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Abstract 
Langjökull, Iceland’s second largest icecap (~950 km2), was the subject of an incomplete 

airborne LiDAR survey in August 2007. This study investigates and evaluates the application 

of photoclinometry, which employs visible light imagery (here, Landsat ETM+ band 4) to 

interpolate unmeasured sections of this fragmented data set. A complete digital elevation 

model (DEM) of Langjökull was produced, and photoclinometry was determined to be a 

satisfactory and robust technique for topographic interpolation (RMS error = 3.4 m over a 3 

km section). Future applications of photoclinometry can ensure optimal results by focusing on 

the consistent ability of their imager to accurately represent low contrast surfaces; also, 

consideration of setting characteristic such as solar azimuth, solar elevation, and moderate 

surface slope will make photoclinometric interpolation more effective. Photoclinometry it is 

proven to be a current and valuable technique, it is confirmed as a secondary rather than 

primary tool, and other possible applications of photoclinometry are considered. 

Using the completed DEM of Langjökull for summer 2007 and a previously prepared 

corresponding 1997 data set, Langjökull was found to have a specific annual mass balance of 

-0.99 0.1 meters per year of water equivalence (m yr-1 w.e.), a number which confirms 

published predictions that Langjökull will likely disappear in the next 200 years. Comparison 

of remotely-sensed mass balance values and traditional in situ measurements revealed a 

possible systematic disparity; it is hypothesized that field measurements may not be 

sufficiently constraining behavior of interior areas and that the signal from strongly receding 

outlet glaciers may be skewing the in situ mass balance value calculated for the entire icecap. 

An additional DEM of outlet Hagafellsjökull Vestari allowed for calculation of specific mass 

balances of -2.28 m yr-1 w.e. for 1997-2001, -3.86 m yr-1 w.e. for 2001-2007, and -3.23 m yr-1 

w.e. for 1997-2007. Similarly, visual inspection and tracing of Landsat images showed a 

recession of -3.4 2.5 km2 yr-1 from 1994 to 2007. The new 2007 DEM allowed for clear 

visualization of strong recession on several Langjökull outlets as well as interior mass loss 

and terminus advance witnessing to the 1998 surge event of outlet Hagafellsjökull Eystri. In 

addition, slight interior elevation increase and anti-correlated mass loss and terminal retreat 

potentially indicate a future surge of outlet Hagafellsjökull Vestari.  

±

±

In sum, the technological and glaciological information put forward in this study 

provides a method for innovative cryospheric research, presents a much needed benchmark 

and update on the state of Langjökull, and ultimately facilitates and encourages continued 

monitoring of highly important smaller glaciers and icecaps. 
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1. Introduction 
While emphasis has been placed on a comprehensive understanding of the continental ice 

sheets because of their potential to raise global sea level by over 70 m (Anderson 1999), in the 

present day 60% of ice-melt contribution to sea level rise is traced to significantly smaller ice 

caps and glaciers which respond much more quickly to shifting climate (Meier et al. 2007; 

IPCC 2007). Of particular relevance to this study, a not-insignificant contribution comes from 

the icecaps and glaciers of Iceland (Oerlemans et al. 2005). 11% of Iceland is glaciated, with 

enough ice locked away in glaciers and icecaps to produce 3600 km3 of liquid water or raise 

sea level by 1 cm. Storing an equivalent of 20 years of the country’s precipitation, Iceland’s 

glaciers provide over 30% of river water which is subsequently harnessed not only for 

agriculture and human consumption but essential hydropower resources (Björnsson & Pálsson 

2008). Iceland’s changing glacial state is thus significant on both global and local scales. 

Annual glacier mass balance1 is a very sensitive indicator of response to a changing 

environment (Pelto & Riedel 2001) whether due to changing precipitation, temperature, or 

some other forcing factor. Admittedly, glacier mass balance can be convoluted by glacier 

orientation and local and regional geographical concerns, but by combining glacier 

observations into a regional network, these factors can be identified and quantified (Holmlund 

& Jansson 1999; Pelto & Riedel 2001). By distinguishing between net mass balance and other 

glacier responses, such as changes in elevation distribution or terminal retreat, a more nuanced 

picture of glacier response to climate can be built (Miller & Pelto 1990; 1999). Alpine glacier 

mass balance records stretch back to 1946 in North America (Miller & Pelto 1990) and 1945 

in Europe (Holmlund & Jansson 1999); these records not only show a response to climatic 

warming early in the 20th century (Holmlund & Jansson 1999), but also a modern response to 

currently warming temperatures in certain areas (Miller & Pelto 1999).  

The changing state of these smaller ice caps and glaciers has significant implications 

for sea level rise, water resource availability, and geomorphologic hazards for populations all 

over the world (Richardson & Reynolds 2000). However, due to wide spatial distribution and 

typically harsh and rugged conditions, extensive studies of smaller glaciers are lacking. In 

addition to studying net mass balance and margin tracking, quantifying the spatial distribution 

of mass loss facilitates a better understanding of the dynamic physical response of the glaciers 

in question (e.g. Hagen et al. 2005). It is essential to study the behavior of mountain glaciers 

                                                 
1 Glacier mass balance – the difference between annual accumulation (snowfall) and ablation (melt, runoff, and 
sublimation) measured in meters of water equivalent (m.w.e.) 
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and icecaps in order to fully understand the changes that they are currently experiencing and 

therefore the continued global effects they will have (e.g. Haeberli et al. 1999).  

 

1.1 Icelandic Glaciers 

As mentioned above, small Arctic glaciers play a significant role in Earth’s current climate 

system. While many Arctic glaciers sustain low seasonal mass balances and small interannual 

variability, Icelandic glaciers attribute their exceptionally large seasonal mass balance and 

interannual variability to a largely maritime climate regime (Braithwaite 2005). While some 

studies have used present day Icelandic glaciers as analogues for past ice sheet behavior (e.g. 

Evans et al. 1999), many Icelandic glaciers are considered unique because of the widespread 

interaction of glacial and volcanic systems (Björnsson et al. 2001) which can cause not only 

unpredictable flow dynamics but destructive jökulhlaup2 events (Björnsson 2002).  

Iceland’s glaciated areas are dominated by highland icecaps which have smaller outlet 

glaciers (see Figure 1.1). Every one of these major icecaps is characterized by at least one 

surge-type outlet glacier (Björnsson et al. 2003). Succinctly, surge events are part of a cycle of  

 
Figure 1.1 Sketch map showing Iceland’s major icecaps (Williams et al. 1997). Langjökull is in west-central 
Iceland. 

                                                 
2 Jökulhlaup – a glacier outburst flood, often caused by subglacial volcanic activity 
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mass accumulation and expulsion. While steeply-sloping glaciers are able to maintain a steady 

state balance between accumulation and ablation, surge-type glaciers are generally 

characterized by a gentle surface slope which results in a velocity too low to sustain a flux 

commensurate with their accumulation rate (Björnsson et al. 2003). Therefore, after a slight 

increase in flow for 2-3 years and the development and progression of a surface bulge, 

episodic events when the glacier dramatically increases flow rate (by orders of magnitude) 

contribute significantly to the glacier’s total mass transfer (Björnsson & Pálsson 2008). While 

Icelandic surge events are neither regular nor correlated to glacier size or mass balance 

(Björnsson et al. 2003), historical reports of glacier surges go back centuries, with 

Vatnajökull’s outlet Brúarjökull having the longest history of surging (as far back as 1625; 

Hall et al. 1995b). In addition to pushing forward the glacier terminus by kilometers, surge 

events significantly increase the sediment load in proglacial rivers (Björnsson et al. 2003) as 

well as displacing glacier water divides and decreasing the surface area of upper-icecap 

accumulation zones (Magnússon et al. 2004).  

On a wider scale than surge events, Iceland’s placement in the North Atlantic 

convergence zone of warm and cold air and water masses makes it an ideal location to study 

climate signals which can be uniquely registered in its glaciers (Brown et al. 1999; McKinzey 

et al. 2005a). Although response time depends on the size of the glacier or ice cap in question 

(Kirkbride & Dugmore 2006), typically a response to a climate shift is seen at the glacier 

snout of an Icelandic icecap within a decade (Sigurðsson & Jónsson 1995). In addition to 

global climate shifts, Icelandic climate can be partly described by patterns governed by the 

North Atlantic Oscillation (NAO; see Figure 1.2). The NAO goes through strong and weak 

cycles, creating a dipole across the Atlantic between 30 and 70 degrees north, at times giving 

continental Europe dry, warm winters and 

Iceland and Greenland cool conditions with 

increased precipitation and vice versa (Hurrell 

1995; Bradwell et al. 2006). While glacier 

behavior in Svalbard does not correlate with 

NAO activity (Rasmussen & Kohler 2007), 

Bradwell et al. (2006) document that the speed 

and timing of advance of southern Icelandic 

glaciers indicates response to NAO activity. 

Interestingly, although surge events are not 

Figure 1.2 Winter (December-March) index of the
NAO based on the difference of normalized
pressures between Lisbon, Portugal, and
Stykkisholmur, Iceland, from 1864 to 1994. The
heavy solid line is smoothed with a low pass filter to
remove fluctuations with periods less than 4 years
(Hurrell 1995).  

 3



correlated with climatic changes, the maximum extension at the end of surges and the 

minimum extent before surging do appear to be influenced by long term climate shifts 

(Sigurðsson & Jónsson 1995). Since 1930, all Icelandic glaciers, especially non-surge type, 

show a clear response to climatic variation; this shift has been related to temperature rather 

than any change in precipitation as there has been no noticeable shift in the latter over the 20th 

century (Jóhannesson & Sigurðsson 1998). Indeed, Icelandic glacier response to the NAO is 

largely a superposition over broader climatic changes; although the cooling of the 1940s-80s 

allowed for temporary advance, warming across the 20th century is the larger trend (Hanna et 

al. 2004). 

While cool, cloudy summers and wet winters caused by the NAO have been associated 

with Icelandic glacier advance during the 20th century, these fluctuations are also seen as a 

semi-chaotic transition to the current warmer climate from cooler historical eras (Kirkbride 

2002). Although the Icelandic Ice Sheet (IIS) was reduced in size from 60-25 kya (Andrews 

2008), at the Last Glacial Maximum (LGM) the IIS covered most of Iceland with 2 km of ice 

and extended to the continental shelf break approximately 14 to 21 kya (see Figure 1.3; 

Hubbard et al. 2006; Licciardi et al. 2007; Norðdahl et al. 2008). LGM IIS volume was most 

sensitive to basal boundary conditions while areal extent was determined by bathymetry and 

calving activity (Hubbard 2006). After a series of advances and retreats associated with the 

Younger Dryas era ~10 kya, the mid-Holocene thermal optimum significantly reduced 

Iceland’s glaciated area ~8 kya (Norðdahl et al. 2008).  

Neoglaciation commenced 5-6 kya (Norðdahl et al. 2008), and despite advances 

bracketing the Medieval Warm Period in the 9th and 12th centuries (Kirkbride & Dugmore 

2008), most Icelandic glaciers reached their Holocene maximum during the Little Ice Age 

(LIA; Flowers et al. 2007; 2008). Although the LIA climate shift appears to be synchronous 

across Iceland, depending on glacier size and type the associated advances were slightly offset 

(Kirkbride & Dugmore 2008). For example, although some small outlet glaciers saw their LIA 

maximum as early as 1700 (Kirkbride & Dugmore 2008), other lichonometric dating and 

tephrochronology studies show more common maxima in the late 18th and early 19th centuries 

(McKinzey et al. 2005b). Ethnographic research into areas such as decreased farming 

viability, more restricted population distribution, and decreased river usage also point to a 

glacial and climatic maximum of the Icelandic LIA in the late 18th and early 19th centuries 

(McKinzey et al. 2005a).  
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Figure 1.3 Moraines and other physical evidence revealing the maximum size of the Icelandic ice sheet ~20 kya 
(Norðdahl et al. 2008); modeled and landbased outlines are according to Hubbard et al. (2006).  

In more recent times, a general recession of Icelandic glaciers over the past 200 years 

has been punctuated by slowing of retreat or even advance in the 1810s, 50s, 70s, 90s, and c. 

1920 and 1970 (Sigurðsson 1998; Bradwell et al. 2006); Icelandic glaciers also fluctuated 

heavily in the 1930s and 40s (Bradwell et al. 2006). Although surge events often dominate a 

glacier’s terminus, long-term recession of surging outlets, too, indicates a response to a 

warming 20th century climate (Magnússon et al. 2005). Many glaciers serve as good case 

studies of Icelandic climate change, but the most studied are the outlets of Iceland’s largest 

icecap, Vatnajökull. Since the end of the 19th century, Vatnajökull has lost 10% of its mass, 

and this loss rate has accelerated in the last decade (Björnsson & Pálsson 2008); some lobes 

have retreated up to 2000 m in two decades (Williams et al. 1997), a result of a summer 

balance as large as -5 m.w.e. (Björnsson et al. 1998). Other studies have published figures 

such as a loss of 2.37 m.w.e. over 11 years (Björnsson et al. 2002), loss of 14 5 km3 from 

1985 to 1998 (Magnússon et al. 2005), and retreat averaging 850 m over Vatnajökull’s 130 

km long perimeter (Magnússon et al. 2005).  

