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Disorder-Free Localization
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The venerable phenomena of Anderson localization, along with the more recent many-
body localization (MBL), both depend crucially on the presence of disorder. Here we
introduce a family of simple translationally invariant models of fermions locally coupled
to spins, which have a disorder-free mechanism for localization. This mechanism is due to
a local Z2 gauge symmetry and we uncover the connection to lattice gauge theories. We
diagnose the localization through long-time memory of initial conditions after a global
quantum quench.

One of the defining features of the models that we study is the binary nature of the
emergent disorder, related to the Z2 degrees of freedom. This results in a qualitatively
different behaviour in the strong effective disorder limit compared to typically studied
models of localization. For example it gives rise to the possibility of a delocalization
transition via quantum percolation in higher than one dimension.

In connection to the recently proposed quantum disentangled liquid (QDL) we also
study the entanglement properties of our models. The QDL provides an alternative to
both complete localization and to the eigenstate thermalization hypothesis. Our models
highlight the subtlety of defining a QDL and we offer new insights into their entanglement
properties.

While the simplest models we consider can be mapped onto free fermions, we also
include interactions which leads to MBL-like behaviour characterised by logarithmic
entanglement growth. We further consider interactions that generate dynamics for the
conserved charges, which give rise to only transient localization behaviour, or quasi-MBL.

Finally, we present a proposal for the experimental measurement of gauge field correla-
tors for our model in two-dimensions. This proposal is based on interferometric techniques
which are feasible using current experimental capabilities. Furthermore, the interacting
generalizations of our models can be similarly implemented in experiments, providing
access to the dynamics of strongly interacting lattice gauge theories, beyond what can be
simulated on a classical computer.
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Abstract
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introduce a family of simple translationally invariant models of fermions locally coupled
to spins, which have a disorder-free mechanism for localization. This mechanism is due to
a local Z2 gauge symmetry and we uncover the connection to lattice gauge theories. We
diagnose the localization through long-time memory of initial conditions after a global
quantum quench.

One of the defining features of the models that we study is the binary nature of the
emergent disorder, related to the Z2 degrees of freedom. This results in a qualitatively
different behaviour in the strong effective disorder limit compared to typically studied
models of localization. For example it gives rise to the possibility of a delocalization
transition via quantum percolation in higher than one dimension.

In connection to the recently proposed quantum disentangled liquid (QDL) we also
study the entanglement properties of our models. The QDL provides an alternative to
both complete localization and to the eigenstate thermalization hypothesis. Our models
highlight the subtlety of defining a QDL and we offer new insights into their entanglement
properties.

While the simplest models we consider can be mapped onto free fermions, we also
include interactions which leads to MBL-like behaviour characterised by logarithmic
entanglement growth. We further consider interactions that generate dynamics for the
conserved charges, which give rise to only transient localization behaviour, or quasi-MBL.

Finally, we present a proposal for the experimental measurement of gauge field correla-
tors for our model in two-dimensions. This proposal is based on interferometric techniques
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1
Introduction

Nature is extremely complex! Not necessarily because of the fundamental laws that
govern it, but due to the unfathomable number of degrees of freedom interacting with each
other. Fortunately, many natural phenomena display a remarkable level of universality,
that is to say, they are independent of their microscopic details. However, there are many
situations beyond this universal behaviour that are particularly interesting. Perhaps the
most important are non-equilibrium phenomena which cover the vast majority of what
we observe in our everyday lives – car engines, the weather, and life itself are but a few
examples. In this thesis we are interested in questions about the relaxation of isolated
quantum systems after they are taken far from equilibrium.

The observed universality of certain phenomena in nature is encapsulated in statistical
mechanics. Rather than considering the full classical or quantum mechanical evolution
of a many-particle system, the idea is instead to consider many copies of the system –
a so-called statistical ensemble. The problem is then reduced to studying probability
distributions with respect to this ensemble [1–4]. This allows us to describe the (close to†)
equilibrium behaviour of a system using only a handful of physical parameters such as
temperature, pressure and the number of particles. Take for example the air around us
which is composed of several different molecular gases and water vapour and consists
of ∼ 1025 molecules per cubic square meter. Nevertheless, for most purposes it can be
described in terms of its temperature, pressure, or humidity, and we rarely have to think
about the behaviour of individual molecules.

In this simpler description provided by statistical mechanics it is possible to understand
ordered phases of matter and the transitions between them. Taking these ideas a step
further, Lev Landau [8] established a phenomenological theory that takes as its starting
point a quantity called an order parameter that distinguishes the phases, and the symmetries
of the system in different states [8]. Despite this reduced description, the resulting concept

†There are well developed tools such as linear response theory and the fluctuation-dissipation theorem
that allow non-equilibrium behaviour such as thermal and electrical conductivity to be understood from an
equilibrium theory [5–7].

1



1.1. Thesis Outline 2

of symmetry breaking has proven extremely powerful in explaining phases and phase
transitions in condensed matter systems [7, 9].

Away from equilibrium we no longer have a single unifying framework analogous
to statistical mechanics. While there exist formalisms such as kinetic theory [10] or
Keldysh field theory [11, 12], these are either incomplete or are in most cases technically
challenging. Typically, dynamical problems have to be tackled on a case-by-case basis
using a range of physical approximations. Often one must resort to numerical simulations
such as exact diagonalization methods which are limited to approximately 20 spins or
fermions.

Recently there has been renewed interest in how a closed quantum mechanical system
can relax and the nature of the possible long-time equilibrium behaviour. Classical
systems are able to thermalize at long times – that is, all parts of the system will be in
thermal equilibrium with each other – due to non-linear and chaotic behaviour. However,
quantum mechanical systems obey unitary time evolution and thus in this sense cannot
be chaotic [13]. It is therefore a natural question to ask if and how a quantum system can
relax, and how this relates to thermalization behaviour observed in nature. An answer to
the latter question was suggested in the form of the eigenstate thermalization hypothesis,
which suggests that eigenstates of thermalizing quantum system themselves locally look
thermal [14–16], a statement that we will make more precise in the following sections.

The resurgence of interest in quantum relaxation comes in part from a violation of
the eigenstate thermalization hypothesis in the dynamical many-body localized phase of
matter [17, 18]. Such systems avoid thermalization and for instance can retain memory of
initial states indefinitely, due to the presence of disorder. These systems are important not
only because they challenge our theoretical understanding of complex quantum systems
but they may also find application in future technology. For example, this protection of
information in the initial state could potentially be used in quantum memory devices and
in quantum computations.

1.1 Thesis Outline

In this thesis we contribute to answering questions about relaxation of isolated quantum
systems. In particular we provide the answer to a long-standing question about the role of
disorder in localized systems – we demonstrate that disorder is not a prerequisite condition
for localization. Further, we identify a connection between our disorder-free mechanism
for localization and lattice gauge theories. The latter are themselves of fundamental
importance in the description of strongly correlated phases of matter [19–21] and we make
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connections with a number of theoretical models.

In this chapter we introduce the main concepts that will be used throughout this the-
sis. We first define the protocol for taking our system far from equilibrium and discuss
the subsequent spreading of correlations and the long-time behaviour. Here we define
the eigenstate thermalization hypothesis and the formalism of density matrices and en-
tanglement which we will refer to throughout. In Section 1.3 we give a brief overview
of the localization phenomena which provides an alternative scenario to thermalization.
Following this we give a brief history of the question we are concerned with in this thesis
– namely, whether localization is possible without disorder. In Section 1.5 we introduce
gauge theories with some examples. The final part of the introduction concerns the progress
in experiment, relevant to both localization physics and to the physics of lattice gauge
theories.

The remainder of the thesis is structured as follows. In Chapter 2 we introduce
our model. We provide details of a mapping to free fermions and identify conserved
charges, which is central to our ability to study large systems and understand the disorder-
free mechanism for localization. Chapter 3 constitutes a numerical investigation of the
localization in our model. We also make a connection to a quantum percolation problem
not found in models of localization with continuously sampled disorder. The notion of
a quantum disentangled liquid is discussed in Chapter 4. We reveal the subtleties in
its definition and offer more insights into the entanglement properties of our model. In
Chapter 5 we investigate the out-of-time-ordered correlators. These quantify operator
spreading and we reveal a wide range of behaviour. We discuss possible extensions to our
model in Chapter 6 that take it away from the free fermion limit by adding interactions.
Finally, in Chapter 7 we propose experimental protocols in cold atoms for simulating
dynamics of the gauge field in our model and for the measurement of correlators. We
close the thesis with a discussion of our results, open questions, and directions for future
research.

1.2 Quantum Quenches and Thermalization

In this thesis we are concerned with quantum quenches in closed systems and investigate
the properties of quantum models using protocols that take the system far from equilibrium.
A quantum quench is an instantaneous change in the Hamiltonian of the system [22, 23].
The system is initially prepared in some state |ψ(0)〉, which we will consider to be the
ground state of a preparation Hamiltonian Ĥ0 at time t = 0. The Hamiltonian is then
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instantaneously quenched at t = 0 to Ĥ and the wavefunction evolves as

|ψ(t)〉 = e−iĤt|ψ(0)〉. (1.1)

For our purposes we can prepare the state |ψ(0)〉 by hand but in experiments the systems
will be prepared close to the ground state of a Hamiltonian Ĥ0 and ramped as quickly as
possible, faster than any time scale set by Ĥ, to approximate the true instantaneous quench.

A quantum quench can either be local or global, depending on how the Hamiltonian Ĥ

differs from the preparation Hamiltonian Ĥ0, but in this thesis we will consider only global
quenches. Following a quench there are then two natural things to study – the spreading of
correlations and the properties of the system at long times.

While we only consider global quantum quenches, we will also encounter local
quenches in the calculation of certain correlators. Local quenches also have an important
place in condensed matter physics, most notably in the X-ray edge problem [24]. There
also exists an exact mapping of the dynamical structure factor of Kitaev quantum spin
liquids [25] to the X-ray edge problem [26]. Based on the X-ray edge solution, recently an
exact method was developed to calculate the full inelastic neutron scattering response for
the honeycomb Kitaev model [27], which has since been compared with experiments on a
candidate material [28]. During my PhD I also contributed to this field by developing an
exact method for three-dimensional Kitaev models and studied qualitative behaviour of
dynamical correlation functions in three dimensions [29, 30].

1.2.1 Spreading of Correlations

Let us first consider time-dependent correlations after a quantum quench. If the
Hamiltonian is local, as will always be the case for us, immediately after the quench the
information of the change in the Hamiltonian is only known locally. As the system evolves,
correlations build up over larger distances. Let us consider, for concreteness, the example
of free fermions described by a 1D tight-binding Hamiltonian

Ĥ = −J
∑

j

(
ĉ†j ĉ j+1 + H.c.

)
, (1.2)

with canonical anti-commutation relations {ĉ†i , ĉ j} = δi j and J constant. We are interested
in the correlator of particle densities

〈ψ(t)| n̂ jn̂k |ψ(t)〉c = 〈ψ(t)| n̂ jn̂k |ψ(t)〉 − 〈ψ(t)| n̂ j |ψ(t)〉〈ψ(t)| n̂k |ψ(t)〉. (1.3)
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Considering the initial state |ψ(0)〉 to be a charge density wave with the odd sites occupied
and even sites empty, i.e., |ψ(0)〉 = | · · · 101010 · · ·〉, we impose periodic boundary condi-
tions and take the thermodynamic limit, where we can compute the correlator exactly. The
analytic result is

〈ψ(t)| n̂ jn̂k |ψ(t)〉c =
1
4
δ j,k −

1
4

J| j−k|(4Jt)2, (1.4)

where Jn(x) are the Bessel functions of the first kind, see Appendix A for the calculation.
The absolute value of this correlator is shown in Fig. 1.1(a).

This correlator shows a clear linear light-cone which spreads with velocity 4J, indicated
in Fig. 1.1(a), which is consistent with the bound on correlation spreading found by
Lieb and Robinson [31]. This bound is on the spreading of operators whose important
consequence [32] for our purposes is that

|〈ψ(t)| ÔAÔB |ψ(t)〉c| ≤ c e−
L−2vt
ξ , (1.5)

where L is the spatial separation between the local operators ÔA and ÔB, and c, v, ξ, are the
constant prefactor, speed and length scale, which are to be determined†. In our case, the
velocity is observed to be the maximal group velocity v = 2J and we have exponentially
small correlations outside the light-cone with Lieb-Robinson velocity vLR = 4J, as shown
in the inset of Fig. 1.1(a). This bound need not be saturated, particularly when we do not
have long-lived quasi-particles, and we will later use deviation from this linear light-cone
behaviour to diagnose localization.

Since we start with a charge density wave and evolve with a translationally invariant
Hamiltonian, we expect that this inhomogeneous pattern should relax as a function of time.
We can quantify the presence of the charge density wave using the density imbalance

∆ρ(t) =
1
N

∑
n

|〈ψ(t)|n̂n+1 − n̂n|ψ(t)〉|, (1.6)

which takes the maximal value of 1 for a charge density wave and is zero for a translationally
invariant state. We are also able to calculate this value exactly in the thermodynamic limit,

∆ρ(t) = |J0(4Jt)|, (1.7)

which is shown in Fig. 1.1(b), see Appendix A for the calculation. This shows that the
initial CDW does indeed relax and the system loses memory of the initial state. The overall
power-law decay, evident from the log-log scale shown in the inset, is characteristic of

†Note that this bound on correlators only applies for quenches from states with finite correlation
length [32].



1.2. Quantum Quenches and Thermalization 6
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Figure 1.1: (a) Spreading of correlations for free fermions. Plotted is the absolute value of the
connected density correlator |〈ψ(t)| n̂ jn̂ j+L |ψ(t)〉c|. The Lieb-Robinson velocity which
leads to a linear light-cone is indicated by a dashed white line. (inset) Behaviour close
to the light-cone on a log scale. (Time dependence for fixed separation L is shifted
by the light-cone velocity.) (b) The decay of the density imbalance ∆ρ(t), defined in
Eq. (1.6), which demonstrates the relaxation of an initial charge density wave. (inset)
Same decay for longer times on a log-log scale.

integrable systems. In localized systems on the other hand we will see persistent memory
of the initial state which we can diagnose by having a finite value of ∆ρ in the limit t → ∞.

