) = E(G2

i |Dij)� E(Gij |Dij)
2

Determine the populat ion a l l e l e f requency es t imate

(Gij |Dij)/2N ac r o s s both samples at t h i s s i t e .

// Compute the score s t a t i s t i c components f o r the unpermuted sample

Append the burden s co r e S to the l i s t o f s c o r e s

S =
PN

j=0

(Sj) , where Sj =
P

(Yi � Ȳ )E(Gij |Dij)

Append the burden var i ance V ar(S) to the l i s t o f va r i anc e s

V ar(S) =
P

i

P
j

P
k cov(E(Gij |Dij), E(Gik|Dik)

// Centre the s t o r ed genotype dosages around t h e i r r e s p e c t i v e means

Separate ly f o r ca s e s and c on t r o l s

For each s i t e j

Compute the mean expected genotype

Subtract t h i s from each i nd i v i dua l us ing a matrix trans form

// Run permutat ion t e s t i n g to e va l ua t e the s i g n i f i c a n c e o f the t e s t

For the reques ted number o f permutat ions

Separa te ly f o r N

0

c on t r o l s and N

1

ca s e s

Randomly sample N

(0,1) t imes ( with replacement )

Append the permuted sample s co r e S to the l i s t o f s c o r e s

Append the permuted sample var i ance V ar(S) to the l i s t o f va r i anc e s

// Return the f r a c t i o n o f t imes t ha t a permuted sample i s more

// s i g n i f i c a n t than the o r i g i n a l sample
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Performance of the RVS in systematically biased data

I tested the performance of the RVS burden test on rare (0.0001<MAF<0.01) func-

tional coding variation within genes. I define functional coding variants to be those

with one of the following Variant E↵ect Predictor (McLaren et al., 2010) annota-

tions: frameshift variant, stop gained, initiator codon variant, splice donor variant,

splice acceptor variant, missense variant, stop lost, inframe deletion, or inframe ins-

ertion. The MAF range used is also defined so as to exclude singletons, due to

the lack of specificity at this frequency for very low coverage data (Figure 2.6).

Despite these restrictions, I observe a very large excess of apparently significant

associations after 106 permutations (Figure 2.7), and systematic over-inflation of

the test statistic (� = 1.34).

Figure 2.7: Burden testing using the RVS statistic (up to 1,000,000 permutations) on rare

(0.0001<MAF<0.01) functional coding variation within genes.

When trying to determine why this statistic does not appear to be adjusting for

the systematic coverage bias in this dataset as well as the authors suggest it will

(Derkach et al., 2014), I note that there are a few crucial assumptions that must be

met. In particular, the method assumes that 1) the variants being tested are true

sites of variation; and 2) a variant has been successfully detected if it is present.

However, particularly when dealing with rare variants in very low coverage datasets,

it is likely that these assumptions will be violated at a number of tested sites. This
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includes both errors that have been mistakenly included in the lower coverage group

due to reduced specificity, and rare variants that have failed to be detected in the

lower coverage group due to reduced sensitivity. I therefore looked to modify the

standard sequencing quality control procedure that was applied to this test dataset

(see Chapter 3 for details) to include additional filters tailored to rare variants, in

order to both better remove potential errors and try to identify sites that, whilst

true sites of variation, failed to be identified in one group due to low coverage

(rather than disease association).

2.4.4 Adjusting the quality control procedures

Identifying variants sites that were missed at lower coverage

I first focus on trying to deal with rare variant calls that are likely to be true

sites of variation, but were missed in the lower coverage group due to a lack of

sensitivity. Hu et al. (2016) show that this particular problem can sometimes be

overcome by modelling the error rate and using it to predict loci that are likely to

be true variants. In particular, they aim to include the maximal set of possible

variants in the test, applying only minimal filtering to try and remove sites that

are predicted to be truly monomorphic in both datasets. This is done by screening

out sites that are predicted to be uninformative, in that they have a score S = 0

and therefore do not contribute to the burden test. However, because this minimal

screening step is unlikely to capture all problematic sites, they then adjust the

permutation procedure to try and generate bootstrap datasets that have identical

allele frequencies between cases and controls, but match the read depths, error

rates, and the number of true variants and monomorphic loci that are seen in

the original dataset. Unfortunately, this method relies on a su�ciently strong

signal-to-noise ratio at very rare sites in at least one of the groups being tested, in

order to properly model errors for the initial screening step. For situations where

both cases and controls are of low coverage, this method is not expected to o↵er

any significant advantages over Derkach et al’s RVS model.
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I therefore looked to capture these sites as part of the filtering process instead, by

trying to measure how accurately a given site is likely to have been captured across

all the individuals in each cohort. To do this, I calculate the INFO score ↵, which

can be interpreted as describing the amount of ‘missing’ information such that the

observed data at a site is equivalent to a set of perfectly observed genotypes in a

sample of size ↵N (Marchini and Howie, 2010), separately for each cohort. It is

computed using the likelihood of the true population allele frequency ✓j at a given

site j if we had observed genotypes Gij, as shown in Equation 2.6.

L(✓j) =
NY

i=1

✓
Gij

j (1� ✓j)
2�Gij (2.6)

The score (first derivative) and information (second derivative) for this likelihood

are shown in Equations 2.7 and 2.8, where N is the sample size, and X =
PN

i=1 Gij .

The score reflects how sensitively L(✓j) depends on ✓j, while the information

describes how much information the observable variable Gij carries about ✓j.

U(✓j) =
d logL(✓j)

d✓j
=

X � 2N✓j
✓j(1� ✓j)

(2.7)

I(✓j) =
d2 logL(✓j)

d✓2j
=

X

✓2j
+

2N �X

(1� ✓j)2
(2.8)

If we then consider that the genotypes Gij are not perfectly observable, but are

instead approximated through the data Dij, we can compute a similar likelihood

for the allele frequency parameter ✓j that is integrated over the missing data that

comes from estimating Gij using Dij (Equation 2.9). In order to do this, the data

is partitioned into the observed data YO and the missing data YM .

L⇤(✓j, YO) = log(P (YO|✓)) = log

Z
P (YO, YM |✓) dYM . (2.9)

The score and information of this observed data likelihood is heavily related to

that of the full likelihood, as shown in Equations 2.10 and 2.11 (Louis, 1982).
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U⇤(✓) =
dL⇤(✓j)

d✓j
= EYM |YO.Gij [U(✓j)] (2.10)

I⇤(✓j) =
d2L⇤(✓j)

d✓2j
= EYM |YO.Gij [I(✓j)]� VYM |YO.Gij [U(✓j)] (2.11)

Of particular interest here is the information statistic, which we can use to describe

the amount of missing information about the true allele frequency due to estima-

tion using observed data as opposed to true genotypes. If we consider I⇤(✓j) to

represent the observed information, and EYM |YO.Gij [I(✓j)] the complete information,

it follows that VYM |YO.Gij [U(✓j)] is the missing information. These components can

be calculated using Equations 2.12 and 2.13. Importantly, we can see that the top

line of Equation 2.13 is actually calculating V ar(Gij|Dij): as mentioned earlier,

this converges to 0 as the read depth improves. Therefore, we expect more missing

data in lower coverage samples.

EYM |YO.Gij [I(✓j)] =
2N

✓̂(1� ✓̂)
(2.12)

VYM |YO.Gij [U(✓j)] =

PN
i=1 E(Gij|Dij)� E(G2

ij|Dij)

✓̂2(1� ✓̂)2
(2.13)

Using these two terms, we can compute the ratio of observed data to complete

data (Equation 2.14), giving the INFO score ↵ that can then be used to generate

an e↵ective sample size ↵N for the amount of informative data in the sample set

at site j.

↵ =
EYM |YO.Gij [I(✓j)]� VYM |YO.Gij [U(✓j)]

EYM |YO.Gij [I(✓j)]
(2.14)

This INFO score provides an estimate of how well a variant has been captured

across all the individuals in each cohort, and (as can be seen in Equations 2.12

and 2.13) is also closely related to the terms being tested by the RVS statistic. I
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therefore computed this statistic for each site separately in each of the test cohorts,

and plotted the distributions as shown in Figure 2.8.

Figure 2.8: The distribution of the INFO score for 2x (blue), 4x (red) and 7x (yellow) data across

a range of minor allele frequencies.

Immediately apparent are the large di↵erences in median INFO scores between

each of the cohorts below a minor allele frequency of ⇠ 2%. This is particularly

pronounced for very rare variants, where the datasets sequenced to 2-4x average

coverage retain almost no information about sites with a MAF < 0.2%. Given

these observations, it is unsurprising that a score statistic calculated using datasets

that are so distinct in their ability to capture the true genotypes resulted in such

an excess of false positive associations. However, the extent to which each cohort

di↵ered on their median INFO measure, and how this changed between rare and

common sites, was more unexpected.

One possibility is that this e↵ect may be related to the use of genotype refinement

via imputation, which is the major MAF-dependent factor a↵ecting the genotype

probabilities from which both the INFO score and RVS statistic are calculated. This

process aims to remove noise and improve confidence in genotype calls made: in

essence, producing a set of ’smoothed’ genotype probabilities through the incorpora-

tion of population-level information. However when the true signal is low, such as for

sites of rare variation, it may be that this refinement step is overzealous. To evaluate

if this is the case, I investigated the use of genotype probabilities generated directly

from the samtools Genotype Quality (GQ) field, without any genotype refinement.
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The GQ value represents the phred-scaled genotype probability of the most likely

genotype, as calculated by GQ= �10 log10 max
�
P (Gij = g|Dij) , for g 2 {0, 1, 2}

�
.

Unfortunately, this does not provide enough information to resolve all three possible

genotype probabilities (homozygous reference, RR; heterozygous, RA; and homozy-

gous alternate, AA). Therefore, in order to produce a set of genotype probabilities

I assign the probability reflected in the GQ score to the genotype called in the

VCF file, and all the remaining probability to the most likely alternate call:

P (Call) = 1� 10

�GQ

10

P (Alt) = 1� P (Call)

P (Remainder) = 0

When the called genotype is homozygous, the next most likely genotype is assumed

to be the heterozygous genotype (i.e. if Call=RR or AA, then Alt=RA). If the

genotype call was heterozygous I assume, given the low MAF ( 0.01) of the

variants being considered for burden testing, that the rare homozygote is not likely

to be observed and thus I define the next most likely genotype as being homozygous

reference (i.e. Call=RA, Alt=RR).

I compute these unrefined genotype probabilities across the complete dataset, and

recalculate the INFO score separately for each of the three cohorts, across all sites.

As can be seen in Figure 2.9, using unrefined genotype data leads to a dramatic

improvement in the amount of information obtained at sites of rarer variation (MAF

 2%). The utility of performing genotype refinement at common sites is also

apparent, with improved INFO score distributions for higher MAFs (particularly

MAF � 10%, Figure 2.8).
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Figure 2.9: The distribution of the INFO score for 2x (blue), 4x (red) and 7x (yellow) data across

a range of minor allele frequencies, using raw genotype probabilities estimated directly from the

samtools genotype quality score.

In order to minimise the possible di↵erences in INFO score between the case and

control cohorts during association testing, and thus attempt to reduce the inclusion

of rare variants that have been detected in the high coverage group but missed in

the low coverage group due to reduced sensitivity, I filter out any sites with INFO

< 0.6 in either of the relevant cohorts for each test. In general, this allows more

sites to be retained when comparing the 4x cases (as opposed to the 2x cases) to

the 7x controls.

Additional error filtering

I then applied the following additional quality control filters, to try and reduce the

number of erroneous sites included (particularly from the lower coverage group,

which has poorer specificity during variant calling):

– Sites with a missingness rate > 0.9. When using unrefined genotype proba-

bilities, the missingness rate across all sites is greatly increased, compared to

the refined set that has attempted to infer a number of missing genotypes. I

remove any sites with a high number of samples where a genotype could not

be called.
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– Sites with low confidence observations comprising � 1% of non-missing data.

I define a low confidence observation as one with a maximum genotype

probability  0.9. This filter helps to capture sites where it is particularly

di�cult to confidently call variants, or where a large number of samples

happen to have particularly low coverage.

– ‘Uncertain’ sites. These are sites that I first identified by analysing some of

the most significant associations originally produced by the RVS, that did

not lie in known IBD loci. In general, I noted a number of sites with low

quality scores and a high proportion of individuals with a maximum genotype

probability less than one (although not su�ciently low so as to be captured by

the low-confidence filter described above). As can be seen in Figure 2.10, these

sites have quite di↵erent distributions of genotype probabilities compared

to high-quality sites. In order to systematically detect such variants, I used

the output of five independent Support Vector Machines (SVMs) that were

trained on 1,000 high-quality sites that overlapped with the HapMap3 dataset

(Altshuler et al., 2010), and 1,000 poor-quality sites with a quality score < 10

in the raw VCF files. Any site with an SVM score < 0.1 in any of the five

runs was removed.

Figure 2.10: An example of a site captured to high quality (panel A), compared to a site

with mostly low confidence genotype probabilities (panel B).
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Using these additional quality control filters, and unrefined genotype probabilities,

I repeated the RVS burden test on rare (0.0001<MAF<0.01) functional coding

variation within genes. As can be seen in Figure 2.11, the Type I (false positive)

error rate is now properly controlled and no systematic over-inflation of the test

statistic is observed (�=1.06).

Figure 2.11: The performance of the RVS statistic in a dataset with systematic read depth bias

between the cases (4,280 samples at 2-4x coverage) and controls (3,652 samples at 7x).

2.4.5 Increasing the size of the burden test

The logical extension of these gene-based rare variant burden tests is to combine

individual tests together into larger, more powerful, gene set tests. However, the

RVS statistic is a simple burden test, and does not account for potential di↵erences

in the direction of e↵ect of its constituent variants. Within individual genes, one

possible way to try and overcome this is to select for variation that is predicted to

have a damaging e↵ect on the protein, in the hope that all variation a↵ecting a

given gene will therefore act in the same direction. However, for larger gene set

tests this is unlikely to help, particularly as previous research has already shown

that loss of some genes will lead to an increase in risk, while loss of others will

be protective. For example, if we consider just the two most strongly associated

genes in IBD, variation in NOD2 is risk-increasing, while variation in IL23R is

risk-decreasing.
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I therefore extended the RVS statistic to perform larger burden set tests using

an enrichment procedure that allows for opposing directions of e↵ect. For each

gene (or other form of primary aggregation set, such as enhancers or promoters),

the absolute scores are summed together to form an overall score statistic that

is independent of e↵ect direction. Overall variances are also summed together,

meaning that whilst covariance is included when computing the variance component

for an individual gene, the inter-gene covariance is not accounted for. This decision

was made in order to greatly reduce the number of between-variant comparisons

that were required, which generated massive improvements in the computational

e�ciency of this method. However, overall I expect the loss of inter-gene covariances

to be of minimal consequence. In general, covariance is used to capture the e↵ects

of linkage disequilibrium between variants in the test, increasing the overall variance

component of the test statistic when highly-correlated variants are present, in order

to avoid over-estimating the significance of an association. It is therefore retained

for individual gene tests, where all included variation is in very close proximity, but

overall it is expected to be relatively small given the rarity of the variants being

tested (and therefore their low correlation with other variation in the region). For

gene set tests in particular, where many of the contributing genes are not even on

the same chromosome, linkage disequilibrium between variants from di↵erent genes

should be very low.

The resulting set statistic is then divided by the equivalent statistic produced

using the set consisting of all genes, in an approach based on the SMP method

devised by Purcell et al. (2014). Accounting for the exome-wide statistic in this

way helps to remove any residual case-control coverage bias that may accumulate

over the large numbers of variants contributing to these gene set tests. Significance

is evaluated using permutation testing, where individual gene statistics are re-

computed in bootstrapped samples (with the exact same samples drawn for every

gene during each permutation round) and summed to produce both set and exome-

wide permutation statistics.
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2.5 Discussion

Large-scale sequencing studies such as the Exome Aggregation Consortium (Lek

et al., 2016), the 1000 Genomes project (1000 Genomes Project Consortium et al.,

2015), and the UK10K project (Walter et al., 2015) have revealed important insights

into human population biology, and provided vital resources for interpreting the

clinical relevance of variation. However, they have also highlighted the practical

di�culties associated with combining multi-source sequencing data at scale, as

systematic biases in exome capture technology and sequencing depth lead to crucial

sensitivity and specificity di↵erences when performing variant calling. As researchers

now look to extend the success of these cohort studies to investigate genetic disease

risk using large case-control comparisons, the e↵ects of these systematic biases can

be observed as a slew of false associations.

In this chapter, I have described various methods that can be used to overcome

systematic biases in read depth in a case-control setting, in order to prevent over-

inflation of the test statistic and tightly control the Type I error rate. While the

e↵ects of sequencing coverage can be largely overcome at sites of low frequency

variation, through joint calling of variants followed by genotype refinement, ulti-

mately disease associations for such variants are best tested by imputing them

into the wealth of existing GWAS cohorts currently available. Not only does this

increase sample size, and therefore power to detect association, but the resulting

imputed sequences will not be a↵ected by any of the systematic sequencing biases

present in the original cohorts.

For rare variation, which is poorly correlated with nearby variation and therefore

cannot be accurately imputed, studies must be performed in the directly sequenced

data. As the rare allele for these sites is observed so infrequently in the population,

joint calling and genotype refinement o↵er little power to alleviate the e↵ects of

sequencing depth on the sensitivity and specificity of variant calling. Rare variant

association testing in the presence of systematic read depth bias between cases and

controls therefore required the development of a novel approach that accounts for

this bias directly in the association test.
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To this end, I implemented the RVS statistic described by Derkach et al. (2014),

which adjusts for read depth bias by using genotype dosages (as opposed to hard

genotype calls) and calculating the variance component of the test statistic (which is

read depth dependent) separately for cases and controls. I then test the performance

of this statistic in real data, using cases that had been sequenced at 2-4x average

coverage, and controls that were sequenced to 7x. Unfortunately, when using a

standard sequencing processing and quality control pipeline, this statistic failed to

control the Type I error rate. However, I overcame this problem by reverting to

the use of unrefined genotype probabilities, as the genotype refinement process is

overzealous when acting upon sites of rare variation, and applying additional quality

control filters. Using these adjustments, the number of false positive associations

when performing rare variant burden testing across genes can be well controlled,

and no systematic over-inflation of the test statistic is observed.