±

Although not necessarily a synoptic view, measurements on Vatnajökull provide 

insight into the processes driving glacial fluctuations in Iceland. Summer temperature 

fluctuations, in particular, have been correlated with Icelandic glacial behavior; retreat in the 

1930s was a response to warming in the 1920s, an advance beginning in 1970 corresponds to 

a cooling in the 1960s, and warming since ~1985 has led to an increased number of retreating  
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Figure 1.4 Glacier fluctuation in Iceland 1930-1993; percentage of advancing and retreating non-surging 
glaciers relative to the total number of monitored glaciers (Sigurðsson & Jónsson 1995).  

glaciers beginning in the 1990s (see Figure 1.4; Sigurðsson & Jónsson 1995; Jóhannesson & 

Sigurðsson 1998). While winter mass balances have stayed fairly constant in recent decades, 

the summer balance, and hence annual net balance, has notably decreased from year to year 

(Björnsson et al. 1998).  

This dramatic past behavior puts much speculation into the future behavior of 

Icelandic glaciers. While some studies suggest that icecaps such as Hofsjökull are near a 

stable equilibrium in a warmer climate, the much larger Vatnajökull is likely to lose at least 

40% of its current volume before possibly stabilizing (Aðalgeirsdóttir et al. 2005; 2006). More 

pessimistic but still plausible models predict a 25 to 35% loss of the main Icelandic icecaps 

within half a century, leaving only small, isolated glaciers on high peaks in 150 or 200 years 

(Björnsson & Pálsson 2008). Whichever the case, advances in current monitoring knowledge 

and techniques will improve our understanding of the future behavior of the Icelandic icecaps. 

 

1.1.1 Study Area 

Langjökull (Icelandic for ‘Long Glacier’) is Iceland’s second largest icecap (~950 km2; 

maximum elevation ~1500 m.a.s.l.) and oriented SW-NE in central western Iceland (see 

Figure 1.5; Sigurðsson 1998). With an equilibrium line altitude at ~1000 m.a.s.l. and a low 

surface slope (<3.8 deg), Langjökull is thought to be a completely temperate ice mass; the 

widespread presence of moulins implies that melt water is freely able to reach the glacier bed 

(Eyre et al. 2005). The area is not volcanically active, there is no evidence for postglacial 

volcanic activity underneath Langjökull, and no recorded jökulhlaup has ever issued from 

 6



 
Figure 1.5 Map of Langjökull including elevation (m.a.s.l.), ice divides, and central flowlines. In this study, 
Leiðarjökull is referred to as Jökulkrókur. Large map courtesy of Finnur Pálsson and Helgi Björnsson; inset 
from Eyre et al. (2005).  

Langjökull (Sigurðsson 1998). 

The icecap itself has many outlet glaciers, two of which have historical records of 

surging behavior. On Langjökull’s eastern edge, non-surge-type outlets Norðurjökull and 

Suðurjökull terminate in proglacial lake Hvítárvatn (Flowers et al. 2007) while Þrístapajökull 

is Langjökull’s major western outlet. Jökulkrókur (also known as Leiðarjökull), in the 

northeast, has been monitored since 1933 along the valley Þjófadalir where it sources the river 

Fúlakvísl and has no known surging past (Sigurðsson 1998). In the south, the two major 

outlets, Hagafellsjökull Eystri and Hagafellsjökull Vestari are separated by the Hagafell 

Ridge. Both are surge-type glaciers believed to rest on a bed of deformable sediments (Eyre et 

al. 2005); Eystri surged in 1974, 1980, and 1998, Vestari surged in 1971 and 1980, and no 

previous surges are known for either glacier (Sigurðsson 1998; Bennett et al. 2005; Björnsson 

& Pálsson 2008). Hagafellsjökull Vestari is approximately 7 km wide, 25 km long, and 
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bounded on the east by the Hagafell Ridge. Hagafellsjökull Eystri is approximately 4 km wide 

and currently terminates in proglacial lake Hagavatn; constrained to the east by the Jarlhettur 

volcanic ridge, in places it overflows and forms small piedmont lobes in the Jarlhettukvísl 

Valley (Bennett et al. 2005). Past surges have formed complex deformation structures in and 

around lake Hagavatn (Bennett et al. 2000). During each surge Hagafellsjökull Eystri 

advances 1000-1500 m in late winter or early spring; in 1999 it first advanced 30 m in 24 

hours, then 1165 m over the subsequent six weeks (Bennett et al. 2005).  

Langjökull in its current state first significantly advanced 8.2 kya, remained quiescent 

throughout the mid-Holocene, and advanced again 3-5 kya (Flowers et al. 2008). 

Nevertheless, Langjökull’s LIA maximum is thought to be its largest extent ever, sometime 

between 1840 (Flowers et al. 2007) and 1890 (Bennett et al. 2000). However, because many 

of Langjökull’s outlets are quite stable, this maximum was still only ~10% larger in volume 

and ~5% larger in area than in the late 20th century (Flowers et al. 2007). While sufficient 

precipitation is thought to have been the most important factor for Langjökull’s initial 

nucleation and growth, temperature has been it’s most important driver since the LIA 

maximum (Flowers et al. 2008).  

Termini of Langjökull have been scientifically observed since 1933; as is typical 
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Figure 1.6 Relative terminus location of four Langjökull outlet glaciers, with position 0 taken to be the 
beginning of the observational record for a given outlet. Note the large influence of surge events, as well as 
decreased negative slopes in the late 20th century. Data from Sigurðsson (1998; 2000; 2002; 2003; 2004; 2005; 
2006).  
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Iceland-wide, surge-type glaciers are dominated by their surge activities while on a whole 

there is a large retreat through much of the 20th century, with a slowing in the retreat 

beginning in the 1970s (see Figure 1.6; Sigurðsson 1998). From 1996 to 2001, Langjökull lost 

5.73 m.w.e. or ~3% of its total mass (Björnsson et al. 2002), and the icecap is predicted to 

completely disappear around 2140 (Björnsson & Pálsson 2008). This loss is correlated with 

low snow accumulation and high annual temperatures (Björnsson et al. 2002); in order to 

conserve it’s current state, Langjökull must experience increased winter precipitation and/or 

decreased annual temperatures (Flowers et al. 2007).  

 

1.2 Studies of Glacier Topography 

In Iceland and other study areas across the world, the construction of digital elevation models 

(DEMs) of ice surfaces is an essential application of remote sensing to glaciology (Barrand et 

al. 2009). Since the 1980s, satellite-derived data have been used to create DEMs of the 

continental ice sheets (Zwally et al. 1983). Technology has greatly progressed since then, and 

in current research, glacier DEMs are used as inputs for measuring mass balance via volume 

and areal change (Haeberli et al. 1999; Krabill et al. 1999; Rees & Arnold 2007), 

orthorectifying and processing images, delineating ice and water flow basins, and modeling 

ice mass flow (e.g. Joughin et al. 2009), energy balance (Arnold et al. 2006b), and mass 

balance at a point (Hubbard et al. 2000; Kääb & Funk 1999).  

 

1.3 Glacial Topography Measurement Methods 

Traditionally, a suite of techniques has been used to build glacier DEMs, ranging from 

ground-based theodolite survey and differential GPS transects to remotely-sensed satellite and 

airborne altimetry data. However, the desire for accurate, high resolution data over a large 

area is constrained by factors such as poor weather, time-intensive or expensive data 

collection, and challenging logistics. Satellite data is highly accurate over large areas, but the 

low horizontal resolution of altimetry data renders it unfeasible except for continental 

icesheets (Zwally et al. 2005). Therefore, either higher resolution visible light imagery or 

airborne collected data must be used for smaller ice caps and mountain glaciers.  

Photogrammetry, a technique combining multiple photographs from different angles to 

create a three dimensional representation, takes advantage of high-resolution photography to 

build DEMs over glaciated areas (e.g. Kääb & Funk 1999; Barrand et al. 2009). However, 

photogrammetry relies on control points and high-contrast surfaces to co-register points in a 

stereo pair, which although feasible for melting glaciers (Rasmussen & Krimmel 1999) can 
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often be problematic in snow-covered regions (Krimmel 1999). Thus, although tractable, 

aerial photography is not an ideal method for remote glacier volume change measurements. 

The technique of synthetic aperture radar (SAR) allows for airborne or spaceborne 

collection of images which are not subject to cloud-free or daytime conditions. However, SAR 

is unable to account for sudden topographical changes, and images often contain artifacts 

related to complex signal processing (p. 65-69, Rees 2006). SAR images can be used to 

distinguish between glacial regions (Demuth & Pietroniro 1999) and can accurately image 

glacial extent (Magnússon et al. 2005). By combining SAR images through interferometric 

SAR (InSAR), valuable DEMs can be created for determining changes in glacier elevation 

and extent (e.g. Björnsson et al. 2001; Magnússon et al. 2004) as well as measuring surface 

ice velocity (e.g. Guðmundsson et al. 2002; Rignot et al. 2008). However, care must be taken 

in assessing and correcting for the penetration depth of radar in order to ensure an accurate 

representation of ice and snow surfaces (Rignot et al. 2001; Berthier et al. 2006; Surazakov & 

Aizen 2006). Other applications of SAR data to build 3D data are radargrammetry (Simonetto 

et al. 1999; 2000) which combines stereo SAR images in a method similar to 

photogrammetry, and radarclinometry (Thomas et al. 1991; Pacquerault & Maitre 1998; Yang 

& Li 2003) which uses one or more SAR images to relate backscatter to surface slope in a 

method similar to photoclinometry, which is discussed in significant detail in Sections 1.3.2 

and 3.1. For all uses, SAR images can be difficult and expensive to obtain and the data 

requires significant and complicated processing. Thus, while SAR is a valuable data collection 

method for building glacier DEMs, one must overcome significant logistical and scientific 

challenges to access its rewards.  

 

1.3.1 LiDAR and Glacial Topography 

Highly reflective glacier surfaces are very well suited to measurement by light detection and 

ranging (LiDAR). Also known as laser scanning, laser ranging, or laser altimetry, a LiDAR 

sensor emits a pulse of light and measures the time it takes for the pulse to reflect off a surface 

and return to the sensor. Then, it relates this two-way travel time to a distance based upon 

known signal velocity through the atmosphere. The exact position of the location measured by 

the pulse is then calculated based upon the location of the sensor and the direction it is pointed 

(see Figure 1.7); for airborne LiDAR sensors this is achieved with multiple differential GPS 

receivers and a gyroscope unit.3  

                                                 
3 For a more technical description of the necessary corrections, see Favey et al. (1999). 
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Fortunately, glacial topography is in many 

ways ideal for airborne LiDAR use as the surface is 

not complicated by vegetation or drastically steep 

slopes. Indeed, because of the simplicity of the 

system, in addition to ranging capabilities, the 

strength of the LiDAR signal can be used to 

distinguish between rock, snow, and ice (Arnold et 

al. 2006a). 

Figure 1.7 Basic principle of LiDAR
operation. In addition to the laser sensor,
onboard the aircraft (the Dornier 228 pictured
here was used to collect data for this study)
are GPS receivers and a gyroscope unit used
to precisely measure the location and
orientation of the aircraft. 

LiDAR instruments are able to easily 

produce large amounts of data, which then must be 

efficiently dealt with. For DEMs, gridding points 

into a uniform matrix is considered the best practice. 

However, this interpolation is based upon the tenets 

that the terrain surface is continuous and that 

neighboring points are highly correlated (Liu 2008). Unfortunately, feature-specific points 

(i.e. peaks, valleys, ridges) are not generally well represented in gridded DEMs, although 

subsequent inclusion of these details often increases the accuracy of terrain representation 

(Liu 2008). Details of the processes used in this study are referenced in Section 2.1.  

Like any method, LiDAR has its limitations. From any platform, satellite or airborne, 

LiDAR terrain measurements are impeded by interfering cloud cover, although in thin clouds 

data filtering can be used to salvage useful data (Arnold et al. 2006a). In addition, there is an 

inherent tradeoff between the area measured and the density of data collected by a given 

sensor (Rees 2006). Different platforms (ground-based, airborne, and satellite) each have 

independent considerations with respect to cost, time, data quality, and availability of sensors 

for data collection.  

In research, deployment of LiDAR techniques is highly variable, including airborne 

profiling, airborne swath LiDAR, and a spaceborne sensor on the Ice, Cloud, and Land 

Elevation Satellite (ICESat). While ICESat measurements have a vertical accuracy of ~15 cm, 

measurements are also spaced over 170 m apart (Zwally et al. 2002), far too wide for small 

glaciers but perfect for large ice sheets. In addition to looking at behavior of continental ice 

sheets (e.g. Csathó et al. 2005), ICESat data have been used as inputs for ice sheet basal 

process models (Joughin et al. 2009). Airborne LiDAR, on the other hand, has been used to 

focus on smaller glaciers and icecaps. Originally restricted to profiles along glacier flow lines 

(Garvin & Williams 1993; Krabill et al. 1995a), introduction of swath LiDAR opened up 

 11



consideration of entire glaciers (Kennett & Eiken 1997). LiDAR has given insights into 

glacier evolution over the last half-century (Aðalgeirsdóttir et al. 1998; Sapiano et al. 1998), 

and current application of airborne LiDAR is used to look at short-term interannual glacier 

variability with very high resolution capabilities (Arnold et al. 2006a; Rees & Arnold 2007; 

Muskett et al. 2009).  

Accuracy of LiDAR DEMs is based upon multiple factors including instrument 

calibration, sensor stability, navigation accuracy, and GPS accuracy (Krabill et al. 2002); 

advances in GPS technology have allowed for precise location determination and therefore 

correlation and combination of multiple data sets (Krabill et al. 2000). By comparing 

measurements of assumedly fixed features such as proglacial geomorphologic features and 

points where airborne flightlines cross LiDAR accuracy can be quantified (Latypov 2002). 

