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Abstract  1 

White matter hyperintensities (WMH) are common radiological findings in ageing and a 2 

typical manifestation of cerebral small vessel disease. WMH burden is evaluated by 3 

quantifying their volume, however, subtle changes in the white matter may not be captured 4 

by WMH volumetry. In this cross-sectional study we investigated whether MRI texture of 5 

both WMH and normal appearing white matter (NAWM) was associated with reaction time, 6 

WMH volume and dementia risk in a midlife cognitively normal population. Data from 183 7 

cognitively healthy midlife adults from the PREVENT-Dementia study (mean age 51.9 ± 5.4; 8 

70% females) were analysed. WMH were segmented from 3 Tesla fluid-attenuated inversion 9 

recovery (FLAIR) scans using a semi-automated approach. The FLAIR images were bias 10 

field corrected and textural features (intensity mean and standard deviation, contrast, 11 

energy, entropy, homogeneity) were calculated in WMH and NAWM based on generated 12 

textural maps. Textural features were analysed for associations with WMH volume, reaction 13 

time, and the Cardiovascular Risk Factors, Aging, and Dementia (CAIDE) dementia risk 14 

score using linear regression models adjusting for age and sex. The extent of NAWM 15 

surrounding the WMH demonstrating similar textural associations to WMH was further 16 

investigated by defining layers surrounding the WMH at increments of 0.86 mm thickness. 17 

Lower mean intensity within WMH was a significant predictor of longer reaction time (t = -18 

3.77, p < 0.01). WMH volume was predicted by textural features within WMH and NAWM, 19 

albeit in opposite directions. WMH volume was not related to reaction time, although 20 

interaction analysis revealed that participants with high WMH burden and less homogeneous 21 

WMH texture demonstrated slower reaction time. A white matter area extending 2.5-3.5mm 22 

further from the WMH demonstrated similar associations. Higher CAIDE score was 23 

associated with a heterogeneous NAWM intensity pattern. Overall, greater homogeneity 24 

within WMH and a more heterogeneous NAWM intensity profile were connected to a higher 25 

WMH burden, while heterogeneous intensity was related to prolonged reaction time (WMH 26 

of larger volume) and dementia risk (NAWM). Our results suggest that the quantified textural 27 

measures extracted from widely used clinical scans, might capture underlying 28 

microstructural damage and might be more sensitive to early pathological changes 29 

compared to WMH volumetry. 30 

Keywords: texture; small vessel disease; preclinical dementia; textural analysis; white matter 31 

hyperintensities 32 

List of abbreviations 33 

CAIDE – Cardiovascular Risk Factors, Aging, and Dementia 34 

CSF – cerebrospinal fluid 35 

eTIV – estimated total intracranial volume 36 

FLAIR – fluid-attenuated inversion recovery 37 
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GLCM – gray level co-occurrence matrix 1 

GM – gray matter 2 

NAWM(T) – normal appearing white matter (texture) 3 

ROI – region of interest 4 

SVD – small vessel disease 5 

TE – echo time 6 

TR – repetition time 7 

WM – white matter 8 

WMH(T) – white matter hyperintensities (texture) 9 

 10 
 11 
 12 
 13 
 14 

 15 

Graphical Abstract 16 
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Introduction 1 

White matter hyperintensities (WMH) are common radiological findings in the brains of older 2 

people, appearing on T2-weighted magnetic resonance imaging (MRI), especially fluid-3 

attenuated inversion recovery (FLAIR) scans, which are typically acquired as part of clinical 4 

MRI examinations, as patchy areas of increased intensity. WMH represent microvascular 5 

lesions in the brain thought to be caused by localized changes in tissue composition and 6 

although they may be due to several different pathologies, are considered a key indicator of 7 

cerebral small vessel disease (SVD)1. Importantly, these white matter lesions are associated 8 

with poorer cognitive outcomes, incident dementia, stroke, and mortality2,3. Furthermore, 9 

WMH are associated with slowed reaction time which is considered an early feature of 10 

SVD4,5 and is also a feature of Alzheimer’s disease and mild cognitive impairment6. 11 

WMH burden can be assessed by visual rating scales or by quantifying WMH volume from 12 

brain MRI T2-weighted or FLAIR images. However, MRI scans have the potential to provide 13 

further information about underlying tissue characteristics. Volumetry uses the intensity of 14 

every voxel in the image to reach a decision on whether the voxel belongs or does not 15 

belong in a particular structure or tissue class (in this case the WMH). A core missed aspect 16 

when such approaches are used, has to do with the intensity value of the voxel per se. In 17 

particular, in each FLAIR scan individual voxel intensities are related to the underlying tissue 18 

properties. However, intensity variations within tissue classes are not captured by typical 19 

volumetric measurements.  20 

Textural analysis has emerged as a method to provide additional insight on the tissue state, 21 

through the analysis of spatial variations in intensity, quantifying properties such as image 22 

contrast and homogeneity. Several image textural analysis methods have been proposed in 23 

the literature and applied in MRI analysis and are nicely reviewed in Kassner et al.7. 24 