1.2.2 Eigenstate Thermalization Hypothesis

Let us now consider the behaviour at long times after a quantum quench and, in
particular, discuss what it means for an isolated quantum system to thermalize. From
observations of nature we can expect thermal behaviour of local observables, as indicated
in Fig. 1.2(a). That is, while the short time behaviour of local observables may be non-
universal and depend on the initial state, the long-time behaviour should be determined
only by a few quantities such as the energy or effective temperature of the initial state. The
eigenstate thermalization hypothesis (ETH) provides a possible answer to the question of
how a closed quantum system can display this expected thermal behaviour. It says that in a
thermalizing system the eigenstates themselves look thermal [14, 15]. Let us now make
this statement more precise. In our exposition we will follow closely Ref. [18].

Let us consider a physical observable associated with the local operator Ô, then
the expectation value 〈ψ(t)|Ô|ψ(t)〉 can be expanded in terms of energy eigenvalues and
eigenvectors as

〈ψ(t)|Ô|ψ(t)〉 =
∑
αβ

C∗αCβe
i(Eα−Eβ)tOαβ, (1.8)

where Oαβ = 〈α|Ô|β〉 are the matrix elements of the operator in the basis of energy
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Figure 1.2: (a) Expected behaviour of local observables in a thermalizing quantum system. The
long-time value is determined by the energy of the initial state but short-time behaviour
is non-universal. There are fluctuations around this long-time value which can be
large on rare occasion. (b) Illustration of the realistic constraints on smoothness of
the diagonal elements of local operators and the narrow energy distribution for typical
initial states. Figures are inspired by the KITP lecture Ref. [33].

eigenstates. The coefficients Cα come from the decomposition of the initial state in terms
of eigenstates |ψ(0)〉 =

∑
α Cα|α〉. The eigenstate thermalization hypothesis then suggests

the form of these matrix elements for a general local operators Ô,

Oαβ = O(E)δαβ + e−S (E)/2 f (E, ω)Rαβ, (1.9)

where E = (Eα + Eβ)/2 is the average energy, ω = Eα −Eβ is the energy difference, Rαβ are
random numbers with zero mean and unit variance, and f (E, ω) is a smooth function of E

assumed to decay with |ω|. In the exponential there appears the thermodynamic entropy
S (E) = −Tr(ρ log ρ), where ρ = e−βĤ/Z with partition function Z = Tr[e−βĤ] and the
effective temperature β defined via E = Tr[e−βĤĤ]/Z . Eq. (1.9) says that the eigenstates
are effectively random vectors in the Hilbert space but that on average they locally look
thermal in the sense that the diagonal elements Oαα are given by their thermal expectation
value O(E) = Tr[e−βĤÔ]/Z .

From the ansatz for the matrix elements in Eq. (1.9) we can then find the relaxation of
observables after a quantum quench. Plugging Eq. (1.9) into the time evolution (1.8) we
see that the function f (E, ω) determines the non-universal corrections to the time evolution
of the observable, which in the long-time limit is washed away due to rapidly oscillating
phase factors. What is left are the diagonal elements, which are given by thermal averages
O(E) = Tr[e−βĤÔ]/Z . The conclusion of ETH is that the infinite-time average of local
observables,

Ō = lim
t→∞

1
t

∫ t

0
dτ 〈ψ(τ)|Ô|ψ(τ)〉 =

∑
α

|Cα|
2O(Eα) ≈ O(Ē), (1.10)
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is independent of the details of the initial state |ψ(0)〉 and depends only on the expectation
value of the energy Ē = 〈ψ(0)|Ĥ|ψ(0)〉. The final approximate equality assumes a relatively
weak restriction on the coefficients |Cα|

2, namely that they are appreciable only over a
small energy window, but otherwise unrestricted. This energy window should be small
enough that the function O(E) varies at most linearly over this window†, see Fig. 1.2(b)
The result is that the infinite time average of the operator is thermal, i.e. Ō ≈ Tr[e−βĤÔ]/Z
which depends only on the effective temperature of the initial state and not, for example,
on any spatial structure. Note that without the extra conditions on the smoothness of O(E)
and the small energy window for the coefficients, the effective energy/temperature would
depend on the observable, which is not expected for a generic local observable.

Note that the hypothesised form for the matrix elements of the local observables in
Eq. (1.9) also contains information about the fluctuations around the infinite time average
value. The average fluctuations are given by

lim
t→∞

1
t

∫ t

0
dτ (Oτ − Ō)2 = O

(
e−S (E)

)
, (1.11)

where Ot = 〈ψ(t)|Ô|ψ(t)〉. Thus for typical states, fluctuations around the long-time value
are exponentially suppressed.

The ETH is a remarkable statement that ties together the contrasting descriptions
of unitary quantum mechanics and chaotic classical thermalization, by stating that the
thermal behaviour is contained in the eigenstates themselves. In Srednicki’s paper this
behaviour was confirmed for the quantum problem of hard spheres [15] and it has since been
numerically verified in a number of different models [34, 35]. Importantly though, many-
body localization provides a robust setting where ETH is violated. It can be characterized,
for example, by the persistent memory of initial states such as a charge density wave.

1.2.3 Density Matrices and Entanglement

An alternative and natural way to define thermalization is in terms of density matrices [1,
2]. The density matrix arises as a way to describe both pure quantum states and statistical
mixtures in the same formalism. Within this formalism it is then possible to formulate
measures of the quantum entanglement, which roughly speaking is the dependence of the
state of a subsystem on the rest of the system. The density matrix formalism, as well as
the concept of quantum entanglement [36, 37], will be used throughout this thesis and we
therefore take a short detour to introduce these concepts.

†In the original paper by Srednicki [15] it was assumed that O(E) is approximately constant over this
energy window, although this seems to be stricter than necessary.
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The density matrix is a description of the state of a quantum system which can be in
either a pure quantum state or a mixed state that is a statistical mixture of pure states. If
our system is in the pure state |ψ〉, then the density matrix is defined as ρ = |ψ〉〈ψ|, i.e. a
projector onto this state. More generally, the density matrix is given by a statistical mixture
ρ =

∑
α λα|α〉〈α|, where {|α〉} is some set of pure states. If we are in a thermal state with

inverse temperature β, for example, then the density matrix is given by

ρ =
1
Z e−βĤ =

∑
α

e−βEα

Z |α〉〈α|, (1.12)

where |α〉 are eigenstates of the Hamiltonian Ĥ with energy Eα, and Z = Tr[e−βĤ] is the
partition function which normalizes the density matrix. The density matrix is normalized
such that the total probability, Tr[ρ] = 1. We also have that Tr[ρ2] ≤ 1 with equality if and
only if ρ describes a pure state, because it is a projector†.

While there are many measures of entanglement used in the context of localization
– and many more in quantum information theory – we choose to focus here on the von
Neumann bipartite entanglement entropy. The most common alternatives are the family of
Renyi entropies, which contain the von Neumann entropy as a limit.

We start with the density matrix of a pure state ρ = |ψ〉〈ψ|. To define the bipartite
entanglement entropy we must first split the system into two parts, subsystem A and its
complement B. It is then these subsystems that are said to be entangled. We proceed by
defining the reduced density matrix on A by tracing over states for B, i.e., ρA = TrB[ρ]. If
the subsystems A and B are entangled then this reduced density matrix must necessarily
have a form of a mixed state and the entanglement entropy quantifies the mixing. The von
Neumann entanglement entropy generalises the Gibbs entropy and is defined as

S = −Tr[ρA ln ρA] = −
∑

i

λi ln λi, (1.13)

where λi > 0 are the eigenvalues of the reduced density matrix ρA.
To aid this definition let us look closer at the structure of the reduced density matrix

and by considering an example. Any pure state can be written in terms of a basis of
states {|i〉A ⊗ | j〉B} where {|i〉A} and {|i〉B} are orthonormal bases for the subsystems A and B

†Proof: If ρ is a projector then ρ2 = ρ, and Tr[ρ2] = Tr[ρ] = 1. On the other hand if Tr[ρ2] = Tr[ρ] = 1,
then in terms of the eigenvalues 1 ≥ λα ≥ 0 of ρ we have

∑
α λ

2
α =

∑
α λα = 1. Suppose we have more than

one non-zero eigenvalue, then we have λα < 1,∀α, and so
∑
α λ

2
α <

∑
α λα, which is a contradiction. Thus

we have one non-zero eigenvalue which is equal to 1, i.e., ρ is a projector.
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respectively. In this basis the pure state can be written as

|ψ〉 =
∑

i j

ψi j|i〉A ⊗ | j〉B. (1.14)

It is then possible to perform singular value decomposition of the rectangular matrix with
elements ψi j. This gives ψi j =

∑
k UA,ik

√
λkUB,k j, where λk > 0. By redefining the basis

states for the two subsystems as |ĩ〉A =
∑

j UT
A,i j|i〉A and |ĩ〉B =

∑
j UB,i j|i〉b, the state can be

written as
|ψ〉 =

∑
k

√
λk|k̃〉A ⊗ |k̃〉B, (1.15)

and the reduced density matrix becomes

ρA =
∑

k

λk|k̃〉A〈k̃|A, (1.16)

with λk > 0 and
∑

k λk = 1. From the decomposition of the state in Eq. (1.15) we can see
that the reduced density matrix, ρB, for subsystem B, i.e., tracing out subsystem A, has the
same eigenvalues as ρA. The von Neumann entropy is then independent of which part of
the system one traces out.

Example

Let us study an example which will be instructive in clarifying the above definitions of
density matrices and entanglement. We will consider a 4 state system composed of two
spin 1/2 degrees of freedom, where we define subsystems A and B as a single spin each. We
will consider the system in one of two states: |ψTP〉 = 1

2 (| ↑〉A + | ↓〉A) ⊗ (| ↑〉B + | ↓〉B), which
is a tensor product of states on systems A and B; and |ψEPR〉 = 1

√
2
(| ↑〉A| ↑〉B + | ↓〉A| ↓〉B), the

Einstein-Podolsky-Rosen (EPR) pair or Bell pair state, which cannot be decomposed as a
tensor product of states on A and B separately.

Let us then consider the basis {|↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉} for the combined 4 state system.
In this basis the density matrices can be written as

ρTP =


1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

 ρEPR =


1
2 0 0 1

2

0 0 0 0
0 0 0 0
1
2 0 0 1

2

 . (1.17)

The reduced density matrices for subsystem A (equivalently B) using the basis {| ↑〉, | ↓〉}
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are then given by

ρTP,A =

 1
2

1
2

1
2

1
2

 ρEPR,A =

 1
2 0
0 1

2

 . (1.18)

The reduced density matrix ρTP,A is equivalent to the full density matrix of a single spin 1/2
in the pure state (| ↑〉+ | ↓〉)/

√
2 and thus the existence of subsystem B is of no relevance for

measurements of subsystem A. For the EPR pair, however, ρEPR,A cannot be written as the
density matrix of a pure state. The ignorance of subsystem B means that subsystem A is in
an effective statistical combination of the two states and there is no measurement that can
be performed on that subsystem alone that has a determined outcome. The corresponding
entanglement entropies are S TP = 0 and S EPR = ln 2. For the EPR pair the subsystem A is
‘entangled’ with subsystem B, and in fact is a maximally entangled quantum state†. Note
that the spectra of ρTR,A and ρEPR,A are {1, 0} and { 12 ,

1
2 }, respectively.

The von Neumann entanglement entropy takes a matrix and produces a single number.
The reduced density matrices therefore contain far more information about the entangle-
ment in the system that the entanglement entropy. More information can be extracted by
looking at the spectrum of the reduced density matrix λi = e−χi , where the eigenvalues χi

are referred to as the entanglement spectrum [38, 39].

1.2.4 Thermalization for Density Matrices

Equipped with density matrices we can provide an alternative definition of thermal-
ization. It is believed that in many situations this definition is equivalent to the ETH [22],
although we will not discuss this here. For the purposes of this thesis we can take any one
as our definition of thermalization.

Let us consider the density matrix after the quantum quench ρ(t) = |ψ(t)〉〈ψ(t)| and
let us take a partition A of the system, with B the complement of A. Then the system
thermalizes if the limit of the density matrix for t → ∞ exists and is equal to

lim
t→∞

TrB
[
|ψ(t)〉〈ψ(t)|

]
= Z−1TrB

[
e−βĤ

]
= TrB [|α〉〈α|] , (1.19)

with the inverse temperature β defined by Ē = Z−1TrB[e−βĤĤ], where Ē = 〈ψ(t)|Ĥ|ψ(t)〉 is
the energy of the state, and |α〉 is an eigenstate of Ĥ with Eα = Ē. Strictly speaking we
should take the limit |B| → ∞, with |A| kept fixed, before taking the limit t → ∞, where
| · | denotes the size of the partition. The first equality says that the system thermalizes if
the density matrix at long times locally looks like a thermal density matrix for the Gibbs

†Up to unitary transformations, the EPR pair is the unique maximally entangled state for a 2 qubit
system.
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ensemble. The second equality says that this in turn is locally equivalent to a density
matrix for the microcanonical ensemble. The latter is essentially the statement of eigenstate
thermalization – that the eigenstates themselves locally look thermal.

For us the most important consequence of thermalization is the long-time behaviour of
observables (in the thermodynamic limit |B| → ∞, with |A| fixed) where we find

lim
t→∞

TrB

[
ρ(t)Ô

]
= Z−1TrB

[
e−βĤÔ

]
= Oαα, (1.20)

which matches the conclusion of the ETH as discussed in Section 1.2.2, with the same
effective temperature β defined by TrB[ρ(t)Ĥ] = Z−1TrB[e−βĤĤ].

1.3 Localization

We now turn our attention to localization in quantum systems, which provides an
alternative scenario to thermalization and violates the ETH. Localization was first described
by P. W. Anderson in 1958 in the seminal paper [40] on the “Absence of diffusion in certain
random lattices”. It is a crucial ingredient to understanding the resistive properties of
metals [5, 6, 41], magnetoresistence [42–44], and also in the explanation of quantised
plateaux in quantum Hall systems [5, 41, 45].