Profiling began with accuracies ranging from 50 cm (Garvin & Williams 1993) to 20 cm 

(Krabill et al. 1995b), and values in between (Echelmeyer et al. 1996). Current high-resolution 

methods reliably yield elevation to an accuracy of 10 cm on a 2 m grid (Rees & Arnold 2007).  

 

1.3.2 Photoclinometry 

Photoclinometry (PC; also known as shape from shading) is a method which unifies visible 

light imagery with elevation data. Put simply, PC transforms the brightness of a given pixel in 

a visible light image into a surface slope parallel to the solar azimuth for that image. 

Originally developed with regards to synthetic vision (Zhang et al. 1999) and planetary 

science (Howard et al. 1982; Kirk et al. 2003b), PC has become more popular in imaging 

Earth’s surface, including sand dunes (e.g. Levin et al. 2004) and, more applicable to this 

study, polar regions. Studies have employed many different satellite imagers, both visible 

light and radiometric, to enhance already existing glacier DEMs (Scambos & Fahnestock 

1998; Scambos et al. 1998; Scambos & Haran 2002), to use known tie points to build a DEM 

of a large area (Bindschadler & Vornberger 1994; Bingham & Rees 1999), and to investigate 

glacial features such as surface fractal dimension (Rees 1992), ice dolines4 (Bindschadler et 

al. 2002), ice shelf streak lines (Raup et al. 2005), and ice stream dynamics (Scambos et al. 

2004).  

There are two general approaches in applying PC – an area-based approach which 

considers an image as a whole or a profile-based approach which integrates along parallel 

strips across the image. A profile approach (e.g. Bindschadler & Vornberger 1994) begins 

                                                 
4 Ice doline – a depression formed on an ice shelf reminiscent of a sinkhole 
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with points of known elevation and builds off them in a direction parallel to sun azimuth. 

However, because there is effectively no consideration of cross-profile slopes, large errors can 

build up between adjacent profiles along integration lengths (Liu 2003). By contrast, area-

based approaches take advantage of techniques such as Fourier transforms (e.g. Cooper 1994) 

or iterative minimization of an energy function (e.g. Hurt 1991; Liu 2003; Dulova et al. 2008) 

to relate slope in perpendicular directions. However, while scattered tie points can be used to 

attach an absolute elevation to a DEM generated by an areal approach, only profile integration 

is able to incorporate large numbers of tie points. In this way, area-based PC is able to fill in 

sparsely-constrained regions while profile-based PC takes advantage of more comprehensive 

elevation data sets which require augmentation. 

 

1.4 Study Aims 

This study is motivated by the desire to take advantage of a high resolution LiDAR data set 

(for details see Section 2.1) collected over Langjökull Icecap, Iceland. Due to logistical 

constraints, the aerial survey was left incomplete (see Figure 1.8); although coverage is 

largely continuous in the southeast quadrant, other areas are characterized by ~3 km strips 

lacking LiDAR coverage. Clearly, such a fragmented data set is not useful for glaciological 

applications. Therefore, the first aim of this study is to investigate the extent to which it is 

possible to interpolate elevations for the unmeasured areas using a combination of LiDAR tie 

points and a reasonably well established technique, photoclinometry. While employed in other 

circumstances to enhance or build relatively low resolution DEMs, here we seek to take 

advantage of the detail afforded by airborne LiDAR, evaluate suitable visual imagery for the 

task, develop a best practice for the technique, and build a final, complete, high resolution 

DEM for Langjökull. As with any technical investigation, there are inevitably new and 

unforeseen setbacks; we hope to assess these problems, overcome them, and evaluate the 

success with which we are able reconstruct icecap topography with photoclinometry.  

Building on the product developed in the first part of this study will be a glaciological 

investigation of Langjökull. Through comparison of the LiDAR and PC-derived DEM with 

past DEMs, in situ mass balance data, and satellite imagery, this study will investigate 

changes in Langjökull over the past decade. In order to build a comprehensive portrait of the 

icecap, specific mass balance, spatial distribution of elevation changes, areal change, and 

margin advance and/or retreat will be interpreted. In particular, we will compare in situ and 

remotely sensed specific mass balance and investigate possible reasons for any observed 

discrepancies. Ultimately, the glaciological investigations in this study aim to afford a better 
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understanding of Langjökull’s behavior in the recent past, what such observations likely mean 

for Langjökull’s future, and how the icecap will continue to influence regional and global 

systems. 

 

 

 

 
 
 
 
 
 

 
Figure 1.8 Area of 2 August 2007 LiDAR survey masked over a 19 March 2002 Landsat-derived image. The 
rectangle indicates the location of the 2001 photogrammetrically-derived DEM of Hagafellsjökull Vestari (see 
Section 4.4). The scale bar is 10 km. 
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2. Data Sources 
2.1 Elevation Data 

On 2 August 2007, an airborne LiDAR survey was flown for Langjökull (see Figure 1.8). The 

instrument used for data collection was an Optech ALTM3033 LiDAR system belonging to 

Cambridge University’s Unit for Landscape Modeling flown aboard a Dornier 228 aircraft 

provided by the Airborne Research and Survey Facility of the UK Natural Environment 

Research Council. Details of similar acquisition and post-processing are given by Arnold et al. 

(2006). With a vertical accuracy of ~10 cm after processing, the DEM was accessed from an 

image file gridded to 10 m, 5617 pixels wide and 5795 pixels tall with the upper left corner at 

510380E, 7201730N as plotted in UTM zone 27N with the WGS84 datum.  

Additional summer 2007 elevation data were obtained via several differential GPS 

tracks collected on snowmobile and provided by Finnur Pálsson and Helgi Björnsson at the 

University of Iceland’s Earth Science Institute. Differential GPS has ~2 cm vertical accuracy 

when sufficiently close to a base station. However, LiDAR and GPS data collection was not 

contemporaneous. After the tracks were gridded, comparison of areas of data overlap was 

undertaken to confirm that there was no systematic offset between the data sources. 

Demonstrating an almost normal distribution and thus no systematic bias, the absolute value 

of the offsets had a mean of 1.28 m and a root mean square error (see Equation 9) of 1.88 m. 

Because this error is less than predicted integration error (3.4 m, see Section 3.3.4), all 

supplementary differential GPS data were appended to the LiDAR DEM.  

For temporal comparison, a DEM of the entire 1997 Langjökull surface and 

surrounding ice-free topography was processed by Ian Willis at Cambridge University’s Scott 

Polar Research Institute from data again provided by Finnur Pálsson and Helgi Björnsson. 

Originally based on an extensive network of differential GPS snowmobile tracks, the Kriging 

method of interpolation was used to grid the data to 100 m and projected in UTM zone 27N.  

Finally, as an intermediate between 1997 and 2007, a 2001 photogrammetrically-

derived DEM based on 33 aerial photographs of Hagafellsjökull Vestari was provided by 

Richard Hodgkins at Loughborough University and Adrian Fox at the British Antarctic 

Survey. This DEM is gridded to 25 m with a vertical accuracy of better than 3 m and plotted 

in UTM zone 27N with the WGS84 datum. 

 

2.2 Visible Imagery 

In order to use PC to fill in the gaps in the 2007 LiDAR DEM of Langjökull, visible-light 

imagery of the entire icecap is required. Of course, resolution up the quality of the LiDAR 

 15



data (10 m) is desirable, but availability and cost must also be considered. Accordingly, 

imagery with 30 m horizontal resolution from NASA’s Landsat program was chosen. A wide 

range of Landsat imagery is freely available by on-demand download through the United 

States Geological Survey’s Earth Explorer service5 and the University of Maryland’s Global 

Land Cover Facility.6 

Landsat imagery was required for two purposes: photoclinometry (PC) applications 

and an accurate delineation of Langjökull’s complete terminus throughout the study period. 

Chosen based on the temporal constraint and the necessity for largely cloud-free images, see  

 

 
Figure 2.1 Landsat images used for tracing Langjökull’s areal extent: (upper left) Band 1, Landsat 5 TM, Path 
219, Row 15 from 12 August 1994; (upper right) Band 1, Landsat 7 ETM+, Path 219, Row 15 from 8 September 
2001; (lower left) Mosaic of Band 8 Landsat ETM+ Path 200, Rows 14 & 15 from 28 June 2007; (lower right) 
Band 1, Landsat 7 ETM+, Path 219, Row 15 from 25 September 2007. Note the gaps due to collection in SLC-off 
mode in the 2007 images (see Figure 2.2). 

                                                 
5 http://earthexplorer.usgs.gov 
6 http://glcf.umiacs.umd.edu/index.shtml 
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Figure 2.1 for the images from 1994, 2001, and 2007 employed here for visual identification of 

Langjökull’s extent. The method of PC, however, imposes significantly stricter requirements on 

data which is employed. Obviously, cloud cover must be minimal, not only because clouds 

obstruct the surface, but shadowing by clouds also disrupts the homogeneity of reflectance 

necessary for PC (see Section 3.1). Care must be taken especially in distinguishing clouds which 

may be present over the ice surface but have a very similar albedo. Filters such as the 

Normalized Difference Snow Index can help in this identification (Hall et al. 1995a). 

Related to the issue of homogeneity, the snow surface itself over the entire glacier 

must have uniform reflective properties. Summertime images will show a wide range of 

glacier surface types ranging from wet snow to glacier ice. Previous studies have determined 

that an early spring image allows for uniform snowcover without confounding hoar or ice 

patches (Scambos & Haran 2002). Ideally Landsat and LiDAR data would be collected 

contemporaneously, but these requirements over-constrain the available data. In order to allow 

for some compromise in selecting an appropriate data set, we consider first the variability in 

summer and winter small-scale topography, after which interannual variability in snowcover 

will be addressed in the context of glacier topography.  

Snow-cover is known to be spatially inconsistent (Schneider 1999), and therefore does 

not exactly duplicate the underlying topography. As intuitively expected, consecutive LiDAR 

scans have shown on Alaska’s Malaspina Glacier that concave areas fill with more snow than 

convex areas (Sauber et al. 2005), in most glacial cases due to wind redistribution of snow 

(Anschutz et al. 2007) thus producing a smoothed version of the underlying topography. In 

both flat (Shook & Gray 1996) and mountainous (Deems et al. 2006) environments, snow 

depth distribution is self-similar on small scales (<10 m) while essentially spatially-random on 

large scales (>30 m). For a given year, snowcover depth, and therefore the resulting 

springtime topography, are largely dependent on a complex mix of glacier aspect, 

microclimatological influences (Bamber et al. 2005), slope orientation (Lapen & Martz 1996; 

Richardson & Holmlund 1999), and altitude (Richardson & Holmlund 1999; Nuth et al. 

2007).  

In addition to intra-annual differences in glacier surface topography, there is 

considerable natural annual variability in local snow depths and accumulation rates (Bamber 

et al. 2005) which may in turn influence subsequent distribution of snow (Anschutz et al. 

2008). Thus, while spatial distribution patterns of snow depth are often consistent, the snow 

depth at a given location varies considerably between years (Deems et al. 2008).  
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It is crucial to determine the scale of the effect that a different glacier surface will have 

on the eventual DEM that is produced with PC. One study using Landsat MSS data (60 m 

horizontal resolution) determined RMS error on it’s elevation of 13.6 m (Bingham & Rees 

1999). Interannual variations in glacier topography appear to be constant on the 5 m scale 

(Zagorski et al. 2008). High-resolution topographic studies have revealed surface variability 

on the scale of 7 cm a-1 in Antarctica (Anschutz et al. 2008), 2 m a-1 in Norway (Geist et al. 

2005), up to 3 m a-1 in Svalbard (Nuth et al. 2007; Rees & Arnold 2007), and up to 10 m a-1 in 

temperate, maritime southeast Alaska (Cheshire 2008); variability appears to increase with the 

temperate nature of the glacier or ice sheet in question. Ultimately, any intra- or interannual 

glacier topographic variability should not be detectable via PC based on Landsat ETM+ as 

long as there has not been any surge activity between Landsat and LiDAR collection times. 

Therefore, rather than focusing on temporal proximity with LiDAR data collection, selection 

of imagery for PC processing is dependent on solar elevation, solar azimuth, and consistency 

of radiometric properties. 

To greatly simplify computation, PC makes the assumption that the entire image is 

illuminated from the same solar elevation and azimuth. Therefore a single image rather than a 

mosaic of images is preferable. Once this Path/Row is found, it restricts the range in available 

solar positions, but ideally the elevation should be around 20º - low enough to cause 

variability in surface illumination, but not so low as to cause surface self-shadowing. In 

addition, because profiles are calculated parallel to solar azimuth, LiDAR swaths should 

ideally be placed perpendicular to the sun direction to minimize integration distance.  

One additional consideration is a shift in the quality of Landsat data over the last 

decade. On May 31, 2003 the Scan Line Corrector (SLC) on Landsat 7, which compensates 

for the forward motion of the satellite during image collection, failed (Boloorani et al. 2008). 

Although the ETM+ continues to collect in SLC-off mode, approximately 22% of the image is 

missing with wedges of blank data spreading from 0 pixels wide in the center 22 km of the 

image (Wulder et al. 2008) to 14 pixels 

wide on the eastern and western edges of 

the image (see Figure 2.2; Maxwell et al. 

2007). Nevertheless, the data collected in 

SLC-off mode is radiometrically correct 

and did not change any calibration levels 

(Markham et al. 2005). Many methods to 
Figure 2.2 Role of scanning mirror and SLC
operation on Landsat 7 ETM+ (Reza & Ali 2008). 
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restore missing data from SLC-off images have been tried, some quite successfully (Reza & 

Ali 2008; Roy et al. 2008; Wulder et al. 2008). However, computational methods (e.g. 