Statistical textural features examine spatial relationships of voxel intensities8. One of the 25 

most popular methods for textural analysis is the gray level co-occurrence matrix (GLCM) 26 

method developed by Haralick et al.9, with the generated features belonging to the category 27 

of second order statistical features. Amongst them, energy (having higher values when there 28 

is higher intensity uniformity), entropy (higher entropy is connected with more randomness), 29 

homogeneity (higher homogeneity is connected to less differences in intensity) and contrast 30 

(higher contrast is connected with larger intensity variations) (Figure 1)10. 31 

Brain textural analysis has been used to study amongst others, brain tumors11, multiple 32 

sclerosis12, stroke13 and Alzheimer’s disease14 based mainly on T1- and T2-weighted MR 33 

images. Texture of FLAIR scans has been analysed in relation to blood brain barrier integrity 34 

in stroke patients, where textural homogeneity was increased after administration of 35 

gadolinium in patients with increased SVD burden13. In subjects with SVD, textural features 36 

predicted conversion to dementia and correlated with cognition15.  Textural features have 37 
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also been shown to differentiate between developing and non-developing normal appearing 1 

white matter (NAWM)16. Textural analysis has proven to be sensitive in evaluation of the 2 

etiology (ischemic versus demyelinating) of WMH17. In the context of WMH, textural analysis 3 

has also been used to quantify numerous features which are then typically used in a 4 

machine learning framework to predict progression of WMH16. Overall, textural analysis has 5 

shown sensitivity in detecting damaged tissue and areas or regression/progression in the 6 

SVD, multiple sclerosis and brain tumor literature, suggesting that textural features capture 7 

underlying tissue damage. 8 

In the present study, our aim was to evaluate whether textural features from FLAIR scans 9 

which were quantified based on a novel approach for textural map generation, were a more 10 

sensitive predictor of reaction time compared to WMH volume and the relation of the 11 

features to WMH volume and dementia risk. Furthermore, this novel approach allowed us to 12 

evaluate the spatial extent of the area surrounding WMH for which the textural features 13 

related to reaction time and WMH volume in a manner similar to WMH per se. Our 14 

overarching aim was to identify textural features relating to WMH pathology and the peri-15 

WMH area demonstrating similar textural patterns to WMH. A small number of 16 

comprehensive first (mean intensity, standard deviation) and second (contrast, energy, 17 

entropy and homogeneity) order statistical textural features were quantified within WMH and 18 

NAWM, the latter ones based on generated textural maps. Our hypotheses were that: a) 19 

textural features would relate to reaction time, b) textural features would convey additive 20 

information to WMH volume when predicting reaction time, c) textural features would be 21 

better predictors of WMH burden compared to demographic factors, d) a peri-WMH area, 22 

would demonstrate a distinct textural profile compared to both WMH and NAWM and e) 23 

WMH and NAWM texture would relate to future dementia risk, such that a more 24 

heterogeneous textural pattern would be associated with a higher dementia risk. 25 

Material and methods 26 

Study cohort 27 

Data from the baseline visit of 183 participants from the West London site of the PREVENT-28 

Dementia study were used. PREVENT-Dementia is a longitudinal observational multi-site 29 

study in the UK and Ireland18.  The protocol of the PREVENT-Dementia study has been 30 

described in detail previously18. Cognitively healthy, midlife (age 40-59) participants were 31 

recruited through multiple sources. Initially, participants were identified from the dementia 32 

register database held at West London Mental Health National Health Service (NHS) Trust, 33 

which holds information on patients with dementia and cognitive impairment who have 34 

consented to be approached for clinical research, and their carers (often offspring). Other 35 

participants were recruited via the Join Dementia Research website 36 

(https://www.joindementiaresearch.nihr.ac.uk/), or by registering their interest through the 37 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/advance-article/doi/10.1093/braincom

m
s/fcac116/6580683 by guest on 06 M

ay 2022



6 

PREVENT-Dementia website (https://preventdementia.co.uk/) and public presentations and 1 

engagement sessions. The study was approved by the London-Camberwell St Giles 2 

National Health Service Ethics Committee (REC reference: 12/LO/1023), which 3 

operates according to the Helsinki Declaration of 1975 (and as revised in 1983). All subjects 4 

provided written informed consent.  The Cardiovascular Risk Factors, Aging, and Dementia 5 

(CAIDE) risk score incorporating information for age, sex, hypertension, education, activity, 6 

body mass index, cholesterol and apolipoprotein ε4 genotype was calculated for all 7 

participants19. 8 

MRI protocol 9 

All participants underwent structural MRI acquired on a 3T Siemens Verio scanner. As part 10 

of a multi-modal imaging protocol images acquired included three-dimensional T1-weighted 11 

MPRAGE (parameters were: 160 slices, repetition time (TR)=2300ms, echo time (TE) = 12 

2.98ms, flip angle = 9°, voxel size = 1x1x1mm3) and axial FLAIR (parameters were: 27 13 

slices, TR = 9000ms, TE = 94ms, flip angle = 150°, voxel size = 0.43x0.43x4mm3).  14 

T1-weighted image processing 15 

Information from the T1-weighted image was used to calculate brain volumes and to retain 16 

gray matter (GM) and white matter (WM) maps in the T1 space. In particular, estimated total 17 

intracranial volume (eTIV), WM and GM volumes were quantified based on the Freesurfer 18 

version 7 pipeline20. The Freesurfer outcome was visually checked and manual corrections 19 

were applied in the brainmask or by addition of control points. eTIV was used to normalize 20 

the WM, GM as well as the calculated WMH volumes. In the rest of the manuscript when 21 