Anderson’s original goal was to understand the effects of disorder on interacting
quantum systems, but was restricted to the study of the single-particle phenomenon in
Ref. [40]. It was not until recently that progress has been made on the interacting case,
dubbed many-body localization (MBL) [46–48]. Since then there have been many advances
in our understanding of the properties of MBL, both analytic and numerical, but there still
remains many open questions [18].

1.3.1 Anderson Localization

Let us begin by discussing the single-particle physics of Anderson localization. To
describe its phenomenology, we consider a tight-binding Hamiltonian for spinless fermions
with disorder potential

Ĥ = −J
∑
〈 jk〉

ĉ†j ĉk +
∑

j

V jĉ
†

j ĉ j, (1.21)

where 〈 jk〉 indicates nearest neighbour sites, and V j uniformly sampled from the interval
[−W,W]. This was the original model discussed by Anderson and remains the typical
model of Anderson localization, along with its continuum counterpart.

In three dimensions, the presence of disorder in the potential leads to tails at the
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Figure 1.3: (a) Schematic picture of the density of states near a band tail in the presence of disorder
(in 3D). The states in the tail are localized and separated from the extended states by a
mobility edge. (b) Behaviour of the localization length λ and diffusion coefficient D in
the critical region close to the mobility edge.

band edge with localized states separated by a mobility edge from extended states in the
centre of the band [5, 49], see Fig. 1.3(a). The eigenfunctions in the tails are localized
in space with an exponential envelope, ψ(r) = f (r)e−r/λ, where the characteristic length
λ is the localization length and f (r) is some function of space. This localization of the
wavefunctions leads to absence of diffusion, with the conductivity σ = e2D(µ)ρ(µ)→ 0,
where e is the charge of the carries, D(µ) is the diffusion coefficient and ρ(µ) is the density
of states at the chemical potential µ. Near the mobility edge we find that the diffusion
constant tends to zero and the localization length diverges, as illustrated in Fig. 1.3(b). The
critical behaviour on either side of the transition is related by hyper-scaling relations [9],
and in 3D the critical behaviour is λ ∼ |Ec − E|−ν and D ∼ |E − Ec|

ν, with 0 < ν < 1.

Localization is a surprising phenomenon. When we first learn about quantum me-
chanics we are taught that particles are able to tunnel through classically impenetrable
barriers [50]. Take for example the double potential well, where a particle placed in one
side can eventually make it to the other side. This can be understood by considering the
eigenstates of the two separate wells and those of the combined system. Given the Hamil-
tonian Ĥ that describes the system, the eigenstates |ψE〉 are those which are unchanged
(up to a real prefactor) under the action of the Hamiltonian, i.e. Ĥ|ψE〉 = E|ψE〉. By
creating symmetric/antisymmetric combinations of the eigenfunctions of separate wells
the energy can be increased/lowered, respectively, see Fig. 1.4(a). This hybridization of
eigenfunctions is typical in coupled quantum systems and seems to conspire against the
localization of quantum particles.

In the weak disorder limit there is a simple picture for understanding localization.
The idea is to consider multiple different paths through the system between points A and
B. As the particles travel along these paths they pick up random phases from scattering
off the random potential at each site [5, 6, 41, 49]. Due to these random phases we will
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Figure 1.4: (a) Schematic of the quantum mechanical double well problem. The two lowest energy
states are formed from the symmetric and antisymmetric combinations of the lowest
energy single-well states. (b) Two closed paths that are related by time reversal. Grey
circles indicate scattering centres which contribute a random phase.

get interference between the different paths. More explicitly, let Ai be the probability
amplitudes associated with a particular path, then the probability of a particle travelling
between sites A and B is given by∣∣∣∣∑

i

Ai

∣∣∣∣2 =
∑

i

|Ai|
2 +

∑
i, j

2 Re[AiA∗j]. (1.22)

Due to the random phases from scattering off the potential, we have cancellation in the
second term which reduces the probability. If, however, we consider closed paths that start
and end at site A, as shown in Fig. 1.4(b), then for each path there exists a time-reversed
counterpart which has the same probability amplitude. These two paths then constructively
interfere and we get |A1 + A2|

2 = 4|A1|
2. That is, the probability of returning to the same

site is enhanced which leads to the localization of particles. Clearly these arguments
are too simplistic and a complete understanding requires some more sophistication, but
nevertheless, localization is fundamentally a quantum interference effect. Despite their
simplicity, these arguments are also powerful in understanding physical phenomena such as
magnetoresistence [39, 41–43, 49]. If we include a magnetic field in the above arguments
then the original and time reversed closed paths no longer have the same phase and we
get constructive or destructive interference depending on the flux through the paths. This
leads to either a decrease or increase in the resistivity depending on the magnetic field. If
we construct a cylindrical system with the magnetic flux threading the cylinder then the
flux through closed electron loops is fixed. This leads to oscillations in the resistance as a
function of magnetic field strength [43], see Fig. 1.5(a).

One of the most important contributions to understanding Anderson localization came
from E. Abrahams, P. W. Anderson, D. C. Liccardello and T. V. Ramakrishnan [51]. They
used renormalization group methods to deduce the conductance in a disordered system.
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Figure 1.5: (a) Result of resistance measurement on a cylindrical geometry which shows oscil-
lations as a function of the magnetic flux threading the cylinder. Figure taken from
Ref. [49]. (b) Scaling theory for localization where d is the spatial dimensionality.
β(g) > 1 corresponds to a renormalization group flow towards a conductor whereas
β(g) < 1 flows towards an insulator.

The central idea is to assume that the dimensionless conductance g(L) scales as a function
of the linear length of the system L. The renormalization flow equation is

d ln g(L)
d ln L

= β(g). (1.23)

The functional form of β(g) then tells us whether for a given disorder strength, which
corresponds to a finite conductance in a finite system, the system is a metal or an insulator
in the limit L → ∞. The scaling function β(g) is shown in Fig. 1.5(b). Importantly this
shows that the system is always insulating in 1D and that in 3D there exists a critical
disorder strength, below which there exists delocalized states and the system is conducting.

We have tried to give a brief overview of the phenomenology and importance of
Anderson localization. There is now a very rich history of the subject and a lot is known.
We point the reader to a few references for further information [5, 41, 49].

1.3.2 Many-Body Localization

While Anderson localization is itself an important concept, a major breakthrough was
establishing the existence of localization in an interacting many-body quantum system. The
resulting many-body localized (MBL) phase represents a robust setting for non-ergodic
behaviour in a quantum system [17, 18, 46–48, 52] and has raised fundamental questions
about thermalization.

Let us again consider a concrete setting by generalizing the Anderson model of local-
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ization (1.21). For example, we consider the Hamiltonian

Ĥ = −J
∑
〈 jk〉

ĉ†j ĉk +
∑

j

V jĉ
†

j ĉ j + U
∑
〈 jk〉

n̂ jn̂k, (1.24)

where we have added nearest neighbour density interactions to Eq. (1.21), with n̂ j = ĉ†j ĉ j.
Another important example is an XXZ model with disorder, defined by the Hamiltonian

Ĥ = −J
∑
〈 jk〉

(
σ̂x

jσ̂
x
k + σ̂

y
jσ̂

y
k

)
+ ∆

∑
〈 jk〉

σ̂z
jσ̂

z
k +

∑
j

V jσ̂
z
j, (1.25)

which in 1D is equivalent to Eq. (1.24) by the Jordan-Wigner transformation [20], up to
some constants and redefinitions of the parameters. The Jordan-Wigner transformation is
given by σ̂z

j = 2n̂ j − 1 and σ̂+
j = ĉ†j(−1)

∑
l< j n̂l = (σ̂−j )†, where the Pauli matrices are related

to the ladder operators via σ̂x
j = σ̂+

j + σ̂−j and σ̂y
j = i(σ̂−j − σ̂

+
j ).

The MBL phase has some common properties with Anderson localization, particularly
the persistent memory of initial states. This has been studied both theoretically and
experimentally. For instance, if we consider Eq. (1.24) then we can start the system in a
charge density wave | · · · 101010 · · ·〉, or in a domain wall | · · · 111000 · · ·〉. Signatures of
this initial state – measured by the density imbalance between even and odd sites for the
charge density wave state; or the difference in number of particles between the two halves
of the system for the domain wall – do not reach their thermal value at long times and
therefore retain information about the initial state, see Fig. 1.6(a).

There are, however, a few characteristic ways in which MBL differs from its non-
interacting counterpart. Firstly, unlike Anderson localization, there is a critical disorder
strength required to localize particles in interacting systems (in 1D). Secondly, since
localized systems retain memory of their initial states it has been proposed that they could
be used in quantum memory devices. However, the interactions in MBL systems result in
additional dephasing, which does not occur in Anderson localized systems. A third, and
perhaps the most important property of MBL systems, is the robustness to perturbations. It
has been demonstrated, and proven in 1D [52], that the MBL phase survives the addition of
sufficiently weak, but otherwise generic, additional perturbations. This separates this class
of models from Anderson localized and integrable models. In section 1.3.4 we will discuss
how MBL systems are closely related to integrable models, and possess an extensive set of
“quasi-local” conserved quantities.
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Figure 1.6: (a) Experimental results showing the decay of a charge density wave after a quench in
an MBL system. Figure taken from Ref. [53]. The imbalance measures the average
difference in density between even and odd sites which will be zero for a translationally
invariant state, but takes a non-zero long-time value in the MBL phase. (b) Behaviour
of the entanglement entropy after a global quench in localized systems. The blue curve
corresponds to Anderson localization which after initial linear growth saturates to a
value which scales with the area law (constant in 1D). Orange curves correspond to
MBL for different partition sizes |A|. It displays logarithmic growth until saturation
which scales with the size of |A|, i.e. a volume law.

1.3.3 The Area Law and Logarithmic Entanglement Growth

Localized systems, particularly MBL systems have some important and distinguishing
entanglement properties. Let us first set the scene and define the area and volume law
scaling of entanglement. As always we divide our system into A and B. Unlike in the
context of thermalization we will often simply divide the system into equal parts. We can
then discuss how entanglement of a given state, or at a given time after the quench, scales
with the size of the partitions A and B, which for an equal partition is controlled by the
size of the system. For a thermal state, and for a randomly selected state in the Hilbert
space, the entanglement entropy scales with the volume of the smaller partition, that is
they have volume law scaling. There is, however, a small but important selection of states
that do not follow the volume law and instead follow an area law, which is to say they
scale with the size of the boundary between A and B. Notably, this latter scaling law is
typically obeyed by ground states of local Hamiltonians and can be proven for gapped
local Hamiltonians in 1D, see Ref. [54] for more details and references. Furthermore, by
the eigenstate thermalization hypothesis, the excited eigenstates of thermalizing systems
also themselves look locally thermal and obey a volume law scaling†.

Turning to the case of localized systems, both the Anderson and the many-body
localized systems have area law scaling for all or a finite fraction of their eigenstates. On

†Strictly speaking ETH only implies this volume scaling if A is taken much smaller than B since the
density matrices are only locally equivalent.
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the other hand, following a quantum quench, the dynamical behaviour of the entanglement
can differentiate the two. Firstly, while in Anderson localized systems the entanglement will
grow until saturation which follows area law scaling, MBL systems display logarithmically
slow growth, see Fig. 1.6(b). In the thermodynamic limit the growth of entanglement is
bounded only by the size of the smaller of the two partitions [47, 48], unlike in Anderson
localized systems where it is bounded by the size of the boundary between the partitions.
All of these properties can be understood when we introduce the l-bit description of
localized systems in the following section.

1.3.4 Local Integrals of Motion (LIOMs) or l-bits

A key insight for understanding MBL was the theory of local integrals of motion
(LIOMs), which are commonly referred to as l-bits in the context of MBL [55, 56]. In the
following discussion we follow closely Ref. [18]. These LIOMs are quasi-local operators
τ̂z

j which we define as being exponentially close to a local operator – where we reiterate
that a local operator is one with finite support in the thermodynamic limit. By exponentially
close to a local operator we mean that there exists a local operator Î with support on a
region of size R such that ∥∥∥τ̂z

j − Î
∥∥∥ < e−R/ξ, (1.26)

where ‖ · ‖ denotes some operator norm and ξ is a characteristic length scale for the LIOM.

Let us again be a bit more concrete and consider the spin Hamiltonian (1.25). The
LIOMs then take the general form

τ̂z
j = σ̂z

j +
∑
α,β

∑
k,l

f αβkl σ̂
α
k σ̂

β
l + · · · , (1.27)

where the coefficients f αβkl ∝ exp{−|k − l|/ξ} decay exponentially with the distance of the
furthest spin from j, and similarly for all higher terms in the expansion. The characteristic
length scale ξ defines an effective radius of the LIOM. While such an expansion is always
formally possible, the spatial decay of the coefficients is one of the defining features of
MBL systems. It is also clear from this expansion that we can truncate this sum such that
we include only those terms with support on a region R to get a local operator, and that
this operator satisfies Eq. (1.26).

Since these l-bits commute with the Hamiltonian, [τ̂z
j, Ĥ] = 0, the Hamiltonian can

only consist of products of τ̂z and takes the general form

Ĥ =
∑

j

hiτ̂
z
j +

∑
j,k

J jkτ̂
z
jτ̂

z
k +

∑
j,k,l

J jklτ̂
z
jτ̂

z
kτ̂

z
l + · · · , (1.28)
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where again the coefficients J jk ∝ J0 exp{−| j − k|/ξ̃}, and similarly for higher orders,
where ξ̃ is the characteristic length scale for dephasing. Note that in the case of Anderson
localization this series expansion would only include the first term and no higher-order
products of LIOMs.

An extremely important property of the l-bit picture is that it is robust against generic,
sufficiently weak, local perturbations to the Hamiltonian (1.25). This is in stark contrast to
many integrable systems where the introduction of interactions completely destroys the
conservation laws. For MBL, the LIOMs are effectively able to reshuffle in such a way
that they remain conserved and quasi-local and the form of Eq. (1.28) is preserved. This
robustness has been proven for certain 1D systems in Ref. [52] under a set of reasonable
assumptions.