Schowengerdt 2007) are not sufficient for PC application, and contemporaneous 

supplementary data to fill in scan line omissions are unfeasible to obtain. Therefore, the 

complications introduced by post-SLC error data significantly outweigh any difference is 

Landsat data from a few years earlier which in fact introduce no additional error. 

Based on all of the above considerations, a Landsat 7 ETM+ image from 19 March 

2002 (Path 219, Row 15) was selected as the basis for PC augmentation of the 2007 LIDAR 

DEM (see Figure 2.3). 

 
Figure 2.3 Landsat ETM+ band 4 image (Path 219, Row 15) collected on 19 March 2002 used for PC 
interpolation in this study. Note that, as intuitively expected, icecap topography can be interpreted from image 
brightness. For more information on band 4 selection, see Section 3.3.3. The scale bar is 10 km.  
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2.3 Mass Balance Data 

In addition to the historical data documented by Sigurðsson (1998), and more recent 

monitoring efforts (Sigurðsson 2000; 2002; 2003; 2004; 2005; 2006), summer, winter, and net 

annual specific mass balances for Langjökull for the period 1996-1997 to 2006-2007 were 

provided by Finnur Pálsson and Helgi Björnsson at the University of Iceland’s Earth Science 

Institute.  

These data were collected using the stratigraphic method, measuring changes in 

glacier surface thickness and density relative to the summer surface in both the summer and 

winter across a stake network set up on many of Langjökull’s outlet glaciers. The winter 

balance is estimated by drilling ice cores through the winter layer in the spring, and melt 

during the summer is measured from markers and snow stakes. A certain amount of variability 

is understood, for example resulting from drifting and redistribution of snow or predominant 

wind direction influencing precipitation, but elevation is the main variable determining 

position of sampling locations along flowlines and extrapolating from sample locations to the 

rest of the glacier. By combining stake measurements from multiple outlets, the final specific 

mass balance in theory accounts for both lateral and vertical variability in mass balance across 

the icecap. Error limits following integration are considered to be no lower than 15%.  
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3. Methods 
While photoclinometry (PC) has been employed in a wide variety of situations and with many 

different types of elevation data and imagery, this is the first study which is based upon 

augmentation of very high resolution elevation data. As such, the considerations involved in 

combing LiDAR and Landsat ETM+ with easily available computing power are considered 

below.  

 

3.1 Photoclinometry Theory 

Intuitively, we know that visible-light images contain information concerning the topography 

they depict (i.e. see Figure 2.3); slopes facing towards the sun are naturally brighter than 

slopes facing away. Among other uses, on ice surfaces this basic understanding has been 

employed to identify ice divides (Dowdeswell et al. 1995). However, there are many 

assumptions and requirements which must be satisfied for PC to work properly (Kirk et al. 

2003a). In particular, self-shadowed areas cannot be accurately imaged (Gelli & Vitulano 

2004), and therefore a sufficiently large sun incidence angle is required; fortunately, ice sheet 

topography is usually subdued enough for this not to be an issue (Goodwin & Vaughan 1995). 

Solar incidence angles which are too high will saturate captured images while low angle light 

is complicated by increased atmospheric disturbance (Kirk 2003). In addition, the entire 

image is assumed to have the same reflective properties; following masking of any non-ice 

outcrops, this assumption has been determined to be valid for early-spring glacier surfaces 

that have not yet developed separate surface facies or hoar crystals (Scambos & Haran 2002).  

In a more theoretically rigorous sense, PC use on glaciers begins with the assumption 

that snow is a Lambertian or diffuse reflector, scattering reflected light equally in all 

directions, rather than a specular reflector which reflects light only at an angle equal to the 

incidence angle (Zhang et al. 1999). Although snow is not a perfect Lambertian reflector 

(Warren 1982), for incidence angles above a couple of degrees, Lambertian behavior 

significantly outweighs specular reflectance (Choudhury & Chang 1981). Based upon a 

Lambertian reflectance model, image brightness can be described by 
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where the image brightness (pixel value, I) is a function of the Cartesian components of the 

unit vector in the direction of solar illumination (α, β, γ), the Cartesian coordinate of the 

surface (x and y horizontal, z vertical), and , the image brightness for a normally 

illuminated pixel (Cooper 1994; Bingham & Rees 1999). For this to be a valid relation, it is 

important that image brightness not be saturated (Cooper 1994). This general equation is 

simplified by assuming that the surface slope is small such that 

0I
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This simplification is valid for low slope areas; a later section (see Section 3.3.2) evaluates 

this assumption for Langjökull. In addition, we establish a Cartesian coordinate system 

whereby the x-axis is parallel to the solar azimuth, thereby causing β to be 0. Implicit in this 

simplification is the assumption that both sun and satellite imager are distant enough that the 

entire image can be described by constant incidence angles and solar azimuth. Based on these 

two simplifying assumptions we are left with the following: 

 '')( γα +
∂
∂

=
x
zxI  (3) 

where αα 0I'=  and γγ 0' I=  (Bingham & Rees 1999). 

Equation 3 shows that for a Lambertian surface, slope and image brightness should be 

linearly related. Image brightness and surface slope were first shown to be linearly related by 

Rees and Dowdeswell (1988). Likewise, other studies show a similar relation (Scambos & 

Fahnestock 1998) whereby: 

 BAI += θcos  (4) 

in which  and  where C is the constant of conversion from radiance 

units to sensor units, U is the incident illumination at the surface, R is the reflectivity, θ is the 

angle between the surface normal and the solar incidence vector, L0 is the minimum radiance 

threshold for the sensor, and T is the radiance at the sensor from all sources other than the 

surface, such as atmospheric scattering.  

CURA = )( 0LTCB −=

By using areas of overlap between visible imagery and a pre-existing DEM, the 

relationships in Equations 3 and 4 can be investigated and the Lambertian assumption 

evaluated (i.e. a linear relationship confirms validity of the method). In the case that slope and 

brightness data cannot be compared, it may be possible to employ dark pixel values and 

assumptions about low surface slope in order to quantify the constants in Equation 

(Bindschadler et al. 2002). In this study, see Section 3.3.3 for application of Equation 3.  
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Based on known tie points and a calculated surface sun-parallel slope, it is possible to 

interpolate the intermediate topography. All LiDAR data are treated as correct representations 

of the surface, and Landsat-based interpolations are fitted within this framework. Starting 

from Equation 3, we rearrange the expression such that the slope is expressed as follows: 
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where 'α  and 'γ  are empirically derived according to Equation 3. Before further progression, 

the expression must be discretized such that it is compatible with raster data.  
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where i is the pixel count and p is the width of one pixel such that ipx = . In this discretized 

frame, the elevation of a point can be calculated if the elevation of the adjacent point in a sun-

parallel direction is known: 
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Simple substitution with equation 7 yields the final expression: 
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Iterated for each subsequent unknown point, gaps between known tie points can be easily 

interpolated or unknown perimeter values can be extrapolated if desired, although the latter is 

discouraged for multiple reasons including the fact that the coefficients are likely to be 

different for differing surfaces. Finally, for interpolated topography a linear scaling measure is 

taken to ensure that calculated values are consistent with tie points on both sides of a void.  

It should be noted that here we integrate in a sun-parallel direction for simplification 

of computation and because it is in this direction where slope information is stored (Liu 

2003). However, combinations of multiple images have been used in reconstructing planetary 

surfaces to account for variable albedo (Lohse et al. 2006). In terrestrial polar applications, 

combining images with solar azimuths close to 90º apart has been employed to gain slope 

information in multiple orientations (e.g. Scambos et al. 1998; Raup et al. 2005). However, 

this method requires intensive cross registration of images to within one pixel accuracy so that 

precision is not lost, a technique which is very difficult on surfaces such as ice where there is 

very little contrast. Ultimately, obtaining multiple cloud-free Landsat images for this area with 

appropriate temporal proximity is unfeasible. 
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3.2 Software Methods 

An important consideration in dealing with remote sensing data is how to approach 

computational tasks. There are many software packages available, and each has its specialty, 

whether speed, power, or ease of use. For this project, Multispec 3.17 was used for simple 

Landsat data processing, ImageJ 1.42i (64-bit)8 was used for image analysis and visualization, 

ERDAS Imagine 9.0 was used for more complex GIS tasks, and MATLAB R2008b was used 

for complex computation, specifically treating gridded elevation image files as large matrices.  

 

3.3 Photoclinometry in Practice 

In this section, the assumptions inherent in photoclinometry are shown to be valid for this data 

set, and the practice of filling in the gaps in the 2007 LiDAR DEM is elaborated upon. 

 

3.3.1 Image Processing and Interpolation 

As mentioned above, ImageJ 1.42i (64-bit) provided an easy and efficient software tool for 

handling images. The “scale” feature in the software was used to match up the LiDAR, 

gridded at 10 m, and the Landsat images which have a resolution of 30 m. Similarly, for later 

integration in a sun-parallel direction, the “rotate” feature was used to realign all images from 

standard format, with north as up, to sun-parallel as up; sun azimuth as well as other 

information pertaining to the conditions of the Landsat image in question is available in image 

header files provided with the multispectral imagery.  

Because this study integrates many different data sets from various sources with 

diverse levels of spatial resolution, careful consideration was required in deciding the 

appropriate method to unite the data into cogent, cohesive, and convincing results. At one end 

of the spectrum is the airborne LiDAR gridded to 10 m, which is an order of magnitude more 

detailed than the 100 m gridding of the 1997 DEM; the visible Landsat imagery is provided at 

an intermediate 30 m horizontal resolution.  

Attempting to interpolate the 1997 up an entire order of magnitude would introduce 

many concerns and also falsely induce an increased sense of spatial detail. However, it would 

be unfortunate to dispose of large amounts of new and valuable LiDAR data. Rees (2000) 

finds that simple bilinear interpolation is more than adequate for increasing DEM resolution 

with error increased by only 0.2σ to 0.6σ. Therefore, a middle ground of 30 m was chosen as 

the common resolution for comparison of all data sets. For this task, bilinear interpolation is 

                                                 
7 Multispec is freeware available from http://cobweb.ecn.purdue.edu/~biehl/MultiSpec/ 
8 ImageJ and associated plugins are freely available at http://rsbweb.nih.gov/ij/ 

 24

http://cobweb.ecn.purdue.edu/%7Ebiehl/MultiSpec/
http://rsbweb.nih.gov/ij/


employed because it is computationally simple and does not introduce outlying values into the 

data set.  

Once at a common resolution, in order to preserve data as closely as possible to their 

original form, nearest-neighbor interpolation was consistently used. Various small tests 

showed that nearest-neighbor interpolation produced data of a similar quality to other methods 

such as bilinear interpolation without resulting in problematic edge effects when areas of no 

data were averaged with pixels containing elevation data. 

 

3.3.2 Validating the Low Slope Assumption 

In order for brightness to be linearly related to surface slope, the terrain must be of sufficiently 

low slope to allow for the mathematical simplification that  
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While polar icesheets and icecaps typically have surface slopes below 3º (Bingham & Rees 

1999), the more temperate and maritime nature of Langjökull does draw this assumption into 

question. While low slopes are ideal, increased slopes are still tractable with PC but introduce 

a larger error in elevation determination; a 25º slope corresponds to a 10% error in elevation 

determination along that slope (Cooper 1994). Still, useful results have been achieved with 

slopes as high as 30º (Cooper 1994).  

Accordingly, the sun-parallel slope of the available LiDAR imagery was calculated for 

the entire icecap. There are many areas of moderate to high relief (>10º), but based upon 

visual inspection these are largely ice-free areas not involved in the PC calculations. 

Nevertheless, Langjökull is a fairly smooth icecap with a mean slope of 7.5º as calculated 

from available LiDAR data. Thus, although not as ideal as many less temperate icecaps, it is 

determined that the Langjökull is an acceptable location for the application of PC.  

 

3.3.3 Validating and Optimizing the Slope-Brightness Relationship 

Equation 3 shows that Landsat brightness and LiDAR slope must be related in order for PC to 

perform satisfactorily. In addition to using this relationship to validate the Lambertian 

assumption, because of the multispectral nature of Landsat data, we also use the linear slope-

brightness relationship to select the best subset of data to use for PC interpolation. In this case, 

the best band or band combination to use in relating brightness to slope is measured by the R2 

goodness of fit parameter. 
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First, the histogram of each possible image was reviewed to ensure that the image was 

not overly saturated or insufficiently contrasted, both situations which would limit the amount 

and range of topographic information stored by the brightness. With this initial consideration 

in mind, bands 1, 2, 3, 4, 5, 7, 8, the first principle component,9 and band combinations 123, 

234, 124, and 134 were tested for a linear relationship between sun-parallel slope and 

brightness. In order to ensure a feasible test, and in order to have the highest likelihood of 

using fresh, dry, unmelted snow, a 4 km x 4 km square of data was sampled as close to the 

center of the icecap as possible where LiDAR data was continuous.  

R2 values were as low as 0.12 (band 7), and many fell around 0.4 (first principle 

component, band 3, all band combinations), but band 4 brightness values best fit a linear 

correlation with the LiDAR-based slope values (R2=0.45). This is expected, as past studies 

have also used Landsat band 4 for PC (Bindschadler & Vornberger 1994; Bingham & Rees 

1999). While this goodness of fit is significantly below some published values (e.g. 0.84, 

Bingham & Rees 1999), it is more important to verify that there is no spatial pattern to the 

distribution of residuals and to investigate the accuracy with which PC based on Landsat band 

4 can reproduce known topography before interpolating unknown values.  