WMH, WM and GM volumes are mentioned, they refer to the normalized values. WM masks 22 

in T1 space were generated using SPM12 and were subsequently registered to the FLAIR 23 

space using FSL FLIRT21.  24 

Quantification of white matter hyperintensity volume 25 

WMH lesion maps were obtained using an automated script on the Statistical Parametric 26 

Mapping 8 (SPM8) suite (http://www.fil.ion.ucl.ac.uk/spm/) on FLAIR MRI; details on the 27 

procedures involved have been described previously22. T1-weighted scans were segmented 28 

into GM, WM, and cerebrospinal fluid (CSF) based on prior probability maps using SPM8. 29 

Brain masks were generated using GM and WM maps, and used to perform removal of non-30 

brain matter from FLAIR scans. WMH segmentation was then conducted in FLAIR native 31 

space. Initial WMH maps were generated using threshold-based segmentation at a 32 

threshold of 1.2 times the median pixel intensity. All WMH maps were reviewed by a single 33 

experienced rater blinded to all clinical information, and used as starting points for manual 34 

WMH delineation. WMH volumes were normalised by eTIV to account for individual 35 

differences in head size ((WMH/eTIV) * 100%) and transformed using cube root 36 

transformation due to skewness. 37 
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Definition of NAWM mask 1 

To investigate how textural properties differ between WMH and NAWM, a NAWM mask was 2 

created reflecting tissue without visible WMH. GM, WM and CSF were segmented from the 3 

FLAIR scans using SPM12. A WM mask was derived by multiplying the FLAIR-WM mask 4 

and the T1w-WM mask, registered as described in the previous step to FLAIR space to 5 

ensure that the WM class did not include any non-WM tissue. Finally, the NAWM mask was 6 

obtained by subtracting the WMH from the WM mask and further eroding the image using a 7 

2x2 square kernel to limit partial volume effects from GM and CSF. 8 

Textural analysis 9 

FLAIR images were bias field corrected using Advanced Normalisation Toos - ANTs N423 10 

.The brain was extracted from the FLAIR scans using FSL’s Brain Extraction Tool (BET)24.  11 

Textural analysis of the FLAIR skull stripped images was conducted using MATLAB R2019b 12 

(The MathWorks, Inc., Natick, Massachusetts, USA).  First-order statistical textural features 13 

extracted for WMH and NAWM were the mean (WMHTmean, NAWMTmean) and standard 14 

deviation (WMHTstd, NAWMTstd) of the image intensities. These were measured following 15 

normalization of the image intensities by subtracting the minimum and dividing with the 16 

range of non-zero values present in the image. Second-order statistical textural features 17 

were quantified using the gray level co-occurrence matrix (GLCM) method9 and in particular 18 

an in-house adaptation of a voxel-wise textural analysis technique proposed by Maani et 19 

al.25 based on the MATLAB built-in functions graycomatrix and graycoprops. 20 

The GLCM method essentially measures co-occurrence of intensity pairs in multiple 21 

directions in an image and constructs an occurrence table which is used for textural feature 22 

quantification. In particular the image is quantized in N levels (N being typically a power of 23 

two, for example eight). The algorithm subsequently measures how many times each 24 

individual pair of intensities (for example 2-3, 3-8, 1-6) occurs in the image in a number of 25 

directions defined by the user of the algorithm (for example eight directions to take into 26 

account all eight voxels touching a voxel of interest in a two-dimensional analysis). The 27 

distance separating the pixels of interest can be also an input in the algorithm. Subsequently 28 

a N x N table (GLCM matrix) is filled with the number of times each pair occurred. Following 29 

this procedure, the GLCM is normalized and textural features are calculated using formulas 30 

detailed in the seminal GLCM paper by Haralick et al9.  A pictorial example of quantized 31 

image patches, the GLCM map and calculated textural features is shown in Fig. 1. When the 32 

intensity levels within a region are very different between adjacent voxels the values tend to 33 

be higher far from the diagonal of the constructed GLCM, which gives rise to higher contrast. 34 

When the intensity is more homogeneous, higher values in the matrix are recorded close to 35 

the diagonal. A higher image energy will be given by numbers being higher for a small 36 

number of entities. When there is a lot of randomness (entropy) then each table entry tends 37 
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to have a similar value, meaning that there is not a dominant pattern in the observed 1 

intensity combination. Typically, a region of interest (ROI) in an image is selected and the 2 

GLCM analysis is run within this region26. 3 

The textural analysis pipeline we opted for is an adaptation of the voxel-based GLCM on 4 

three orthogonal planes 3D (VGLCM-TOP-3D) technique25, which proposes to run this 5 

analysis within a small neighborhood of voxels in each plane separately (axial in our case). 6 

Each voxel is assigned the textural values generated based on its closest neighbors (eight in 7 

the present implementation). Hence, this method allows for textural images to be generated. 8 

As a result, the extraction of measurements from ROIs can follow the generation of textural 9 

maps (Fig. 2) and not vice versa as is customary (i.e., definition of ROIs and application of 10 

the textural analysis within the ROI – Supplementary Fig. 1). For our analysis we have used 11 

a quantization level of eight (8 intensity levels in the image), a radius of one voxel 12 

surrounding the voxel of interest, thus 3x3 voxel analysis patches and 8 directions. For every 13 