This process has emphasised the di�culties associated with performing large-scale

sequencing studies, particularly in a case-control setting. However, I have also

shown that, through the use of carefully chosen methods and very stringent quality

control, it is possible to perform association testing on this scale even in the presence

of systematic read depth bias between cases and controls. This analysis proves that

it is feasible for researchers to cost-e↵ectively investigate the role of low frequency

and rare variation in genetic disease risk by combining their own sequenced cases

with large, publicly-available control datasets.



Chapter 3

The role of rare and low

frequency variation in IBD risk

3.1 Introduction

Genome wide association studies (GWAS) have identified 215 risk loci for inflam-

matory bowel disease (Parkes et al., 2007; Anderson et al., 2011; Kenny et al.,

2012; Yamazaki et al., 2013; Julià et al., 2014; Yang et al., 2014b; Liu et al., 2015;

Ellinghaus et al., 2016), nearly all of which are driven by common variation. The

high correlation between common variants in close proximity has driven the success

of GWAS, but also makes it di�cult to narrow these associations down to individual

causal variants, or even to identify which gene is likely to be a↵ected. In contrast,

rare variants (which plausibly have larger e↵ect sizes) can be more straightforward

to interpret, but are more di�cult to assess. Because they are poorly tagged by

neighbouring variation, each rare variant must be directly captured in order to be

tested for association.

Recent reductions in the cost of DNA sequencing means that rare variants may now

be captured at scale. In order to maximise sample size, early IBD sequencing studies

concentrated on genes in GWAS-implicated loci (Rivas et al., 2011; Beaudoin et al.,

2013; Hunt et al., 2013; Prescott et al., 2015), which can logically be extended to

61
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study the entire exome. However, coding variation has been shown to explain at

most 20% of the IBD associations uncovered using GWAS (Huang et al., 2015),

with the remaining variants lying in non-coding, presumed regulatory, regions of the

genome. Low coverage whole genome sequencing has therefore been suggested as a

cost-e↵ective approach to capture both coding and non-coding variation in large

numbers of samples (Li et al., 2011). This approach is well suited to explore rarer

variants than are accessible using GWAS (Cai et al., 2015; Danjou et al., 2015),

although the low individual sequencing depth precludes the capture of extremely

rare and private mutations.

3.1.1 Chapter overview

In this chapter, I investigate the role of rare, low frequency and structural variation

in inflammatory bowel disease risk using low coverage whole genome sequences

from 4,280 IBD cases and 3,652 controls. In order to maximise the number of IBD

patients included in this study, the cases were sequenced to a lower average depth

(2-4x) than the controls (7x), which were already available via managed access

from the UK10K project (Walter et al., 2015). For structural variants, which are

particularly challenging to call in low coverage data, even very careful filtering

and joint analysis was not su�cient to overcome this bias. However, for rare and

low frequency variation the use of joint calling, genotype refinement, and specially

designed test statistics (Chapter 2) allows the false positive rate to be adequately

controlled.

I observe a significant burden of rare, damaging missense variation in the gene NOD2,

as well as a more general burden of such variation amongst known inflammatory

bowel disease risk genes. However, I note the need to perform larger sequence-based

studies in order to properly resolve the precise variation that is contributing to this

observation. At current sample sizes, I do not detect any burden of rare variation

within cell- and tissue-specific enhancer regions.

In collaboration, I then impute from these sequences into both new and existing

GWAS cohorts in order to test for association at ⇠12 million low frequency variants

across 16,267 cases and 18,841 controls. We discovered a missense variant in
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ADCY7 that approximately doubles the risk of ulcerative colitis (MAF=0.6%,

OR=2.19). However, despite good power to detect such associations, we did not

identify any other new low frequency risk variants, suggesting that such variants as

a class explain very little disease heritability.

3.1.2 Contributions

This study was conceived and designed by the UK IBD Genetics Consortium

(UKIBDGC), with case ascertainment, phenotyping and sample collection performed

by the numerous clinics that contribute to this e↵ort: please see Appendix A for

a full list of contributors. DNA sample preparation, sequencing, read alignment,

and initial quality control of the whole genome sequences used in this chapter was

performed by the Wellcome Trust Sanger Institute sequencing pipeline facility and

the human genetics informatics team. Calling of single nucleotide polymorphisms

and insertion-deletions, genotype refinement, quality control analyses (except where

indicated), and heritability analyses were performed by Yang Luo. Code for

identifying variants predicted to create or disrupt a transcription factor binding

motif was provided by Hailiang Huang. Imputation of GWAS datasets using an

IBD-specific reference panel was performed by Shane McCarthy; quality control

and conditional analysis of the resulting meta-analysis was performed by Loukas

Moutsianas. Analysis of the UK BioBank replication cohort was performed by

Luke Jostins. Unless stated, I carried out all other analyses.
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3.2 Data preparation

3.2.1 Low coverage whole genome sequencing

Sample ascertainment

Individuals were consented into the study based on a confirmed diagnosis of

Crohn’s disease or ulcerative colitis using standard endoscopic, radiological and

histopathological criteria. No selection was made for patients based on family

history or early age of onset, and all subtypes of CD and UC were included. Blood

or saliva samples were donated for DNA extraction at UK clinics involved in the

UK IBD Genetics Consortium (Cambridge, Dundee, Edinburgh, Exeter, London,

Manchester, Newcastle, Norwich, Nottingham, Oxford, She�eld, Torbay and the

Scottish early onset IBD project). Ethical approval was granted by the Cambridge

MREC (reference: 03/5/012).

Control samples were collected by the UK10K Consortium, including individuals

from both the Avon Longitudinal Study of Parents and Children (Boyd et al., 2013)

and the Twins UK cohort (Moayyeri et al., 2013). Full details of selection criteria

may be found in the UK10K flagship paper by Walter et al. (2015).

Sequencing and data processing

Whole genome sequencing of 1,817 ulcerative colitis cases at 2x average coverage,

and 2,697 Crohn’s disease cases at 4x average coverage, was performed at the

Wellcome Trust Sanger Institute (WTSI). For each sample, 1-3µg of DNA was

sheared to 100-1000bp using a Covaris E210 or LE220 machine, then prepared for

sequencing using an Illumina paired-end DNA library preparation kit. The resulting

libraries were selected for insert sizes of 300-500bp, and then sequenced on the

Illumina HiSeq platform as paired-end 100bp reads (according to the manufacturer’s

protocol). Controls were whole genome sequenced to 7x average coverage using the

same protocol, with 1,556 samples processed at the WTSI and 2,354 at the Beijing

Genomics Institute (BGI).
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Sequencing reads were aligned to the human reference genome by their respective

sequencing centres. Case data was aligned to hs37d5, the reference genome used in

Phase II of the 1000 Genomes Project (The 1000 Genomes Project Consortium,

2011), which consists of the GrCH37 primary assembly plus sequences from human

herpesvirus and concatenated decoy sequences. Control data was originally aligned

to the GrCH37 primary assembly that was used in Phase I of the 1000 Genomes

Project (The 1000 Genomes Project Consortium, 2010), but was later updated

to hs37d5 using the software BridgeBuilder (Luo et al., 2017). Automatic quality

control of the resulting BAM files was performed by the WTSI pipelines.

3.2.2 Variant calling and imputation improvement

Generating a SNP and indel call set

Single nucleotide polymorphisms (SNPs) and small insertion-deletions (indels) were

called jointly across 8,354 pooled sample-level BAM files that passed automatic

quality control. First, genotype likelihoods were obtained using samtools-0.19 (Li

et al., 2009) and then converted to variant calls with bcftools-0.19 (Li et al., 2013b).

Before refinement of these genotypes via imputation improvement, initial quality

control was applied to remove low-confidence sites.

Initial SNP filtering

A set of Support Vector Machines (SVMs) were trained to identify poor quality

SNP calls. Training data consisted of 1, 000 sites that overlapped with HapMap3

(Altshuler et al., 2010), and were therefore deemed highly likely to be true sites of

variation, and 1, 000 sites with a quality score QUAL < 10 in the raw VCF file.

Because the composition of HapMap3 (and established variant databases in general)

is heavily skewed towards common variation, training variants were selected so as

to roughly preserve the expected true MAF distribution in the human population

within three MAF bins (0 MAF< 0.5%, 0.5% MAF< 5%, and MAF� 5%).

The models were then trained using the following variant call features:

– DP: Raw read depth
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– MQ: Root-mean-square mapping quality of reads covering the site

– AN: Total number of alleles in called genotypes

– MDV: Maximum number of high-quality non-reference reads in samples

– EDB: End distance bias

– RPB: Read position bias

Five independent SVMs were run in parallel, and only SNPs labelled as high-quality

by at least two of the five SVMs were taken forward for imputation improvement.

Initial indel filtering

Indels were filtered using VQSR, or Variant Quality Score Recalibration (DePristo

et al., 2011), trained on the Mills-Devine high-confidence indel call set (Mills et al.,

2011). VQSR assigns each indel a variant quality score log odds ratio (VQSLOD)

based on the following features:

– DP: Approximate read depth, after reads with MQ= 255 or bad mates are

removed

– FS: Phred-scaled p-value using Fisher’s exact test to detect strand bias

– ReadPosRankSum: Z-score from Wilcoxon rank sum test of alternate vs.

reference read position bias

– MQRankSum: Z-score from Wilcoxon rank sum test of alternate vs. reference

read mapping qualities

A minimum VQSLOD score of 1.0659, which corresponds to a truth sensitivity

threshold of 97%, was used to select high-quality indels.

Genotype refinement

Genotypes at all SNP and indel sites that passed initial filtering were refined via

imputation. To increase the computational e�ciency of this process, imputation

improvement was performed in batches of 3, 000 sites, with a bu↵er region of 500

sites on either side, using BEAGLE v4.1 (Browning and Browning, 2016) with

default parameters.
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After an initial round of refinement, a number of poor-quality sites not identified

during initial quality control became apparent. These were removed using the

following filters:

– Evidence for a deviation from Hardy-Weinberg equilibrium in controls, where

the p-value < 1⇥ 10�7

– Removal of sequencing centre batch e↵ects in controls, where the p-value

< 1⇥ 10�3 when testing for association with sequencing centre

– Variants with > 10% missing genotypes following genotype refinement, where

the minimum posterior probability required to call a genotype was 0.9

– SNPs within 3 base pairs of an indel

– Clusters of indels separated by 2 or fewer base pairs, so that only one may

pass

Following these exclusions, a second round of genotype refinement was performed

using BEAGLE v4.1 to ensure that neighbouring variant calls had not been adversely

a↵ected by imputation with poor-quality sites.

Challenges of calling structural variants in a large low coverage sequenc-

ing study

Copy number variants (CNVs) are usually detected via the identification of localised

changes in read depth, an individual read that spans a deletion or insertion

breakpoint, or read pairs that map unexpectedly far apart. However, the low

average read depth of this particular dataset means that this form of variant

detection is not particularly sensitive for individual samples. I therefore called

CNVs using GenomeSTRiP 2.0 (Handsaker et al., 2015), which was designed to

discover and genotype shared deletions, duplications and multiallelic copy number

variants (mCNVs) across whole-genome sequences from multiple individuals. As

this study uses low coverage sequences, power to detect variation is limited to

larger CNVs. Thus GenomeSTRiP 1.0, which is more sensitive to smaller deletions
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and therefore usually recommended as a complementary CNV analysis, was not

used for this project.

The actual discovery and genotyping process can be broken down into several

modules, as summarised in Figure 3.1. To improve e�ciency, I ran the pre-

processing steps separately for each chromosome and cohort (CD, UC and controls).

Computational resource restrictions also required the discovery and genotyping

processes to be run separately across each chromosome, which led to a need for

manual intervention at the sample filtering step during discovery to ensure that

filtering considered all chromosomes at once.

Figure 3.1: Overview of the modular structure employed by GenomeSTRiP 2.0 to discover and

genotype CNVs across a number of low coverage whole genome sequences.
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Default GenomeSTRiP configurations were used, as per the example configuration

files provided within the software releases. Window sizing parameters, which define

the size of CNVs that can be detected, matched those used for the 1,000 Genomes

Project’s low coverage (6-8x) dataset:

tilingWindowSize 5000

tilingWindowOverlap 2500

maximumReferenceGapLength 2500

boundaryPrecision 200

minimumRefinedLength 2500

Because reads realigned from GrCH37 to hs37d5 using BridgeBuilder did not

contain appropriate metadata information for use by GenomeSTRiP 2.0, these

reads were excluded from discovery and genotyping.

3.2.3 Quality control

Sample filtering

Individuals failing on one or more of the following filtering criteria (when calculated

using refined genotypes) were removed from the dataset:

– Heterozygosity rate ±3.5 standard deviations from the mean.

– Duplicate or closely-related individuals with ⇡̂ > 0.25 (indicating second-

degree relatives or closer). To identify these individuals, SNPs were first

pruned such that no two sites within 5,000kb had an r2 > 0.2, and the

Identity-By-State value for each pair of individuals was then calculated using

only variants with MAF > 1%. Only one individual from each duplicate or

related pair was removed.

– Individuals of non-European ancestry, as identified using a principal compo-

nent analysis projected from 11 HapMap2 populations.
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Site filtering for SNPs and indels

In addition to the SNP and indel site filters applied in section 3.2.2, the following

criteria were used to remove lower quality sites prior to association testing:

– Minimum score < 0.1 in any of the five independent SVM runs

– INFO score < 0.4

– Evidence for a deviation from Hardy-Weinberg equilibrium in controls, where

the p-value < 10�6

Site filtering for copy number variants

Initial CNV filtering was performed in accordance with the default thresholds set

in the GenomeSTRiP 2.0 CNVDiscoveryPipeline workflow. These thresholds are

generous, and many poor-quality sites are expected to remain: nevertheless, this

process removed 86, 379 variants (out of 179, 774) variants from the discovery set,

and made manual quality control more manageable. The filters applied at this step

include:

– Deletion or mixed CNV length > 1, 000. Given the search windows used,

this still allows variants slightly smaller than those we expect to confidently

detect to be included.

– Duplication length > 2, 000. This follows the recommendations of Handsaker

et al. (2015), who note that small duplications appear to have a higher false

discovery rate than equivalently sized deletions or mixed CNVs.

– Call rate > 0.9, to remove those variants with excessive missingness.

– Density> 0.5, with density calculated by dividing GSELENGTH (the e↵ective

CNV length) by GCLENGTH (the denominator of GC content).

– Cluster separation > 5. This measure checks that appropriate cluster sep-

aration was achieved by the Gaussian mixture model used in read depth

genotyping.
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– GSVDJFRACTION > 0. Remove variants with any evidence of V(D)J recom-

bination, based on the vdjregions.bed file provided with the GenomeSTRiP

metadata.

I then apply the following dataset-specific quality control filters:

– Remove CNVs attributable to missing sample data. Specifically, an excess of

very large copy number variants with a MAF of 1-2% was observed (Figure 3.2),

that I traced down to 1, 103 copy number variants that were driven by 95

control samples with a large stretch of missing data on chromosome 6.

Figure 3.2: Due to a stretch of missing data on chromosome 6 for 95

control samples, there is an apparent excess of large copy number variants

with a MAF of 1-2%.
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– Remove CNVs with GSELENGTH 60,000. For shorter copy number vari-

ants, I observed considerable di↵erences in sensitivity across di↵erent mean

coverage depths (Figure 3.3).

Figure 3.3: The average number of calls per individual per site, across

di↵erent copy number variant (CNV) lengths. UK10K controls (7x) in

yellow, Crohn’s disease cases (4x) in red, and ulcerative colitis cases (2x)

in blue.

– Keep only biallelic sites, for simplicity when association testing. However,

because GenomeStrip 2.0 is capable of calling multi-allelic CNVs, I noted an

abundance of common sites where a small fraction of non-reference individuals

contain a CNV in the opposite direction to the majority call, possibly due

in part to the particularly low coverage seen in this dataset. At sites where

this fraction of inconsistent directions is less than 10% of the alternate calls

made, I retain the site as biallelic.
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3.3 Structural variation

Following quality control, I observed an approximately equal number of variants

in cases and controls, but retained only 1,475 CNVs. Of these, just 59 had a

MAF > 0.1% and were taken forward for single site association testing. Following

association testing using a likelihood score test, as implemented in SNPTEST v2.5

(Marchini and Howie, 2010), no individual CNV was significantly associated after

correction for multiple testing.

I then considered the 1,464 CNVs with a MAF  0.5% in controls, performing a

simple chi-squared test to compare the cumulative minor allele frequencies of these

variants between cases and controls (Table 3.1). I note that there is a significant

genome-wide excess of rare duplications in controls (P = 0.0002), suggesting

that even after very stringent filtering the data remains too noisy for meaningful

conclusions to be drawn. Therefore, to avoid including any bias due to sequencing

depth heterogeneity between cases and controls, I tested within cases only for a

burden of CNVs in known IBD regions (Liu et al., 2015) compared to regions not

previously associated with IBD. However, the number of CNVs contributing to

these tests were very small (Table 3.1), and no significant results were obtained.

Table 3.1: Testing for an association of structural variation with IBD.

Variation Number of

CNVs

Cumulative

MAF in A

Cumulative

MAF in B

P -value

A
)
C
a
se
s

v
s

B
)
C
o
n
tr
o
ls Deletions 668 0.00019 0.00017 0.0499

Duplications 796 0.00020 0.00023 0.0002

Combined 1,464 0.00019 0.00020 0.1200

A
)
IB

D

v
s

B
)
N
o
n
-I
B
D

R
eg
io
n
s Deletions 5 0.00012 0.00019 0.2967

Duplications 11 0.00013 0.00020 0.1227

Combined 16 0.00012 0.00019 0.0684

These results suggest that high coverage whole genome sequencing of more individ-

uals, preferably with balanced coverage between cases and controls, will be required

to evaluate the contribution of rare CNVs to IBD risk.
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3.4 Rare variation

Low coverage sequencing is not generally a suitable study design with which to

accurately capture very rare and private variants, particularly as joint-calling and

cross-sample genotype refinement adds little information at sites where nearly all

individuals are homozygous for the major allele. Nevertheless, given how di�cult

such variants are to impute from GWAS data (recently, McCarthy et al. (2016)

showed that even a reference panel of over 32,000 individuals o↵ers little imputation

accuracy for MAF < 0.1%), this sequence dataset represents the largest source

of rare variation in an IBD cohort to date. Because of this, it was decided that

the potential role of rare variation in IBD risk within this dataset was worth

investigating.