Areas of slightly increased topography were found to correspond to higher residuals, 

but without any systematic pattern of over- or underestimation. It is likely that the low R2 

value is a result of higher slopes on Langjökull compared to previous studies based on High 

Arctic icecaps and the Antarctic Ice Sheet. In addition, uncertainty in the brightness-slope 

relationship is the result of variations in albedo as well as the surface’s bi-directional 

reflectance distribution function (BRDF) caused by inhomogeneity of surficial properties such 

as roughness and snow grain size (Bingham & Rees 1999). Indeed, regression with a smaller 

subset of data resulted in R2 values as high as 0.8, however higher R2 values were also paired 

with a lower reproducibility of coefficients.  

Reproducibility and lack of bias in regression is key because one set of coefficients 

from Equation 3 will be used in Equation 8 and ultimately applied to the entire 2007 DEM. 

Because properties such as sensor orientation and sunlight incidence angle are taken to be 

constant across the entire image, we test for bias in individual sun-parallel profiles 6 km long 

moving across the image; there was no observable trend in the sun-perpendicular direction 

across the icecap, therefore we assume that generalizations across the entire image are valid. 

                                                 
9 First Principle Component: The result of an orthogonal linear transformation which displays the greatest 
variance by any projection of the data. In this way we try to harness the common points of all reflective Landsat 
bands while removing the variation between them.  
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In addition, because the Landsat imagery was collected in early March, it is possible that some 

melting had begun which would potentially cause the albedo and BRDF to vary depending on 

location within the icecap. However, based on a series of 2 km x 2 km squares of data starting 

on the high ice divide and moving to the tongue of Hagafellsjökull Vestari, there is no trend in 

the linear relationships between slope and brightness. Therefore, based on the above tests, it is 

determined that a global set of coefficients for Equation 3 is appropriate. 

At this point it is necessary to determine which coefficients will be used for PC 

calculations. Although one set of 'α  and 'γ  will be used for the entire image, using the entire 

set of available data to determine the coefficients results in very low correlation values (R2 < 

0.1). This result is not surprising, as this method does not eliminate areas of high relief or 

saturation. Alternately, areas of high correlation are not identifiable upon simple inspection. 

Therefore, the largest area of continuous data in flat, high ice areas is identified and used to 

determine that -357.7816'=α  and 185.9914'=γ . These values are used in the rest of this 

study for interpolation of glacier surface topography.  

 

3.3.4 Integration and Error Assessment 

Before applying PC to completion of the 2007 Langjökull DEM, especially considering 

mediocre correlation between brightness and slope, it is important to test reconstructions of 

known profiles and areas. In order to assess the error in the method and quantify confidence in 

PC, we use the root mean square (RMS) error as a metric for identifying the quality of 

topographic reconstruction.  

 ∑
=

=
n

i
iRMS e

n
Error

1

21  (9) 

where here e is the difference between PC-interpolated and LiDAR-measured elevations. In 

addition to the quantified RMS error, we look at the accuracy of reproduction of topographic 

lows and highs, consistently misrepresented features, and/or any extreme or unrealistic values. 

Table 3.1 shows error information for 3 km and 6 km long sun-parallel test profiles 

selected from across Langjökull’s entire surface; the 3 km profiles are simply the first and 

second halves of the 6 km, but with an added tie point in the middle. Despite a wide range of 

RMS errors, 0.3 m over 3 km to 19 m over 6 km, topography is quite well reproduced (see 

Figure 3.1). Although past studies have suggested that error increases linearly with integration 

distance (Bindschadler & Vornberger 1994), we find here that in most cases (with the notable 

exception of profile 2) the error does not rise proportional to integration distance. 
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Table 3.1 Error calculated from test profiles of photoclinometric interpolation in areas of known topography. 
Test Dimension RMS error (m) 

Profile 1.0 6 km 5.12 
Profile 2.0 6 km 19.00 
Profile 3.0 6 km 10.74 
Profile 4.0 6 km 5.67 
Profile 5.0 6 km 12.46 
Profile 6.0 6 km 0.41 
Profile 1.1 3 km 3.12 
Profile 1.1 3 km 2.62 
Profile 2.1 3 km 6.08 
Profile 2.2 3 km 1.32 
Profile 3.1 3 km 5.20 
Profile 3.2 3 km 5.36 
Profile 4.1 3 km 0.85 
Profile 4.2 3 km 3.28 
Profile 5.1 3 km 9.63 
Profile 5.2 3 km 10.75 
Profile 6.1 3 km 0.29 
Profile 6.2 3 km 0.38 

Area 1 3 km x 3 km 3.73 
Area 2 3 km x 3 km 2.70 
Area 3 3 km x 3 km 3.74 

Significantly, there does not appear to be any bias with respect to over or 

underestimation of absolute elevation or slope. Indeed, it is quite possible that due to 

interannually variable processes such as snow drifting the topography from the Landsat image 

is in fact not quite identical to the LiDAR topography. However, close correspondence 

confirms that it is an acceptable substitute.  

Area integration, that is a series of parallel profiles, is the next logical and required 

step for successful DEM completion. For final DEM production, MATLAB protocols were 

written for identifying and interpolating topography for areas of unknown data of all sizes 

within the LiDAR data set. However, for this testing purpose we focus on reproducing known 

areas with standardized areas of interpolation. Because PC represents topographic data only in 

the sun-parallel direction, large inaccuracies of cross-sun slope can build up along the 

integration of adjacent profiles (see Figure 3.2). Because these cross-sun slopes are outside the 

distribution of small scale surface slopes, they are believed to be artifacts rather than an 

accurate representation (Bindschadler & Vornberger 1994).  

To remedy this problem, past studies have used a cross-slope running average of sun-

azimuthal slopes to remove unrealistically large slopes. However, this is effectively equivalent 

to smoothing the original Landsat data, which is undesirable in creating an accurate, high 

resolution DEM. Instead, this study suggests the use of a cross-sun running average of PC-

interpolated elevations to remove such artifacts. Using examples where just one profile was 

interpolated and one of an entire area of interpolated topography, running averages of 3, 5, 7, 
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Figure 3.1 Comparison of photoclinometric interpolation and LiDAR-measured profiles. Each graph contains 
one LiDAR profile, a 6 km profile tied by one LiDAR data point at each end, and two 3 km profiles, each tied by 
one LiDAR data point at each end.  
 
 
         (a)                                                      (b)                                                      (c) 
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Figure 3.2 Comparison of cross-sun slopes in (a) LiDAR-measured elevations (b) LiDAR-derived elevation with 
one PC-interpolated profile and (c) PC-interpolated elevations. Note the higher values and vertical artifacts 
present in (b) and (c). Both x- and y-axes are measured in 30 m pixels. The pentagon shape is a result of 
extraction from the LiDAR DEM; all values outside of this perimeter contain no data. 
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and 9 pixels were tried (see Figure 3.3). It is worth nothing that this smoothing will be of 

varying importance for eventual uses of the PC-interpolated DEM; while studies such as 

entire icecap volume change will not be changed, high resolution studies will by slightly 

influenced by regional averaging. Based upon visual inspection, a running average of 5 pixels, 

in this case 150 m, provides a balance between reducing DEM resolution and eliminating 

vertical artifacts in order to make the topographic reproduction more realistic. Following 

smoothing, original LiDAR values are replaced so that, effectively, only interpolated values 

are averaged. 

Using this 5-pixel running average as a post-PC step, the topography of three known 3 

km x 3 km areas from upper, middle, and lower glacier areas was reconstructed as a final test 

to asses the error of PC reconstruction. The size of the square was chosen to approximate the 

length of an average integration in final DEM interpolation. While LiDAR-derived elevations 

remain accurate to within ~10 cm, based on the above area reconstructions and previous 3 km 

profiles, the RMS error in elevation of PC-derived values is determined to be 3.4 m.  

 

3.3.5 Final DEM Construction 

The methods above provide the details for augmentation of the otherwise incomplete airborne 

LiDAR survey of Langjökull. However, the extent of LiDAR tie points does not allow for 

complete coverage of Langjökull via photoclinometric interpolation, in particular the northern 

section of the icecap. Therefore, a profile of tie point elevations in non-ice covered areas 

slightly north of the icecap was taken from the 1997 DEM in order to provide a complete view 

of Langjökull in summer 2007.  

There should be very little difference in elevation of non-ice covered areas between 

1997 and 2007; to verify, however, 32 points of overlap between the added points and the 

LiDAR DEM were compared. The residuals approximately normally distributed, showing no 

systematic bias to over- or underestimation; with a mean absolute error of 5.5 m, the 

agreement is not ideal but is much preferable to excluding a portion of Langjökull. As such, 

the very northern section of the DEM will be regarded with caution and carefully critiqued in 

the discussion of results not only because 1997 data was used for a 2007 DEM, but also 

because this solution requires the use of PC on snow covered rock rather than only glacier 

surface, a process not optimized in DEM construction procedures. 

The final DEM produced of Langjökull’s entire summer 2007 surface (see Figures 3.4 

and 3.5) based on LiDAR and Landsat data is gridded to 30 m horizontal resolution. The test 
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Figure 3.3 Comparison of cross-sun running averages. The pentagon shape is a result of extraction from the 
LiDAR DEM; all pixels outside of this perimeter contain no data. Images in the left-hand column (a-e) are the 
difference between PC-interpolated elevation after cross-sun smoothing and known LiDAR elevation. Images in 
the right-hand column (f-j) are cross-sun slopes calculated after running average smoothing. Both x- and y-axes 
are measured in 30 m pixels. A 5 pixel running averaged was determined to be a good balance between 
eliminating vertical artifacts and over-smoothing data.  
 

(a) Residual; no running average  (f) Cross-sun slope; no running average 
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(b) Residual; 3 pixel running average  (g) Cross-sun slope; 3 pixel running average 
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(c) Residual; 5 pixel running average   (h) Cross-sun slope; 5 pixel running average 
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(d) Residual; 7 pixel running average  (i) Cross-sun slope; 7 pixel running average 
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(e) Residual; 9 pixel running average  (j) Cross-sun slope; 9 pixel running average 
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of this DEM, qualitatively, is whether interpolated and original values are distinguishable. 

Visual inspection and a series of horizontal transects demonstrates that the zones are largely 

indistinguishable. However, there are notable exceptions where linear deviations are obvious 

in otherwise smooth topography. These are predominantly the result of the propagation of 

error from an either saturated or non-snow covered surface; concentrated off of the icecap 

itself, these blemishes will thus not significantly impact future use of the 2007 DEM.  

 

3.4 Calculation of Glacier Volume Change and Mass Balance 

Bringing insight to questions such as global climate change and sea level rise, the mass 

balance of ice masses ranging in size from small valley glaciers to continental ice sheets 

presents an interesting and important scientific challenge (Zwally et al. 2002; VanLooy et al. 

2006). Traditionally, specific mass balance is an extrapolation based on point snow pit and 

ablation stake measurements taken on a glacier’s surface (e.g. Björnsson et al. 1998; 2002; 

Miller & Pelto 1999). However, due to significant variability which may not be fully 

described by the extrapolation method (Björnsson et al. 1998), a synoptic view would be 

preferable. 
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Figure 3.4 Coverage of final DEM masked over the same image as in Figure 1.8. The scale bar is 10 km. 
 
 

 
Figure 3.5 3D visualization of summer 2007 DEM of Langjökull. The x-axis is oriented east-west and the y-axis 
is aligned north-south; both are measured in 30 m pixels. The z-axis is expressed in meters above sea level. 
Artificial shading has been added to enhance imaging of the topography. 
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Clearly the entire surface of the glacier cannot be excavated, but by comparing DEMs, 

spatial distribution of elevation change and therefore volume change can be easily calculated 

across a glacier surface for a given time period. However, volume change does not equate 

with mass balance. A simple approach relates change in mass (ΔM) to volume change (ΔV) 

by an approximation of the density (ρ) of the material which has been lost. 

 ΔM = ρ ΔV (10) 

Although the assumption of an average density can vary significantly depending on whether 

glacier ice (0.83-0.91 g cm-3) or young firn (≥ 0.4 g cm-3) has ablated (Patterson 1981), in 

practice because net ablation generally occurs in bare-ice areas, a density of 0.90 g cm-3 

allows for glacier ice with air bubbles and some fractures (Miller & Pelto 1999; Rees & 

Arnold 2007). 

In addition, the spatial distribution of volume change is not necessarily indicative of 

where a glacier has actually lost mass. For example, a surge in flow will result in 

displacement of material downglacier. In this case, comparison of surface elevations would 

show accumulation lower in the glacier and ablation upglacier, despite the fact that melting is 

still impacting the lower regions more than the upper regions. Thus, although the magnitude 

of volume change would be correct, the spatial distribution component requires further 

interpretation. By employing a glacial flow model, surface elevation change can be related to 

location-specific mass balance given additional input parameters such as flow velocity fields 

or underlying basal topography (e.g. Cogley 1999; Guðmundsson & Bauder 1999; Rasmussen 

& Krimmel 1999; Hubbard et al. 2000).  

Ultimately, the approach taken is dependent on the resources available and the goal of 

the study. Complex modeling can give insight into the changes in a glacier’s flow behavior 

with relation to spatial distribution of mass balance, but significantly more information and 

computation is required. Indeed, for monitoring purposes and averaging across a glacier, 

Equation 10 is more than adequate.  