As mentioned above, a characteristic difference between Anderson localization and
MBL is the logarithmic growth of entanglement in the latter following a quench, shown in
Fig. 1.6. This behaviour can be understood using the l-bit form of the Hamiltonian (1.28).
For short times the dynamics is controlled by the first term and entanglement is able to
build up over regions of the size ξ, the effective radius of the LIOMs. For the Anderson
localized systems we therefore observe an area law plateau at long times if our partition A

is larger than this length scale ξ. Since the eigenstates of both Anderson and MBL systems
can be labelled by the LIOMs, this length scale also explains the area law entanglement
of the eigenstates. The higher order terms present in Eq. (1.28) for MBL, provide a
dephasing mechanism between spatially separated l-bits and thus lead to the spreading
of the entanglement. However, since τ̂z are conserved quantities, distant l-bits can only
become entangled due to direct interactions. This is in contrast to the more generic case
where entanglement between spins labelled A and C can be induced by direct interactions
between A and an intermediate spin B and between B and C. The time scale over which
distant l-bits can become entangled is set by the inverse coupling strength, i.e.

tent(r) ∼
1

J0 exp{−r/ξ̃}
, (1.29)

implying that entanglement can build up over a region of size r(t) ∼ ξ̃ ln(J0t), which grows
logarithmically in time.

Using this l-bit picture we can provide an explanation for the observed behaviour of the
bipartite entanglement entropy. The number of spins that become appreciably entangled
with each other after a time t is N ∼ ln(t), and the entanglement with the rest of the
spins is exponentially small. Let us suppose that all spins within a radius of N from the
boundary between A and B are maximally entangled. This region contains 2NLA spins,
where LA = |∂A|, the size of the boundary of A. Since we assume these spins are maximally
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entangled we have 2NLA non-zero eigenvalues of the reduced density matrix that are all
equal†. The von Neumann entanglement entropy is then given by

S A = −2NLA
(
2−NLA ln

(
2−NLA

))
= NLA ln 2. (1.30)

Given how N depends on time, we end up with S A ∼ LA ln(t). We therefore find that the
entanglement grows logarithmically in time and that it scales with the size of the boundary
between the partitions, as observed numerically and shown in Fig. 6.1(b).

1.4 Disorder-Free Localization

Early on in the discussion of localization the question was raised whether disorder is
a necessary pre-condition, or whether localization can be induced through interactions
alone. The work in this thesis provides an answer to this long-standing question by giving
the first example of disorder-free localization. One of the first proposals came in 1984 by
Kagan and Maksimov [57] in the context of Helium mixtures. This idea was taken up in
the last 5 years where multi-species models were introduced [58–60] inspired by Kagan
and Maksimov’s original idea. We will now give a brief overview of the progress in this
area and motivate the problem we address in this thesis.

Kagan and Maksimov’s [57] proposal concerned the diffusion of a small concentration
of He3 atoms through a regular lattice of solid host He4. The He3 atoms are mobile and
interact with each other, and the He4 atoms provide a regular 3D lattice potential but
otherwise do not enter the model. More explicitly, the effective model they considered was
described by the Hamiltonian

Ĥ = ∆0

∑
r,n

ĉ†r+nĉr +
1
2

∑
r1,r2

U(r1 − r2)ĉ†r1
ĉ†r2

ĉr2
ĉr1
, (1.31)

with power law potential U(r) = U0(a0/r)3 where a0 is the ‘radius’ of the unit cell, and U0

is assumed positive‡. The ĉ operators correspond to the creation/annihilation operators for
the fermionic He3 atoms.

Given this model they argued that most of the fermions form immobile clusters but there
remain a small number that are not involved in these clusters, see Fig. 1.7. Furthermore,
since these clusters are seeded on initial inhomogeneities (for instance, due to thermal

†Note the factor of 1/2 in the exponent is due to our partition cutting through the centre of this region
and so our reduced density matrix covers half of this number of spins.

‡The condition of positivity is not necessary. In fact the authors of Ref. [57] comment on the form of the
physical interaction which changes sign as a function of angle.
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Figure 1.7: Cartoon of the scenario considered by Kagan and Maksimov in Ref. [57]. At a critical
density the fermions form macroscopic immobile clusters, shown by red circles. The
remaining fermions are shown as blue circles and are mobile. The mobile particles feel
an effective disorder potential due to the interactions with the clusters.

fluctuations) it may be possible for the mobile particles also to become localized due to
this static disordered background. There are three important ingredients in their arguments:
(i) that the bandwidth is narrow, i.e., ∆0z � U0, where z is the coordination number (6
for cubic lattice); (ii) the long range, power-law form of the interactions; (iii) that the
concentration is low, i.e. µ = 1

N

∑
i n̂r � 1, where N is the number of lattice sites. However,

this concentration must also be above the critical concentration µc which is necessary for
forming macroscopic immobile clusters.

The important step of the argument is the formation of macroscopic immobile clusters
which relies on the discrete particle positions. If the above conditions are fulfilled then the
likelihood of a resonant transition where the kinetic energy is comparable or greater than
the interaction energy is low. This means that particles effectively get stuck in clusters,
with the remaining particles that are mobile. Kagan and Maksimov likened this situation
to “a swarm of bees in winter hibernation”. The remaining fermions that are not trapped in
the clusters then see a disordered background due to interactions with immobile clusters,
see Fig. 1.7.

The conclusion of Ref. [57] is that at sufficient concentration of He3 the formation of
macroscopic immobile clusters gives rise to the localization of the entire system, including
atoms which are not part of the clusters. This analysis is consistent with experimental re-
sults on solid Helium where the diffusion coefficient decreases with increased concentration
of He3 [61].

1.4.1 Heavy-Light Mixtures: quasi-MBL

Inspired by work of Kagan and Maksimov, the idea of disorder-free localization was
recently taken up again in the form of heavy-light particle models. In these models, the
distinction between the ‘immobile’ and ‘mobile’ particles is introduced by hand by defining
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two species of particles with a large mass ratio, and interactions between the two. The
question is then whether localization in such systems is possible. These types of models
were considered independently by Yao et al. [60] and Schiulaz et al. [58].

(a)
(b)

Figure 1.8: (a) Schematic of the model in Eq. (1.32). Figure taken from Ref. [60]. The two chains
interact either via XY coupling or Heisenberg exchange and across the rungs the two
species are coupled by Ising interactions. (b) The model in Eq. (1.33). Figure taken
from Ref. [58]. The light fermions live on the odd sites indicated by circles and the
heavy fermions live on the even sites and act as hard walls for the light species.

The first of the two models we will discuss is the spin ladder model of Yao et al. [60].
The two chains of the ladder are described by XY spin Hamiltonians with different coupling
strengths J and J′ and an Ising interactions along the rungs of the ladder, see Fig. 1.8(a).
The model is described by a Hamiltonian

Ĥ = J
∑
〈i j〉

Ŝ +
i Ŝ −j + J′

∑
〈i j〉

ŝ+
i ŝ−j + Jz

∑
i

Ŝ z
i ŝz

i , (1.32)

where Ŝ and ŝ are the Pauli operators of the spins on the two chains, where Ŝ corresponds
to the ‘heavy’ species and thus J � J′. Ref. [60] also considers the case where the
XY coupling is replaced by Heisenberg interactions, which shows qualitatively similar
behaviour.

Another model was proposed by Mauro Schiulaz and Markus Müller [58] and describes
two species of mobile fermions on a 1D chain. The light particles hop along the odd sites
of a 1D chain and the heavy particles hop along the even sites. Furthermore, the heavy
particles act as hard barriers and forbid the hopping of the light particles. The Hamiltonian
reads

Ĥ = −λ
∑

i

(
b̂†2i+2b̂2i + H.c

)
− J

∑
i

(
â†2i+1â2i−1 + H.c

) (
1 − b̂†2ib̂2i

)
, (1.33)

where b̂ correspond to heavy particles and λ � J. This model differs from the ladder
discussed above in that the kinetic term for the light particles depends on the occupations
of heavy particles. This model is related to quantum glass models and models with
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constrained kinetics which we shall discuss in more detail in the following section. The
authors claim that the hard constraint can be replaced with a softer one by adding free
hopping for the â fermions.

Both Refs. [58, 60] study the localization behaviour by looking at the equilibration of
an initial state after a quench. Yao et al. [60] consider a spin polarized state with small
inhomogeneous spin modulation and measure the average polarization as a function of
time after a quench. This polarization is observed to persist indicating localization but
at long times the polarization vanishes. Schiulaz et al. [59] reveal a similar story when
they start from a random state of local fermion occupation. They measure the average
difference in the local density of fermions on neighbouring sites on the heavy sub-lattice.
This quantity measures the inhomogeneity of the initial state. This inhomogeneity is found
to persist, but again they find that at long times it vanishes.

Importantly, both authors find that the time scale over which information about the
initial state persists scales exponentially with the system size. This contrasts the behaviour
of MBL where memory of the initial states persists indefinitely. The authors of Ref. [60]
thus call this phenomena quasi-MBL. Despite agreement between these two groups, a
later paper by Papic et al. [62] highlighted the importance of finite size effects which aid
the stability of initial states in small systems. Their results therefore cast doubt on this
quasi-MBL behaviour in the thermodynamic limit and suggest that further work is needed.

1.4.2 Quantum Glasses and Kinetically Constrained Models

An alternative approach to heavy-light mixtures is to consider quantum versions of
classically glassy models, and kinetically constrained quantum models. These models
often display slow relaxation in classical dynamics, and quantum analogues have been
proposed as disorder-free examples of MBL systems. Here we will restrict ourselves to
consider the classical East model [63] and its quantum counterpart [64]. We point the
reader to Refs. [63–68] for other examples and further discussions.

We consider first the classical East model [63] which is defined for a string of variables
{0, 1} with the Hamiltonian

Ĥ =
∑

j

n̂ j, (1.34)

where n j = 0, 1 reads off the digit at position j in the string such that 1 is associated with an
energy cost. The dynamics is then given by the allowed processes 10→ 11 and 11→ 10,
which can generally occur with different probability. These rules encapsulate a dependence
on locally changing a digit depending on the digit to its left. In particular, the dynamics is
constrained such that if the digit to the left is zero, then the digit cannot be flipped.
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(a)
(b)

Figure 1.9: (a) Relaxation of the energy density due to classical thermal fluctuations following
a quench from infinite temperature for the East model (1.34). Figure taken from
Ref. [63]. The results are shown for three values of the final temperature. (b) Growth
of the entanglement entropy following a global quantum quench in the quantum East
model (1.37), taken from Ref. [64]. Dashed lines indicate the logarithmic fit consistent
with MBL. (inset) The relaxation time, τ, extracted from S̄ (t), where s = − ln λ, see
Eq. (1.37).

Let us now consider classical dynamics due to thermal fluctuations after a quench
from infinite temperature to finite temperature T . We prepare the system in a random
configuration and then perform evolution using Monte Carlo steps where the dynamics
is generated by local digit-flips. The simplest Monte Carlo procedure we can consider is
the Metropolis-Hastings algorithm where in each step of the evolution a digit is selected
at random and flipped (if allowed by the dynamical rules) to create a new configuration.
This new configuration is then accepted with probability P = min

{
1, e−β(Hnew−Hold)

}
, where

β = T−1, is the inverse temperature, and Hnew and Hold are the energies of the new and
old configurations, respectively. If a new configuration is not accepted, we keep the old
configuration. The evolution is performed starting from a set of random initial states and
then averaged uniformly, which corresponds to a quench from infinite temperature.

The characteristic time scale for the relaxation in this model is given by

τrel ∼ exp
{

1
T 22 ln 2

}
, (1.35)

which scales exponentially with the square of the inverse final temperature. This anoma-
lously slow relaxation† can be understood by considering the dynamics required to reduce
the energy of a particular string. For instance, consider the string 1001, then a lower energy
string can be formed by flipping the far right digit. However, this cannot be done directly

†This slow relaxation is called super-Arrhenius, where Arrhenius is ∼ e1/T .
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because of the constraints, but can be achieved via intermediate states, such as

1001→ 1101→ 1111→ 1110→ 1100→ 1000. (1.36)

While the end result is to lower the energy, the intermediate steps have a larger energy by
introducing more digits equal to 1. Generally the energy barrier can be seen to scale as
∆ ∼ log2 l, where l is the initial separation of the 1’s. The relaxation of a region of length
l therefore happens over the time scale τl ∼ exp{T−1 log2 l}. This relaxation can be seen
in the decay of the average energy density, shown in Fig. 1.9, which has a sequence of
plateaux scaling in exactly this way with temperature. Each plateau corresponds to the
relaxation of chains of a particular length. The overall time scale is found by considering
the average energy density at the final temperature – i.e., the average separation between
ones at the final temperature – which gives an extra factor of T in the denominator of the
exponent.

A quantum analogue of the East model was considered in Ref. [63, 64], and is defined
by the Hamiltonian

Ĥ =
∑

j

n̂ j − λ
∑

j

n̂ jσ̂
x
j+1, (1.37)

where the binary digits are replaced by spins-1/2 and n̂ j = 1
2 (σ̂z

j + 1). The first term is the
Hamiltonian of the classical model, and the second leads to quantum dynamics where spin-
flips are allowed only if the spin is up on the site to the left in analogy with the East model.
The model (1.37) exhibits behaviour consistent with MBL such as the incomplete decay of
an inhomogeneous initial state and the logarithmic growth of entanglement entropy, see
Fig. 1.9(b). Over the time scales accessible to numerical simulations, complete relaxation
has not been observed but Ref. [64] could not rule out the possibility of quasi-MBL
behaviour.

1.5 Lattice Gauge Theories

In this thesis we present a model that realises the physics of disorder-free localization.
This model is an example of a lattice gauge theory (LGT) that has a connection to a number
of other important LGTs. Gauge theories play a central role in theoretical physics, most
famously in the unified description of fundamental particles in the standard model [69].
Gauge theories defined on a lattice also appear increasingly in the description of condensed
matter systems, where LGT models often arise as effective descriptions of strongly-
correlated systems [20]. In the following sections we discuss a derivation of lattice gauge
theories starting from continuum models [19, 70, 71]. The transition from the continuum
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to the lattice is not only instructive but also introduces the important lattice Schwinger
model [70–73] which we shall discuss more later. We review Wegner’s Ising gauge theory
both for its historical significance and because its derivation is much closer in spirit to many
aspects of our model. And finally we consider the example of Kitaev’s toric code [68, 74]
which is an important model both as a lattice gauge theory and as a prototypical quantum
memory. This model is also related to our model of disorder-free localization.