3x3 patch, GLCMs from all 8 directions were summed. Haralick features were quantified 14 

based on this final GLCM matrix at a voxel-wise level by assigning to each voxel the 15 

calculated textural values based on the analysis run in its local 3x3 voxel neighborhood. This 16 

procedure is summarized in Fig. 2. Following generation of textural maps, the following 17 

textural features were quantified (equations in supplementary material) within WMH and 18 

NAWM: energy (WMHTenergy, NAWMTenergy), entropy (WMHTentropy, NAWMTentropy), 19 

homogeneity (WMHThomog, NAWMThomog) and contrast (WMHTcontrast, NAWMTcontrast).  20 

We opted for the generation of textural maps and extraction of mean values rather than 21 

running the whole textural analysis pipeline within each individual defined ROI, in order to 22 

avoid issues that arise due to ROI selection and GLCM analysis and relate to the maximum 23 

and minimum values within the defined ROIs (Supplementary Fig. 1)27 .  24 

All textural measures were transformed using cube root transformation due to skewness. 25 

Reaction time 26 

Slowing of behavioural reaction time is a well-documented clinical characteristic of SVD4 and 27 

AD6. A simple reaction time task was administered through a touchscreen which records 28 

responses and response latencies, as part of the COGNITO battery28. Participants were 29 

required to respond by tapping on the screen when a stimulus appeared, and the mean 30 

reaction time across 12 successful trials was computed.  31 

Statistical analysis 32 

To examine differences in textural parameters between WMH tissue and NAWM tissue, 33 

paired t-tests were used. To test the associations between texture and a) WMH volume, b) 34 

reaction time, linear regression models were fitted, adjusting for sex and age. Multiple 35 

comparisons were accounted for by using the false discovery rate (FDR) method which was 36 

applied to a) and b) separately 29. We further added WMH volume*texture as interaction 37 
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terms to test the interaction between WMH volume and separate textural features in 1 

predicting reaction time. We additionally tested whether WMH volumes were associated with 2 

reaction time. To examine associations between risk of future dementia (CAIDE score) 3 

and MRI textural features at midlife, linear regression models were used. To identify the 4 

layers where WM started deviating from the NAWM pattern we used paired t-tests between 5 

textural measures in NAWM and the individual layers. Associations of textural features 6 

within WMH and NAWM were tested with Spearman correlation. In all regression models, 7 

predictors were mean-centered. Statistical analyses were conducted using R v4.0 (www.R-8 

project.org/) and MATLAB.   9 

Spatial extent of the observed associations 10 

As a further exploratory analysis, we sought to identify the spatial extent of the region 11 

surrounding WMH demonstrating similar textural associations to reaction time and WMH 12 

volume with WMHT. For this purpose, we defined 10 layers surrounding the WMH using a 2-13 

voxel circular dilation kernel in MATLAB for each axial slice30,31 . Thus, WMH maps were 14 

dilated using circular kernels between 2 and 20 voxels with a 2-voxel increment (i.e., 0.86 15 

mm, distance up to 8.6 mm). Each layer mask was multiplied with the WM mask to ensure 16 

that non-WM was not included and was exclusive of its previous layer.  For each of the 17 

identified significant associations from the previous step between WMH texture and either 18 

reaction time or WMH volume, we have used linear regression models to determine whether 19 

the same association persisted in the considered layers using age and sex as additional 20 

covariates. FDR was applied for each observed association separately over the 11 ROIs 21 

considered. 22 

Data availability 23 

The data that support the findings of this study are available from the corresponding author, 24 

upon reasonable request. 25 

Results 26 

Sample characteristics are summarized in Table 1. 27 

In separate linear regression models, the CAIDE dementia risk score was associated with 28 

second-order NAWM textural features but not first-order features: NAWMTcontrast (t = 4.72, p 29 

< 0.01, pFDR < 0.01), NAWMTentropy (t = 4.64, p < 0.01, pFDR < 0.01) and lower NAWMTenergy (t 30 

= -4.73, p < 0.01, pFDR < 0.01) and NAWMThomog  (t = -4.83, p < 0.01, pFDR < 0.01). Only one 31 

WMH textural feature was associated with CAIDE score: WMHstd (t = 2.32, p = 0.02, pFDR = 32 

0.05). In a further exploratory model with age, sex, years of education, diabetes, smoking 33 

and hypertension status, several associations were observed and are reported in Table 2. 34 

 35 

 36 

 37 
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 1 

Table 1. Sample characteristics. Values in the table are shown as mean ± standard 2 

deviation or percentages. 3 

 Sample (n=183) 

Demographics  

   Age (in years) 51.9 ± 5.4 

   Sex (% female) 69.9% 

   Education (in years) 16.0 ± 3.4 

   APOE4 (% carriers) 37.7% 

   eTIV (cm3) 1485.1 ± 150.2 

Imaging measures (% of eTIV)  