 

3.4.1 Determining DEM Comparison Error 

When using DEMs to calculate elevation and/or volume change, both method-induced error 

(e.g. the capacity of LiDAR or differential GPS to reproduce a surface) and imperfect 

registration of surfaces contribute to the eventual uncertainty. These two sources can be 

combined in a simple model which describes the interaction of surface topography and 

sources of error: 
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0 ma+= σσ  (11) 

where σ is the uncertainty of a calculated elevation difference, σ0 is its value over a horizontal 

surface, m is the magnitude of the surface slope expressed as a fraction, and a is a constant 

with the dimension of length which combines registration, gridding, and alignment errors 

(Rees & Arnold 2007). Using a least squares regression of m and σ, values of 0σ  and  can 

be determined; by contrasting this uncertainty (

a

0σ ) with the mean elevation difference 

between DEMs of locations of constant elevation, the uncertainty and systematic bias inherent 

in the DEM comparison can thereby be evaluated.  
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4. Results 
As mentioned above, this study aims to quantify information regarding Langjökull’s evolution 

including areal extent, volume change, and mass balance from 1997 to 2007 by utilizing 

relevant sets of remotely sensed data. However, before final results can be calculated, the 

comparison and its inherent error must first be considered. 

 

4.1 Comparison of DEMs 

Given the data sets available, we must determine the accuracy with which it is possible to 

calculate elevation and volume change across Langjökull. In order to evaluate this uncertainty 

for the Langjökull DEMs, only non-ice locations for which a slope m (see Equation 11) could 

be calculated from 2007 LiDAR were evaluated; these areas are assumed to have remained at 

constant elevation between 1997 and 2007. Only LiDAR-measured areas were considered 

because interpolation over non-ice surfaces is not representative of the DEM as a whole; non-

ice areas were determined from a mask made using a summer 1994 Landsat TM image. In 

addition to calculating the uncertainty, this process was used to identify the best registration of 

the 1997 and 2007 data sets, whereby the alignment with lowest a and 0σ  values (see 

Equation 11) and a high R2 value is chosen. A regression using 209,560 pairs of m and σ  

yielded 28.008.80 ±=σ m and 43.413.27 ±=a m as the best-fitting values. For comparison, 

the mean elevation difference between bare-rock areas is 2.8 m; therefore, we find no 

significant systematic error between the two DEMs. In addition, because LiDAR acquisition 

on a highly reflective glacier surface is more reliable than on low-albedo rock surfaces, and 

GPS data collection by snowmobile was likely more comprehensive on the glacier surface 

than surrounding areas, random errors are likely to be less than 8 m on Langjökull’s 

moderately-sloped surface. 

 

4.2 Langjökull Volume Change and Mass Balance 

Figure 4.1 illustrates the distribution of elevation change across Langjökull from 1997 to 

2007. The data is masked to include all ice surfaces while excluding as much non-ice area as 

possible; the outline was derived from 1994 and 2007 Landsat images. It can be seen that the 

dominant shift across Langjökull is that of elevation loss. In particular, outlet Hagafellsjökull 

Vestari demonstrates a significant retreat over the last decade; Þrístapajökull, on Langjökull’s 

western margin, also shows a clear retreat. Central Langjökull, on the other hand, is 

characterized by moderated elevation loss, with areas towards the interior even showing 
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Figure 4.1 Spatial distribution of elevation change in meters between 1997 and 2007 on Langjökull. Over a 
measurement period of 10 years, the annualized specific mass balance for Langjökull is -0.99 0.1 m yr-1 w.e. 
Numbered profiles were considered in investigation of systematic error (see Figure 4.2).  

±

modest elevation gain. Also of note is the increase of elevation at the terminus of outlet 

Hagafellsjökull Eystri paired with significant elevation loss moving towards its source area. 

This finding is consistent with a surge of Hagafellsjökull Eystri in 1998, just after the older 

DEM was produced. 

In addition to these observations, there are quite a few observable imperfections in the 

calculated elevation difference between the 2007 and 1997 DEMs. First are the grid-like 

artifacts which are the result of a correction to match the Icelandic geoid elevations with the 

WGS84 ellipsoid; although these discontinuities are known to be well below sub-meter scale, 

this observation accentuates the importance of understanding the impact of all processing 

steps in DEM creation. More germane to this study are the readily evident linear 
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inconsistencies within the DEM at two different scales. Despite a smooth and apparently 

accurate 2007 DEM, on a large scale there are northeast-southwest oriented areas of both 

apparent elevation increase and decrease which highlight regions areas where PC interpolation 

did not work as ideally as hoped. In particular, inconsistencies in the north of Langjökull can 

be traced to long integration distances imposed by the contribution of 1997 tie points (see 

Section 3.3.5). On a smaller scale, local discontinuities in elevation change are likely to be the 

result of saturated or unusually dark pixels interfering with the interpolation process; 

examples of this are visible on the eastern glacier margins, as well as a noticeable spot in 

central Langjökull a little east of profile 3 in Figure 4.1. 

Moving from the qualitative to the quantitative, the average elevation change across 

the entire glacier (over one million data points) is calculated to be -11.02 m. Using the ice 

density approximation (1 m ice ≈ 0.9 m.w.e.) discussed in Section 3.4, this yields a value of  

-9.92 m.w.e. for Langjökull from 1997 to 2007. Over the measurement period of 10 years, the 

annual specific mass balance for Langjökull is -0.99 m yr-1 w.e. However, recognizing the 

unknown influence of the errors described above, we must seek to accurately quantify the 

uncertainty in the values presented here. 

 

4.2.1 Volume Change and Mass Balance Error Assessment 

When considering uncertainty in a measurement, one must take into account random error as 

well as systematic error. While already considered for the process of comparing the two 

DEMs, the uncertainty inherent in the measurements of ice elevations must still be considered. 

Random errors from the LiDAR are considered to be ~0.15 m, whereas differential GPS is 

considered to have a vertical accuracy of ~0.02 m. Nevertheless, even with much larger 

random uncertainty than this, because of the exceedingly large number of individual points 

being averaged to calculate total mass change across Langjökull (over one million), the 

random error is negligible.  

Further, systematic error in the PC interpolation process must be carefully considered 

because it has the potential to significantly influence the calculated values presented above. 

To investigate the effect of PC interpolation on elevation-difference calculation, 5 transects 

were taken across Langjökull (for location see Figure 4.1, for results see Figure 4.2). With 

these transects we hope to identify the scale of systematic error imposed by PC interpolation 

and the bias which they impart upon eventual elevation difference calculation. Inspection of 

the profiles yields examples of obvious overestimation (e.g. Profile 1) and underestimation 

(e.g. Profile 3) as well as areas which blend in very well with surrounding LiDAR-derived  
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Figure 4.2 Profiles of elevation change (y-axes in
m) between 1997 and 2007 across Langjökull
Icecap; see Figure 4.1 for locations on the icecap.
Bolded areas on the x-axis indicate LiDAR-derived
values while non-bolded areas indicate of PC-
interpolated areas of the 2007 DEM. Profiles 1-4
are 20.3 km in length while profile 5 is 12.2 km in
length.  
 

values (e.g. Profiles 4 and 5). However, without further data, it is impossible to definitively 

identify whether positive or negative deviations exert a dominating influence and the extent to 

which they do so.  

To attempt to provide another point of comparison for PC interpolation-derived 

elevation change values, a simple model of elevation change across Langjökull is employed. 

Based on the same mask used in earlier elevation difference calculations, every pixel across 

Langjökull is assigned a value representing its distance from the edge of the glacier with a 

Euclidian distance algorithm. In a similar fashion to traditional mass balance measurements 

which extrapolate point ablation stake and snow pit measurements across the entire glacier 

based largely on elevation, all LiDAR-derived elevation differences for a given distance from 

the perimeter are averaged and used to fill in areas of identical edge distance which do not 

have LiDAR coverage. Figure 4.3 shows that this model does not provide satisfying spatial 

results for mass balance across Langjökull, as it appears to be continuous with LiDAR- 

 39



 
Figure 4.3 1997 to 2007 elevation change in meters of Langjökull Icecap combining measured values where 
available and elevation change as a function of distance from glacier perimeter otherwise (see Figure 4.4).  

derived values in only very restricted areas. Indeed, the model is expected to be flawed as it 

does not include potentially important factors such as glacier aspect and differential 

precipitation across the icecap resulting from dominant weather patterns. In addition, this 

model does not reproduce important local observations such as surge indications on 

Hagafellsjökull Eystri. On the other hand, it is easier to identify likely legitimate local 

anomalies such as those visible in the southwest of Langjökull in Figure 4.3. 

Despite these largely negative observations, this model does emulate a well-reasoned 

and respected method in order to simply extrapolate LiDAR-derived values across the entirety 

of Langjökull. It also supplies interesting information regarding Langjökull elevation change, 

such as the distribution of elevation change as a function of distance from the icecap’s  
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Figure 4.4 Mean 1997 to 2007 surface elevation change of Langjökull Icecap versus distance from icecap 
perimeter; distance values were calculated using a mask of glacier extent and a Euclidian distance mapping 
algorithm.  

perimeter (see Figure 4.4). We see a very strong negative mass balance towards the periphery 

of Langjökull, recognizing that the first few pixels are likely rock rather than ice. As expected 

from earlier observations, this negative elevation decreases in magnitude towards the interior 

of the icecap, except for an unexpected resurgence in negative values for the most interior ice. 

It is worth noting that while the most interior areas are losing elevation, these are not 

equivalent to the highest elevation parts of Langjökull, which in fact appear to be gaining 

elevation (see Figure 4.1).  

Although we recognize that these observations are in part a product of where LiDAR 

data is available, when used to calculated glacier-wide average elevation change, the outcome 

is -12.14 m or -10.93 m.w.e. Thus, according to this model, the PC-interpolated topography 

 (-9.92 m.w.e.) causes an underrepresentation of elevation decrease across Langjökull. 

However, we have no reason to believe that the modeled elevation change is necessarily the 

best either. What we do take away from this exercise is the important knowledge that multiple 

methods yield very similar results, and that introduction of a 10% uncertainty on PC-

interpolated elevation change calculations would lead to strong confidence in reporting an 

annualized spatially averaged mass balance for Langjökull as -0.99± 0.10 m yr-1 w.e. 

 

4.3 Areal Change of Langjökull 

Information concerning the change in areal extent of Langjökull was determined through 

manual tracing the icecap’s boundaries in end-summer Landsat imagery from 1994, 2001, and 

2007. Table 4.1 shows values for Langjökull’s total area and change over time; uncertainty is 
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Figure 4.5 Change of areal extent of Langjökull Icecap from manual tracing of 1994 (trace), 2001 (trace), and 
2007 (shaded) Landsat images. The scale bar is 10 km long. 
 
 
Table 4.1 Langjökull areal extent and change over time as determined from Landsat images 

Year(s) Area or Areal Change (km2) Uncertainty (km2) 
1994 942 24.3 
2001 916 23.8 
2007 898 24.3 

   
1994 to 2001 -26.0 34.1 
2001 to 2007 -18.3 34.0 
1994 to 2007 -44.3 34.4 

 
 
determined by identification of the terminus to within ± 3 pixels or 90 m. These values show 

a definite trend across the last decade of Langjökull shrinking an average of -3.4 2.5 km2 yr-1 

from 1994 to 2007. Figure 4.5 shows recession along almost the entire glacier margin, 

confirming not only the particularly strong recession signal seen from elevation change data 

on Hagafellsjökull Vestari and to a lesser extent Þrístapajökull, but also visualizing the 1998 

surge of Hagafellsjökull Eystri.  

±
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Figure 4.6 Change of areal extent of Langjökull outlet Hagafellsjökull Vestari from manual tracing of 1994 
(trace), 2001 (trace), and 2007 (shaded) Landsat images. The scale bar is 2 km long. 
 
Table 4.2 Consideration of registration errors in Hagafellsjökull Vestari DEMs; 5,113 to 10,187 data pairs used.

Years σ0 (m) a (m) R2 Mean elevation difference (m) 
1997 to 2001 6.34± 0.24 271± 2490 0.5093 0.75 
2001 to 2007 4.49± 0.12 18.78± 20.74 0.9293 2.60 
1997 to 2007 6.05± 0.09 36.17± 6.63 0.8215 4.40 

 
 
4.4 Hagafellsjökull Vestari: A Case Study 

A closer investigation of Langjökull’s largest outlet glacier, Hagafellsjökull Vestari, is 

facilitated by the addition of a photogrammetrically-derived DEM of the area from 2001 (see 

Fig 1.8 for outline). Figure 4.6 shows that Hagafellsjökull Vestari receded significantly from 

1994 to 2007; although the eastern edge of the glacier is largely pinned to the steep Hagafell 

Ridge, from 1994 to 2001 the entire terminus retreated, while from 2001 to 2007 only the very 

snout appears to have withdrawn further.  