Due to the sequencing depth heterogeneity between cases and controls, existing rare

variant burden methods will give systematically inflated test statistics. I therefore

performed rare variant burden testing across both genes and putative enhancers

using unrefined genotype probabilities and an extension of the Robust Variance

Score statistic by Derkach et al. (2014), which was developed to account for this

type of bias as described in Chapter 2.

3.4.1 Additional quality control

Additional site filtering was required prior to rare variant association testing, as

these types of studies are more susceptible to di↵erences in read depth between

cases and controls (as discussed in Chapter 2). This filtering consisted of removing:

– Singleton variants, observed only once in the population.

– Variants with a missingness rate >0.9, when calculated using genotype

probabilities estimated from the samtools genotype quality (GQ) field

– Low confidence observations (maximum genotype probability  0.9) compris-

ing �1% of non-missing data

– Sites with INFO < 0.6 in the appropriate cohorts
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I will note here that the singleton variants removed from this analysis have actually

been the primary focus of other rare variant association studies in complex traits,

such as schizophrenia and educational attainment (Ganna et al., 2016; Genovese

et al., 2016), where they have been shown to have an important role. However,

in this dataset we observe distinct di↵erences in the specificity of variant calling

between the lowest coverage group (2x) and the higher coverage groups (4x and 7x),

as shown in Figure 2.6. This bias cannot be fully accounted for during association

testing, and was not able to be overcome using more stringent filtering techniques.

Therefore, in order to maintain a well-controlled Type I error rate, it was necessary

to remove all such sites from the analysis. As with structural variants, high coverage

whole genome sequencing of more individuals, preferably with balanced coverage

between cases and controls, will be required to assess the contribution of ultra rare

variation to IBD risk.

3.4.2 Burden testing across coding regions

Gene-based burden tests

For each of 18,670 genes, as defined by annotation with an Ensembl ID, I tested

for a di↵erential burden of rare (MAF  0.5% in controls) variation between the

sequenced cases and controls. Two separate burden tests were performed for each

gene: one aggregating all functional coding variants and one for all predicted

damaging functional coding variants, as defined in Table 3.2. Variant annotations

were assigned using the Variant E↵ect Predictor by McLaren et al. (2010) and

the Combined Annotation Dependent Depletion (CADD) score by Kircher et al.

(2014). The CADD score is used to estimate the deleteriousness of a given variant

in the human genome, with higher scores indicating a variant is more likely to

be deleterious: the threshold of 21 used here represents the median value of all

possible canonical splice sites and non-synonymous variants.
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Table 3.2: Variant annotations used to define each of the gene-based burden test subsets.

Annotation Functional coding Predicted damaging

frameshift variant X X
stop gained X CADD�21

initiator codon variant X CADD�21

splice donor variant X CADD�21

splice acceptor variant X CADD�21

missense variant X CADD�21

stop lost X CADD�21

inframe deletion X X

inframe insertion X X

Every test was repeated to independently check for association with CD, UC and

IBD at every gene containing one or more relevant variants. This resulted in a

total of 100, 335 tests, with an average of 5.84 variants contributing to each test

(Table 3.3). To correct for this multiple testing, I used a Bonferroni-adjusted

threshold for significance of 5 ⇥ 10�7, reflecting an overall alpha value of 0.05.

This does not take into account the correlation between the di↵erent tests (as the

predicted damaging variant set is a direct subset of the functional coding set, and

the CD and UC individuals are a subset of the IBD set) and therefore may be too

stringent a threshold.

Table 3.3: The number of gene-based burden tests performed for each combination of annotation

set and phenotype, with the average number of variants contributing to each of those tests given

in parentheses.

Test Functional coding Predicted damaging Total

UC 18,149 (6.83) 14,850 (4.25) 32,999 (5.67)

CD 18,670 (7.42) 15,406 (4.56) 34,076 (6.13)

IBD 18,293 (6.88) 14,967 (4.26) 33,260 (5.70)
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For each gene with a final p-value < 5 ⇥ 10�4, I inspect the BAM files for the

three variants with the largest individual contributions to the overall gene signal

(as determined using single-site association testing with the RVS statistic at each

site), in order to assess the quality of variant calling at that position. This manual

inspection was used to identify sites where, for example, all the alternate alleles lie

at the ends of reads, or predominantly on reads sequenced in one direction. I also

check for regions that appear to have been generally di�cult to map, or contain an

excess of potential errors around the variant call (Figure 3.4). Details of the genes

passing this quality control check can be found in Table 3.4, while the full tests are

summarised in Figures 3.5 and 3.6.

Figure 3.4: Manual inspection of variant calling at nominally associated sites, to identify low

quality sites that may have passed the broad quality control thresholds.



78 Chapter 3. The role of rare and low frequency variation in IBD risk

F
ig
u
re

3.
5:

M
an

h
at
ta
n
an

d
Q
Q

p
lo
ts

sh
ow

in
g
th
e
re
su
lt
s
of

ge
n
e-
b
as
ed

b
u
rd
en

te
st
s
u
si
n
g
ra
re
,
fu
n
ct
io
n
al

co
d
in
g
va
ri
at
io
n
.



3.4. Rare variation 79

F
ig
u
re

3.
6:

M
an

h
at
ta
n
an

d
Q
Q

p
lo
ts

sh
ow

in
g
th
e
re
su
lt
s
of

ge
n
e-
b
as
ed

b
u
rd
en

te
st
s
u
si
n
g
ra
re
,
fu
n
ct
io
n
al

co
d
in
g
va
ri
at
io
n
th
at

is

p
re
d
ic
te
d
to

b
e
d
am

ag
in
g.



80 Chapter 3. The role of rare and low frequency variation in IBD risk

T
ab

le
3.
4:

G
en

es
w
it
h
a
p-
va
lu
e
<

5
⇥
10

�
4
in

th
e
ge
n
e-
b
as
ed

b
u
rd
en

te
st
s.

F
or

ea
ch

ge
n
e
ex
ce
ed

in
g
th
is

th
re
sh
ol
d
,
th
e
B
A
M

fi
le
s
fo
r

th
e
th
re
e
va
ri
an

ts
w
it
h
th
e
la
rg
es
t
co
n
tr
ib
u
ti
on

to
th
e
ov
er
al
l
ge
n
e
si
gn

al
w
er
e
in
sp
ec
te
d
,
an

d
an

y
w
it
h
q
u
es
ti
on

ab
le

va
ri
an

t
ca
ll
s
w
er
e

ex
cl
u
d
ed

fr
om

th
is

ta
b
le
.

G
en

e
N
am

e
E
n
se
m
b
l
ID

P
va
lu
e

P
h
en
ot
yp

e
A
n
n
ot
at
io
n
se
t

E
↵
ec
t

N
O
D
2

E
N
S
G
00

00
01

67
20

7
0.
00

00
00

1
C
D

F
u
n
ct
io
n
al

co
d
in
g

R
is
k

N
O
D
2

E
N
S
G
00

00
01

67
20

7
0.
00

00
00

4
C
D

P
re
d
ic
te
d
d
am

ag
in
g

R
is
k

N
O
D
2

E
N
S
G
00

00
01

67
20

7
0.
00

00
01

IB
D

P
re
d
ic
te
d
d
am

ag
in
g

R
is
k

N
O
D
2

E
N
S
G
00

00
01

67
20

7
0.
00

00
03

IB
D

F
u
n
ct
io
n
al

co
d
in
g

R
is
k

IG
K
C

E
N
S
G
00

00
02

11
59

2
0.
00

00
37

C
D

F
u
n
ct
io
n
al

co
d
in
g

R
is
k

W
W
P
1

E
N
S
G
00

00
01

23
12

4
0.
00

00
65

IB
D

F
u
n
ct
io
n
al

co
d
in
g

P
ro
te
ct
iv
e

V
W
A
5A

E
N
S
G
00

00
01

10
00

2
0.
00

00
7

C
D

F
u
n
ct
io
n
al

co
d
in
g

R
is
k

C
T
B
-7
8H

18
.1

E
N
S
G
00

00
02

53
11

0
0.
00

00
81

IB
D

F
u
n
ct
io
n
al

co
d
in
g

R
is
k

K
R
T
16

E
N
S
G
00

00
01

86
83

2
0.
00

01
29

IB
D

F
u
n
ct
io
n
al

co
d
in
g

P
ro
te
ct
iv
e

D
C
T
D

E
N
S
G
00

00
01

29
18

7
0.
00

01
75

IB
D

F
u
n
ct
io
n
al

co
d
in
g

P
ro
te
ct
iv
e

C
A
D
M
4

E
N
S
G
00

00
01

05
76

7
0.
00

01
83

IB
D

F
u
n
ct
io
n
al

co
d
in
g

R
is
k

U
G
T
1A

3
E
N
S
G
00

00
02

43
13

5
0.
00

02
39

IB
D

P
re
d
ic
te
d
d
am

ag
in
g

R
is
k

L
R
R
C
55

E
N
S
G
00

00
01

83
90

8
0.
00

02
5

C
D

F
u
n
ct
io
n
al

co
d
in
g

R
is
k

L
R
R
C
55

E
N
S
G
00

00
01

83
90

8
0.
00

02
5

C
D

P
re
d
ic
te
d
d
am

ag
in
g

R
is
k

M
Y
O
19

E
N
S
G
00

00
01

41
14

0
0.
00

03
14

C
D

F
u
n
ct
io
n
al

co
d
in
g

P
ro
te
ct
iv
e

D
O
C
K
8

E
N
S
G
00

00
01

07
09

9
0.
00

03
53

C
D

F
u
n
ct
io
n
al

co
d
in
g

R
is
k

E
R
B
B
3

E
N
S
G
00

00
00

65
36

1
0.
00

03
88

U
C

P
re
d
ic
te
d
d
am

ag
in
g

P
ro
te
ct
iv
e

S
O
A
T
2

E
N
S
G
00

00
01

67
78

0
0.
00

04
48

IB
D

F
u
n
ct
io
n
al

co
d
in
g

P
ro
te
ct
iv
e

A
R
H
G
A
P
19

-S
L
IT

1
E
N
S
G
00

00
02

69
89

1
0.
00

04
53

IB
D

P
re
d
ic
te
d
d
am

ag
in
g

R
is
k

IL
23

R
E
N
S
G
00

00
01

62
59

4
0.
00

04
92

C
D

P
re
d
ic
te
d
d
am

ag
in
g

P
ro
te
ct
iv
e



3.4. Rare variation 81

The only gene for which I detected a significant burden of rare variants was NOD2

(Pfunctional = 1 ⇥ 10�7), the well-known Crohn’s disease risk gene. To ensure

this association was not due to the known low frequency NOD2 risk variants, I

evaluated the independence of the rare variant signal against the common IBD-

associated coding variants rs2066844, rs2066845, and rs2066847. Individuals with

a minor allele at any of these sites were assigned to one group, and those with

reference genotypes to another. Burden testing for this new phenotype produced

Pfunctional = 0.0117 and Pdamaging = 0.7311. On average, contributing rare variants

were at an elevated frequency in non-NOD2 canonical mutation carriers, compared

to those individuals with a minor allele at any of these three sites.

When compared to a previous targeted sequencing study by Rivas et al. (2011),

which investigated NOD2 in 350 CD cases and 350 controls, I discover a number

of additional variants (Figure 3.7). These additional variants can be seen to be

contributing to the significant burden of rare variation in NOD2, with evidence

of a signal remaining even after removal of the previously discovered rare variants

(Pfunctional = 5.4 ⇥ 10�4, Pdamaging = 7.5 ⇥ 10�5). However, cumulatively these

additional variants explain just 0.13% of the variance in Crohn’s disease liability,

compared to 1.15% for the previously known NOD2 variants (starred in Figure 3.7).

This highlights the fact that the low frequency of very rare variants means that

they cannot account for much of the overall population variability in disease risk.
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Gene set tests

Some genes that have been implicated by IBD GWAS had suggestive p-values, but

did not reach exome-wide significance (P = 5 ⇥ 10�7, Table 3.4). To test if the

allelic series of associated variation observed in NOD2 might also exist at other

known IBD genes, I combined the individual gene results to perform gene set tests

across IBD risk genes.

For these tests I created two separate definitions of IBD risk genes. The first, more

stringent, definition included only genes that have been confidently implicated

in IBD risk (Table 3.5) through fine-mapping and eQTL studies (Huang et al.,

2015; Fairfax et al., 2014; Wright et al., 2014). A second, broader definition of

IBD-associated genes was created to also include 63 additional genes that were

implicated by two or more candidate gene approaches in Jostins et al. (2012).

Table 3.5: IBD-associated genes implicated by a coding variant in the fine-mapping credible sets

recently defined by Huang et al. (2015), or with a plausible eQTL association.

Gene ID Name Disease Gene ID Name Disease

ENSG00000085978 ATG16L1 CD ENSG00000134460 IL2RA CD

ENSG00000187796 CARD9 IBD ENSG00000005844 ITGAL UC

ENSG00000013725 CD6 CD ENSG00000173531 MST1 IBD

ENSG00000164308 ERAP2 CD ENSG00000167207 NOD2 CD

ENSG00000143226 FCGR2A IBD ENSG00000095110 NXPE1 UC

ENSG00000176920 FUT2 CD ENSG00000134242 PTPN22 CD

ENSG00000115267 IFIH1 UC ENSG00000166949 SMAD3 IBD

ENSG00000136634 IL10 IBD ENSG00000079263 SP140 CD

ENSG00000115607 IL18RAP IBD ENSG00000106952 TNFSF8 IBD

ENSG00000162594 IL23R IBD ENSG00000105397 TYK2 IBD
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I first tested the stringent gene set (after excluding NOD2, which otherwise domi-

nates the test) using an enrichment procedure that allows for genes with opposite

directions of e↵ect to be combined, as described in Chapter 2. To account for

residual bias due to sequencing depth di↵erences between cases and controls (that

is not fully accounted for using the RVS statistic with such large burden tests), I

evaluate the significance of the gene set within the context of the exome-wide gene

set. The test was performed to 105 permutations separately for CD, UC and IBD,

and for each of the functional coding and predicted damaging variant definitions.

The results from these tests are summarised in Table 3.6.

Table 3.6: P -values for burden tests performed on the stringently-defined set of IBD risk genes.

Results for the Crohn’s disease burden test excluding NOD2 are shown in parentheses.

Functional coding Predicted damaging

UC 0.7330 0.4615

CD 0.0001 (0.2291) 0.0000 (0.0045)

IBD 0.2275 0.0026

I detect a burden of rare variants in the twelve confidently implicated Crohn’s disease

genes (Pdamaging CD = 0.0045) and seven confidently implicated inflammatory bowel

disease genes (Pdamaging IBD = 0.0026) that contained at least one damaging

missense variant. This signal is driven by a mixture of genes where rare variants

are risk increasing (e.g. NOD2 ) and risk decreasing (e.g. IL23R), as shown in

Figure 3.8. It is notable that this burden is not detected when considering all

functional coding variation, highlighting the value of being able to predict the likely

functional impact of a variant in order to better refine the signal to noise ratio of the

burden tests. Similarly, I observe no signal in the second, less stringently defined,

set of IBD-associated genes (Table 3.7). Figure 3.8 highlights how the broader gene

set definition contributes a number of genes that are not associated with IBD in

this dataset, causing the signal to be diluted. This observation underscores the

importance of using methods such as fine-mapping and eQTL associations when

causally assigning an association signal to a particular gene.
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Table 3.7: The burden of rare, predicted damaging (CADD �21) coding variation in IBD

gene sets.

Gene sets Constituents Phenotype P -value

NOD2 NOD2 CD 4⇥ 10�7

Other IBD genes

implicated by

causal coding or

eQTL variants

(genes in brackets

had zero con-

tributing rare

variants)

CARD9, FCGR2A, IFIH1,

IL23R, MST1, (SMAD3),

TYK2, (IL10), IL18RAP,

(ITGAL), NXPE1,

TNFSF8

UC 0.4615

ATG16L1, CARD9,

CD6, FCGR2A, FUT2,

IL23R, MST1, (NOD2),

PTPN22, (SMAD3),

TYK2, ERAP2, (IL10),

IL18RAP, (IL2RA),

(SP140), TNFSF8

CD 0.0045

CARD9, FCGR2A,

IL23R, MST1, (SMAD3),

TYK2, (IL10), IL18RAP,

TNFSF8

IBD 0.0026

Other IBD GWAS

genes

Genes implicated by two

or more candidate gene ap-

proaches in Jostins et al.

(2012)

UC 0.9512

CD 0.9438

IBD 0.9307
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Figure 3.8: The burden of rare damaging variants in Crohn’s disease. Each point represents a

gene in my confidently implicated (green) or generically implicated (blue) gene sets. Genes are

ranked on the x-axis from most enriched in cases to most enriched in controls, and position on the

y-axis represents significance. The purple shaded region indicates where 75% of all genes tested

lie. The burden signal is driven by a mixture of genes where rare variants are risk increasing (e.g.

NOD2 ) and risk decreasing (IL23R).

3.4.3 Burden testing across non-coding regions

Enhancer-based burden tests

Using the same approach outlined above for individual genes, I evaluated the

role of rare (MAF  0.5% in controls) regulatory variation using burden tests

across enhancer regions. I consider enhancer regions as defined by the FANTOM5

project (Andersson et al., 2014), which used cap analysis of gene expression

(CAGE) to identify enhancer activity through the presence of balanced bidirectional

capped transcripts. In particular, I focus my testing on those enhancers that were

transcribed at a significant expression level in at least one of the 432 primary cell
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or 135 tissue samples tested by the FANTOM5 consortium, which are referred to

as ’robust enhancers’ by Andersson et al. (2014). The locations of these robust

enhancers were downloaded using the robust enhancers.bed track available at

http://enhancer.binf.ku.dk/presets/.