   Total WMH volume 0.11 ± 0.16 

   Grey matter volume  42.0 ± 2.0 

   White matter volume 30.5 ± 1.6 

Clinical measures  

   Reaction time (ms) 341.0 ± 38.5 

   CAIDE score 5.8 ± 2.9 

   Diabetes (%) 0.02 

   Smoking (%) 0.05 

   Hypertension (%) 14.2 

Abbreviations: APOE = apolipoprotein; CAIDE = Cardiovascular Risk Factors, Aging, and 4 

Dementia; eTIV = estimated total intracranial volume; WMH = white matter hyperintensities 5 

Table 2. Associations of textural features in WMH and NAWM with cardiovascular risk 6 

factors. The values are presented as t-value; p-value, resulting from the applied linear 7 

regression models. Positive sign in sex indicates higher values in females, in diabetes higher 8 

values in diabetes patients, in smoking higher values in smokers and in hypertension, higher 9 

values in hypertensive patients. Bold is used to indicate significant findings at a level of p < 10 

0.05 and asterisks indicate findings surviving FDR at a level of 0.05. 11 

 sex age educ diabetes smoking hyperten

sion 

WMH texture 

   Mean -0.75; 0.45 0.67; 0.51 -0.25; 0.81 -0.70; 0.48 0.24; 0.81 0.08; 0.93 

   Standard 

deviation 

0.97; 0.33 1.60; 0.11 -0.17; 0.86 0.03; 0.98 1.04; 0.30 2.18; 0.03 
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11 

   Contrast 2.44; 0.02* 0.43; 0.67 -0.64; 0.52 -0.12; 0.91 0.47; 0.64 1.74; 0.08 

   Energy -2.51; 0.01* 1.61; 0.11 -0.06; 0.96 -0.55; 0.58 0.15; 0.88 0.70; 0.49 

   Entropy 2.47; 0.01* -1.66; 0.10 0.04; 0.97 0.76; 0.45 -0.24; 0.81 -0.88; 0.38 

  

Homogeneity 

-2.43; 0.02* 1.20; 0.23 0.47; 0.64 -0.30; 0.77 0.20; 0.84 0.14; 0.89 

NAWM texture 

   Mean 0.23; 0.82 0.25; 0.80 -0.96; 0.34 -0.99; 0.32 -0.27; 0.79 0.52; 0.61 

   Standard 

deviation 

-2.60; 0.01* -2.41; 0.02* 1.63; 0.11 1.77; 0.08 0.16; 0.87 -0.97; 0.33 

   Contrast -5.11; <0.01* 3.17; <0.01* -0.83; 0.41 0.02; 0.98 0.63; 0.53 1.33; 0.18 

   Energy 4.31; <0.01* -3.04; <0.01* 0.57; 0.57 0.07; 0.95 -0.50; 0.62 -1.18; 0.24 

   Entropy -4.27; <0.01* 2.95; <0.01* -0.53; 0.59 -0.06; 0.95 0.54; 0.59 1.14; 0.26 

  

Homogeneity 

5.15; <0.01* -3.28; <0.01* 0.87; 0.38 -0.01; 0.99 -0.61; 0.54 -1.39; 0.17 

 1 
 2 
Textural differences between WMH and NAWM 3 

Compared to NAWM, WMH demonstrated a pattern of higher mean intensity, higher 4 

standard deviation, higher contrast, higher entropy, lower energy, and lower homogeneity (p 5 

< 0.001). Examination of textural properties within the 10 defined layers revealed a 6 

distinctive change in first-order textural features (i.e., mean and standard deviation) between 7 

the boundaries of WMH and the first layer of NAWM (i.e., layer closest to the WMH), while 8 

changes in second-order textural features (contrast, energy, entropy, homogeneity) 9 

demonstrated graduated changes moving from WMH to NAWM (Fig. 3). Paired t-tests 10 

between WMH textural features and texture within the layers revealed that the textural 11 

profile of each layer was different to WMH texture. The same association was observed for 12 

texture within the layers and texture within the whole NAWM. Associations between textural 13 

features within WMH and NAWM were examined with Spearman correlations 14 

(Supplementary Fig. 2). Within WMH, WMHTmean WMHTstd were moderately associated, 15 

WMHTenergy, WMHThomog and WMHTentropy were strongly associated between them and 16 

moderately associated with WMHTcontrast and first and second order features were weakly – 17 

moderately associated. Within NAWM, first and second order features were not associated. 18 

NAWMTmean and NAWMTstd were moderately associated and second order textural features 19 

were perfectly associated (Supplementary Fig. 2), with this difference between WMHT and 20 

NAWMT textural associations likely related to the extent of the considered regions. 21 

 22 
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Associations between texture and WMH volume 1 

General linear models adjusting for sex and age showed that total WMH volume was 2 

associated with higher WMHTstd, higher WMHTenergy, lower WMHTentropy, and greater 3 