One of the simplest and most familiar gauge theories is classical electrodynamics [75].
Maxwell’s equations for the electric and magnetic fields are

∇ · E = ρ, ∇ · B = 0,

∇ × E = −
∂B
∂t
, ∇ × B = j +

∂E
∂t
,

(1.38)

where we have set c = 1, and ρ(x, t) and j(x, t) are the electric charge and current densities.
We are able to introduce a vector potential A(x, t) such that B = ∇ × A, and if we also
introduce a scalar potential Φ(x, t), then we can write the electric field as E = −∇Φ − ∂tA.
The electric and magnetic fields are then completely determined by the scalar and vector
potentials Φ and A.

This representation has a degree of redundancy which is referred to as gauge freedom
or gauge symmetry. This can be parametrized by twice differentiable functions α(x, t),
where the electromagnetic fields are invariant under the transformations

Φ→ Φ + ∂tα, A→ A − ∇α. (1.39)

In this classical theory, the introduction of scalar and vector potentials is simply a conve-
nient mathematical description which comes at a cost of this unphysical redundancy.

1.5.1 From the Continuum to the Lattice

Let us now consider a continuum quantum theory. We will follow closely Ref. [19]
and we also point the reader to Refs. [70, 71]. We take as our starting point the (3+1)-d
Dirac Lagrangian density

L =

∫
dx ψ̄(iγµ∂µ − m)ψ, (1.40)

where ψ are 4 component spinors, the Dirac matrices γµ which act on this spinor space,
and ψ̄ = ψ†γ0. We wish to make this Hamiltonian invariant under the U(1) local gauge
transformation to arrive at a theory for quantum electrodynamics (QED) [69]. The U(1)
gauge transformation is given by ψ → Λ(x)ψ, where Λ(x) = eiα(x) and α(x) is a twice
differentiable real function.
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Now clearly the mass term mψ̄ψ is gauge invariant since the phase factors between the
field and its complex conjugate cancel. However, the kinetic term is not invariant since
the derivative also acts on the spatial function α(x) introduced by the transformation. To
remedy this we must replace the derivative with covariant derivatives. We will do this by
introducing parallel transporters [19]. These may be familiar to the reader from general
relativity where the gauge transformations are diffeomorphisms of space-time.

For each space-time curve C from point to x to y, we define the parallel transporters
U(Cyx) : Vx → Vy as maps between the local vector spaces for the fields, i.e. spinor space.
That is, ψ(x) ∈ Vx and U(Cyx)ψ(x) ∈ Vy. These parallel transporters respect the group
properties of the composition of curves. They allow us to compare distant spinors by first
mapping them into the same local vector space by using the information about the function
α(x). Under the gauge transformation these parallel transporters transform as

U(Cyx)→ Λ(y)U(Cyx)Λ−1(x). (1.41)

With this we can define the covariant derivative Dµ as

Dµψ(x) = lim
dxµ→0

U(Cx,x+dxµ)ψ(x + dxµ) − ψ(x)
dxµ

. (1.42)

If we substitute the normal derivative for this covariant one, then due to the way the
parallel transporters transform we have that Dµψ(x) transforms as a spinor field and
thus the action is invariant under the gauge transformation. We can expand the parallel
transporters along the infinitesimal curves Cx,x+dxµ as U(Cx,x+dxµ) = 1 + Aµ(x)dxµ, where
the Aµ(x) = (φ(x),−A(x)) are real gauge fields that describe the electric and magnetic field.
Using this expansion the covariant derivative takes a more familiar form

Dµψ(x) =
(
∂µ + iAµ(x)

)
ψ(x). (1.43)

From the transformation of the parallel transporters we can see that the gauge field Aµ(x)
transforms as

Aµ → ΛAµΛ
−1 − iΛ(∂µΛ−1) = Aµ − ∂µα, (1.44)

just like in classical electrodynamics. The gauge invariant Lagrangian is then

L =

∫
dx ψ̄(iγµ(∂µ + iAµ) − m)ψ −

1
4

FµνFµν, (1.45)

where in the final term we have given dynamics to the gauge field by promoting it to an
operator and using the Yang-Mills Lagrangian where Fµν = ∂µÂν−∂νÂµ is the field strength
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tensor [19, 69, 70]. These Yang-Mills terms corresponds to the Hamiltonian energy density
1
2

∫
dx (E2 + B2), where E and B are the electric and magnetic field.
When moving to the lattice we must restrict ourselves to a discrete set of points. The

derivatives of the continuum theory then must be replaced. To do so we also use the parallel
transporters, not along infinitesimal displacements, but along the bonds connecting sites of
the lattice [19]. In terms of the continuum gauge field the parallel transporters along bonds
are given by

U(y, x) = exp
{∫

Cyx

dxµAµ(x)
}
. (1.46)

We then define the covariant derivative in analogy with the continuum case as

Dµψ(x) =
U(x, x + ~µ)ψ(x + ~µ) − ψ(x)

|~µ|
, (1.47)

where ~µ is a vector connecting neighbouring sites and |~µ| is the lattice spacing. Again
the idea is that the parallel transporters provide a gauge invariant way of relating distant
operators that can be independently transformed. In writing down the Hamiltonian for
the lattice QED there are a number of subtleties which we will skip and write down the
resulting Hamiltonian. See Refs. [19, 70, 71, 73] for more details, but hopefully analogy
with the continuum case should make the origin of all these terms clear.

Out of several possible choices we will use staggered fermions [73] which are spinless
fermions with the spin information incorporated into the spatial position x. The lattice
QED is then described by the Hamiltonian

Ĥ = −t
∑
〈xy〉

sxy(ψ̂†xÛxyψ̂y + H.c) + m
∑

x

sxψ̂
†
xψ̂x +

e2

2

∑
〈xy〉

Ê2
xy −

1
4e2

∑
p

(Ûp + Û†p). (1.48)

Let us work through the terms in this Hamiltonian and connect them to the above discussion
of continuum QED. First, the sign factors sxy and sx which come from the representation
in terms of staggered fermions replace the γ-matrices in the Dirac equation. In a general
d-dimensional quantum model these are given by sx = (−1)x1+···+xd and sxy = (−1)x1+···+xk−1 ,
where 〈xy〉 is a bond in the kth direction. Second, we have the link operators Ûxy, which
are the parallel transporters (1.46). Since the continuum vector field Aµ no longer has any
meaning on a lattice, Ûxy are now the fundamental degrees of freedom†. Next, the bond
variables Êxy are the electric field operators which satisfy

[Êxy, Ûx′y′] = δxx′δyy′Ûxy, and [Êxy, Û
†

x′y′] = −δxx′δyy′Û†xy. (1.49)

†In an external magnetic field, for example, these bond variables Uxy are numbers and correspond to
Peierls phases.
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And finally we define the plaquette terms Ûp = ÛxyÛyzÛzwÛzx as the (oriented) product
of link operators around the fundamental square plaquettes of the lattice. These plaquette
terms measure the magenetic flux through the plaquette and this term in the Hamiltonian
corresponds to

∫
dx B2.

Let us also consider the specific case of (1+1)-d QED – the Schwinger model. On the
lattice we have the 1D lattice Schwinger model [72, 73] described by the Hamiltonian

Ĥ = −iw
∑

n

(ψ̂†nÛnψ̂n+1 − H.c) + J
∑

n

Ê2
n + m

∑
n

(−1)nψ̂†nψ̂n, (1.50)

where we use shorthand notation Ûn = Ûn,n+1, and similarly for Ên. Notice that we drop
the magnetic term which is not relevant to 1D. We have also redefined constants and the
operators Ûn to conform to the common notation in the literature.

The lattice Schwinger model has an extensive set of conserved quantities associated
with the gauge freedom which are

Ĝn = En − En−1 − ψ̂
†
nψ̂n +

1
2

[1 − (−1)n]. (1.51)

The interpretation of these conserved quantities is as a generalization of Gauss’ law
∇ · E − ρ = 0. However, in this case the right hand side does not have to be zero and
corresponds to having a non-zero charge density in the vacuum. However, the model is
often restricted to act on the states which satisfy the Gauss’ law, Ĝn|ψ〉 = 0, i.e., only gauge
invariant states.

1.5.2 Wegner’s Ising Lattice Gauge Theory

An earlier construction of lattice gauge theories came from Wegner [76, 77]. The goal
here was to construct a Hamiltonian of Ising variables which obeyed a particular local
gauge transformation. He considered both the statistical mechanics problem as well as a
quantum Hamiltonian, and the connections between them. Here we focus on the quantum
Hamiltonian. This is a model of Ising spins with a local discrete Z2 gauge symmetry,
and is thus called the Ising gauge theory (IGT). Here we briefly consider the 2D IGT as
it is relevant for the following discussions. Higher-dimensional generalizations follow
naturally.

Let us consider a 2D square lattice with Ising spins on the bonds, see Fig. 1.10. We
then want to write down a Hamiltonian invariant under the action of a local operator Ĝ j,
which flips all spins on the bonds connected to site j, as illustrated in Fig. 1.10(b). This
invariance can be written as Ĝ−1

j ĤĜ j = Ĥ, where we note that Ĝ−1
j = Ĝ j. For Ising spins
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σ̂x

∏
σ̂z
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Figure 1.10: (a) Schematic picture of Wegner’s Ising gauge theory with Ising spins living on the
bonds of a square lattice. The two terms in the Hamiltonian are shown as blue circles
for σ̂x and the plaquette terms are shown in red. (b) Action of the generators of
the gauge symmetry Ĝ j which flip all spins on bonds connected to that site j. The
product of any two σ̂z connected to site j is left invariant which is indicated by the
signs shown in red.

we can consider two local operators σ̂z
jk and σ̂x

jk, which measure and flip spins on the bond
between sites j and k. The action of the local operators Ĝ j is given as follows

Ĝ jσ̂
x
klĜ j = σ̂x

kl, Ĝ jσ̂
z
klĜ j = (−1)δ jk+δ jlσ̂z

kl. (1.52)

Therefore, any operator involving any combination of σ̂x
jk is automatically gauge invariant.

On the other hand, the gauge invariant combinations of σ̂z
jk must consist of products around

closed loops on the square lattice. This is to ensure that if we have σ̂z
jk on a bond connected

to site j, then we must have another σ̂z
jl connected to site j to cancel the sign. The simplest

such operator is a product of σ̂z around irreducible square plaquettes of the lattice. The
Hamiltonian is

Ĥ = −
∑
〈 jk〉

σ̂x
jk − λ

∑
plaquettes p

∏
〈 jk〉∈�p

σ̂z
jk. (1.53)

Note that (1.53) is similar to the transverse field Ising model Hamiltonian but here the Ising
coupling has been replaced by the plaquette terms, shown schematically in Fig. 1.10(a).

Finally, as well as ensuring that the Hamiltonian is gauge invariant, we must impose
the constraint that the physical Hilbert space consists only of states which are invariant
under the symmetry action, i.e. Ĝ j|ψ〉 = |ψ〉, for all j. This is analogous to Gauss’ law.
Given this constraint, we can then perform a duality transformation by defining new spin
operators that live at the centres of plaquettes

τ̂x
p =

∏
〈 jk〉∈�p

σ̂z
jk, τ̂z

pτ̂
z
q = σ̂x

jk, (1.54)
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where p and q are the plaquettes that share a bond 〈 jk〉. After this duality transformation
the Hamiltonian takes the form

Ĥ = −
∑
〈pq〉

τ̂z
pτ̂

z
q − λ

∑
p

τ̂x
p, (1.55)

which is the 2D quantum Ising model. The duality was only possible because we fixed
the Gauss’ law. The form of Ĝ j in terms of τ spins is the identity since each τ operator
appears twice, and thus the chosen duality (1.54) is only consistent if the Gauss’ law is
imposed. The Ising gauge theory with Gauss’ law constraint is then said to be dual to the
unconstrained quantum Ising model.

Wegner’s Ising gauge theory was such an important contribution because it was the first
and the simplest example of a duality between a gauge theory and a spin system, namely
the quantum Ising model. Furthermore, this duality revealed that the gauge theory has
phases that cannot be distinguished by any local order parameter and shows a transition
that cannot be understood using standard ideas of symmetry breaking. In the quantum
Ising model at zero temperature we have two phases (ferromagnetic and paramagnetic)
depending on the magnitude of λ, which can be distinguished by a local order parameter –
the total magnetization. The order parameters for the corresponding phases in the IGT are
necessarily non-local and there is no symmetry breaking. The lack of symmetry breaking
is a consequence of Elitzur’s theorem which states that a local gauge symmetry cannot be
spontaneously broken. The phases of the quantum Ising model, which can be distinguished
by the local magnetization, are dual to the phases of the corresponding Ising gauge theory
and local order parameters correspond to non-local objects in the gauge theory. The idea
of non-local order parameters and lack of spontaneous symmetry breaking is an important
part of our understanding of topological phases of matter, an example of which we will
discuss in the following section.

1.5.3 Kitaev’s Toric Code

The IGT is not the only Hamiltonian we can write down that is invariant under the
symmetry action (1.52). Let us consider another important example – Kitaev’s toric
code [68, 74]. This is formed by replacing the transverse field σ̂x, by a product of σ̂x on
the bonds connected to a single site of the lattice. Furthermore, the model is defined on a
2D square lattice with periodic boundary conditions. The toric code Hamiltonian is

ĤTC = −K
∑

j

Â j − K′
∑

p

B̂p, (1.56)
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where we have defined

Â j =
∏
k∈+ j

σ̂x
jk B̂p =

∏
〈 jk〉∈�p

σ̂z
jk, (1.57)

the star and plaquette operators, respectively, see Fig. 1.11(a). Note that the star operators,
Â j = Ĝ j, are the generators of the gauge symmetry (1.52). The model can be solved since
all of the operators in the Hamiltonian commute with one another. This means that all
A j, Bp = ±1 are good quantum numbers which one can use to label the eigenstates. The
ground state of the model is given by Â j|GS 〉 = |GS 〉 and B̂p|GS 〉 = |GS 〉, for all stars and
plaquettes.