As with the gene-based burden tests, I looked to restrict the tested variants to those

sites predicted to have some sort of functional impact, in order to maximise power.

However, estimating the likely functional impact of variation within an enhancer

region is a challenging task, as understanding is generally limited to a handful of

sites that have been through extensive experimental follow-up. One of the few

functional aspects of non-coding variation that can be predicted genome-wide is the

presence of certain transcription factor binding motifs, and whether a given variant

is likely to disrupt or create a known motif. The performance of other measures

that have been calculated genome-wide, including the CADD score, have generally

not been thoroughly evaluated in non-coding regions due to a lack of testing data.

For each robustly-defined enhancer, I therefore chose to perform two burden tests:

one containing all variation overlapping with the enhancer region, and one containing

just those variants predicted to disrupt or create a known transcription binding

motif (TFBM). I annotated variants as TFBM-disrupting or TFBM-creating using

the approach described by Huang et al. (2015), who test for variants that are likely

to a↵ect a highly conserved position in a TFBM. How conserved a position is can

be determined using the information content (IC): this can be calculated using

Equation 3.1, where fb,i is the frequency of base b at position i (D’haeseleer, 2006).

Ii = 2 +
X

b

fb,i log2 fb,i (3.1)

I considered all ENCODE transcription factor ChIP-seq motifs (Kheradpour and

Kellis, 2014) that had an overall information content � 14 bits (which is equivalent

to 7 perfectly conserved positions), and checked if a given variant created or

disrupted that motif at a high-information site (IC � 1.8).

Each test was repeated separately for UC, CD and IBD, resulting in 121, 848 tests,

with an average of 2.27 variants contributing to each test (Table 3.8).
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Table 3.8: The number of enhancer-based burden tests performed for each combination of

annotation set and phenotype, with the average number of variants contributing to each of those

tests given in parentheses.

Test All variants A↵ecting a TFBM Total

UC 28,292 (2.64) 11,532 (1.29) 39,824 (2.25)

CD 29,628 (2.75) 12,403 (1.31) 42,031 (2.32)

IBD 28,453 (2.62) 11,540 (1.29) 39,993 (2.24)

No individual enhancer contains a significant burden of rare variation (Figures 3.9

and 3.10) and passes manual quality control. It is also worth noting that, even for

those variants that appear amongst the ‘froth’ of suggestively significant p-values,

at this stage it is very di�cult to draw meaningful conclusions from these individual

enhancer burden tests. For the majority of enhancers in the human genome, it

is not known how they are likely to a↵ect the expression of a given gene, or even

which gene they are likely to act upon.

A common approach to try and derive this information is to map expression

quantitative trait loci (eQTLs), which are genomic regions statistically associated

with the expression level (mRNA abundance) of a given gene (Albert and Kruglyak,

2015). Alternatively, enhancer-gene interactions can be detected directly, using

conformation capture methods such as Hi-C. These methods take advantage of

the fact that, during transcription, the enhancer and promoter need to be brought

into close physical proximity to chemically fix chromosomal contacts. This causes

fragments of DNA that are not necessarily close in the linear genome to be linked

prior to sequencing, allowing long-range spatial contacts to be resolved (Belton

et al., 2012).

However, regardless of the method used, identifying the role of a given enhancer

requires testing in the correct cell type and under the correct conditions. For

example, Fairfax et al. (2014) discover a number of important immune eQTLs that

only occur in monocytes after application of specific stimuli. To try and capture

some of this cell-specific expression, studies such as the GTEx consortium are

mapping eQTLs across a range of tissues in multiple individuals (GTEx Consortium,
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2015), while others are undertaking similar endeavours using Hi-C (Mifsud et al.,

2015). As these resources continue to grow, refining of enhancer variant sets to test

and interpretation of individual enhancer results may be improved in the future.

Cell- and tissue-specific enhancer set tests

Although extensive catalogues of enhancer activity across cell types and conditions

are still under development, FANTOM5 does provide an estimate of cell- and/or

tissue-type specific expression across 69 cell types and 41 tissues (Table 3.9). I

therefore combined the individual enhancer tests into sets based on these expression

patterns, looking to both improve power in an analogous fashion to the gene set

tests above, and increase the interpretability of any rare variant burden that may

be uncovered.

Enhancers were assigned to groups using the definition of ‘positive di↵erential

expression’ provided by Andersson et al. (2014). This considers the union of all

significantly expressed enhancers from all samples within a given cell or tissue

type (a ‘facet’), and performs pair-wise comparisons between each of the facets

(assessing cells and tissues separately). An enhancer is considered di↵erentially

expressed in a given facet if it has at least one pair-wise significant di↵erential

expression, plus overall positive standard linear statistics. This means that positive

di↵erential expression is therefore not the same as exclusive expression in a given

cell or tissue. I obtained lists of these di↵erentially expressed enhancer sets from

http://enhancer.binf.ku.dk/presets/.

None of these cell- or tissue-specific enhancer sets had a significant burden of rare

variation after correction for multiple testing (Table 3.10).
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Table 3.9: The 69 cell types and 41 tissue types for which FANTOM5 defines preferentially

expressed enhancer sets.

Cell types

neuronal stem cell endothelial cell of lymphatic vessel

myoblast epithelial cell of Malassez

osteoblast lens epithelial cell

ciliated epithelial cell epithelial cell of prostate

blood vessel endothelial cell epithelial cell of esophagus

mesothelial cell mammary epithelial cell

T cell preadipocyte

mast cell keratocyte

sensory epithelial cell trabecular meshwork cell

astrocyte respiratory epithelial cell

mesenchymal cell enteric smooth muscle cell

fat cell kidney epithelial cell

chondrocyte amniotic epithelial cell

melanocyte cardiac fibroblast

hepatocyte fibroblast of choroid plexus

skeletal muscle cell fibroblast of the conjuctiva

macrophage fibroblast of gingiva

keratinocyte fibroblast of lymphatic vessel

vascular associated smooth muscle cell fibroblast of periodontium

tendon cell fibroblast of pulmonary artery

dendritic cell hair follicle cell

stromal cell intestinal epithelial cell

neuron iris pigment epithelial cell

reticulocyte placental epithelial cell

corneal epithelial cell retinal pigment epithelial cell

monocyte bronchial smooth muscle cell

acinar cell smooth muscle cell of the esophagus

natural killer cell smooth muscle cell of trachea

hepatic stellate cell uterine smooth muscle cell

pericyte cell skin fibroblast

urothelial cell gingival epithelial cell

cardiac myocyte fibroblast of tunica adventitia of artery

basophil endothelial cell of hepatic sinusoid

neutrophil smooth muscle cell of prostate

lymphocyte of B lineage

Continued on next page
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Table 3.9 – Continued from previous page

Tissue types

lymph node submandibular gland

large intestine parotid gland

blood blood vessel

throat placenta

testis thyroid gland

stomach lung

heart skin of body

brain spleen

eye liver

penis small intestine

female gonad gallbladder

uterus kidney

vagina spinal cord

adipose tissue umbilical cord

esophagus meninx

salivary gland prostate gland

skeletal muscle tissue thymus

smooth muscle tissue tonsil

urinary bladder olfactory region

pancreas internal male genitalia

tongue

Table 3.10: Enhancer set-based tests with P < 0.005. ‘TFBM’ refers to set tests performed only

using rare variants predicted to create or disrupt a transcription factor binding motif, while ‘All’

includes all rare variants within the relevant enhancer region. No set test reaches significance

after multiple correction testing for the 660 tests performed.

Cell/tissue type P -value Disease Annotation # enhancers # variants

skeletal muscle tissue 0.00058 CD All 67 222

skeletal muscle tissue 0.00068 IBD All 61 188

skeletal muscle cell 0.00253 IBD TFBM 293 397

melanocyte 0.0039 CD All 379 1, 241

stromal cell 0.00398 IBD TFBM 272 401

cardiac fibroblast 0.00425 UC TFBM 192 278
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3.5 Low frequency variation

To investigate the role of low frequency variation in this sequencing dataset, we

tested 13 million SNPs and small indels with MAF � 0.1% for association. It was

noted that quality control had successfully controlled for systematic di↵erences due

to sequence depth (�1000 UC = 1.05, �1000 CD = 1.04, �1000 IBD = 1.06, Figure 3.11),

while still retaining power to detect known associations.

Figure 3.11: QQ plots of genome-wide association studies for variants with MAF � 0.1% in

the sequencing dataset. �1000 values are reported for the ulcerative colitis, Crohn’s disease

and inflammatory bowel disease analyses. Grey shapes show 95% confidence intervals. Figures

produced by Yang Luo.

However, while it was estimated that this stringent quality control produced well

calibrated association test statistics for more than 99% of sites, there were also

many extremely significant p-values at SNPs outside of known loci (for example,

there were ⇠7,000 sites with P < 1⇥ 10�15). 95% of these extremely significant

sites had an allele frequency below 5%. In contrast to GWAS, where basic quality

control can almost completely eliminate false positive associations, the biased

sequencing depths in this study makes it di�cult to identify true associations from

this data alone.
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3.5.1 Imputation into GWAS

As was also observed by a previous study of type 2 diabetes with a similar design

(Fuchsberger et al., 2016), our sequencing dataset alone is not well powered to

identify new associations, even if all samples were sequenced at the same depth

(Figure 3.12).

Figure 3.12: Relative power of this study compared to previous GWAS. The black line shows the

path through frequency-odds ratio space where the latest International IBD Genetics Consortium

(IIBDGC) meta-analysis (Liu et al., 2015) had 80% power, and the green line shows the same for

this study. The earlier study had more samples but restricted their analysis to MAF > 1%.

We therefore sought to increase power by using imputation to leverage both new

and existing IBD GWAS. As previous data has shown that expanded reference

panels can significantly improve the imputation accuracy of low frequency variants

(McCarthy et al., 2016), we built a phased reference panel of 10,971 individuals
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by combining our low coverage whole genomes with the 1000 Genomes Phase 3

haplotypes (1000 Genomes Project Consortium et al., 2015).

I then collected all available UK IBD GWAS data, including samples from two

previous studies that did not overlap with those in our sequencing dataset (The

Wellcome Trust Case Control Consortium, 2007; Barrett et al., 2009), and a novel

UK IBD Genetics Consortium cohort. This new UK IBD GWAS consisted of

8,860 IBD patients without previous GWAS data and 9,495 UK controls from the

Understanding Society project (www.understandingsociety.ac.uk), all genotyped

using the Illumina HumanCoreExome v12 chip. I shall discuss the variant calling

and quality control procedures I applied to this dataset in Chapter 4.

These genotyped samples were all imputed using the PBWT software (Durbin,

2014) and the IBD-enriched reference panel described above. We combined these

imputed genomes with our sequenced genomes to create a final dataset of 16,267

IBD cases and 18,841 UK population controls (Table 3.11).

Table 3.11: Sample counts of the imputed GWAS cohorts.

Cohort Case Control Total

WTCCC1 1, 206 2, 918 4, 124

WTCCC2 1, 921 2, 776 4, 697

GWAS3 CD 4, 264 9, 495 13, 759

GWAS3 UC 4, 072 9, 495 13, 567

GWAS3 IBD 8, 860 9, 495 18, 355

Sequencing CD 2, 513 3, 652 6, 165

Sequencing UC 1, 767 3, 652 5, 419

Sequencing IBD 4, 280 3, 652 7, 932

Total 16, 267 18, 841 35, 108
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3.5.2 Quality control and association testing

I tested each GWAS cohort separately for association to UC, CD and IBD using

a likelihood score test as implemented in SNPTEST v2.5 (Marchini and Howie,

2010), conditioning on the first ten principal components as computed for each

cohort when excluding the MHC region (chromosome 6:28-34Mb). I then filtered

all output to sites with MAF � 0.1%, and INFO � 0.4, before using METAL

(Willer et al., 2010) to perform a standard error weighted meta-analysis of all three

GWAS cohorts with our sequencing cohort (which was also pre-filtered to MAF

� 0.1% and INFO � 0.4).

The output of the fixed-e↵ects meta-analysis was then further filtered to remove

sites with:

– INFO< 0.8 in at least 1/3 (CD,UC) or 2/4 (IBD) of the cohorts included in

the meta-analysis

– High evidence for heterogeneity (I2 > 0.90) or deviations from HWE in

controls (PHWE < 1⇥ 10�7) in any of the cohorts

– A meta-analysis p-value higher than all of the cohort-specific p-values

– No evidence of association with IBD in these datasets, but present in the

Immunochip or IIBDGC datasets

This produced high quality genotypes at 12 million variants, which represented

more than 90% of the sites with MAF > 0.1% that we could directly test in our

sequences. Compared to the most recent meta-analysis by the IIBDGC (Liu et al.,

2015), which used a reference panel almost ten times smaller than ours, we tested

an additional 2.5 million variants for association to IBD. Furthermore, because the

GWAS cases and controls were genotyped using the same arrays, they should be

not be di↵erentially a↵ected by the variation in sequencing depths in the reference

panel, and thus not susceptible to the artifacts observed in the sequence-only

analysis. Indeed, compared to the thousands of false-positive associations present

in the sequence-only analysis, the imputation based meta-analysis revealed only

four previously unobserved genome-wide significant IBD associations. Three of
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these had MAF > 10%, so were carried forward to a meta-analysis of our data and

published IBD GWAS summary statistics as will be discussed in Chapter 4.

3.5.3 p.Asp439Glu in ADCY7 doubles risk of ulcerative

colitis

The fourth new association (P = 9⇥10�12) was a 0.6% missense variant (p.Asp439Glu,

rs78534766) in ADCY7 that doubles risk of ulcerative colitis (OR=2.19, 95%

CI =1.75-2.74), and is strongly predicted to alter protein function (SIFT=0,

PolyPhen=1, MutationTaster=1). This variant was associated (P = 1⇥ 10�6) in a

subset of directly genotyped individuals, suggesting the signal was unlikely to be

driven by imputation errors. However, to further validate this finding we obtained

two replication cohorts:

– 450 UC cases and 3,905 controls (p=0.0009)

We genotyped an additional 450 UK ulcerative colitis cases and obtained

3,905 population controls (Dupuytren’s contracture cases) from the British

Society for Surgery of the Hand Genetics of Dupuytren’s Disease consortium,

both genotyped using the Illumina Human Core Exome v12 array. I applied

the same quality control procedure to this replication dataset as the new UK

IBD GWAS dataset (see Chapter 4).

– 982 UC cases and 136,464 controls from the UK Biobank (p=0.0189)

We extracted an additional 982 additional UC samples and 136,464 con-

trols from the UK Biobank, genotyped on either the UK Biobank Ax-

iom or UK BiLEVE array. Standard Biobank quality control was used

(http://biobank.ctsu.ox.ac.uk/crystal/docs/genotyping qc.pdf), and non-British

or Irish individuals were excluded from further analysis. Cases were defined

as those with self-reported ulcerative colitis or an ICD10 code of K51 in their

Hospital Episode Statistics (HES) record. Controls were defined as those

individuals without a self-diagnosis or hospital record of ulcerative colitis or

Crohn’s disease (HES = K50).
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Logistic regression conditional on 10 principal components was carried out in both

replication cohorts. A meta-analysis of all three directly genotyped datasets showed

genome-wide significant association (p = 1.6⇥ 10�9), no evidence for heterogeneity

(p = 0.19) and clean cluster plots (Table 3.12, Figure 3.13).

Figure 3.13: Cluster plots are shown for rs78534766 (chr16:50335074, ADCY7 p.Asp439Glu) for

the A) new UK IBD GWAS, B) replication and C) UK Biobank samples that passed quality

control. The SNP genotypes have been assigned based on cluster formation in scatter plots of

normalized allele intensities X and Y. Each circle represents one individual’s genotype. Blue and

red clouds indicate homozygote genotypes for the SNP (CC/AA), green heterozygote (CA) and

grey undetermined. Figures generated by Daniel Rice.
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A previous study described an association between an intronic variant in ADCY7

and Crohn’s disease (Li et al., 2015), but our signal at this variant (P = 2.9⇥ 10�7)

vanishes after conditioning on the nearby associations at NOD2, (conditional P =

0.82). By contrast, we observed that p.Asp439Glu shows nominal association with

Crohn’s disease after conditioning on NOD2 (P = 7.5 ⇥ 10�5, OR=1.40), while

the significant signal remains for ulcerative colitis (Figure 3.14). Thus, one of the

largest e↵ect alleles associated with UC lies, apparently coincidentally, only 300

kilobases away from a region of the genome that contains multiple large e↵ect CD

risk alleles (Figure 3.14).

Figure 3.14: Association analysis for the NOD2/ADCY7 region of chromosome 16. Results from

the single variant association analysis are presented in gray, and results after conditioning on

seven known NOD2 risk variants in blue. Results for Crohn’s disease (CD) are shown in the top

half, and ulcerative colitis (UC) in the bottom half. The dashed red lines indicate genome-wide

significance, at ↵ = 5⇥ 10�8. Figure produced by Loukas Moutsianas.

ADCY7 encodes adenylate cyclase 7, part of a family of ten enzymes responsible

for the conversion of ATP to the ubiquitous second messenger cAMP. Our asso-

ciated variant, p.Asp439Glu, a↵ects a highly conserved amino acid within a long

cytoplasmic domain that lies immediately downstream of the first of two active

sites, and may a↵ect the function of the enzyme by causing misalignment of these

active sites (Pierre et al., 2009).
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Each adenylate cyclase has distinct tissue-specific expression patterns, with ADCY7

being expressed in haemopoietic cells (Figure 3.15). Here, cAMP has an important

role in the modulation of both innate and adaptive immune functions, including

the inhibition of the pro-inflammatory cytokine TNF↵, which is the target of

the most potent current therapy in IBD (Dahle et al., 2005). In human THP-1

(monocyte-like) cells, siRNA knockdown of ADCY7 has been shown to increase

TNF↵ production (Risøe et al., 2015). While constitutive Adcy7 knockout mice

die in utero, myeloid-specific knockouts have been shown to be viable. These mice

exhbit higher production of TNF↵ by macrophages upon stimulation, as well as

impairment of both B cell function and T cell memory, increased susceptibility

to lipopolysaccharide-induced endotoxic shock, and a prolonged inflammatory

response (Duan et al., 2010; Jiang et al., 2013).