In terms of volume change, comparison, registration, random, and systematic errors 

must be considered as they were with regard to measuring elevation across all of Langjökull 

(see Section 3.4.1). Table 4.2 shows the values of 0σ , a (see Equation 11), R2, and the mean 

elevation difference on rock surfaces. In all DEM comparisons we see fairly low 0σ  values, 

which is encouraging, with the lowest value (and highest R2), as expected, seen between the 

two highest resolution data sets from 2001 and 2007; most importantly, 0σ  is greater than the 

mean elevation difference in all cases and we therefore find no pervasive systematic errors 

between DEMs.  
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With regard to systematic errors, because PC-interpolation is not a source of 

significant error in this area of the 2007 DEM, and the residuals have an approximately 

normal distribution, we consider only random errors. Due to the large number of values 

contributing to the final result (29,091 data points), random errors become negligible; 

numerical results are reported in Table 4.3. Figure 4.7 shows the distribution of elevation 

change across Hagafellsjökull Vestari for the time periods considered here. Like elevation 

changes for all of Langjökull, the grid artifact can be seen in (a) and (c) where the 1997 DEM 

is used. Of more consequence, it appears that while most elevation was lost on the terminus 

from 1997 to 2001, most elevation was lost slightly up-glacier from 2001 to 2007; this agrees 

with the terminus retreat pattern observed in Figure 4.6. Ultimately, the distribution and 

magnitude of 1997-2007 elevation change across Hagafellsjökull Vestari show that significant 

terminus retreat as well as interior melting are shrinking this outlet glacier.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
   (a)                                                        (b)                                                        (c) 

 
Figure 4.7 Spatial distribution of elevation change in meters between (a) 1997 to 2001 (b) 2001 to 2007 and (c) 
1997 to 2007 on Hagafellsjökull Vestari, Iceland. The annualized spatially averaged mass balances for the outlet 
during these time periods are -2.28 m yr-1 w.e.,-3.86 m yr-1 w.e., and -3.23 m yr-1 w.e. respectively.  

 

Table 4.3 Total and annual elevation differences and mass balances for Hagafellsjökull Vestari terminus 
Year Type Elevation Difference (m) Mass Balance (m.w.e.) 

1997-2007 Total -35.88 -32.39 
1997-2001 Total -10.15 -9.13 
2001-2007 Total -25.73 -23.16 
1997-2007 Annual -3.59 -3.24 
1997-2001 Annual -1.02 -0.91 
2001-2007 Annual -2.57 -2.32 
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5. Discussion 
The results gained through photoclinometric augmentation of an airborne LiDAR-derived data 

set illustrate and quantify the level to which Langjökull is retreating. Further examination of 

the method used and contextualization of the quantitative results will allow for crucial 

evaluation of scientific confidence in the findings and help evaluate mass balance 

measurement techniques. In addition, it will give insight into how a changing Langjökull may 

influence the surrounding environment.  

 

5.1 Discussion of Photoclinometry 

As with any assessment, the efficacy of a method is predicated upon the task it seeks to 

complete. Thus, it is difficult to provide a concise yet comprehensive appraisal of DEM 

creation with photoclinometry (PC) because DEMs have many potential uses. This study 

addresses the use of DEMs in determining icecap-wide mass balance, and as such, location-

specific elevations are not as essential as spatially averaged values. Using PC, a crucial step is 

the determination of 'α  and 'γ  (see Sections 3.1 and 3.3.3); the best practice was decided to 

be a least squares regression using contiguous data on the most central part of the icecap. 

However, the sensitivity of final calculations to this decision was previously undetermined. 

As a test, total mass balance calculations were repeated with 'α  and 'γ  varying 10% from 

the best-fit values in multiple combinations. Encouragingly, the final result led to a change in 

final calculated mass balance of less than 3.3%; not only are the values self-consistent, but 

they vary considerably less than the 10% error adopted in Section 4.2.1.  

±

This small investigation bolsters confidence in the robustness of this application of PC 

and the results derived thereby. More specifically, the relative consistency of mass balance to 

changes in PC coefficients means that error in DEM creation should not be seen as a 

weakness in the method. Instead, more time should be spent considering the quality and 

appropriateness of the visual imagery used to calculate slope values. Topography of areas 

with quality imagery can be well represented by PC, whereas inappropriate or lower-quality 

imagery is likely to be the limiting factor in any application of PC.  

Provided confidence in the visual imagery being used as an input, PC can be 

considered a useful tool for creating DEMs useful for a wide range of tasks. Indeed, a metric 

of image quality could help quantify the uncertainty in elevations of the eventual DEM. Poor 

or inappropriate images can result from a wide variety of causes, for example inability of the 

imager to handle low-contrast regions (Raup et al. 2005), a significant density of high-slope 
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areas in the image, or an image which is captured at a time when the entire glacier surface 

does not have homogenous reflective qualities. It is important to recognize limitations 

inherent to a particular region. Because of its temperate nature and significant topography, 

Langjökull stretches the extent to which PC can be used; for more success and lower 

uncertainty, PC application should be biased towards colder, flatter ice masses. Nevertheless, 

through data collection at the appropriate time (early spring) and with the correct sensor (e.g. 

calibrated aerial digital photography or the 12-bit Advanced Land Imager rather than the 8-bit 

Landsat ETM+) results of PC could be improved.  

When first considered for application to ice mass surfaces, vertical error from 

photoclinometry was over 50 m (Rees & Dowdeswell 1988). With improvements in imaging 

techniques, error from PC DEMs has decreased, and significant success has been had 

investigating features such as ridges (Goodwin & Vaughan 1995), domes (Scambos et al. 

1998), and dolines (Bindschadler et al. 2002). Significantly, published literature utilizing PC 

is almost exclusively restricted to applications in Greenland and Antarctica where surfaces are 

highly uniform and have very low relief. It is therefore unsurprising to see that while in some 

areas on Langjökull PC worked quite well, there are quite a few areas where this was not the 

case (see Figure 4.1); the inherent variability of Langjökull makes it a challenging candidate 

for PC. 

Bingham and Rees (1999) emphasize that although PC provides an acceptable method 

for DEM creation, other available techniques such as InSAR (see Section 1.3) should be used 

preferentially. A decade has passed since Bingham and Rees published that opinion, and 

methods for measuring topography have since progressed significantly, particularly with the 

advent of airborne LiDAR capable of remotely measuring large regions with vertical 

uncertainty less than 0.15 m. Therefore, while airborne LiDAR has given PC significantly 

more accurate tie points for interpolation, the results must also be compared against a higher 

standard. 

Here, photoclinometry has been shown to be an effective and useful tool for DEM 

augmentation and creation, and confidence can be placed in the robustness of the eventual 

mass balance results. Nevertheless, the significant spatially variable errors visible in the final 

DEM produced in this study demonstrate the inconsistency of PC. While PC is satisfactory, it 

is important to recognize that other methods for completing a DEM, most specifically more 

LiDAR coverage, would have been strongly preferable to the LiDAR-PC combined DEM. In 

addition to lower uncertainty, airborne LiDAR also gives quantifiable considerations of its 
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possible error, whereas uncertainty determinations with PC must be inferred from tests during 

method investigations. 

That is not to say the PC does not have a place in current and future glaciological 

research; cases such as this highlight the usefulness of PC, allowing for use of incomplete data 

sets which would otherwise be of significantly lower utility. In areas of otherwise restricted 

data collection, PC provides a viable alternative, especially if steps are taken to optimize the 

application of PC, quality of visible imagery obtained, and its integration with the elevation 

data. PC could also be useful on a smaller scale, combining aerial photography and 

differential GPS or ground-based LiDAR to create DEMs of small areas of low relief polar ice 

while steering clear of overly steep or optically variable areas. On a larger scale, while most 

satellite altimeters are characterized by very low vertical uncertainties (<15 cm), their 

exceedingly low density of data points (172 m along-track spacing for ICESat; Zwally et al. 

2002) makes them ill-suited for integration with PC techniques. Ultimately, while not 

recommended as a primary tactic, PC is a useful method to have available in any remote 

sensing toolbox for obtaining valuable results in an otherwise daunting situation. 

 

5.2 Discussion of Mass Balance 

This study focuses on the application of various remote sensing techniques to monitor 

Langjökull, but additional in situ mass balance measurements are also available (see Section 

2.3). While comparison of DEMs from 1997 and 2007 yielded an annualized specific mass 

balance of -0.99 0.10 m yr-1 w.e., in situ measurements report -1.29± ± 0.19 m yr-1 w.e. for the 

same period (see Figure 5.1). These measurements are very close to but not quite within each 

others’ admittedly somewhat arbitrary uncertainty brackets. The disagreement between these 

values averaged over a ten year period suggests a systematic disparity between in situ and 

remotely sensed mass balance measurements on Langjökull. 

Concerning the DEM comparison-based mass balance conducted by this study, there 

are a few possible sources of error to consider. The most obvious is the quality of the DEMs 

involved, but this is already taken into account in uncertainty brackets. PC interpolation in the 

2007 DEM could be implicated, but the fact the model based on distance from glacier edge 

gave an annualized specific mass balance of -1.09 m.w.e. again suggests that interpolation is 

not a source of bias beyond the uncertainty already expressed. The density assumption of 

ablated material (see Section 3.4) may be questioned, although in order to rectify the two 

values, an even higher density material would be needed. The value used (0.9 g cm-3) is just 

on the edge of glacier ice densities (Patterson 1981), and logically makes sense as most of the  
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Figure 5.1 Summer, winter, and net specific mass balance for Langjökull (Pálsson and Björnsson, unpublished 
data). Error bars are 15%. See Section 2.3 for information on data collection. 

ablated material was likely glacier ice and a little bit of less dense material; even the slight 

increase to the maximum 0.91 g cm-3 cannot explain the offset between specific annualized 

mass balances. It is possible that some added mass of lower density at higher elevations could 

have skewed the average mass of volume change. However, this is unlikely because 

Langjökull’s winter balance did not increase over the study period (see Figure 5.1) and there 

is no reason to believe there has been any recent shift in the rate of firnification on Langjökull. 

Thus, we instead turn to the in situ measurements to explain the inconsistency between mass 

balance values.  

Past studies have also considered occasions where in situ mass balance measurements 

did not match with values calculated from remotely sensed data. For example, Rees and 

Arnold (2007) observe a significantly more negative mass balance by comparing airborne 

LiDAR-derived DEMs than that calculated from in situ values on Midre Lovénbreen, 

Svalbard. Although it is possible differing weather conditions may explain this discrepancy, 

they also suggest that either there is not enough spatial variability in the stake network to 

describe mass balance as a function of elevation or that the current method of extrapolation 

does not sufficiently describe the distribution of mass balances across the glacier. Similarly, 

Rippin et al. (2003) identify remotely sensed mass balances on two glaciers in Svalbard which 

are significantly more negative than in situ-derived values. Again, it is hypothesized that 

extrapolation techniques may not be sufficient to describe mass balance variability, not only at 

different elevations, but also due to the different accumulation and ablation characteristics of 

glacier margins versus central flow lines. Thus, there is agreement within the literature that 
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current in situ mass balance values are unable to account for significant spatial variability 

either through measurement techniques or extrapolation strategies. 

Immediately, an apparent contradiction presents itself; while past studies report in situ 

values less negative than remotely sensed values, here we find that the remotely sensed 

specific mass balance of Langjökull is less negative than that measured in situ. However, it is 

crucial to recognize that while previous studies consider only a single glacier, here we present 

comparison of specific mass balance across an entire icecap, with many diverse outlets. 

Multiple stake profiles are combined in order to theoretically account for mass balance 

variations based not just on elevation but also lateral differences such as accumulation 

gradients due to predominant weather patterns. Nevertheless, in situ values are still too 

negative compared to remotely sensed values, suggesting that there is a systematic error with 

the method of extrapolation being used on Langjökull. 

Accumulation and ablation measurements are taken in the center of flowlines, but the 

morphology of Langjökull, or any icecap, is such that these locations may not necessarily be 

representative of other large sections of the icecap. It is possible that through focusing on 

outlet glaciers, the large negative mass balance of Hagafellsjökull Vestari has skewed the 

mass specific mass balance for all of Langjökull. Indeed, surges in outlet glaciers are also 

likely to bias extrapolated mass balance values, and the 1998 surge of Hagafellsjökull Eystri 

must be very difficult to account for with in situ measurements. By constructing a stake 

network along outlet glaciers to correct for elevation and aspect, variation in the diverse, 

higher accumulation areas may be insufficiently constrained. This is presented as one 

potential reason for the inconsistency in mass balance reported through in situ and remote 

methods, and it indicates that further consideration of the spatial distribution of mass balance 

stake measurements on Langjökull and extrapolation techniques for icecap monitoring would 

be very valuable. 

 

5.2.1 Langjökull’s Future 

The influence of strong retreat and a significant surge event on Hagafellsjökull Vestari and 

Eystri, respectively, are the most visible features in the elevation difference map of Langjökull 

between 1997 and 2007 (see Figure 4.1). These tell about Langjökull’s recent behavior, while 

other details can perhaps shed light on how Langjökull may behave in the future. As it stands 

now, Langjökull must experience increased winter precipitation and/or decreased temperature 

to arrest a continued decline (Rasmussen 2005; Flowers et al. 2007). However, if current 
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reports of melt and climate change are any indication, neither criterion will be Langjökull’s 

fate.  

Various past studies have reported the likely timing of Langjökull’s demise. Based 

solely on ablation rate, Björnsson et al. (2005) report complete melt within 200 to 300 years, 

while a more complex study involving consideration of local topography predicts 

Langjökull’s disappearance around the year 2140 (Björnsson & Pálsson 2008). Assuming a 

continuation of melt rate determined from 1997 and 2007 DEM comparisons, Langjökull will 

completely melt by the year 2200 20, although this does not take into account any possible 

effects of change in glacier elevation distribution or flow behavior. Nevertheless, it confirms 

very closely the expected future of Langjökull expressed in published literature.  

±

In addition, the distribution of elevation changes across Langjökull may give a subtle 

clue as to the future behavior of Hagafellsjökull Vestari. It appears that areas in the high 

accumulation area of Langjökull’s largest outlet glacier are increasing in elevation rather than 

decreasing in correspondence with the rest of the icecap (see Figure 4.1). Similar behavior has 

been observed in Arctic icecaps (Colgan et al. 2008) and the interior of the Greenland Ice 

Sheet (e.g. Johannessen et al. 2005). While thickening in Greenland is attributed to increased 

precipitation resulting from a warmer climate (Zwally et al. 2005), Devon Icecap’s elevation 

increase, coincident with continued negative mass balance as well, is the result of a stiffening 

in the flow of basal ice thought to be related to penetration of Neogene cooling (Colgan et al. 