If the system has N sites then there are 22N states but since
∏

all Â j =
∏

all B̂p = 1 on
the torus, these correspond to 22(N−2) labels. There are therefore 4 degenerate sectors†

which can’t be distinguished by A j and Bp. In fact these sectors can’t be distinguished
by any local operators, just like the phases of Wegner’s IGT. To distinguish these four
sectors we must use non-local Wilson loop operators which are products of spin operators
around non-contractible loops of the torus. For instance we can take two independent loop
operators to be

Γ̂1 =
∏
〈 jk〉∈γ1

σ̂z
jk, Γ̂2 =

∏
〈 jk〉∈γ2

σ̂z
jk, (1.58)

where γ1 and γ2 are arbitrary closed loops that wind once around the two directions of the
torus, see Fig. 1.11(a). Both Wilson loop operators Γ̂α commute with all B̂p because they
are both products of σ̂z and with all Â j because the loop operator will contain a product
with only an even number of bonds in a star. These operators also have eigenvalues ±1 and
completely resolve the degeneracy. The four degenerate ground states of the model are
topologically protected against perturbations, i.e. they are robust against sufficiently weak
but generic local perturbations. For this reason it may be possible to use realisations of the
toric code to store quantum information [74].

Another important aspect of this model is the properties of the excitations above
the ground state manifold. These excitations are defective stars or plaquettes for which
Â j|ψ〉 = −|ψ〉 or B̂p|ψ〉 = −|ψ〉. These defects must be created in pairs which cost an
energy of 4K and 4K′, respectively, but there is no energy cost for separating the defects
– they are deconfined. In analogy with electromagnetism, the star and plaquette defects
are referred to as electric and magnetic excitations, respectively. A pair of defects is
connected by a string and can be created by the string operators Γ̂e =

∑
〈 jk〉∈γe

σ̂x
jk and

†More generally if the toric code is defined on a surface with genus g then the degeneracy is 22g [68]. The
fact that the ground state degeneracy is dependent on the topology is a characteristic property of topologically
order systems.
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Âj

B̂p

(a)

e

m

em

γe

γm

(b)

Figure 1.11: (a) Schematic picture of Kitaev’s toric code model defined on a square lattice with
spins σ̂ on the bonds (white circles). The star, Â j, and plaquette operators, B̂p, defined
in Eq. (1.57) are shown in blue and red, respectively. Loops γ1 and γ2 are shown in
grey. (b) Three types of anyons in the toric code: electric (blue), magnetic (red) and
composite (grey ellipse). The solid coloured lines show strings γe and γm connecting
pairs of defects. The mutual statistics is probed by dragging one defect around another,
shown by the dashed line.

Γ̂m =
∑
〈 jk〉∈γm

σ̂z
jk, respectively. The paths γ connect the two defects but are otherwise

arbitrary and these operators are shown in Fig. 1.11(b). These strings can be modified by
the action of plaquette or star operators. Note that the strings connecting defects do not
have an energy cost and are not measurable.

The defects in the toric code have non-trivial mutual statistics due to the presence of
these connecting strings. To see this let us consider a pair of defects of each type, as shown
in Fig. 1.11(b), connected by some arbitrary string between them. Let us then take one of
the magnetic defects in a complete loop around one of the electric defects, as indicated
by the dashed line in Fig. 1.11(b). The final position of all defects is the same as to start
with, but since two strings now cross we pick up a negative sign to the wavefunction. This
can most easily be seen by progressively contracting the loop by acting with star operators
within the loop. This gives a factor of +1 for each star except at the defect which gives the
overall factor of −1. This factor of −1 means that the electric and magnetic defects have
mutual semionic statistics, but have bosonic exchange statistics. We can further form a
composite electric and magnetic defect, as illustrated in Fig. 1.11(b), which has mutual
semionic statistics with both the electric and magnetic defects but fermionic exchange
statistics. The phenomenon of emergent point-like particles with statistics that do not
reflect the underlying constituent degrees of freedom is called fractionalization and is
common in topologically ordered states of matter.
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1.6 Experimental Progress

Our work comes at a time when there is exceptional progress in the control of isolated
quantum systems. These advances are important for the study of many-body localization
and lattice gauge theories, but also more generally are providing access to quantum
dynamics beyond what can be simulated numerically.

In recent years there have been several advancements in experiments with cold atomic
gases that are particularly relevant for us. These experiments are now quite mature and
have been developed over the last 30 years. One of the most notable landmarks in this
field was the 1995 observation of Bose-Einstein condensation in a cold atomic gas [78].
These experiments required remarkable new levels of sophistication in the trapping and
subsequent laser and evaporative cooling of approximately two thousand rubidium atoms
to 170 nano-Kelvin. A common tool in modern experiments is the use of optical lattices
which trap atoms at a predefined set of points. In this setting it is possible to engineer
coupling between different atoms, for instance by Feshbach resonance, and also directly
image and measure quantum systems, for example, using quantum gas microscopy [79, 80].
These technological capabilities mean that such experiments are able to directly realise
lattice Hamiltonians with great precision and tunability and over large time scales. In many
cases these systems are strongly correlated and far beyond what is possible to simulate
classically. We will mention below in a little more detail a couple of experiments studying
many-body localization that are particularly relevant to this thesis.

The experiments we discuss are reminiscent of Feynman’s vision of ‘quantum sim-
ulation’ [81], that is, to study the dynamics of quantum system by building another
well-controlled quantum system that simulates it. These advances and this vision are by
no means restricted to cold atom experiments. On the contrary, as just a few examples
we can also mention photonic quantum circuits [82], superconducting chips [83], and
quantum simulators with Rydberg atoms [84, 85]. An example that we will consider in
a little more detail below is trapped ion experiments, which have recently been used to
digitally simulate a quantum lattice gauge theory [86, 87].

While mentioning the advances in the control of quantum systems and quantum
simulation it would be remiss of us not to mention the current progress towards universal
quantum computation. This field is currently receiving a massive push and support from
companies such as IBM, Google, Microsoft, as well as many universities around the
world. In principle these devices would allows us to study quantum phenomena beyond
the reach of classical computation, but also hold promise for quantum cryptographic and
communication protocols. These goals are pushing both technological and theoretical
boundaries and rely on unparalleled control of coherent quantum states.
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1.6.1 Cold Atoms in Optical Lattices

Let us mention in a little more detail a couple of cold atom experiments that study many-
body localization physics. In these experiments a lattice is created using the interference
of laser light reflected off mirrors to form a standing wave. The electromagnetic field
due the lasers induces a Stark effect on the atoms which means that the atoms feel an
effective periodic potential trapping them at the nodes of this standing wave. By different
combination of lasers at different frequencies many lattices can be created in one, two or
three-dimensions. The atoms trapped in these lattices then have hopping amplitudes due
to quantum tunneling and natural on-site interactions. Interactions can also be tuned, for
example, by Feshbach resonance. In this way many local Hamiltonians can be realised for
both fermionic and bosonic atoms [88].

The first experiment we will discuss is that of Schreiber et. al. [53], where they study a
1D generalized Aubry-Andre model with interactions described by the Hamiltonian

Ĥ = −J
∑

i,σ=↑,↓

(
ĉ†i+1,σĉi,σ + H.c

)
+ ∆

∑
i,σ=↑,↓

cos(2πβi + φ)n̂i,σ + U
∑

i

n̂i,↑n̂i,↓, (1.59)

where β is irrational and the particles are fermions. The Aubry-Andre model is char-
acterized by a quasi-random on-site potential that is periodic but with incommensurate
wavelength to the lattice, which is ensured by taking β irrational. Without interactions U,
the Aubry-Andre model has all states localized above the same critical disorder strength
∆/J = 2 for nearly all irrational values of β [89]. This contrasts the truly disordered
situation where we have all states localized for arbitrarily weak disorder in 1D. The quasi-
periodic potential is implemented in the experiment using two laser frequencies – one
with a shorter base wavelength superimposed with a weaker, incommensurate wavelength
which results in a quasi-periodic potential.

The experiment then studies dynamics after a global quantum quench starting from a
charge density wave initial state. This initial state is created by trapping and cooling the
atoms in an initially large depth lattice with twice the wavelength of the base wavelength.
In the actual preparation a given even site can be empty or have single or double occupancy,
but with an average occupancy of one in those sites at the bottom of this preparation
potential and zero for those at the top. Over an experimentally short time-scale the system
is then ramped to Eq. (1.59) and the charge density wave pattern decays. The decay of the
CDW is quantified by the imbalance

I =
Ne − No

Ne + No
, (1.60)
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where Ne/o are the total number of particles on even/odd sites respectively, with the denom-
inator included to account for particle loss. The details of how this imbalance is measured
is given in the supplemental material for Ref. [53]. These experiments demonstrate a
many-body localized regime where the density imbalance decay is incomplete, as shown in
Fig. 1.6. They are also able to map out the phase diagram as a function of the Hamiltonian
parameters ∆/J and U/J. More recently, a similar experiment has been carried out on a
2D version of the Hamiltonian (1.59) in Ref. [90].

The second experiment we mention studies many-body localization of bosons in 2D
using a quantum gas microscope [80]. The benefits of the quantum gas microscope in this
experiment are two-fold: it is used to project an almost site resolved, truly random disorder
potential felt by the atoms; and it is used for direct measurement of the site resolved
occupation. They simulate is a 2D Bose-Hubbard model with on-site disorder described
by the Hamiltonian

Ĥ = −J
∑
〈 jk〉

â†j âk +
U
2

∑
i

n̂i(n̂i − 1) +
∑

i

δin̂i, (1.61)

where both the tunnelling amplitude J and the interaction strength U are fixed. The size
of the system is approximately 30 × 30 lattice sites, but the effective system size is a
little smaller due to the trapping potential and a typical realization will contain ∼ 125
particles. Nevertheless, these systems are far beyond what is possible to simulate using
exact diagonalization methods.

The setup that they consider is a global quantum quench protocol with half of the
system filled and half empty creating a domain wall. This is then left to evolve under the
full Hamiltonian and the remaining imbalance between the two sides provides a signature
of the memory about the initial state. This imbalance is defined as

I =
NL − NR

NL + NR
, (1.62)

where NL/R is the number of particles in the left/right half of the system, respectively. The
experiment is able to observe the incomplete melting of the domain wall for sufficiently
large values of disorder strength and locate the localization transition as a function of
disorder strength and filling.

1.6.2 Trapped Ion Quantum Simulators

The last experiment we will consider consists of an array of trapped ions which are used
for the digital quantum simulation of a Hamiltonian [87]. Unlike in cold atom experiments,
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the time evolution is not achieved through the real time evolution of the system but through
the application of quantum gates which realise a Trotter decomposition of the dynamics.
Despite this apparent downside of not being able to continuously simulate dynamics, the
advantage lies in the ability to address physically separate ions and implement long range
Hamiltonians. In this case the authors simulate the quantum lattice gauge theory of the 1D
lattice Schwinger model defined in Eq. (1.50), see also [72, 86].

The important theoretical step is to first rewrite the Hamiltonian using the conserved
quantities associated with the gauge symmetry and implement a Jordan-Wigner transfor-
mation of the fermions. This results in a spin-1/2 Hamiltonian with at most two-spin
interactions. The details of this transformation can be found in the appendix of Ref. [87].
The resulting Hamiltonian has the form

Ĥ =
m
2

N∑
n=1

(−1)nσ̂z
n + w

N−1∑
n=1

[
σ̂+

n σ̂
−
n+1 + H.c

]
+ J

N−1∑
n=1

ε0 +
1
2

n∑
m=1

[
σ̂z

m + (−1)m]2

. (1.63)

The simulation is then implemented by Trotter decomposition into local gates and Mølmer-
Sørensen (MS) gates which are of the form

ĤMS = J0

∑
n,m

σ̂x
nσ̂

x
m. (1.64)

The ions can then be selectively addressed such that only chosen spins are involved in
this sum. Combining these with local unitary gates the full Trotter time evolution can be
digitally simulated.





2
The Model

The main contribution of this thesis is the introduction of a family of models that
have a disorder-free mechanism for localization. In this chapter we define the models
and reveal an exact mapping to free fermions using a local Z2 gauge symmetry. This
mapping unveils the mechanism for localization and allows us to perform efficient large-
scale numerical simulations to demonstrate the localization behaviour, which we do in
the subsequent chapters. In this chapter we will also make concrete connections between
our Hamiltonians and the Hubbard model [20, 91], the Falicov-Kimball model [92] and
Kitaev’s toric code [74].

We study a family of lattice models with spinless fermions, f̂i, on the sites of a lattice
coupled to spins-1/2, σ̂ jk, positioned on the bonds. These models can be defined on
an arbitrary graph. However, in this thesis we focus on one-dimensional chains and a
two-dimensional square lattice with both open and periodic boundary conditions. We also
discuss effects of perturbations in Chapter 6. The models are described by the Hamiltonian

Ĥ = −J
∑
〈 jk〉

σ̂z
jk f̂ †j f̂k − h

∑
j

Â j, (2.1)

where 〈 jk〉 denotes nearest neighbours, and Â j is the star operator, which is the product of
the spins on bonds connected to site j,

Â j =
∏
k∈+j

σ̂x
jk, (2.2)

shown for a 2D square lattice in Fig. 2.1. These star operators were introduced in Sec-
tion 1.5.3 in the context of Kitaev’s toric code [74]. They appear here with strength h,
while J defines the coupling between spins and fermions.