Figure 3.15: An overview of the role of ADCY7 in the inflammatory response, where it is

responsible for the conversion of ATP to cAMP in haemopoietic cells. A subset of the immune-

related functions performed by the secondary signalling molecule cAMP are depicted here (Rossi

et al., 1998; Tiemessen et al., 2007; Duan et al., 2010; Boyman and Sprent, 2012; Raker et al.,

2016; Rueda et al., 2016).
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3.6 Discussion

In this chapter I have described an investigation into the role of rare and low

frequency variants in IBD risk, using a combination of low coverage whole genome

sequencing and imputation into GWAS data (Figure 3.16). The sole low frequency

association uncovered by this study was a missense variant in ADCY7 that, with an

odds ratio of 2.19, represents one of the strongest ulcerative colitis risk alleles outside

of the major histocompatibility complex. One possible mechanistic explanation

for this association is that a loss of ADCY7 function leads to reduced production

of cAMP in haemopoietic cells, leading to an excessive inflammatory response.

Interestingly, a previous study has investigated the use of general cAMP-elevating

agents as a potential therapy for intestinal inflammation, with results suggesting

that action upon multiple adenylate cyclases in this way may in fact worsen IBD

(Zimmerman et al., 2012). Others have looked into targeting specific members of

the adenylate cyclase family as potential therapeutics in di↵erent contexts (Pierre

et al., 2009), but specific upregulation of ADCY7 has not been attempted. Our

association between ADCY7 and ulcerative colitis raises an intriguing question

as to whether altering cAMP signalling in a leukocyte-specific way may be of

therapeutic benefit in inflammatory bowel disease.

Although we collected low coverage whole genome sequences specifically to investi-

gate both coding and non-coding variation, our sole new association is a missense

variant. This is not particularly surprising: the only previously discovered IBD

risk variants with similar odds ratios (Figure 3.16) are all protein-altering changes

(a↵ecting the genes NOD2, IL23R and CARD9 ). The observation that the alleles

with the largest e↵ect sizes at any given frequency tend to be coding has been

made more generally (Huang et al., 2015), explaining why coding variants are often

the first to be discovered when novel technologies allow for new areas of the minor

allele frequency spectrum to be explored.

We observe this same pattern when investigating the role of rare variation in IBD

risk, where a significant burden of very rare coding variants is seen in previously

implicated IBD genes, but no signal is observed across the enhancer regions tested.

Although our results imply that rare variants are likely to play an important role in
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Figure 3.16: The frequency-odds ratio space investigated by this study, comparing the latest

IIBDGC meta-analysis (black line) to the sequencing (green) and imputed GWAS (purple) used in

this study. The earlier study had more samples but restricted their analysis to MAF > 1%. Purple

density and points show known GWAS loci, with our novel ADCY7 association (p.Asp439Glu)

highlighted as a star. Green points show a subset of our sequenced NOD2 rare variants, and the

green star shows their equivalent position when tested by gene burden, rather than individually.

IBD risk, making real progress on rare variant association studies will require much

larger numbers of deeply sequenced exomes or whole genomes. Extrapolating for

IL23R, the known IBD gene with the most significant coding burden (p=0.0005) af-

ter NOD2, we would require roughly 20,000 cases to reach genome-wide significance

(Zuk et al., 2014).

The challenge of detecting a burden of variation in regulatory regions is further

compounded by our current inability to clearly distinguish likely functional variation
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from neutral mutations in non-coding sequence. The importance of being able to

make this distinction is highlighted when considering a burden test across known

IBD genes: if we include all rare coding variants (MAF  0.5% in controls, N=136)

in IBD genes the p-value is 0.2291, compared to P = 0.0045 when using just

the subset of 54 coding variants predicted to have a damaging e↵ect. Therefore,

identifying the role of rare variation in the non-coding genome is likely to not

only require the sequencing of tens of thousands of samples, but also much better

discrimination between functional and neutral variants in regulatory regions.

During the course of this work, we noted a number of complexities associated with

analysing sequencing data, and in particular with combining data from di↵erent

studies. The most obvious issue was that, in order to maximise the number of

IBD patients that could be sequenced, our cases were sequenced at lower depth

that the UK10K control samples. Although very careful joint analysis of the

datasets was able to largely overcome this bias, it became clear that the analysis of

sequencing datasets at scale will require the development of many novel tools and

techniques. Furthermore, these challenges are not just restricted to low coverage

whole-genome sequencing designs: the Exome Aggregation Consortium recently

noted that variable exome capture technology and sequencing depth across their

60,000 exomes required a joint analysis of such computational intensity that it

would be impossible to carry out using the limited resources available to most

research centres (Lek et al., 2016).

Therefore, if sequence-based rare variant association studies are to be as successful as

common variant GWAS, computationally e�cient methods and accepted standards

for combining these novel datasets need to be developed. An example of one such

e↵ort is the Haplotype Reference Consortium (HRC), which has collected whole

genome sequences from more than 32,000 individuals (including the IBD samples

discussed here) in order to create a reference panel that can be used for imputation

of low frequency and common variants (McCarthy et al., 2016). Imputation into

GWAS using this large HRC panel is as accurate as low-coverage sequencing down

to MAF ⇠0.05% (McCarthy et al., 2016), suggesting that in the future the most

e↵ective way to discover low frequency variants associated with complex disease will

be to impute the huge resources of existing GWAS data with large new reference
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panels. Thus, while projects such as this one provide valuable resources in the form

of publicly available reference panels, it is unlikely that there will be much need for

low coverage whole genome sequencing in the future. Together, our results suggest

that a combination of continued GWAS imputed using substantial new reference

panels and large scale deep sequencing projects will be required in order to fully

understand the genetic basis of complex diseases like IBD.



Chapter 4

Uncovering the biological

mechanisms driving association

4.1 Introduction

Next-generation sequencing represents a powerful tool for analysing the contribution

of rare variation to a range of disorders, and is currently enjoying rapid growth in

popularity as we usher in the so-called ‘sequencing era’. But does this advance in

technology mean the end of genotyping?

For low frequency and common variation, new discoveries are more likely to arise

from continuing to increase sample sizes using cost-e↵ective genotyping arrays.

Indeed, this approach has proven very successful at identifying genetic risk loci

for IBD. To date, 215 associated loci have been uncovered using genome-wide

association studies (GWAS) and targeted follow-up using the Immunochip. However,

the utility of performing these ever-larger genome-wide association studies in order

to identify common variation of relatively small e↵ect sizes has been questioned.

In particular, it is notable that just 20 of these 215 IBD-associated loci have been

narrowed down to a causal gene, and to date the increased biological understanding

from genetic studies has not yet had a substantial impact on disease therapies.
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However, recent methodological and technological advances o↵er the opportunity

to derive more therapeutically-relevant information from these genome-wide associ-

ation studies. This includes novel fine-mapping techniques that can better resolve

a given association signal down to a likely causal variant, and improved statistical

co-localization methods that can associate a GWAS signal with an expression

quantitative trait locus (eQTL) from a variety of cell types and conditions. Such

improvements, coupled with rapidly expanding databases of eQTLs and other

functional annotations, may prove to be the important missing links required in

order to unravel the biological mechanisms underlying many GWAS associations.

4.1.1 Chapter overview

In this chapter, I conduct a new genome-wide association study of inflammatory

bowel disease in 18,355 individuals from the United Kingdom. I then meta-analyse

these data with the whole genome sequences described in Chapter 3 and published

GWAS summary statistics, yielding a total sample size of 59,957 subjects. This

leads to the identification of 25 new IBD susceptibility loci, which are then evaluated

to try to resolve the potential biological mechanisms underlying each association.

Likely causal missense variants are identified in the genes SLAMF8, a negative

regulator of inflammation, and PLCG2, a gene that has been implicated in primary

immune deficiency. A potentially causal variant is also observed in an intron of

NCF4, which is another gene associated with an immune-related Mendelian disorder.

In general, a significant enrichment of genes associated with Mendelian disorders

of inflammation and immunity is observed for all 241 IBD-associated loci.

In addition, three novel loci lie proximal to integrin genes, which encode proteins

in pathways that have been identified as important therapeutic targets in IBD.

Co-localization with eQTL signals confirm that the associated IBD risk-increasing

variants are also correlated with expression changes in monocytes in response to

immune stimulus at two of these genes (ITGA4 and ITGB8 ), and at two previously

implicated loci (ITGAL and ICAM1 ). Overall, we note that new associations at

common variants continue to identify genes that are relevant to therapeutic target

identification and prioritization.
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4.1.2 Contributions

This study was conceived and designed by the UK IBD Genetics Consortium

(UKIBDGC), with case ascertainment, phenotyping and sample collection performed

by the numerous clinics that contribute to this e↵ort: please see Appendix A for a

full list of contributors. DNA sample preparation and genotyping was performed

by the Wellcome Trust Sanger Institute pipelines facility. Imputation of GWAS

datasets using an IBD-specific reference panel was performed in collaboration with

Shane McCarthy; quality control, LD score regression and conditional analysis

of the resulting meta-analysis was performed by Loukas Moutsianas. Principal

components were generated by Carl Anderson. Overlap with existing eQTL datasets

was evaluated by Sun-Gou Ji. Fine-mapping and eQTL co-localization testing

was run by Luke Jostins-Dean, but I analysed the output. Disease localisation

analysis of variation in NCF4 was performed by Je↵rey Barrett. Identification

of therapeutically-relevant genes and pathways, and evaluation of the biological

significance of novel findings was done in discussion with James Lee, Christopher

Lamb and Nick Kennedy. Unless stated, I carried out all other analyses.
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4.2 Data preparation

4.2.1 A new UK IBD genome wide association study

Sample ascertainment and genotyping

Following ethical approval by Cambridge MREC (reference: 03/5/012), 11,768

British IBD cases, diagnosed using accepted endoscopic, histopathological and

radiological criteria, were consented into a new study by the UK IBD Genetics Con-

sortium. These samples consisted of 5, 695 Crohn’s disease cases, 5, 299 ulcerative

colitis cases, and 764 inflammatory bowel disease cases of indeterminate type. In

parallel, 10, 484 controls were obtained by the UK Household Longitudinal Study,

which is led by the Institute for Social and Economic Research at the University of

Essex and funded by the Economic and Social Research Council. Both cases and

controls were genotyped at the Wellcome Trust Sanger Institute; controls on the

Human Core Exome v12.0 chip, and cases on the Human Core Exome v12.1 chip.

Genotype calling

I called genotypes for this dataset using the software optiCall (Shah et al.,

2012), run in five separate batches (four case batches, and a single control batch)

to reflect the groupings by which samples were processed in the laboratory.

Called genotypes were then strand aligned using files provided by William Rayner

(http://www.well.ox.ac.uk/⇠wrayner/strand/). I removed any sites not included

on both versions of the chip, leaving a total of 535, 434 genotyped sites.

Sample filtering

Prior to sample quality control, sites were pruned to remove those with a missingness

rate in excess of 5%. Individuals failing on one or more of the following filtering

criteria were then removed from the dataset:
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– Mismatching gender between that listed in the manifest, and that determined

genetically. Genders were determined using PLINK v1.9 (Chang et al.,

2015), which computes the inbreeding coe�cient F based on data from the X

chromosome. Under Hardy-Weinberg equilibrium, females should have an

X-chromosome F coe�cient close to zero, while for males it should be close

to one.

– Heterozygosity rate ±3 standard deviations from the mean (Figure 4.1).

– Missingness rate > 1% (Figure 4.1).

Figure 4.1: Missingness versus heterozygosity rate for samples in the new UK IBD GWAS.

Samples falling outside of the dotted lines (missingness > 1% and heterozygosity rate ±3

standard deviations from the mean) were removed from the analysis. Script for figure

generation available from Anderson et al. (2010).
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– Duplicated or related individuals with a kinship coe�cient > 0.177 (indicating

first-degree relatives or closer). Kinship coe�cients were calculated for samples

passing the heterozygosity and missingness checks, using markers with a MAF

> 0.05 and the software KING (Manichaikul et al., 2010). The sample with

the lowest call rate (or mismatching gender, if applicable) of each related pair

was removed.

– Non-European samples, as determined using a principal component analysis

(Figure 4.2) incorporating samples from the HapMap3 project (Altshuler

et al., 2010).

Figure 4.2: Principal component analysis of samples in the new UK IBD GWAS, analysed

jointly with samples from the HapMap3 project (Altshuler et al., 2010). Samples with PC2

 0.066 (dotted line) were considered to be of non-European ancestry.
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Site filtering

A final set of quality control filters were then used to remove markers still performing

poorly amongst the high-quality samples, as determined by:

– Significant di↵erence (P < 1⇥ 10�5) in call rate between cases and controls

– Evidence for a deviation from Hardy-Weinberg equilibrium in controls, where

the p-value < 1⇥ 10�5

– One of 429 markers a↵ected by a genotyping batch e↵ect. These sites were

identified by Yang Luo by computing within-sample principal components

(PCs) using common variants (MAF > 1%), which highlighted a clear outlier

group of case samples all belonging to one genotyping batch (Figure 4.3a).

PC1 was used to split cases into outliers and non-outliers, and an association

test between these groups identified significant sites (P < 1⇥ 10�5). Once

these sites were removed, the within-sample PCs no longer produced any

outlier groups (Figure 4.3b).

Figure 4.3: Panel A) depicts a genotyping batch e↵ect identified in the new UK IBD

GWAS using a principal component analysis, while panel B) shows the improvement after

the removal of 429 sites that were significant when comparing the outlier samples from A)

against the remaining samples. Figures generated by Yang Luo.

This left a high-quality dataset consisting of 510, 520 genotyped sites in 9, 239

cases (4, 474 CD, 4, 173 UC, 592 indeterminate IBD), and 9, 500 controls. Before

imputation, these sites were further pruned to those with a MAF > 0.1%, leaving

a total of 296, 203 markers.
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4.2.2 Imputation using an IBD-specific reference panel

Previous data has suggested that increasing the size of the reference panel used

during imputation can significantly improve the accuracy of imputed low frequency

variants (McCarthy et al., 2016), Therefore, as mentioned in Chapter 3, we created

an expanded imputation reference panel, consisting of 4,686 low coverage IBD se-

quences collected by the UKIBDGC (retaining those individuals that were excluded

from association analyses due to non-European ancestry), combined with 3,781

UK10K and 2,504 1000 Genomes Phase 3 control sequences. The inclusion of IBD

samples helps to enrich the resulting reference panel with IBD-associated variants.

Prior to imputation, I remove any genotyped samples that were already included

in the UKIBDGC low coverage sequencing study, as these would be present in the

reference panel. I also remove any samples also included in the Wellcome Trust

Case Control Consortium datasets (The Wellcome Trust Case Control Consortium,

2007; Barrett et al., 2009), as these samples contributed to the latest International

IBD Genetics Consortium (IIBDGC) study that I shall be meta-analysing with this

dataset. This left a total of 18,355 samples (4,264 Crohn’s disease, 4,072 ulcerative

colitis, 524 indeterminate inflammatory bowel disease, and 9,495 controls).

We then imputed whole genome sequences, down to a MAF ⇠ 0.1%. Given the

large size of both the reference and genotype panel, the computationally e�cient

software PBWT (Durbin, 2014) was used in order to obtain results in a tractable

amount of time.

4.2.3 Meta-analysis of sequencing and imputed genomes

with existing summary statistics

I tested these imputed sequences separately for association to ulcerative colitis,

Crohn’s disease and IBD using SNPTEST v2.5 (Marchini and Howie, 2010),

performing an additive frequentist association test conditioned on the first ten

principal components for each cohort. I then filtered out variants with MAF < 0.1%,
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INFO < 0.4, or strong evidence for deviations from Hardy-Weinberg equilibrium in

controls (P < 1⇥ 10�7).

In order to increase power for the analysis of common variation, I obtained the

publicly available summary statistics from the latest IIBDGC meta-analysis (Liu

et al., 2015), and applied the same MAF � 0.1% and INFO � 0.4 filters. I then used

METAL (Willer et al., 2010) to perform a standard error weighted meta-analysis

of the summary statistics from the UKIBDGC sequencing and imputed GWAS

datasets together with the IIBDGC GWAS data.

4.2.4 Quality control

We filtered the output of this meta-analysis, removing sites with high evidence for

heterogeneity (I2 > 0.90) in any of the cohorts, and a meta-analysis p-value higher

than all of the cohort-specific p-values. After this quality control, overall inflation of

the summary statistics was still observed (�GC = 1.23 and 1.29 for Crohn’s disease

and ulcerative colitis, respectively). To determine if this was due to confounding

population substructure that had not been properly accounted for, LD score

regression was applied using LDSC v1 (Bulik-Sullivan et al., 2015) and European

linkage disequilibrium (LD) scores from the 1000 Genomes Project (downloaded

from https://data.broadinstitute.org/alkesgroup/LDSCORE/eur w ld chr.tar.bz2)

on all sites with INFO > 0.95. Both intercepts were 1.09, indicating that the

observed inflation is more likely to be due to broad polygenic signal.

In total, we tested 9.7 million high-quality sites across 25,042 IBD cases and

34,915 controls (Table 4.1), the largest genome-wide association test performed in

inflammatory bowel disease to date. This dataset therefore o↵ers us the opportunity

to not only uncover further common variant IBD associations of small e↵ect size,

but also gives us reasonable power to perform causal variant fine-mapping in IBD-

associated loci that were not covered by the Immunochip genotyping array used by

Huang et al. (2015).
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4.3 Unravelling common variant associations

Overall, we identified 25 new IBD-associated loci at genome-wide significance

(Table 4.2), including a number of associations of very small e↵ect (OR < 1.1).