2008).  

Iceland is significantly more temperate than either Greenland or the Canadian Arctic, 

and recent winter mass balance measurements show no systematic change in precipitation 

over the past decade (see Figure 5.1). Other studies have implicated temporal variations in firn 

compaction concerning elevation anomalies, but these are seen to be on the error of 

centimeters, a tiny fraction of the elevation difference observed on Langjökull (Arthern & 

Wingham 1998). Instead, it appears that outward flux via ice flow is not keeping pace with 

inward flux via accumulation, and may be starting the formation of a surface bulge indicative 

of a surge event (e.g. Björnsson et al. 2003). If this is indeed the case, because interior 

behavior takes approximately a decade to translate into change in terminal behavior for 

Icelandic icecaps such as Langjökull (Sigurðsson & Jónsson 1995), Hagafellsjökull Vestari 

may experience a surge event within the next ten years. This study therefore emphasizes the 

need for continued observation of Langjökull’s topography and mass balance to better 

understand its proximal and distant future behavior. 
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5.2.2 Global and Local Impact 

As an integral part of the west-central Icelandic landscape, Langjökull is in constant feedback 

with its surroundings. Unsurprisingly, it has been shown that Langjökull behaves quite 

similarly to its larger cousin Vatnajökull, although is more susceptible to annual variability in 

weather patterns due to its smaller size (Björnsson et al. 2002). Similarly, published mass 

balance values (Sigurðsson 2005) demonstrate that Hofsjökull, a medium-sized icecap located 

between Vatnajökull and Langjökull (see Figure 1.1), exhibits almost identical mass balance 

behavior to its neighbors. Therefore, although it is acknowledged that every glacier or icecap 

is unique and forced by the independent characteristics of its immediate environment, it is 

expected that conclusions drawn here concerning the regional and global impacts of 

Langjökull can be somewhat extrapolated to other Icelandic icecaps such as Hofsjökull and 

Vatnajökull.  

Not only do changes in central Iceland influence other glaciers as they influence 

Langjökull, but Langjökull is a strong force on its surroundings. Regionally, the runoff from 

Langjökull is critically important as a source of hydropower and downstream water 

consumption. The melt rate from 1997 to 2007 suggests that Langjökull will continue to be a 

strong source of water for the watersheds it contributes to until it is depleted, as has been 

suggested will occur in ~200 years. More globally, through its melt Langjökull will continue 

to contribute to global sea level rise. Assuming no acceleration of melt rate, by 2100 icecaps 

and glaciers around the world will contribute 104± 25 mm to global sea level, the Greenland 

Ice Sheet will contribute 47± 8 mm, the West Antarctic Ice Sheet will contribute 20 4 mm, 

the East Antarctic Ice Sheet will contribute 15

±

± 7 mm (Meier et al. 2007), and Langjökull by 

itself will contribute 0.25 mm. Although not an empirically large sea level rise, 0.25 mm from 

a small North Atlantic icecap such as Langjökull illustrates the extent to which small ice 

masses contribute significant amounts of water to the world’s oceans.  

In addition to the influence that runoff has on it’s surroundings, the very disappearance 

of mass from an icecap can also strongly influence the immediate area; GPS survey studies 

have shown that due to mass loss from Vatnajökull, the surrounding land is undergoing uplift 

on the order of 5-10 mm yr-1 (Sjöberg et al. 2004). Although Langjökull is smaller than 

Vatnajökull, it is nevertheless expected that the significant amount of mass loss from 

Langjökull should cause a similar response, possibly visible in changing features of proglacial 

lakes. Even further, geodetic studies which quantify land uplift near Langjökull could 

investigate hetero- or homogeneity in the character of the asthenosphere and lithosphere in 
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central Iceland, an area of considerable interest considering its position astride a spreading 

ridge. 

 

5.3 Discussion of Areal Change and Marginal Retreat 

While indicative of Langjökull’s shrinking size, uncertainties in areal change calculations 

from 1994-2001 and 2001-2007 allow for either expansion or recession. However, 

consideration of the entire range from 1994 to 2007 provides definite evidence that Langjökull 

is shrinking, and at a rate of -3.4 2.5 km2 yr-1. The diminishing areal extent of Langjökull 

corresponds well with strongly negative mass balance as measured both by traditional and 

remote sensing methods.  

±

In particular, Langjökull outlets with a southern aspect are receding the fastest out of 

any of the icecap’s glaciers. This trend towards southern melting is similar to modeled and 

empirical findings on other Icelandic icecaps (De Ruyter De Wildt et al. 2003; Aðalgeirsdóttir 

et al. 2006). Simple surface energy balance considerations explain this trend; in summer, solar 

radiation contributes to melt of the glacier surface and decreases the albedo, thereby initiating 

a positive feedback loop, especially when the snowpack is depleted and the surface remaining 

is relatively dark glacier ice. While some High Arctic glaciers influenced by 24-hour summer 

at a near-constant solar zenith angle sunlight see strongest retreat on northern-aspect outlets 

(Arnold et al. 2006b), Langjökull’s sub-Arctic position means that high-angle, powerful solar 

radiation influences southern aspect glaciers significantly more than lower angle incident 

radiation from any other direction.  

While published data on monitoring the complete extent of Langjökull is unavailable, 

frequent reports on the state of Icelandic glaciers do provide information on the fluctuation of 

icecap outlet glacier termini. Germane to this study are reports on Langjökull outlets 

Hagafellsjökull Vestari, Hagafellsjökull Eystri, Jökulkrókur, and Kirkjujökull (see Figure 1.6; 

Sigurðsson 2000; 2002; 2003; 2004; 2005; 2006). Again, the 1998 surge of Hagafellsjökull 

Eystri was identified, although the uneven terminus makes it a non-ideal candidate for 

terminus monitoring. While Jökulkrókur and Kirkjujökull underwent retreat, the magnitude of 

this change is on the edge of Landsat resolution sensitivity. Hagafellsjökull Vestari, on the 

other hand, was characterized over the past decade by a strong and easily observable retreat 

(see Figures 4.5 and 4.6). 

While elevation data, in particular PC-interpolated area, are not well suited to glacier 

terminus detection, visible imagery such as Landsat has been referenced as the preferred 

method for glacier terminus monitoring (Rees & Arnold 2007). As measured by Landsat, 
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Hagafellsjökull Vestari retreated an average of 86± 9 m yr-1 from 1994 to 2001, and 35± 10 

m yr-1 from 2001 to 2007. By comparison, Sigurðsson (2000; 2002; 2003; 2004; 2005; 2006) 

reports an average retreat of 62 m yr-1 for 1994 to 2001 and does not have data for more recent 

changes. The 1994-2001 values are in the same order of magnitude, reinforcing the 

impression of a strong retreat of Hagafellsjökull Vestari. However, without more recent field 

data and more specific knowledge of the methods employed in situ, further comparisons or 

conclusions are hampered. 

It is interesting to note that according to 1997, 2001, and 2007 DEMs and Landsat 

extent measurement, the less negative mass balance of the outlet Hagafellsjökull Vestari 

between 1997 and 2001 (-2.28 m yr-1 w.e.) corresponds with a powerful terminal retreat while 

the more negative mass balance from 2001-2007 (-3.86 m yr-1 w.e.) is paired with a more 

moderate terminal retreat and an increase in mass loss slightly upglacier from the terminus. 

While it is possible that this shift is part of a continued response to the 1980 surge of 

Hagafellsjökull Vestari, whereby the glacier was overextended, such a response time would 

be anomalously long, especially considering the already-retreating Hagafellsjökull Eystri after 

its considerably more recent surge event. Alternately, some other mass flux-related anomaly 

may be linked to the change in terminal behavior, but such a change is not readily noticed on 

other outlets of Langjökull. As such, it is possible that the rapid terminus retreat and 

subsequently more negative mass balance are additional signs of a possible future surge of 

Hagafellsjökull Vestari. Or, perhaps the basal topography underlying Hagafellsjökull Vestari 

has allowed the glacier to attain a more stable terminus location, whereby it is expected that 

one would see increased melting slightly further upglacier. Further flow modeling would be 

required to prove or refute these theories. Whatever the reason, it is readily evident that the 

perimeter of Hagafellsjökull Vestari has stayed fairly constant where it is adjacent to the 

Hagafell Ridge while strongly retreating on its wider lobe and that such a trend of retreat is 

likely to continue in the long run.  
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6. Conclusion 
Airborne LiDAR has been shown to be a highly effective technique for measuring glacial 

topography and building DEMs of ice surfaces. Using the technique of photoclinometry, this 

study successfully augmented an incomplete airborne LiDAR survey of Langjökull, Iceland 

with freely available Landsat ETM+ imagery to build a complete picture of the icecap’s 

surface in summer 2007.  

In the past, photoclinometry (PC) has successfully been used to interpolate ice surfaces 

between known tie points and enhance the resolution of large DEMs; for the first time, this 

study integrated PC with very high resolution spatial data of a glacier surface. Best practice 

for the data sets involved was determined, in particular selection of Landsat ETM+ band 4 as 

the best representation of ice surface topography, application of integration and linear scaling 

between known tie points, and local smoothing by a five pixel running average to remove PC 

artifacts. We find that PC proves to be a robust technique for topographic reconstruction 

(RMS error = 3.4 m over a 3 km section). In fulfillment of a primary aim of this study, the 

photoclinometric technique developed here was able to provide a satisfactory and fully 

completed DEM of Langjökull useable for further glaciological investigations. 

The 2007 Langjökull DEM was evaluated, and although largely faithful to the true 

surface, there were some inconsistencies. Accuracy in future applications of PC can be 

ensured by restricting reconstruction to an area which does not have a slope that is too high. 

Even more importantly, it is crucial that the visible imagery being used for interpolation is of 

the highest quality, in particular focusing on the consistent ability of the imager to accurately 

represent low contrast surfaces. In addition, consideration of setting characteristics such as 

solar azimuth can make later interpolation with PC more effective. While airborne LiDAR 

remains the preferred method for terrain measurement, PC should be held as a valuable 

technique when direct measurement is no longer an option and interpolation is necessary.  

With the data set produced from LiDAR and PC, the glaciological study proceeded as 

originally planned. In addition to clear visualization of a retreat of outlet Hagafellsjökull 

Vestari and the aftereffects of a 1998 surge of Hagafellsjökull Eystri, a simple density 

assumption was used to determine that between 1997 and 2007, Langjökull had an specific 

annual mass balance of -0.99 0.1 m yr-1 w.e. Consideration of solely the terminus of 

Hagafellsjökull Vestari using DEMs from 1997, 2001, and 2007 allowed for calculation of the 

significantly larger annualized spatially averaged mass balances of -2.28 m yr-1 w.e. for 1997-

2001, -3.86 m yr-1 w.e. for 2001-2007, and -3.23 m yr-1 w.e. for 1997-2007. To complement 

these mass balance measurements, manual tracing of Landsat imagery was used to measure 

±
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Langjökull’s areal extent; satellite images show a definite trend of recession, averaging -

3.4 2.5 km2 yr-1 from 1994 to 2007. In sum, remotely sensed elevation change, mass balance 

and areal change were able to give a clear picture of Langjökull’s behavior in the recent past. 

±

These observations, indicating a continued shrinkage of Langjökull, are consistent 

with published works predicting the disappearance of the icecap, Iceland’s second largest, in 

approximately 200 years. This major mass loss is likely to have many effects including local 

glacio-isostatic uplift, a continued contribution to global sea level rise, and a dramatic shift in 

the supply of major watersheds in central and western Iceland. More proximally, slight 

elevation increases in interior Langjökull paired with anti-correlated terminal retreat and 

negative mass balance of Hagafellsjökull Vestari could indicate a potential surge of the outlet 

sometime within the next decade, an event which last took place in 1980 and 1971.  

In addressing another aim of this study, comparison of DEM-derived data and in situ 

mass balance measurements revealed a possible systematic difference in the values over the 

1997-2007 time period. While past studies on small mountain glaciers have reported that in 

situ measurements yield a more positive specific mass balance than DEM comparison, here 

we find that in situ measurements give a more negative specific mass balance than remote 

sensing methods; this suggests the possibility that the signal from strongly receding outlets 

such as Hagafellsjökull Vestari may be skewing the mass balance value calculated for the 

entire icecap. Careful consideration should be given to how in situ measurements are 

extrapolated to entire icecaps, how this differs from methods used in single glacier systems, 

how the protocol can be improved with the data that remote sensing techniques are able to 

provide, and what any systematic shift may mean for in situ mass balance studies on other 

icecaps.  

Ultimately, this study is extremely successful in both its technological and 

glaciological aims by providing both suggestions for future application of PC as well as a 

much needed benchmark for Langjökull. Photoclinometry is proven to be a current and 

valuable technique while confirming its status as a secondary rather than primary tool. In 

addition, glaciological observations recommend continued observation efforts on Langjökull, 

especially with respect to ongoing mass balance and a potential surge event, and the DEM and 

mass balance data presented here provide future research opportunities in many disciplines. 

Studies incorporating the results and techniques laid out by this study will not only help 

elucidate local hydrology, environmental change, and tectonic properties, but yield a better 

understanding of the very way that icecap mass balance is calculated for glacial monitoring in 

general. 
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