WMHThomog, as well as higher NAWMTcontrast, lower NAWMTenergy, higher NAWMTentropy, and 4 

lower NAWMThomog (Table 3).  5 

 6 
Table 3. Association between WMH volume and textural properties. T – statistic and p-7 

values for the conducted linear regression analyses.  8 

 t value p value 

WMH texture   

   Mean 1.75 0.08 

   Standard deviation 5.48 <0.01* 

   Contrast -0.41 0.68 

   Energy 6.60 <0.01* 

   Entropy -7.22 <0.01* 

   Homogeneity 5.30 <0.01* 

NAWM texture   

   Mean 0.74 0.46 

   Standard deviation -1.89 0.06 

   Contrast 2.90 <0.01* 

   Energy -2.79 0.01* 

   Entropy 2.71 0.01* 

   Homogeneity -3.01 <0.01* 

*Survive FDR at a level of p < 0.05 9 

Abbreviations: WMH = white matter hyperintensities, NAWM = normal-appearing white 10 

matter 11 

Association between textural features and reaction time  12 

In a general linear model adjusting for sex and age, WMH volume was not associated with 13 

reaction time. Amongst textural features, only WMHTmean was significantly related to reaction 14 

time (t = -3.77, p < 0.01, pFDR < 0.01), whereby higher mean intensities were related to lower 15 

reaction time. This association remained significant with the addition of WMH volume, 16 

diabetes, smoking and hypertension as a further covariates (t = -3.79, p < 0.01).  17 

Interaction analysis in general linear models adjusting for sex and age, revealed that total 18 

WMH volume interacted with WMHTenergy (t = -2.06, p = 0.04, pFDR = 0.21) and WMHThomog (t 19 

= -2.06, p = .04, pFDR = 0.21) to predict reaction time, whereby WMH volume was related to 20 

reaction time, but only in cases of low WMHTenergy and WMHThomog (Fig. 4). 21 
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Extent of area demonstrating similar textural associations to WMH 1 

For the identified effects, we further investigated the extent of the area immediately 2 

surrounding the WMH demonstrating similar textural associations with reaction time or total 3 

WMH volume as WMHT, by examining the same association within the 10 defined layers. 4 

Results are shown in Fig. 5. In this exploratory analysis, we found that mean intensity was 5 

associated negatively to reaction time, up to an area extending until layer 4 (3.44mm). 6 

Standard deviation of WMH, was positively associated with WMH volume. Extending further 7 

from the WMH (distance > 0.86mm), the association turned negative for the majority of the 8 

layers. Energy, entropy and homogeneity remained significantly associated to the WMH 9 

volume until layer 3 (2.58mm). The pattern of association between WMH volume and 10 

WMHTenergy, WMHTentropy and WMHThomog reverted after layer 5 (4.3mm). 11 

Discussion 12 

Texture analysis as a means to capture spatial patterns of intensity variations allows to 13 

capitalize on the fact that the MRI pixel intensity is a reflection of the underlying tissue 14 

properties. In the present study, we have shown that in this midlife cohort with a low WMH 15 

burden, textural properties of both WMH and NAWM were associated with reaction time 16 

(mean intensity), dementia risk and WMH burden (standard deviation, second order textural 17 

features) and interacted with WMH volume to predict reaction time (energy, homogeneity). 18 

We further demonstrated the potential of textural analysis of FLAIR images to capture early 19 

patterns of textural alterations in a peri-WMH area. Hence, as hypothesized, textural 20 

features confer additive information over WMH volume and might have the potential to be 21 

used as markers of WM damage. 22 

Reaction time, a cognitive domain known to be influenced in SVD and AD, was not 23 

associated with WMH volume, however it was associated with WMHTmean. The lack of direct 24 

associations between WMH volume and reaction time may be due to the relatively low 25 

cerebrovascular burden in this healthy midlife cohort32. Despite this, textural features 26 

demonstrated significant associations with reaction time, suggesting that FLAIR texture may 27 

be capturing additional information and might be more sensitive compared to WMH volume.  28 

The finding that slower reaction time was connected to more hypointense WMH was a 29 

counterintuitive one. In a study evaluating an intensity-based metric of WM damage, WMH 30 

of lower intensity were associated with more pronounced WMH progression as defined 31 

based on WMH volumetry in stroke patients33. A potential explanation could be that a higher 32 

mean intensity is associated with newer WMH, whereas a lower WMH intensity is associated 33 

with long-standing WMH. For instance, brighter lesions in multiple sclerosis have been 34 

thought to reflect more recent events and potentially active inflammation with the temporal 35 

evolution of lesion intensity being viewed as a possible marker of reparative capacity34. In 36 

particular, longitudinal hyper-intense signal reductions are thought to reflect tissue reparative 37 
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efforts/remyelination35. A longitudinal study of the evolution of the textural properties of the 1 

examined lesions and changes in performance in the reaction time task would thus shed 2 

further light into the association between WMHTmean and reaction time. 3 

Although unrelated to reaction time when considered independently, interactions of textural 4 

measures with WMH volume revealed that a higher WMH volume, when accompanied by 5 

lower WMHThomog and lower WMHTenergy, was associated with higher reaction time. In a post-6 

mortem study of multiple sclerosis patients, it was found that decreased lesion textural 7 

homogeneity was associated with completely demyelinated lesions36. In another study, a 8 

combination of WMH features extracted from T1-weighted images (amongst them WMH 9 

volume, contrast and lesion position) was used to classify individual into different classes 10 

capturing distinct WMH severity37. In this latter study, the class with the higher WMH burden 11 

comprised participants who were older, with higher blood pressure, higher Framingham Risk 12 

Score and were less active. WMH within that class were less myelinated (T1/T2 mapping) 13 

with relatively high contrast37, although it needs to be mentioned that the notion that the 14 