The Hamiltonian (2.1) possesses an extensive number of conserved quantities (charges)
q̂i = (−1)n̂i Âi, where n̂i = f̂ †i f̂i. These charges have eigenvalues ±1, they commute with the
Hamiltonian and amongst themselves – i.e., [Ĥ, q̂i] = 0, and [q̂i, q̂ j] = 0 – and they generate
local Z2 gauge transformations under which the Hamiltonian is invariant. Explicitly, these

39
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Figure 2.1: Schematic picture of the model (2.1). Left panel shows star Â and plaquette B̂ operators,
with σ̂x, σ̂z operators, denoted by crosses and circles, respectively. Fermion hopping
has amplitude J and a sign which depends on the z-component of the spin-1/2 on that
bond. Centre and right panels show the duality transformation to new spins τ̂. The
model can be defined with periodic boundary conditions, as in the centre panel. In the
case of open boundaries, we define incomplete boundary “stars” as shown in the right
panel.

transformations are implemented by the unitary operators Û({θi}) =
∏

i q̂(1−θi)/2
i , where

θi = ±1, which transform the operators according to

f̂i → θi f̂i, σ̂z
i j → θiθ jσ̂

z
i j. (2.3)

It is worth noting that our model is an example of an unconstrained Z2 lattice gauge theory –
that is, while the Hamiltonian (2.1) is invariant under the gauge transformation, the Hilbert
space is not. What is typically understood as a gauge theory is constrained to the physical
subspace of gauge invariant states by Gauss’ law [20, 21, 77] q̂i|Ψ〉 = |Ψ〉, which we do
not impose in our case, cf. the gauge structure of the Kitaev honeycomb model [25].

In our investigation in later chapters we will predominantly consider the Hamilto-
nian (2.1) defined on a 1D chain and so for concreteness we will write down the specific
form of the Hamiltonian. In this case the star operators reduce to nearest-neighbour Ising
exchange couplings Â j = σ̂x

j−1, jσ̂
x
j, j+1, and the Hamiltonian (2.1) assumes the following

form
Ĥ1D = −J

∑
〈 jk〉

σ̂z
jk f̂ †j f̂k − h

∑
j

σ̂x
j−1, jσ̂

x
j, j+1, (2.4)

that is, a quantum Ising model coupled to spinless fermions.

2.1 Duality Mapping

The central step in our analysis of the Hamiltonian (2.1) is to perform a duality
transformation for the spins. Through this mapping, we reveal an equivalence between
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charge configurations {qi = ±1} and configurations of on-site potentials for free fermions.
Furthermore, we will show that the computations of observable quantities correspond to
free fermion correlators averaged over binary disorder. In this Section, we explain this
mapping in detail.

We proceed by a duality transformation of the operators σ, defining spin-1/2 operators
τ which live on the sites of the lattice,

τ̂z
j = Â j, τ̂x

j τ̂
x
k = σ̂z

jk, (2.5)

as shown in Fig. 2.1, where the indices j and k correspond to nearest neighbour sites. This
is the same kind of duality mapping as used in the context of the Ising gauge theory, see
Section 1.5.2. As with any duality transformation, we have implicitly restricted ourselves
to one of the disconnected subspaces of the model. These disconnected subspaces can be
enumerated by another set of conserved quantities defined as products of σ̂z along closed
loops on the lattice. These conserved quantities can be expressed in terms of plaquette
operators, B̂p, defined on the irreducible plaquettes of the lattice (see Fig. 2.1) and Wilson
loop operators Γ̂n,

B̂p =
∏

plaquette p

σ̂z
jk, Γ̂n =

∏
〈 jk〉∈γn

σ̂z
jk, (2.6)

where γn is any non-contractible closed path such that Γ̂n cannot be written as a product
of plaquette operators. For concreteness, we give two examples: in a 1D periodic chain
there is only one such operator which is the loop around the entire system:

∏
all σ̂

z. This is
equivalent to a statement that the number of domain walls modulo 2 is conserved. On a
2D periodic square lattice we have B̂p defined on all the square plaquettes and two Wilson
loops around the two periodic directions. Importantly, as well as commuting with the
Hamiltonian, these operators commute with the generators of the Z2 gauge symmetry q̂i.
The eigenvalues ±1 of these operators label subspaces which are disconnected under gauge
transformations. Our choice of duality mapping (2.5) is only valid in the sector with all
plaquette operators B̂p = 1 and all loop operators Γ̂n = 1. Other sectors can be accessed
using different duality transformations [93].

In terms of the τ spins, the Hamiltonian assumes the form

Ĥ = −J
∑
〈 jk〉

τ̂x
j τ̂

x
k f̂ †j f̂k − h

∑
j

τ̂z
j. (2.7)

Although this Hamiltonian is equivalent to Eq. (2.1) only on a restricted Hilbert space, we
will not use notation to differentiate between the two. In this form we can identify the local
conserved charges as q̂ j = τ̂z

j(−1)n̂ j with n̂ j = f̂ †j f̂ j. The charges are precisely those which
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generate the gauge symmetry identified in the original degrees of freedom.

Finally, by a change of variables ĉ j = τ̂x
j f̂ j, the Hamiltonian (2.7) can be written in

terms of the conserved charges, q̂ j, and the spinless fermions, ĉ j:

Ĥ = −J
∑
〈 jk〉

ĉ†j ĉk + 2h
∑

j

q̂ j(ĉ
†

j ĉ j − 1/2), (2.8)

where we have used the fact that n̂ j = f̂ †j f̂ j = ĉ†j ĉ j, since (τ̂x
j)

2 = 1. The canonical
anti-commutation relations {ĉ†j , ĉk} = δ jk for these new spinless fermions can be similarly
verified. For a given charge configuration – that is, in the subspace of fixed {q j} = ±1
– the Hamiltonian (2.8) describes a fermion tight-binding model with a binary potential
whose sign at each site is given by the value of q j. In a randomly selected charge sector
this corresponds to the Anderson model of localization in Eq. (1.21), but with the potential
selected at random from {−2h, 2h}, i.e., from a bimodal distribution.

2.1.1 Global Constraints

In defining the duality transformation (2.5) we also have a global constraint on the τ
spins. In all but one dimensions with open boundary conditions we have that the product
of all star operators is the identity, i.e., ∏

all j

Â j = 1. (2.9)

This is because each Pauli matrix σ̂x
jk appears in exactly two star operators and so they

appear in this product exactly twice and square to the identity. While this is a trivial
consequence of the form of the star operators in terms of the σ spins, this imposes a
non-trivial constraint on the τ spins ∏

all j

τ̂z
j = 1. (2.10)

This constraint is not imposed with open boundary conditions in one dimension. In this
case the τ spins on the end sites do not enter the Hamiltonian, and so without loss of
generality we will impose this constraint in all cases. Equations (2.9) and (2.10) have the
consequence that the product of all charges is determined by the total fermion parity∏

all j

q̂ j = (−1)N̂ f , (2.11)
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1√
2N−1

Figure 2.2: Schematic picture showing the transformation of the initial state into a dual represen-
tation. On the left is an initial state with fermions in a charge density wave (filled
sites are blue, empty sites are white). The bond spins are polarized along the z-axis.
The dual state (right panel) has the fermions in the same configuration, but the wave-
function is an equal superposition of charge configurations. Each charge configuration
corresponds to a different binary potential for the fermions, shown in grey.

where N̂ f =
∑

j n̂ j is the total fermion number.

2.1.2 Transformation of States

As well as understanding how the operators transform under the mapping, we must
also make an identification between states. Let us consider a basis of tensor product states
of the form |Ψ〉σ, f = |S 〉σ ⊗ |ψ〉 f , which we wish to identify with a state |Ψ〉τ,c in the Hilbert
space of the τ and c degrees of freedom, and then in turn with |Ψ〉q,c. If for the fermion
states we choose the Fock states, i.e., |ψ〉 f = f̂ †j · · · f̂ †l |vacuum〉, then since ĉ†i ĉi = f̂ †i f̂i these
states take the same form for the c fermions, and we will drop the subscript in the following.
Without loss of generality, let us consider spins in the z-polarized state | ↑↑↑ · · ·〉σ – any
other spin state in the sector defined by all B̂ j = 1 can be reached via application of star
operators Â j. By the duality transformation (2.5) and the constraint in Eq. (2.10), this
initial state satisfies

τ̂x
j τ̂

x
k | ↑↑↑ · · ·〉σ = | ↑↑↑ · · ·〉σ,

∏
all j

τ̂z
j | ↑↑↑ · · ·〉σ = | ↑↑↑ · · ·〉σ, (2.12)

where sites j and k are nearest-neighbours. The left set of conditions implies the form
| ↑↑↑ · · ·〉σ = α|→→ · · ·〉τ + β|←← · · ·〉τ, and with the remaining constraint we make the
correspondence

| ↑↑↑ · · ·〉σ =
1
√

2

(
|→→ · · ·〉τ + |←← · · ·〉τ

)
. (2.13)

We can generally make identifications of the form |S 〉σ ⊗ |ψ〉 ∝ |S 〉τ ⊗ |ψ〉.
Finally, we can express these tensor product states in terms of conserved charges

instead of the τ spins. For a z-polarized state this identification proceeds as follows

| ↑↑↑ · · ·〉σ ⊗ |ψ〉 =
1
√

2N−1

∑′

{τi}=↑,↓

|τ1, τ2 · · ·〉τ ⊗ |ψ〉, (2.14)
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where we have identified |→〉τ = (| ↑〉τ + | ↓〉τ)/
√

2, for each τ spin. The prime indicates
that the sum is over all possible spin configurations that satisfy the constraint in Eq. (2.10),
which is reflected in the normalization coefficient. Let us consider a single state in this sum,
|τ1τ2 · · ·〉τ ⊗ |ψ〉, then since the fermion state is a simple tensor product of site occupation,
this can be rewritten as

|τ1(−1)n1 , τ2(−1)n2 , · · ·〉q ⊗ |ψ〉. (2.15)

The occupation numbers for the fermion state are fixed and thus only contribute a common
sign structure to the charge configuration. Since we sum over all τ configurations in
Eq. (2.14) with a positive weight, this equates to an equal sum over charge configurations

| ↑↑ · · ·〉σ ⊗ |ψ〉 =
1
√

2N−1

∑′

{q j}=±1

|q1, q2, · · · , qN〉 ⊗ |ψ〉, (2.16)

where again the prime indicates that the sum is over all charge configurations that satisfy
the constraint in Eq. (2.11). This transformation of states is shown schematically in
Fig. 2.2. The fact that all of the weights are equal and positive is important for this final
form, otherwise there would be a sign structure that depends both on the spin and on the
fermion configuration. Other spin states in the same spin sector can be accessed through
the application of star operators. Except briefly in Section 2.4, we will only consider initial
states of the form |Ψ〉 = | ↑↑↑ · · ·〉σ ⊗ |ψ〉 in this thesis.

2.1.3 Explicit Example in 1D

To aid the above discussion of the transformation of states, we will consider the
concrete example of a 1D chain with periodic boundary conditions in the initial state
|Ψ〉 = | ↑↑↑〉σ ⊗ |101〉. The fermion state has the same form in terms of the c fermions, but
the spin state transforms as

| ↑↑↑〉σ =
1
√

2

(
|→→→〉τ + |←←←〉τ

)
. (2.17)

If we change from the x to the z basis for the τ-spins then the transformation reads

|Ψ〉 =
1
2
(
| ↑↑↑〉τ + | ↑↓↓〉τ + | ↓↑↓〉τ + | ↓↓↑〉τ

)
⊗ |101〉, (2.18)

which can be seen to match Eq. (2.14) with a sum over all τ-states satisfying the condition∏
all j τ̂

z
j = 1. Finally, we can transform to the representation in terms of conserved charges,
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which gives

|Ψ〉 =
1
2
(
|− +−〉q + |− −+〉q + |+ ++〉q + |+ −−〉q

)
⊗ |101〉, (2.19)

where we have written all terms in the same order as in Eq. (2.18). Again, we see that the
sum includes all terms that satisfy the constraint on the charges with equal weight, as in
Eq. (2.16)

Let us consider an example of another initial spin state that can be accessed through
the application of the star operators Â j. While we will not consider such states hereafter in
this thesis, this example illustrates the sign structure that such states have relative to the
z-polarized state. In 1D, the star operators are of the form σ̂x

jσ̂
x
j+1. If we act on the initial

state with Â2 then this results in the spin state Â2| ↑↑↑〉σ = | ↓↓↑〉σ. In terms of τ spins the
star operators are the τ̂z

j operators and we therefore have

Â j|Ψ〉 =
1
2
(
| ↑↑↑〉τ − |↑↓↓〉τ + | ↓↑↓〉τ − |↓↓↑〉τ

)
⊗ |101〉

=
1
2
(
|− +−〉q − |− −+〉q + |+ ++〉q − |+ −−〉q

)
⊗ |101〉,

(2.20)

where we note the additional sign structure of the state. Everything in this thesis can be
repeated using different initial spin states, but it is crucial that this sign structure must be
taken into account.

2.2 Emergent Disorder and Disorder Averaging

In the previous section we gave the details of a transformation of our model (2.1) to the
Hamiltonian (2.8), which has an effective binary potential determined by the conserved
charges. Furthermore, we showed that the states in the dual language are superpositions
of charge configurations. In order to make a connection with the Anderson localization
problem, the final step is to show that expectation values of observables with respect to
these initial states amount to averages over the effective disorder.

Let us, for concreteness, consider the spin expectation value

〈Ψ|σ̂z
jk(t)|Ψ〉 =

1
2N−1

∑′

{sl},{qm}=±1

〈ψ| ⊗ 〈s1, . . . |eiĤtτ̂x
j τ̂

x
ke−iĤt|q1, . . .〉 ⊗ |ψ〉. (2.21)

In order to simplify expressions, we introduce the Hamiltonian

Ĥ(q) = −J
∑
〈 jk〉

ĉ†j ĉk + 2h
∑

j

q j(ĉ
†

j ĉ j − 1/2), (2.22)
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where we use the shorthand notation q = {q j}, which corresponds to a particular charge
configuration. The difference between this Hamiltonian and that appearing in Eq. (2.8)
is that the qi here are classical variables corresponding to a fixed charge configuration
{q j} = ±1, and it acts only on the fermion subspace. In Eq. (2.21) we then commute the
τ operators past the unitary time evolution using the fact that τ̂x

j Ĥ(q) = Ĥ j(q)τ̂x
j , where

the subscript j signifies that the value of charge q j in the Hamiltonian has been reversed
relative to Ĥ(q). The operator τ̂x

j τ̂
x
k then acts trivially on the initial spin state, see Eq. (2.12).