In order to uncover causal variants, genes and mechanisms amongst these new

associations, we performed a range of fine-mapping, eQTL co-localization, and gene

enrichment tests as discussed in the following sections.

4.3.1 Fine-mapping and functional annotation of new and

known loci

We performed a summary statistics fine-mapping analysis on the 25 novel IBD-

associated loci, together with 40 previously discovered loci that reached genome-

wide significance in this dataset but where fine-mapping had not previously been

attempted. To do this, approximate Bayes factors were calculated from the meta-

analysis e↵ect sizes and standard errors, assuming the SNPTEST default prior

variance on the log odds ratio of 0.04. These Bayes factors were then fine-mapped

using the method outlined by the Wellcome Trust Case Control Consortium et al.

(2012), to generate a posterior probability for each variant that reflects its likelihood

of being causal in a given locus. The credible set for an association signal is defined

as the smallest set of variants with posteriors that sum to at least 95%.

In order to properly resolve a GWAS signal down to the causal variant(s), it is

important that all common SNPs in the locus have been directly genotyped or

imputed to high quality (Spain and Barrett, 2015). This is to ensure that the

truly causal SNPs are actually included in the fine-mapping comparison, when

determining the relative evidence for causality of each associated SNP in the region.

Therefore, to be confident about the conclusions drawn from this fine-mapping

procedure, I only considered loci which had high quality imputed data for all

relevant variants. This is defined as having no variants in the Phase 3 v5 release

of the 1000 Genomes project (2013-05-02 sequence freeze) that are in high LD

(r2 � 0.6) with our hit SNP, but missing from our dataset, and no variants in our

data within high LD (r2 > 0.8) that fail during our QC procedure.
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Because of the relative sparsity with which the genome-wide microarrays cover

each region (as opposed to dense genotyping arrays, such as the Immunochip), only

12 loci pass this filtering step. For 6 of these, there exists a single variant with

> 50% probability of being causal (Table 4.3). For those implicated variants that

were directly genotyped in the new UKIBDGC GWAS dataset, the cluster plots

were manually checked to confirm quality data (Figure 4.4).

Of particular interest are two loci where a single variant had >99% probability

of being causal. The first causally implicated variant, rs34687326, is a missense

change predicted to a↵ect protein function in SLAMF8 (p.Gly99Ser, Figure 4.5a).

As can be seen in Figure 4.5a, this signal was relatively easy to resolve given the

low linkage disequilibrium between this lead SNP and the surrounding variation.

While this sparse Manhattan plot was initially concerning, we were reassured by

the very clean cluster plots produced by direct genotyping of the variant rs34687326

in the new UKIBDGC GWAS dataset (Figure 4.4a), increasing our confidence that

this is a true association.

SLAMF8 is a cell surface receptor expressed by various myeloid cells (including

neutrophils, macrophages and dendritic cells) after exposure to gram- or gram+

bacteria, lipopolysaccaride (LPS) or interferon (IFN)-�, where it has been reported

to inhibit the migration of these cells to sites of inflammation (Wang et al., 2015).

In addition, SLAMF8 has been shown to play a role in repressing the production

of reactive oxygen species (ROS) by these cells, further negatively regulating

inflammatory responses (Wang et al., 2012). The risk-decreasing allele in our dataset

(MAF=0.1, Table 4.2) is predicted to strongly a↵ect protein function (CADD=32,

92nd percentile of missense variants, Kircher et al. (2014)), suggesting that further

experimental follow up to evaluate a possible gain-of-function mechanism may be

worthwhile.



4.3. Unravelling common variant associations 121

T
ab

le
4.
3:

V
ar
ia
nt
s
fi
n
e-
m
ap

p
ed

to
>

50
%

p
ro
b
ab

il
it
y
of

b
ei
n
g
ca
u
sa
l
in

th
ei
r
gi
ve
n
si
gn

al
.

R
si
d

C
h
r

P
os
it
io
n

P
C
a
u
s
a
l

E
↵
ec
t

C
re
d
ib
le

se
t
si
ze

P
h
en
ot
yp

e
P
M

e
ta

L
o
cu
s

ty
p
e

rs
34
68
73
26

1
15
97
99
91
0

1.
00

0
S
L
A
M
F
8
p
.G

ly
99

S
er

(m
is
se
n
se
)

1
C
D

1.
06

⇥
10

�
0
8

N
ov
el

rs
48

45
60

4
1

15
18
01
68
0

0.
99

9
R
O
R
C

(i
nt
ro
n
ic
)

1
IB

D
7.
09

⇥
10

�
1
4

K
n
ow

n

rs
18

11
71

1
2

22
86
70
47
6

0.
91

4
2

U
C

6.
09

⇥
10

�
0
9

N
ov
el

rs
56
11
66
61

3
18
84
01
16
0

0.
56

1
L
P
P

(i
nt
ro
n
ic
)

11
C
D

5.
67

⇥
10

�
1
0

N
ov
el

rs
11
54
86
56

16
81

91
69

12
0.
50

2
P
L
C
G
2
p
.H

is
24

4A
rg

(m
is
se
n
se
)

3
IB

D
5.
18

⇥
10

�
1
1

N
ov
el

rs
11

43
68

7
16

81
92

28
13

0.
74

6
P
L
C
G
2
p
.A

rg
26

8T
rp

(m
is
se
n
se
)

5
IB

D
3.
83

⇥
10

�
0
8

N
ov
el

rs
48

21
54

4
22

37
25

85
03

0.
80

4
N
C
F
4
(i
nt
ro
n
ic
)

2
C
D

1.
76

⇥
10

�
0
8

N
ov
el



122 Chapter 4. Uncovering the biological mechanisms driving association

Figure 4.4: Cluster plots for A) rs34687326, B) rs1143687 and C) rs4821544 for the new UK IBD

GWAS samples that passed quality control. The SNP genotypes have been assigned based on

cluster formation in scatter plots of normalized allele intensities X and Y. Each circle represents

one individual’s genotype. Blue and red clouds indicate homozygote genotypes for the SNP

(CC/AA), green heterozygote (CA) and grey undetermined. Figures generated by Daniel Rice.
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The second variant with >99% probability of being causal is rs4845604, an intronic

variant in the key regulator of TH17 cell di↵erentiation, RORC (Ivanov et al.,

2006). RORC encodes ROR�t, which is the master transcriptional regulator of

both TH17 cells (Ivanov et al., 2006) and group 3 innate lymphoid cells (Luci

et al., 2009). These cell types both play important roles in defense at mucosal

surfaces: in particular, they have been shown to help maintain homeostasis between

the intestinal immune system and the gut microbiota (Yang et al., 2014c; Sawa

et al., 2011). Loss of this equilibrium is often seen in inflammatory bowel disease

(Gevers et al., 2014). Furthermore, pharmacologic inhibition of ROR�t has been

shown to be of therapeutic benefit in mouse models of intestinal inflammation,

and reduces the frequency of TH17 (but not innate lymphoid) cells isolated from

primary intestinal samples of patients with inflammatory bowel disease (Withers

et al., 2016).

Also of note is another likely functional variant amongst the remaining, less clearly

resolved, fine-mapped loci (Table 4.3). This missense variant (CADD=16.5, 50.2%

probability of causality) a↵ects the gene PLCG2 (Figure 4.5b). Interestingly, after

conditioning on this variant we observe a second, independent missense variant

in the same gene (P = 2 ⇥ 10�8), that is highly likely to a↵ect protein function

(CADD=34.0, 74.6% probability of causality). PLCG2 encodes a phospholipase

enzyme that plays an important role in regulating immune pathway signalling and

T cell selection (Fu et al., 2012). It has also been implicated in two autosomal

dominant immune disorders: intragenic deletions in the autoinhibitory domain

of PLCG2 cause antibody deficiency and immune dysregulation (familial cold

autoinflammatory syndrome 3, MIM 614468), while heterozygous missense variants

(e.g. p.Ser707Tyr) lead to a phenotype that includes intestinal inflammation

(Ombrello et al., 2012; Zhou et al., 2012).
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4.3.2 Enrichment amongst IBD loci for genes associated

with Mendelian disorders of inflammation and im-

munity

An association is also observed between Crohn’s disease and an intronic variant

in NCF4 (P=1.76⇥ 10�8, 80.4% probability of causality), a gene which has also

been associated with a Mendelian disorder of inflammation and immunity. In par-

ticular, NCF4 encodes p40phox, part of the NADPH-oxidase system that destroys

phagocytosed bacteria via an oxidative burst in innate immune cells (Tarazona-

Santos et al., 2013). Rare pathogenic variants in NCF4 cause autosomal recessive

chronic granulomatous disease, which is characterized by intestinal inflammation

and defective ROS production in neutrophils (Matute et al., 2009). Interestingly,

the variant associated in our dataset, rs4821544, had previously been suggestively

associated with small bowel Crohn’s disease (Rioux et al., 2007; Roberts et al.,

2008). When we stratified patients by disease location we found that the e↵ect

was consistently stronger for ileal disease (a↵ecting the small bowel) compared to

colonic (a↵ecting the large bowel), as shown in Figure 4.6. This is consistent with

growing genetic evidence that Crohn’s disease may in fact be better defined as two

distinct subtypes, ileal Crohn’s disease and colonic Crohn’s disease (Cleynen et al.,

2016).

In order to test whether these observations in PLCG2 and NCF4 reflected a more

general overlap between candidate IBD GWAS genes and Mendelian disorders

of inflammation and immunity, I performed a gene set enrichment analysis. I

defined the set of Mendelian disorder genes of interest as being those associated

with primary immune deficiences according to the latest curated release by the

International Union of Immunological Societies Expert Committee for Primary

Immunodeficiency (Picard et al., 2015), as well as a secondary list of genes associated

with rare disorders in OMIM that include inflammatory bowel disease as a clinical

diagnostic. The secondary genes were obtained using a clinical synopsis search

in OMIM (https://www.omim.org/search/advanced/clinicalSynopsis, as accessed

on Sep 08, 2016) for the terms “Inflammatory bowel disease”, “Crohn’s disease”

and “Ulcerative colitis”, restricting the output to results where the molecular basis
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has been identified. This list was then manually curated to exclude those entries

corresponding to complex disorders.

Figure 4.6: The e↵ect of the well fine-mapped variant rs4821544, which is intronic in NCF4, is

consistently stronger in small bowel compared to large bowel disease. Figure produced by Je↵rey

Barrett.
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Using the software INRICH (Lee et al., 2012a), I observe a significant enrichment

(P < 1⇥10�6) of these genes within all 241 loci now associated with IBD (Appendix

B). I then refine this test to just the 26 loci where a gene can be confidently

implicated by fine-mapping to a coding variant or co-localization with an eQTL

(Huang et al., 2015; Fairfax et al., 2014; Wright et al., 2014), as described in Table 4.4

and Chapter 3. Within the set of loci with a high-confidence gene assignment,

the enrichment for genes associated with Mendelian disorders of inflammation and

immunity is even stronger (27% vs 3%, P = 2⇥ 10�5 using a Fisher’s exact test).

Table 4.4: Association of known IBD genes with Mendelian disorders of inflammation and

immunity. These disorders include Primary Immune Deficiencies as defined by Picard et al.

(2015), and Mendelian disorders which include IBD as a symptom, according to OMIM.

Gene Phenotype Primary Immune Deficiency Additional rare disorders

CARD9 IBD CARD9 deficiency -

IFIH1 UC Aicardi-Goutieres syndrome 7 Singleton-Merten syndrome 1

IL2RA CD CD25 deficiency -

NOD2 CD Blau syndrome Early-onset sarcoidosis

PLCG2 IBD PLAID (PLC�2 associated an-

tibody deficiency and immune

dysregulation); Familial cold

autoinflammatory syndrome 3;

APLAID (autoinflammation and

PLAID)

-

SMAD3 IBD - Loeys-Dietz syndrome 3

Remaining known IBD genes without an associated Mendelian disorder:

ADCY7 (UC), ATG16L1 (CD), CD6 (CD), ERAP2 (CD), FCGR2A (IBD), FUT2 (CD),

ICAM1 (IBD), IL18RAP (IBD), IL23R (IBD), ITGA4 (IBD), ITGAL (UC), ITGB8 (IBD),

MST1 (IBD), NXPE1 (UC), PTPN22 (CD), SLAMF8 (CD), SP140 (CD) and TNFSF8

(IBD)
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4.3.3 Co-localization of GWAS and eQTL associations

Among the remaining 21 novel loci, it was interesting to observe that three associa-

tions were within 150kb of integrin genes (ITGA4, ITGAV and ITGB8 ), while a

previously associated locus also overlaps with a fourth integrin gene, ITGAL. In

addition, a recent study has demonstrated that there is an IBD specific association

that a↵ects expression of ICAM1, which encodes the binding partner of ITGAL

(Dendrou et al., 2016). The integrins encoded by these genes act as cell adhesion

mediators that are capable of signalling across the plasma membrane in both

directions, and have been shown to play a crucial role in leukocyte homing and cell

di↵erentiation in inflammation (Hynes, 2002). An overview of how integrins are

involved in leukocyte homing to di↵erent tissues is given in Figure 4.7.

Figure 4.7: The role of integrins in leukocyte homing. Integrin complexes are expressed on the

surface of leukocytes, and will bind to corresponding intercellular adhesion molecules on the

surface of endothelial cells, prompting infiltration of the leukocytes into the tissue. Some of these

binding partners exhibit tissue-specific expression patterns, allowing for tight control of leukocyte

homing to specific sites (Kunkel and Butcher, 2003; Pals et al., 2007).
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These integrin genes reflect very strong candidates for involvement in inflammatory

bowel disease. However, both the gene set enrichment result discussed above, as

well as the rare variant burden tests across known IBD genes described in Chapter

3, highlight the importance of using methods such as fine-mapping and eQTL

association studies in order to confidently assign GWAS signals to their causal

genes. As the fine-mapping analysis had already excluded the possibility that these

associations could be caused by protein-coding changes, we next searched for e↵ects

of IBD risk SNPs on integrin gene expression in immune cells using a number of

publicly available eQTL datasets (Zeller et al., 2010; Fairfax et al., 2012; Westra

et al., 2013; Battle et al., 2014; Fairfax et al., 2014; Lee et al., 2014a; Raj et al.,

2014; Ye et al., 2014; GTEx Consortium, 2015; Zhernakova et al., 2015).

While many eQTL and GWAS signals show some degree of correlation, inferences

about causality require more robust statistical co-localization of the two signals.

One means of obtaining this statistical support is to directly test for co-localization

between IBD association signals and eQTLs using the coloc2 method (Giambar-

tolomei et al., 2014), implemented in the R package coloc. We ran this method

across our dataset, using a window size of 250kb on each side of the IBD associ-

ation and default settings. Each test was repeated using two di↵erent p12 values

(p12 = 1⇥ 10�5 and p12 = 1⇥ 10�6), which represents the prior probability of co-

localization. For each gene, we test for co-localization with eQTLs in unstimulated

monocytes, as well as monocytes stimulated with lipopolysaccaride (LPS) after 2

and 24 hours, monocytes stimulated with IFN-�, and in unstimulated B cells, as

described by Fairfax et al. (2014). The results of this analysis are summarised in

Table 4.5.
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Table 4.5: Co-localization between meta-analysis association statistics and monocyte stimulus

response eQTLs. The co-localization of the meta-analysis and eQTL signals is tested with two

di↵erent priors (1⇥10�5 and 1⇥10�6) across the genes ITGA4, ITGB8, ITGAL and ICAM1. For

each gene, we test co-localization with eQTLs in unstimulated monocytes, as well as monocytes

stimulated with LPS after 2 and 24 hours, monocytes stimulated with IFN-�, and in unstimulated

B cells.

Posterior probability of co-localization between GWAS association

and monocyte eQTLs (after the application of stimuli)
Prior

(p12)
Naive LPS2HR LPS24HR IFN-� BCELL

ITGAL
1⇥ 10�05 0.089 0.045 0.980 0.989 0.045

1⇥ 10�06 0.010 0.005 0.833 0.896 0.005

ITGB8
1⇥ 10�05 0.061 0.057 0.712 0.051 0.178

1⇥ 10�06 0.006 0.006 0.198 0.005 0.021

ITGA4
1⇥ 10�05 0.979 0.736 0.984 0.992 0.228

1⇥ 10�06 0.823 0.218 0.864 0.923 0.029

ICAM1
1⇥ 10�05 0.050 0.961 0.093 0.162 0.064

1⇥ 10�06 0.005 0.713 0.010 0.019 0.007

Remarkably, three of the associations near integrin genes had > 90% probability of

being driven by the same variants as monocyte-specific stimulus response eQTLs

(ITGA4, PLPS 24hr = 0.984; ITGAL, PLPS 24hr = 0.980; ICAM1, PLPS 2hr = 0.961). A

fourth association, ITGB8, is di�cult to map due to extended linkage disequilibrium

in the locus, but shows intermediate evidence of co-localization (PLPS 24hr = 0.712) in

response to the same stimulus (Figure 4.8). All four of the IBD risk increasing alleles

are associated with upregulated expression of their respective genes, suggesting that

an increased level of pro-inflammatory cell surface markers in response to stimulus

may be a consistent mechanism of action for these associations. Determining if

this is indeed the case, however, would require functional follow up to prove that

these IBD risk alleles causally change gene expression in response to stimulus, and

indeed that changes in integrin gene expression are relevant to the inflammatory

bowel disease phenotype.
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Figure 4.8: Co-localization of disease association and stimulus response eQTLs in monocytes.

The local pattern of disease association (IBD: (A) ITGA4, (B) ITGB8, (C) ICAM1 ; (D) UC:

ITGAL) in grey, and the association of that variant with response to LPS stimulation in red.

Evidence of co-localization (probability > 70%) is observed for all for signals.

This second point is supported by the recent emergence of integrins and their

counter-receptors as important therapeutic targets in IBD. In particular, the

monoclonal antibodies vedolizumab and etrolizumab, which target the components

of the ↵4�7 dimer (encoded by ITGA4 and ITGB7, and responsible for the gut-

homing specificity of certain leukocytes), have demonstrated e�cacy in both CD
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and UC (Feagan et al., 2013; Sandborn et al., 2013; Vermeire et al., 2014). In

addition, an antisense oligonucleotide that targets ICAM1 has recently shown

promise in the treatment of ulcerative colitis and pouchitis (Hosten et al., 2014).