T1/T2 ratio is a good proxy for myelination has been challenged38. Taken together, 15 

characteristics of the intensity profile of WMH might be defining how WMH impact reaction 16 

time, especially in young or middle-aged cohorts with a relatively low WMH burden, where 17 

the effect of WMH, as captured by WMH volumetry is not yet prominent in cognition.  18 

WMH volume was associated with several textural features of both WMH and NAWM, 19 

although notably in opposite directions, such that higher WMH volumes were observed in 20 

subjects with more homogeneous WMH and less homogeneous NAWM textural profiles. 21 

WMHTstd, WMHTenergy and WMHThomog were positively associated with WMH volume 22 

whereas WMHTentropy had a negative association. On the contrary, NAWMTentropy and 23 

NAWMTcontrast were positively associated with WMH volume, whereas NAWMTenergy and 24 

NAWMThomog were negatively associated. A potential explanation is that a higher WMH 25 

volume is related to more recent ischemic events which would explain the higher 26 

homogeneity as explained previously. Further to that though, more homogeneous WMH 27 

concomitant with higher volume could relate to more developed or severe WM damage. Our 28 

finding of increased textural homogeneity with a higher WMH volume is in line with previous 29 

reports of positive associations between the Fazekas score and textural homogeneity within 30 

WMH13 . More heterogeneous NAWMT could potentially allude to microstructural alterations 31 

happening in NAWM, which could relate to a more severe WMH burden, or increased 32 

prevalence of other cerebrovascular pathologies in individuals with higher WMH volume. 33 

Associations between textural properties, WMH volume, reaction time and CAIDE may imply 34 

that texture indirectly measures WMH severity more accurately than WMH segmentation 35 

and volumetry on FLAIR MRI, or that textural measures may be measuring microstructural 36 

changes beyond WMH. The negative association between NAWMTstd and WMH volume 37 
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persisted for all the examined layers extending from the WMH apart from the closest layer 1 

(0.86 mm from the WMH).  2 

As a further sub-analysis, we examined the extent of the area surrounding WMH that 3 

demonstrated a similar textural profile to that of WMHT, by analysing incremental layers of 4 

NAWM in which textural associations resembled associations observed in WMH. We have 5 

shown that an area of around 3.44mm surrounding the WMH and classified as NAWM 6 

demonstrates similar textural associations to the volume of WMH and reaction time as 7 

WMHT.  8 

The spatial extent of the peri-WMH area is similar to the extent of penumbras determined in 9 

studies using less readily available MRI sequences such as diffusion tensor imaging (DTI; 2-10 

10mm)39, although studies using arterial spin labelling have identified larger penumbras (7-11 

10mm)30. Hence our technique might demonstrate sensitivity similar to that of DTI in the 12 

definition of WMH penumbras, though a direct comparison of the sensitivity of the 13 

techniques has not yet been made. The clinical implication of this is that textural properties 14 

from conventional FLAIR images obtained in clinical MRI examinations may be sufficiently 15 

sensitive to microstructural changes that are undetectable with the human eye and are not 16 

captured by volumetry. While the advantage of using FLAIR over DTI lies in its availability, 17 

DTI metrics have the advantage of being adjusted for the influence of free water, which 18 

cannot be done in FLAIR at present. Similar efforts to generate meaningful measures of WM 19 

damage utilizing image intensity information have been conducted in the past. In particular, it 20 

has been shown that a metric quantifying relative intensity differences between WMH and 21 

NAWM was more associated with visual rating scales compared to WMH volume33. 22 

We have further investigated how the CAIDE score, capturing genetic and lifestyle risk 23 

factors for dementia was related to textural features. CAIDE, was associated with a 24 

heterogeneous intensity pattern in NAWM, a finding which further supports the hypothesis 25 

that WM textural analysis might be capturing subtle microstructural alterations in clinical 26 

scans. In this same cohort previous analysis using the T1-weighted images suggested 27 

limited areas of atrophy in subjects with a higher CAIDE40. In the past it has been shown that 28 

entropy and contrast of T1 images relate to tau burden in the neocortex41. A further analysis 29 

with cardiovascular risk factors, age and sex as predictors unveiled that females had a 30 

different textural profile compared to males in both WMH (more heterogeneous textural 31 

profile) and NAWM (less heterogeneous), with ageing mainly related to textural alterations in 32 

NAWM (more heterogeneous). From the considered cardiovascular risk factors only 33 

hypertension was related to a higher WMHTstd, a finding which did not remain significant 34 

following FDR. 35 

Overall, we have shown that textural features extracted from images typically used in clinical 36 

settings can reveal further information pertaining to damage of WM above and beyond that 37 
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captured by the volume of WMH. We propose that intensity information from the FLAIR 1 

scans holds additional clinical value and could be considered as a marker of WMH severity. 2 

It is worth noting that the running time of textural analysis for the FLAIR scans was 3 

approximately 8 minutes per subject. 4 

Strengths of our study include generation of textural maps and subsequent extraction of 5 

textural values from defined ROIs, rather than running a separate textural analysis within 6 

each ROI which renders the quantized intensity values dependent on ROI definition. To 7 

achieve this, we have extrapolated a method developed for texture-based morphometry in 8 

T1-weighted images and applied it in FLAIR space using a two-dimensional approach. This 9 

allowed for the quantized intensity levels to be stable across our analysis. Absence of 10 

associations between WMH volume and reaction time allowed us to evaluate the sensitivity 11 

of the employed technique to detect potential subtle underlying damage. The advantage of 12 

investigating cognitively healthy midlife adults stems from the ability to detect early 13 

preclinical changes years before the onset of dementia, allowing us to identify earlier and 14 

more sensitive predictors of future cognitive impairment. On the other hand, results obtained 15 

in our midlife cohort may not extend to elderly cohorts, and future replication in older 16 

samples will be needed. Other limitations of this study relate to its cross-sectional nature, 17 

which does not allow us to assess the sensitivity of textural parameters in WMH progression. 18 

In addition, a single MRI modality was used and sequences such as T2-relaxometry, which 19 

are sensitive in capturing microstructural damage42 were not included in the protocol. The 20 

applied normalization step for the first order textural features does not correct for potential 21 

acquisition-related intensity variations. In addition, the confounding effect of other SVD 22 

pathologies were not considered in this study. Furthermore, we chose to focus on a limited 23 

number of well-defined, easily perceived textural features; in the future, a further set of 24 

textural features (statistical and spectral) could be considered. 25 

In conclusion, we have shown that textural properties of FLAIR images are associated with 26 

reaction time in a midlife cohort, while WMH volume was not associated with it. Textural 27 

properties of WMH interacted with WMH volume to predict reaction time, revealing that a 28 

less homogeneous intensity profile associates with worse performance in the reaction time 29 

task. Future dementia risk was also associated with NAWM textural properties. Thus, 30 

textural features could potentially convey valuable clinical information in terms of the severity 31 

of WMH and could be a sensitive measure of SVD. This could imply that limitations 32 

associated with the one-dimensional approach of using WMH volume as a measure of 33 

investigating WMH pathology can be partly circumvented by incorporating textural features 34 

in the analysis. 35 

 36 

 37 
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Figure legends 1 

Figure 1: Gray level co-occurrence matrix (GLCM) generation for example image 2 

patches. Analyses for these patches runs by examining voxel distances of one voxel, eight 3 

directions and eight intensity levels. In A) a relatively heterogeneous 4x4 intensity patch is 4 

shown, whereas in B) a more homogeneous intensity patch. For case A) the values in the 5 

matrix are more scattered compared to B) where the entries of the matrix are non-zeros 6 

mainly around the diagonal and for specific intensity pairs. These differences are captured 7 

by all quantified textural properties. In C) two patches with the exact same entropy and 8 

energy are shown, but for which homogeneity and contrast are very different. Abbreviations : 9 

Homog = homogeneity. 10 

Figure 2: Pipeline for textural map generation. A) The bias field corrected FLAIR image is 11 

brain extracted and the intensity levels are quantized to 8 levels (minimum intensity 1, 12 

maximum 8). Subsequently in small 3x3 patches the gray level co-occurrence matrices 13 

(GLCM) are calculated based on 8 directions as shown by the arrows. B) Following that, 14 

Haralick features are calculated based on Matlab functions and associated textural maps are 15 

generated whereby the intensity of every voxel captures the textural profile of the 3x3 voxel 16 

neighborhood centered at every voxel.  17 

Figure 3: Variation of texture properties with an increasing radius extending from the 18 

WMH per se to 10 layers surrounding the WMH (2 voxel dilation kernel). A) raw FLAIR 19 

image. B) WMH lesion maps were generated based on a semi-automated pipeline. C) 10 20 

layers surrounding the WMH based on a 2 voxel dilation kernel and confined within normal 21 

appearing white matter. D) Textural values within the whole NAWM are shown in the last 22 

column of the boxplots as a reference. Boxplots (horizontal red lines correspond to the 23 

median, the upper and lower ends of the boxes to the 25th and 75 percentiles, red crosses 24 

indicate outliers and whiskers cover the range of datapoints not considered outliers) are 25 

based on the raw textural values from the 183 participants. Abbreviations: NAWM = normal 26 

appearing white matter; WMH = white matter hyperintensities 27 

Figure 4: Plot of estimated marginal means of reaction time depicts a significant 28 

interaction between white matter hyperintensity (WMH) volume and texture on 29 

reaction time for the 183 participants. Note: Higher reaction time (in ms) indicates poorer 30 

performance. In legend, Moderate represents mean Homogeneity/Energy, while High and 31 

Low Homogeneity/Energy was defined as +/-1 SD from mean. WMH volume as a 32 

percentage of total intracranial volume was cube-root transformed for normality.  33 

Figure 5: Extent of the area surrounding WMH where the observed relationships 34 

between reaction time and texture, and WMH volume and texture persisted. For the 35 
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majority of the examined metrics, the association persisted until layer 3, which corresponds 1 

to an area of around 2.6 mm surrounding the WMH. The association between reaction time 2 

and mean intensity persisted until layer 4 (3.44mm). Plots are based on the full sample of 3 

183 individuals and demonstrate the t-statistic from linear regression models with age and 4 

sex as additional predictors in the y axis, the layer number on the x-axis and asterisks depict 5 

the level of significance of the observed association – if any on the respective datapoints. * p 6 

< 0.05; ** p < 0.01. Black asterisks indicate associations that survived FDR whereas light 7 

gray is used for associations that did not survive the correction for multiple comparisons. 8 
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