Therapeutics targeting integrin ↵L (efalizumab) and ↵4 (natalizumab) have also

demonstrated potential in the treatment of Crohn’s disease (Sandborn et al.,

2005; James et al., 2011), but have subsequently been associated with progressive

multifocal leukoencephalopathy, or PML (Carson et al., 2009). This association

highlights the importance of gut-selectivity in therapeutic approaches, with the

potentially fatal PML condition likely to be mediated by binding to integrin dimers

that are not gut-specific (leading to deficiencies in leukocyte migration to the central

nervous system, and allowing for JC virus infection in the brain). Because of the

risk of PML, efalizumab has been withdrawn from the market and natalizumab is

not licensed for Crohn’s disease in Europe.

Integrins are not only important in cell tra�cking, but can also contribute to

cellular signalling. For example, the ↵V�8 heterodimer - both subunits of which

are encoded by genes which are now within confirmed IBD loci (ITGAV and

ITGB8, respectively) - is a potent activator of TGF�. Notably, mice with dendritic-

cell specific deletion of this complex had impaired regulatory T cell function

and severe colitis (Travis et al., 2007), while deleting it in regulatory T cells

themselves prevented the suppression of pathogenic T cell responses during active

inflammation (Worthington et al., 2015). Although no therapeutics directly target

↵V�8, there have been promising early results from an oral antisense oligonucleotide

to the inhibitory TGF�-signalling protein SMAD7 (Monteleone et al., 2015), itself

encoded by a locus identified by genetic association studies (Jostins et al., 2012),

that emphasises the therapeutic potential of modifying TGF� in inflammatory

bowel disease.
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4.3.4 Therapeutic relevance of genetic associations

The associations to anti-integrin and anti-TGF� therapies described above are

just a few examples of therapeutically relevant genes that have been implicated

using genetic studies of inflammatory bowel disease. To investigate these con-

nections on a broader scale, we identified the following immune pathways as

relevant to classes of approved IBD therapeutics: the IL12 and IL23 signalling

pathways (ustekinumab, Sandborn et al. (2012)), the TNF↵ signalling pathway

(infliximab, Hanauer et al. (2002); adalimumab, Colombel et al. (2007)), and

the integrin signalling pathway (vedolizumab, Feagan et al. (2013) and Sand-

born et al. (2013)). Genes involved in these pathways were then identified using

the Molecular Signatures Database canonical pathways gene sets (C2; available

at http://software.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=CP),

which have been curated by the Pathway Interaction Database (Schaefer et al.,

2009). The integrin signalling gene list was comprised of all unique genes from

the following gene sets: the integrin �1 pathway, integrin �7 pathway and integrin

cell surface interactions. The list of TNF↵ signalling genes was obtained from the

TNF pathway, and the list of IL-23/IL-12 p40 signalling genes was comprised of all

unique genes from the IL12 and IL23 pathways.

Based on these gene lists, I identified genes in known IBD loci of therapeutic

relevance (Table 4.6). As Figure 4.9 highlights, the importance of the biological

pathways underlying associations, and their potential therapeutic significance, are

not necessarily reflected in their GWAS e↵ects sizes, with many relevant associations

requiring tens of thousands of samples to identify.



134 Chapter 4. Uncovering the biological mechanisms driving association

T
ab

le
4.
6:

IB
D
-a
ss
oc
ia
te
d
lo
ci

co
nt
ai
n
in
g
ge
n
es

in
im

m
u
n
e
p
at
hw

ay
s
re
la
te
d
to

cl
as
se
s
of

ap
p
ro
ve
d
th
er
ap

eu
ti
cs
.
W
e
h
ig
h
li
gh

t
lo
ci

th
at

co
nt
ai
n
a
ge
n
e
in

on
e
of

fo
u
r
si
gn

al
li
n
g
p
at
hw

ay
s
re
la
te
d
to

ta
rg
et
s
of

th
re
e
cl
as
se
s
of

ap
p
ro
ve
d
IB

D
th
er
ap

eu
ti
cs
.
In

ea
ch

ca
se

th
e
re
le
va
nt

ge
n
e,

si
gn

al
li
n
g
p
at
hw

ay
,
an

d
th
er
ap

eu
ti
c
is

m
ar
ke
d
.
G
en

es
m
ar
ke
d
w
it
h
a

?
h
av
e
b
ee
n
co
n
fi
d
en
tl
y
im

p
li
ca
te
d
as

th
e
ca
u
sa
l
IB

D
ge
n
e.

C
h
r

L
o
cu

s
(M

b
)

R
el
ev
a
n
t
G
en

e
P
a
th
w
ay

T
h
er
a
p
eu

ti
c(
s)

1
6
7
.2
-6
8
.1

IL
23

R
?
,I
L
12

R
B
2

IL
1
2
,
IL

2
3

U
st
ek
in
u
m
a
b

4
1
2
3
-1
2
3
.6

IL
2

IL
1
2
,
IL

2
3

U
st
ek
in
u
m
a
b

7
1
0
7
.4
-1
0
7
.6

L
A
M
B
1

In
te
g
ri
n
�
1

V
ed

o
li
zu

m
a
b

3
4
6
.2
-4
6
.5

C
C
R
5

IL
1
2

U
st
ek
in
u
m
a
b

1
4

7
5
.7
-7
5
.7

F
O
S

IL
1
2

U
st
ek
in
u
m
a
b

1
6

1
1
.3
-1
1
.7

S
O
C
S
1

IL
1
2

U
st
ek
in
u
m
a
b

6
1
4
9
.6
-1
4
9
.6

T
A
B
2

T
N
F

In
fl
ix
im

a
b
,
A
d
a
li
m
u
m
a
b

4
1
0
2
.7
-1
0
3
.5

N
F
K
B
1

IL
1
2
,
IL

2
3
,
T
N
F

U
st
ek
in
u
m
a
b
,
In
fl
ix
im

a
b
,
A
d
a
li
m
u
m
a
b

2
1
9
1
.9
-1
9
2

S
T
A
T
4

IL
1
2
,
IL

2
3

U
st
ek
in
u
m
a
b

1
0

7
5
.5
-7
5
.7

P
L
A
U

In
te
g
ri
n
�
1
,
In
te
g
ri
n
�
5
-8

V
ed

o
li
zu

m
a
b

1
6

3
0
.5
-3
0
.5

IT
G
A
L
?

In
te
g
ri
n
ce
ll
in
te
ra
ct
io
n
s

V
ed

o
li
zu

m
a
b

1
7

3
2
.6
-3
2
.6

C
C
L
2

IL
2
3

U
st
ek
in
u
m
a
b

2
1
0
2
.6
-1
0
3
.2

IL
18

R
A
P

?
,I
L
18

R
1,
IL

1R
1

IL
1
2
,
IL

2
3

U
st
ek
in
u
m
a
b

1
0

6
.0
-6
.5

IL
2R

A
?

IL
1
2

U
st
ek
in
u
m
a
b

5
1
5
8
.7
-1
5
8
.9

IL
12

B
IL

1
2
,
IL

2
3

U
st
ek
in
u
m
a
b

1
7

4
0
.4
-4
0
.7

S
T
A
T
5A

,S
T
A
T
3

IL
1
2
,
IL

2
3

U
st
ek
in
u
m
a
b

1
9

1
0
.4
-1
0
.6

T
Y
K
2
?

IL
1
2
,
IL

2
3

U
st
ek
in
u
m
a
b

2
1
8
2
.3
-1
8
2
.3

IT
G
A
4
?

In
te
g
ri
n
�
1
,
In
te
g
ri
n
�
5
-8
,
In
te
g
ri
n
ce
ll
in
te
ra
ct
io
n
s

V
ed

o
li
zu

m
a
b

2
1
8
7
.5
-1
8
7
.7

IT
G
A
V

In
te
g
ri
n
�
1
,
In
te
g
ri
n
�
5
-8
,
In
te
g
ri
n
ce
ll
in
te
ra
ct
io
n
s

V
ed

o
li
zu

m
a
b

7
2
0
.6
-2
0
.6

IT
G
B
8
?

In
te
g
ri
n
�
5
-8
,
In
te
g
ri
n
ce
ll
in
te
ra
ct
io
n
s

V
ed

o
li
zu

m
a
b



4.3. Unravelling common variant associations 135

Figure 4.9: IBD-associated loci containing genes in immune pathways related to classes of

approved therapeutics. All IBD loci are divided into the studies where they were first identified.

Loci that contain a gene in one of four signalling pathways related to targets of three classes

of approved IBD therapeutics are highlighted, with those where the pathway gene has been

confidently identified as the causal IBD gene labelled. Despite the general pattern that e↵ect size

decreases from left to right, therapeutically relevant associations continue to be found.
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4.4 Discussion

In this chapter I have described the discovery of 25 novel IBD-associated loci via the

imputation and meta-analysis of nearly 60,000 samples, bringing the total number

of loci associated with IBD to 241. Summary-statistic fine-mapping on these loci

identified likely causal missense variants in the genes SLAMF8, a negative regulator

of inflammation, and PLCG2, a gene implicated in primary immune deficiency. A

potentially causal variant is also observed in an intron of NCF4, which is another

gene associated with an immune-related Mendelian disorder.

A potential relationship between genes associated with Mendelian disorders of

inflammation and immunity and those implicated in IBD has long been recognised,

with the first Crohn’s disease risk gene discovered, NOD2, also linked to the

autosomal dominant granulomatous disorder Blau syndrome (Miceli-Richard et al.,

2001). I confirm this link more generally, showing a strong enrichment for such

genes amongst all known IBD loci. Furthermore, this enrichment is significantly

stronger when considering just those IBD-associated loci for which a gene can

be causally assigned with high confidence, either through fine-mapping or eQTL

co-localization, highlighting the importance of using such methods when trying to

draw conclusions about the biological mechanisms underlying an association.

Amongst the novel loci that could not be fine-mapped to a likely causal variant,

three are proximal to integrin genes, which encode proteins in pathways that have

been identified as important therapeutic targets in inflammatory bowel disease.

Co-localization with eQTL signals confirm that the associated IBD risk-increasing

variants are also correlated with expression changes in monocytes in response to

immune stimulus at two of these genes (ITGA4 and ITGB8 ), and at two previously

implicated loci (ITGAL and ICAM1 ). This suggests that an increased level of

pro-inflammatory cell surface markers in response to stimulus may be a consistent

mechanism of action for these particular associations, although further functional

follow up would be required to confirm this.

The discovery of this association between integrin genes and inflammatory bowel

disease was particularly exciting for two key reasons. Firstly, assigning the signal
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detected using GWAS to the likely causal genes would not have been possible

without the ability to test for co-localization in an eQTL dataset that had analysed

both the relevant cell type, and used the correct stimulus. No co-localization was

observed between our data and eQTLs for integrin expression in B cells; similarly,

a number of the GWAS associations failed to co-localize with integrin eQTLs from

naive monocytes, or even monocytes stimulated with interferon-� (Table 4.5). As

studies that aim to uncover the specific cellular contexts in which di↵erent genes are

active continue to grow in number and coverage, there is an exciting opportunity to

potentially resolve the biological mechanisms underlying a number of other GWAS

loci that can not be assigned to causal coding variation. Secondly, despite the

relatively modest e↵ect size of the signals near integrin genes (OR 1.10-1.12), they

are of high therapeutic relevance. If we extend the idea of therapeutic relevance to

other IBD-associated loci, it is clear that the importance of the biological pathways

underlying genetic associations, and their potential use as drug targets, do not

necessarily correlate with their GWAS e↵ect sizes (Figure 4.9).

Overall, our findings suggest that there are still a number of potential benefits

to be obtained by continuing to pursue genome-wide association studies, even in

a well-studied complex disease like IBD, as valuable complementary analyses to

large-scale sequencing endeavours.





Chapter 5

Discussion and future directions

For over two decades, the study of genetics has been making significant progress

towards understanding the causes of complex disorders such as inflammatory

bowel disease. During this time, it has become evident that the substantial

heritability of such traits cannot be explained by just a handful of high-impact

genetic variants, arising instead through the cumulative contribution of hundreds

of variants of relatively small e↵ect. For IBD alone, well over 200 associated loci

have been identified, largely driven by common variation. Now, with the advent of

next generation sequencing technologies, we are able to interrogate rare and low

frequency variation in a high throughput manner for the first time. This provides

an exciting opportunity to investigate the role of rarer variation in complex disease

risk on a genome-wide scale.

In this thesis I have described the analytical challenges that can arise when

using sequencing to perform this sort of case-control association testing at scale.

In particular, I focused on methods that can be used to overcome biases in the

sensitivity and specificity of variant calling, as can occur when cohorts are sequenced

to a di↵erent average read depth. I then applied these methods to investigate the

role of rare and low frequency variation in inflammatory bowel disease, uncovering

a significant burden of rare, damaging missense variation in the gene NOD2, as well

as a more general burden of such variation amongst known inflammatory bowel

disease risk genes. Through imputation into both new and existing GWAS cohorts,

139
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I also described the discovery of a low frequency missense variant in ADCY7

that approximately doubles the risk of ulcerative colitis. Finally, I meta-analysed

these data with published GWAS summary statistics to identify a further 25 novel

IBD-associated loci that are driven by common variation.

These results reveal important insights into the genetic architecture of inflammatory

bowel disease. As well as the known role of common variation in disease risk, there

is tantalising evidence of a potential role for rare variation a↵ecting the same

genes implicated by GWAS associations. In contrast, we observe just one high

e↵ect, low frequency variant associated with ulcerative colitis, suggesting that such

variants as a class explain very little disease heritability. Overall, our results suggest

that a combination of continued GWAS imputed using substantial new reference

panels and large scale deep sequencing projects will be required in order to fully

understand the genetic basis of complex diseases like IBD.

I then turned to the issue of how we can convert the successful identification of

hundreds of disease associated loci into useful biological insights and, ultimately,

directly impact the treatment and clinical diagnosis of these disorders. As an

initial attempt at addressing this problem, we used fine-mapping and eQTL co-

localization to resolve the biological mechanisms underlying several of the novel

IBD associations identified in this study. In particular, we described likely causal

missense variants in the genes SLAMF8, a negative regulator of inflammation,

and PLCG2, a gene that has been implicated in primary immune deficiency. A

further four signals were shown to be associated with monocyte-specific changes in

integrin gene expression following immune stimulation. Interestingly, these genes

encode proteins in pathways that have been identified as important therapeutic

targets in IBD. Overall, we noted that new associations at common variants

continue to identify genes that are relevant to therapeutic target identification and

prioritization.
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5.1 Studying complex genetic disease in the se-

quencing era

Looking forward to future experiments aimed at uncovering further risk loci for

complex disease, there are two key paths that can be taken. The first is to continue

to use array-based methods to cheaply genotype and impute hundreds of thousands

of individuals, allowing for the detection of common variant associations of ever

smaller e↵ect size. As parallel sequencing e↵orts lead to the generation of improved

imputation reference panels, the lower bound of the minor allele frequency spectrum

that can be interrogated using this approach is likely to fall. Through the cost-

e↵ective collection of genetic information across very large samples, including

expansion into non-European populations, the power to detect novel associations

that may prove to be therapeutically relevant is greatly improved.

The second, complementary, approach is to perform large scale sequencing studies

that focus on unearthing the role of rare variants in complex disease risk. These

rare variants can be highly relevant for understanding the pathways underlying

a given disease, or even identifying potential therapeutic targets. Compared to

common variation, they are often more straightforward to interpret mechanistically,

as they are correlated with fewer nearby variants. Although a standard protocol for

performing array-based studies is well established, how exactly sequencing should

be used to investigate rare variation in complex disease is not yet clear. In the

following sections I will discuss some of the considerations that should be made

when designing a next-generation sequencing study to investigate complex disease,

and how this may change in the future.
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5.1.1 Exome vs whole genome sequencing

The high costs associated with sequencing at scale require researchers to make

di�cult decisions between the breadth of genomic sequence captured, and the

average read depth each interrogated site is covered to. The most popular approach

thus far has been to focus on just the protein-coding exome (<2% of the total),

using high coverage sequencing to discover rare, coding variants. These are exactly

the class of variants expected to have the largest e↵ects on disease risk, as negative

selection acts to reduce the prevalence of harmful mutations in the population

(Gibson, 2011). Exome-based studies are also advantaged by the wealth of existing

knowledge around the potential role of variants which disrupt protein-coding

sequence, making their functional interpretation much simpler than for those in

non-coding regions. However, for many complex diseases the coding genome still

explains only a fraction of the common variant associations found using GWAS: the

vast majority of hits (>90%) lie in non-coding regions, with presumed regulatory

roles (Maurano et al., 2012). To detect this type of variation it is necessary to use

whole genome sequencing, which applies an untargeted approach to capture the

full breadth of genomic sequence available to current technologies.

In this thesis I presented an intermediate approach to deep whole genome sequencing,

where samples were sequenced to low average depth (<10x), sacrificing individual

genotype quality in order to increase overall sample size. However, falling costs

now mean that, just as exome sequencing has superseded targeted gene sequencing,

these low coverage whole genomes are unlikely to be widely used in the future.

Although deep whole genomes are still much more expensive than exomes, the

cost ratio is not as severe as might be expected from the di↵erence in target sizes.

Because of variability in exome capture technology (Figure 5.1), exomes must be

sequenced to an average depth of 50-100x in order to obtain accurate calls across

the target region. In contrast, whole genome sequencing is highly accurate at an

average depth of ⇠20x (Figure 5.2).

Furthermore, falling costs associated with sequencing, combined with the fixed

costs of DNA library preparation and exome capture, mean that the overall cost

di↵erential between exome and whole genome sequencing will continue to narrow.
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Figure 5.1: An illustration of the relative coverage that can be obtained using current exome

(WES) and whole genome (WGS) sequencing techniques, and the improvements that have already

been seen compared to initial WES protocols. WGS is able to produce much more even local

coverage (panel A), that allows a lower global average coverage to be used (panel B) whilst still

capturing the majority of sites to su�cient quality (panel C).

Figure 5.2: The minimum depth required to make a correct heterozygous genotype call in matched

whole exome (WES) and whole genome (WGS) sequencing samples. Figure sourced from Meynert

et al. (2014).

This means that deep whole genome sequencing will shortly be a viable alternative

to exomes for large scale projects. Nevertheless, while each study design has their

own set of advantages and disadvantages (Table 1), ultimately researchers must

choose between capturing the regulatory genome and sequencing a larger number

of samples.
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5.1.2 Combining and analysing data across multiple stud-

ies

As briefly noted in Table 5.1, one consideration that should be made when designing

next-generation sequencing studies is the availability of other datasets for joint

analysis. We have already seen that the biggest complex disease discoveries of the

genotyping era arose out of large, consortia-driven e↵orts that combined numerous

studies in order to obtain very large sample sizes (Figure 1.8). Sequencing projects

like ExAC have also reiterated the importance of creating these large merged

datasets to better understand population diversity and interpret rare variation in a

clinical setting (Lek et al., 2016).

There are several important logistical challenges that must be considered when

embarking on this sort of large scale joint study, with respect to how data should

best be shared and analysed. Unlike the meta-analysis approach adopted to combine

the summary statistics from genome wide association studies, most large sequencing

projects thus far have utilised a mega-analysis study design, where the raw data

from multiple datasets is jointly called and analysed (Figure 5.3). While this

requires the sharing of much more bulky raw data, and can exacerbate quality

control and analysis di�culties by combining multi-source datasets, this method

can also greatly improve the sensitivity and specificity of rare variant detection by

joint calling across a much larger population.

Within the current limits set by the availability of sequencing data, the analytical

benefits of this joint analysis have so far outweighed the computational strain of

collating and re-analysing raw datasets. However, as sequencing sample sizes are

currently growing much faster than computational resources, the costs involved

in this process may ultimately make the sharing of raw data infeasible. Rather

than reverting to the use of summary statistics, intermediate files such as the

individual genotype probabilities (currently represented as gVCFs) may provide

a good balance between data size and the ability to produce a consistent and

well-powered study.
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Figure 5.3: An overview of the key features of a sequence-based study, from initial sample

collection and sequencing through to the final association testing and joint analysis with external

datasets.

However, the sharing of intermediate files demands a degree of stability in the

protocols being used; stability that is currently sorely lacking. The race to evolve

our methods to keep up with the ever-growing deluge of data often leads to changes

that can make the incorporation of old data di�cult and can cause lengthy delays

in the adoption of new techniques. A striking example of this is the reference

genome used for alignment: despite GRCh38 being released over three years ago,

most studies being published today still use the outdated GRCh37 reference in

order to maintain compatibility with existing datasets and functional annotation

resources. Until we are able to settle on a gold-standard protocol for performing

sequencing studies, we will plausibly face the repeated re-analysis of thousands of

DNA sequences in our attempts to generate large, quality datasets.
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5.1.3 Overcoming computational limitations

The development of a gold-standard sequencing study protocol is likely to require

significant changes in the way the genetics community as a whole tackles the storage

and analysis of data. The sequencing analysis methods described in this thesis

generally represent only incremental updates to those that are used for the analysis

of genotyping data, and this slow rate of evolution is already struggling to keep

up with the rapid changes occurring in the underlying sequencing technology. At

this stage there is no evidence that the rate of technological advance is slowing

down, particularly with the appearance of new competitors on the market, such

as the long-read Pacific Biosciences system and the portable nanopore sequencing

o↵ered by Oxford Nanopore. Ultimately, revolutionary improvements in the wet-

lab technology are demanding similar revolutions in our software and analysis

techniques.

One of the major changes that is already starting to gain momentum in the

field is the transition to cloud-based systems, which provide general access to

very large computational resources. These systems are designed to perform

tasks using massively parallel processing, and novel genetics software will be

required to fully exploit this. Early developments in this area include Hail

(Seed et al., 2017), a scalable analysis framework for genetic data, and Cromwell

(https://github.com/broadinstitute/cromwell), a workflow execution engine that

can run the existing Genome Analysis Toolkit in the cloud. Both tools have been

designed for easy incorporation into scripted pipelines, which can greatly improve

the reproducibility of analyses. The centralised nature of a cloud-based system

also means that these pipelines may be easily shared between users to improve the

consistency of datasets generated across a range of facilities.

In this way, cloud-based systems and massively parallel computing work to help

solve the issues we currently face with scalability, reproducibility, and data sharing.

Other e↵orts are focussing instead on improving the updatability of genomic

datasets, in hopes of ensuring their continued relevance as we rapidly collect more

information on global human variation. Amongst the more advanced lines of

research in this area are graph-based genomes, which represent a collection of
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sequences as a series of alternative paths through a mathematical graph. This

system can better encode indels and other complex genomic features, and new

sequences may be easily added to extend the underlying reference graph or customise

it to population-specific variation (Dilthey et al., 2015; Dilthey et al., 2016). Initial

developments around read alignment and variant calling using this approach have

been favourable compared to current analysis methods (Novak et al., 2017).

These are just a couple of examples of new approaches that are being developed

to support the imminent influx of sequencing data. However, to fully realise the

potential of this sequencing era, a concerted e↵ort will need to be made by the

genomics community to not only develop these, and other, novel techniques, but

also to ensure their timely incorporation into standard analysis protocols. As we

start to adapt to the new scale at which sequencing studies will now need to operate,

we can expect to see a number of other advances in how we process and analyse

genetic data over the next few years.

5.1.4 The future of locus discovery

Despite the technical advances that will be required to manage sequencing data

at scale, it is not di�cult to imagine a world where whole genome sequencing is

routine. With a $100 genome tantalisingly close (already, Illumina have promised

that this will be achievable ‘soon’, with the introduction of their new NovaSeq

technology in January 2017), sequencing costs will soon be on par with other

standard medical diagnostic tests. The prospect of patients routinely having their

genomes sequenced is an exciting one, as we could see the rapid generation of

datasets containing millions of individuals.

A particularly exciting aspect of routine whole genome sequencing within a clinical

setting is the ability to tie genetic data to electronic health records across millions

of individuals, providing a very rich and multi-faceted dataset for mining. A wide

range of traits and phenotypes could theoretically be tested, simply using standard

clinical notes and diagnostic tests that are performed on a regular basis. From the

perspective of complex disease analysis, integration of medical records provides a
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fantastic opportunity to investigate sub-phenotypes, including specific features such

as disease location, complications, response to treatment, or disease progression.

Eventually, it is conceivable that we may one day have access to genetic data from

nearly every individual with inflammatory bowel disease in the country. Such a

dataset would make it possible to plausibly capture the complete contribution

of genetics to disease risk. Not only would we be able to detect low frequency

and common variants of very small e↵ect, but we could thoroughly characterise

structural and high-impact rare variation. With the likely availability of parental

genomes, de novo mutations and highly-penetrant rare variation within families

could also be uncovered. Finally, a dataset of this size would be very well powered to

fine-map associations down to the precise causal variants, aiding in the translation

of genetic associations to biological hypotheses.

5.2 Prospects for translation into the clinic

Through a combination of large-scale sequencing studies and the cost-e↵ective

genotyping and imputation of hundreds of thousands of samples, we are likely to

see the rapid accumulation of loci associated with complex traits like IBD over the

next ten years. Ultimately, it is hoped that we will be able to complete the picture

of heritability for these traits, fully explaining the role of genetics in disease risk.

However locus discovery in itself, whilst interesting from a scientific standpoint, is of

little direct benefit to those individuals su↵ering from these disorders. It is therefore

important that we also look to interrogate these associated loci for insights that

can allow us to directly inform treatment, better understand the biology underlying

disease pathogenesis, and aid in the development of novel therapeutics.

5.2.1 Integration with functional datasets

Just as the size of genetic datasets is expected to grow rapidly over the next decade

or so, we can also expect to see similar growth in functional datasets that aim to

determine the downstream impact of genetic changes. Large eQTL studies that
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investigate the changes in gene expression associated with a given genetic variant

can be used to predict the likely function of non-coding variation, while enhancer-

gene interactions can be directly captured using conformation capture approaches

like Hi-C. Over time, these studies will describe gene expression changes across

an extensive range of specific cell types and environmental conditions. Further

datasets that describe methylation profiles, chromatin modifications, transcription

factor binding, and other epigenetic markers are also likely to grow in size and

coverage. For some of the more informative functional assays, it is conceivable that

they may also be incorporated into a clinical setting, increasing both the availability

of data and also allowing for this information to be evaluated in a disease-specific

setting. By integrating this functional data with genetic associations, we may

eventually be able to resolve the biological mechanisms underlying the majority of

disease-associated variants.

5.2.2 Informing treatment

As described in section 4.3.4, a number of IBD susceptibility genes have been shown

to have important applications in the development of new treatments. A notable

case is the associated locus near SMAD7, which has been shown to reduce the

activity of TGF-�1 (an immunosuppressive cytokine) when present at high levels.

In a recent phase 2 trial of an oral SMAD7 antisense oligonucleotide, mongersen,

Crohn’s disease patients receiving the drug had significantly higher remission

rates than those given a placebo (Monteleone et al., 2015). Similarly, the drug

efalizumab targets the product of ITGAL, an integrin ↵L subunit of lymphocyte

function-associated antigen 1 (LFA-1), and has been used to treat psoriasis. A

brief, open-label study of efalizumab for treating Crohn’s disease showed evidence

of a clinical response in the majority of subjects (James et al., 2011). Notably,

the e↵ect sizes of these clinically relevant genes are relatively small (Figure 5.4),

highlighting the importance of continuing to catalogue IBD-associated loci to build

up a complete picture of disease pathogenesis and susceptibility.
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Figure 5.4: E↵ect sizes of IBD-associated loci identified using various study designs. The largest

e↵ect sizes are seen for the first two genes associated with IBD, NOD2 and IL23R. Nevertheless,

the genes SMAD7 and ITGAL, which have relatively small e↵ect sizes, are both confirmed drug

targets.

However, as well as uncovering potential targets for therapeutic development, identi-

fied genetic associations can also prove useful in determining clinical subphenotypes

and predicting disease course. For example, in Crohn’s disease, associations have

been found between the HLA and colonic CD (Silverberg et al., 2003), while NOD2

variants have been shown to predict ileal location and the need for CD-related

surgery (Cleynen et al., 2013). Several other genetic variants have been found that,

despite not contributing to disease risk, are associated with a more favourable

prognosis in Crohn’s disease (Lee et al., 2017). Similarly, for ulcerative colitis the

HLA is associated with extensive disease and colectomy (Haritunians et al., 2010).

Such information can be used to construct individual genetic risk scores, which

summarize predictions about disease risk and likely progression based on a patient’s

specific genetic profile. Techniques like this can then help to identify misdiagnosed

patients and drive more personalized treatment approaches. For example, a recent

study by Cleynen et al. (2016) used genetic risk scores to show how inflammatory

bowel disease can be represented as a continuum of disorders based on disease
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location, which may be better represented using three groups (ileal Crohn’s disease,

colonic Crohn’s disease, and ulcerative colitis), as opposed to the two-scale CD and

UC definitions used now (Figure 5.5). They also note that disease location, which is

in part genetically determined, is not only an intrinsic component of an individual’s

disease, but also represents a major driver of changes in disease behaviour over

time. Correct identification of the subtype of IBD a↵ecting a patient can therefore

be an important factor in determining the course of treatment.

Figure 5.5: The genetic substructure of inflammatory bowel disease location, identified using

genetic risk scores. A continuum of disorders based on disease location can clearly be seen, from

those largely a↵ecting the colon (UC, and colonic CD) to those largely a↵ecting the ileum (ileal

CD). Figure sourced from Cleynen et al. (2016).

More direct predictions about likely response to current IBD therapeutics may

also be possible using genetic associations. For example, a common variant in

the gene NUDT15 is shown to be strongly associated with an elevated likelihood

of developing life-threatening leukopenia (the loss of white blood cells) amongst

Crohn’s disease patients treated with thiopurine (Yang et al., 2014a). The UK IBD

Genetics Consortium is currently undertaking a similar study to investigate genetic

risk factors that may predict a patient’s response to anti-TNF therapy. It is hoped
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that one day these genetic insights will allow clinicians to immediately prescribe

patients the most suitable therapeutic for their particular genetic profile, helping to

minimise the development of adverse side-e↵ects. Targeted therapy in this way can

also be used to ensure those individuals predicted to have a mild disease course are

not given stronger treatments than necessary, while patients with poor prognosis

can be rapidly escalated to the most e↵ective treatments.

5.2.3 Environmental factors: the microbiome

Another area that o↵ers particular promise for the translation of genetic findings

into clinical practice is investigation into the interaction between an individual’s

genome and their environment. In the case of IBD, loci identified to date have

provided strong evidence of a role for the gut microbiota in disease pathogenesis,

with the epithelial barrier and autophagy pathways repeatedly implicated (Khor

et al., 2011). Microbiome studies in IBD have shown there are distinct di↵erences

in the composition of the gut flora in diseased and healthy individuals, such as

a decrease in bacteroides, firmicutes, ruminococcaceae and bifidobacterium, and

an increase in the presence of Escherichia coli and fusobacterium (Kostic et al.,

2014). However, cause and e↵ect are di�cult to disentangle: did the disturbed

microbiome arise as a result of the extensive inflammatory response, or did it trigger

it? The e↵ects of therapeutics on the intestinal environment further complicate such

questions, as treatments such as antibiotics are known to a↵ect the gut microbial

community (Dethlefsen et al., 2008; Antonopoulos et al., 2009). Finally, even

amongst healthy individuals the precise composition of the microbiome is extremely

sensitive to diet and other unknown environmental factors: family observations

show that sharing both genetics and a living space is no guarantee of a completely

shared microbiome, and even within the same individual temporal variations are

observed (Schloss et al., 2014).

The importance of understanding the role of the microbiome is reflected in the

recent success of fecal microbiota transplants (FMTs) as a treatment for inflamma-

tory bowel disease. FMTs aim to reduce dysbiosis in the bowel by modifying the

microbiome using stool from a healthy donor. Although the idea was first intro-
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duced over five decades ago by Eiseman et al. (1958) to treat pseudomembranous

enterocolitis, it has only recently gained popular attention from the IBD community.

An initial study by Suskind et al. (2015) showed temporary remission in seven of

nine patients, and more extended remission in five of those cases. E�cacy of the

FMT depended on whether it successfully engrafted or not, and on how similar the

recipient’s original microbiome was to the donor one. Despite this early success,

further clinical studies are required to properly evaluate the safety and e�cacy of

this method.

Genetics provides a valuable opportunity to unravel the role of the microbiome in

inflammatory bowel disease. In particular, genetic variation provides a useful start-

ing point when trying to determine the casual relationships between environmental

factors like the gut microbiota and the development of disease phenotypes like IBD.

This is because germline genetic variation is una↵ected by environmental factors,

meaning it can act as a causal ‘anchor’ when considering relationships. Essentially,

an individual’s genotype can a↵ect their phenotype, and their environment and

phenotype can both influence each other, but environment and phenotype will not

a↵ect genotype (except when considering somatic mutations). This observation led

to the development of Mendelian randomization techniques (Figure 5.6), which can

test for causal e↵ects between correlated traits (such as IBD and the gut microbiota)

even in the presence of confounders (Davey Smith and Hemani, 2014).

Figure 5.6: Mendelian randomization can be used to infer a causal relationship between two

correlated traits, A and B (in this case the microbiome and IBD). If this correlation has arisen

because A causes B, then it follows that any variable that a↵ects trait A should also a↵ect trait

B (but not vice versa). If we can determine genetic variants that are associated in a known

direction with A (e.g. genetic variants that are associated with changes in the microbiome in

healthy individuals) we can then test for a causal relationship with B.
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Using genetics to understand how changes in the gut microbiota can influence the

host response holds promise for identifying the role of the microbiome in IBD, and

may even allow us to uncover some of the reasons why some genetically-susceptible

individuals develop disease, while others do not. Ultimately, it may lead to better

understanding of why therapies such as fecal microbiota transplants appear to

o↵er some relief in IBD, and contribute to the development of new, more targeted

treatments.

5.3 Concluding remarks

It is an exciting time for the field of complex disease genetics. Over the past

twenty years there have been dramatic advances in our understanding of the genetic

causes underlying complex disorders, with common variation across hundreds of loci

associated with disease risk. Now, a series of impressive technological developments

have given us the ability to collect DNA sequences on an unprecedented scale,

opening the door to expand this locus discovery e↵ort into rare and low frequency

variation. As sample sizes continue to grow, it is becoming a very real possibility

that we will be able to resolve the complete picture of heritability in complex

traits, fully capturing the contribution of genetics to disease risk. Through this

steady accumulation of genetic clues, we are now starting to uncover the biological

mechanisms that underlie disease pathogenesis, o↵ering insights that can be used

to directly impact treatment and inform the development of new therapeutics.

Overall, these advances in the field of genetics hold promise for understanding

the causes of complex disorders such as inflammatory bowel disease, which can

ultimately lead to tangible improvements in the lives of people su↵ering from these

debilitating disorders.
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right- and left-most variants in linkage disequilibrium � 0.6 to the top SNP, as calculated

using the GBR and CEU samples from the 1000 Genomes Phase 3 dataset.
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– “FM” in place of a PMID refers to the Huang et al. (2015) bioRxiv preprint.

– “PMeta” refers to the association p-value obtained in Chapter 4.

– “PHet” refers to the meta-analysis heterogeneity p-value.

– “Trait” describes the phenotype reported by Liu et al. (2015), where applicable,

and the one reported by the original paper (cited) if the locus was not replicated.

In cases where two (or more) loci from Liu et al. (2015) are merged in this table,

and for which di↵erent traits are reported, we keep both traits (e.g. the 1:20171860

locus)

– “Implicated gene” indicates those loci where a specific gene has been confidently

implicated by fine-mapping, eQTL, or targeted sequencing studies.
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168 Appendix B. Meta-analysis association statistics at all 241 known loci
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172 Appendix B. Meta-analysis association statistics at all 241 known loci
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