The spin expectation value can then be written as

〈Ψ|σ̂z
jk(t)|Ψ〉 =

1
2N−1

∑′

{qi}=±1

〈ψ|eiĤ(q)te−iĤ jk(q)t|ψ〉, (2.23)

where we have removed the second sum over charges using charge conservation. This
is in the form of a free-fermion correlator averaged over charge configurations, which
amount to configurations of the potential in the Hamiltonian (2.22), see also Ref. [94]. The
correlators can be efficiently computed using determinants, see Appendix B. It is important
to note that, as in Eq. (2.23), the expressions for the correlators that we obtain are generally
distinct from, e.g., fermion correlators of a tight binding model with disorder. For instance,
the Green’s function

〈 f̂ †j (t) f̂k(0)〉 =
1

2N−1

∑′

{qi}=±1

〈ψ|eiĤ(q)tĉ†je
−iĤ j(q)tĉk|ψ〉 (2.24)

does not correspond to averaging over disorder configurations for the Green’s functions
〈ĉ†j(t)ĉk(0)〉 because of the flipped charges between the forward and backward time evo-
lution. In this respect, the correlators that we obtain are similar to the ones appearing in
the X-ray edge problem [24] and the dynamical structure factor for the honeycomb Kitaev
model [26, 27], which correspond to local quantum quenches.

2.3 Connections to Other Models

Our model is closely connected to range of important theoretical models and here we
will briefly outline a few important examples. For further discussion we point the reader to
the literature.

2.3.1 The Hubbard Model

The first example which we make connection with is the Hubbard model [20, 91, 95],
which is the paradigmatic model of strongly correlated electrons. It is a simplified model
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of electrons in a tight-binding potential of a solid, interacting via coulomb interactions.

The Hubbard model is constructed by using the localized Wannier states

Ψri(r) =
1
√

N

∑
k∈ B.Z.

eik·riΨk(r), (2.25)

where Ψk(r) are the single particle eigenstates of the Hamiltonian Ĥ = p2/2m + V(r),
where V(r) is the potential felt by the electrons due to the structure of the crystal lattice.
These eigenstates are the Bloch wavefunctions and take the form Ψk(r) = eik·ruk(r), where
k is the quasi-momentum and uk(r) has the same periodicity as the lattice. The Wannier
states are localized at the lattice sites ri. Here we consider a single band and orbital, but
the extension to multiple orbitals and bands is straightforward. The electrons interact via

Ui jkl =

∫
dr1dr2 Ψ∗ri

(r1)Ψ∗r j
(r2)V(r1 − r2)Ψrk(r2)Ψrl(r1), (2.26)

where V is the screened Coulomb interaction. We then make a tight-binding approxima-
tion [95] keeping only nearest-neighbour hopping, and we keep only the dominant on-site
interactions (i = j = k = l). The result is the Hubbard model, described by the Hamiltonian

Ĥ = −
∑

〈i, j〉, α=↑,↓

ti j

(
ĉ†i,αĉ j,α + H.c

)
+ U

∑
i

n̂i,↑n̂i,↓, (2.27)

written in second quantised notation, where ĉ†i,α creates a fermion in the Wannier state Ψri

with spin α, and n̂i,α = ĉ†i,αĉi,α.

Let us now consider a generalized version of our model in 1D, namely

Ĥ = −J
∑

j, α=↑,↓

σ̂z
j, j+1

(
f̂ †j,α f̂ j+1,α + H.c.

)
− h

∑
j

σ̂x
j−1, jσ̂

x
j, j+1, (2.28)

where we have added a spin degree of freedom to the fermions and have the same coupling
to the σ-spins for both species of fermions. This model also possesses an extensive
set of conserved quantities, q̂ j = σ̂x

j−1, jσ̂
x
j, j+1(−1)n̂ j,↑+n̂ j,↓ , and we can perform a duality

transformation of the spins as before – that is, we define

τ̂z
j = σ̂x

j−1, jσ̂
x
j, j+1, τ̂x

j , τ̂
x
j+1 = σ̂z

j, j+1, ĉ j,α = τ̂x
j f̂ j,α. (2.29)

In this dual language, the conserved quantities take the form q̂ j = τ̂z
j(−1)n̂ j,↑+n̂ j,↓ and the
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Hamiltonian reads

Ĥ = −J
∑

j,α

(
ĉ†j,αĉ j+1,α + H.c.

)
− 4h

∑
j

q̂ jn̂ j,↑n̂ j,↓ + 2h
∑

j

q̂ j(n̂ j,↑ + n̂ j,↓) − h
∑

j

q̂ j. (2.30)

The first two terms are those appearing in the Hubbard model but with site-dependent
interactions set by the charge configuration {q j} = ±1. The next two terms are a q-
dependent on-site potential and an energy shift which depends on the charge configuration.
Unfortunately, this model does not have a free fermion limit and we leave the study of its
dynamics for future work.

This model has been considered in Refs. [96, 97] as a slave-spin description of the
Hubbard model, which is recovered by restricting the Hilbert space to those states satisfying
q̂ j|ψ〉 = |ψ〉, i.e., τ̂z

j(−1)n̂ j,↑+n̂ j,↓ |ψ〉 = |ψ〉. Refs. [96, 97] use mean field theory on the larger
unconstrained Hilbert space as a way to approach the Hubbard model.

2.3.2 Falicov-Kimball Model

The next model that we will make a connection with is the Falicov-Kimball model [92,
98–100]. This is an asymmetric version of the Hubbard model where one of the two
species of fermions is frozen and cannot hop. The model is usually written as

Ĥ = −J
∑

j

(
f̂ †j f̂ j+1 + H.c.

)
+ U

∑
j

f̂ †j f̂ j ĝ†j ĝ j, (2.31)

where f̂ and ĝ are spinless fermion operators which replace the two spin species of fermion,
f̂↑ and f̂↓, from the Hubbard model. The g-fermions are static and provide an effective
on-site potential for the f -fermions. The model is usually studied with fixed filling for
both species of fermions.

In connection to our model we can define the charges q̂i = 2ĝ†i ĝi − 1, which commute
with the Hamiltonian (2.31). The Hamiltonian then takes exactly the same form as Eq. (2.8).
The important difference is that the Falicov-Kimball model is defined with fixed filling,
which for the charges would take the form

∑
i(q̂i + 1)|Ψ〉 = 2µ|Ψ〉, where µ is an integer

that corresponds to the chemical potential for the g-fermions. We do not impose this in our
model and we consider all charge sectors.

2.3.3 The Disorder-Free Localization Mechanism in Other Models

Since the publication of our work on disorder-free localization in Refs. [101, 102],
there have been several other works that study the same or a similar localization mechanism
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in different settings.

The most direct extension is found in work by Prosko et al. [93] where they consider
the Hamiltonian (2.1) in one and two dimensions with spinless fermions, spinfull fermions,
and Majorana fermions. Furthermore, they consider the models both with Gauss’ law
imposed and also unconstrained. Rather than dynamics, they are interested in the ground
state phase diagrams of such models.

In Ref. [103], Brenes et al. study the unconstrained lattice Schwinger model which
has a local U(1) gauge symmetry, rather than Z2, as in our case. They also show that the
associated conserved charges can play the role of effective disorder for the fermions. In
that setting, there is no free-fermion limit and instead they demonstrate MBL behaviour
using numerical simulations based on Krylov subspace methods, see Appendix C.

2.4 Defect Attachment in the Toric Code Model

Before moving on to study the physics of localization, we would first like to mention
a connection to Kitaev’s toric code [74]. The Hamiltonian (2.1), defined on a 2D square
lattice with periodic boundary conditions, is equivalent to the toric code (with plaquette
dynamics frozen) coupled to spinless fermions. This coupling to the fermions induces
dynamics for the star defects, which we will briefly discuss here. Note that this coupling
is similar to a transverse magnetic field, but here it is dependent on the hopping of the
fermions.

For our discussion of localization in the remainder of this thesis, we study initial states
with spins polarized along the z-axis. However, let us for the moment focus on the spins in
the ground state |S 0〉 of the toric code, that is

Â j|S 0〉 = |S 0〉, B̂p|S 0〉 = |S 0〉. (2.32)

We note that our choice of duality transformation is consistent with this ground state,
and it also fixes the Wilson loop operators (2.6) to be Γ̂1 = Γ̂2 = 1, and so the duality
transformation uniquely chooses one of the four degenerate ground states of the toric code.
To access other ground state sectors we can modify the duality transformation (2.5) by
defining a vertical and a horizontal line (going through bonds) across which the implicit
definition of τ̂x, picks up a sign Γ1,Γ2 = ±1, respectively. More explicitly, we can define

τ̂x
j τ̂

x
k = (Γ1)δ

1
jk(Γ2)δ

2
jkσ̂z

jk, (2.33)

where δ1(2)
jk is 1 when the bond 〈 jk〉 crosses a vertical (horizontal) reference line, and 0
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otherwise. Note that this choice changes the action of the Wilson loop operators, but not
B̂p, since any plaquette crosses any line an even number of times.

Having chosen our initial spin configuration we can consider the coupling to fermions.
For a simple tensor product state, |S 0〉 ⊗ |ψ〉, this maps to

|S 0〉 ⊗ |ψ〉 = | ↑↑ · · ·〉τ ⊗ |ψ〉 = |(−1)n̂1 , (−1)n̂2 , · · ·〉q ⊗ |ψ〉, (2.34)

that is, for an initial fermion state of definite local occupation, the charge configuration
is uniquely specified by the parities of fermion occupation numbers on each site. The
Hamiltonian then takes a simple form

ĤTC = −J
∑
〈 jk〉

ĉ†j ĉk + 2h
∑

j

q j(ĉ
†

j ĉ j − 1/2), (2.35)

where in contrast to Eq. (2.8), the charges q j are equal to −1 if there is a fermion on that
site in the initial state, and +1 if the site is empty. If we consider the limit h � J, then the
fermions lie at the bottom of large potential wells, fermion hopping is suppressed, and we
recover the static toric code. The form of the conserved charges is a statement that defects
of the toric code are attached to fermions (or holes).

Let us now consider excitations of this model in the limit of h � J. We can create a
pair of defects at sites j and k by flipping the τ spins on those sites – the creation of a single
defect is forbidden by the constraint in Eq. (2.10). These defects correspond to changing
the sign of the potential on sites j and k. These defects are then free to move in a restricted
geometry on the lattice which has the opposite fermion parity to the fermion/hole attached
to the defect. That is, the fermion attached to the defect can hop only between sites that
have the same sign of the potential. This is a site percolation problem for the defects, and
we will encounter it again in Section 3.4. Importantly, on a square lattice, the percolation
threshold is pc ≈ 0.5927, which means that for fermions at half filling and in a random
configuration, the defects are localized. There is then the possibility of interesting defect
dynamics in such a model which depends crucially on the fermion filling but we leave a
full investigation for future work.

As a final remark, let us return to the discussion of the plaquette operators, which can
also be included in the Hamiltonian (2.1). Further, if we consider a dual lattice which is
the square lattice with sites at the centres of plaquettes, then with respect to this lattice
the plaquette operators become star operators and vice versa. We can then add a second
fermion species on this dual lattice which will be attached to plaquette defects. If we
denote fermions attached to star defects by â and those attached to plaquette defects by b̂,
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then the corresponding Hamiltonian reads

ĤTC = −hA

∑
s

Âs − hB

∑
p

B̂p − JA

∑
〈i j〉s

σ̂z
j,kâ
†

i â j − JB

∑
〈i j〉p

σ̂x
j,kb̂
†

i b̂ j, (2.36)

where 〈i j〉s denotes nearest neighbours on the original lattice, and 〈i j〉p denotes those on
the dual lattice. This model has the conserved charges q̂A

j = Â j(−1)â†j â j and q̂B
j = B̂ j(−1)b̂†j b̂ j ,

respectively. We now have the full toric code Hamiltonian with both types of defects
attached to spinless fermions.





3
Localization

In this chapter we investigate the localization behaviour in our model in one and two
dimensions. The localization of the fermions is diagnosed using global quantum quench
protocols relevant to experiments. Spectral properties of the model also shed light on
transient behaviour observed in these dynamical probes that is unique to binary disorder.
We pay particularly close attention to the strong effective disorder limit where we are
able to perform a perturbation expansion, which in 2D allows us to make connection
with a quantum site percolation problem. The latter provides a potential mechanism for a
delocalization transition in two dimensions and higher.

Since the model can be mapped to free fermions we can calculate correlators using
determinants as explained in Appendix B. This approach allows us to study large systems
with ∼ 102 − 103 sites. To calculate the density of states we use the kernel polynomial
method [104], see Appendix D, which can be used for systems of order 105–106 sites.
Localization lengths are computed using a standard transfer matrix approach [49] described
in Appendix E. All correlators studied in this section are found to be self-averaging and
we approximate them by only averaging over a random selection of ∼ 103 − 104 charge
configurations.

3.1 Localization in 1D

We will first consider localization in the one dimensional version of our model (2.4),
and will study the localization behaviour using a global quantum quench protocol. The
initial states we consider have the bond-spins polarized along the z-axis | ↑↑↑ · · ·〉, and
fermions in one of the following Slater determinant states:
(i) Domain wall configuration with the left half of the chain filled and the right half empty
| · · · 111000 · · ·〉. In order to quantify localization in this case we measure the total number
of particles in the right half of the system (which is empty in the initial state),

Nhalf(t) =
∑

j∈ right half

〈Ψ| n̂ j(t) |Ψ〉, (3.1)

53
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Figure 3.1: Time evolution of the fermion subsystem after a global quench from a domain wall
initial state. (a) n̂ j(t) for h/J = 0.3 as a function of site j and time t. Yellow indicates
filled sites and blue empty. The upper panel shows the long time limit Jt = 109. (b)
n̂ j(t) for h/J = 2. (c) Nhalf(t) for several values of h/J. Dashed lines indicate the long
time asymptotic value. (inset) The asymptotic value Nhalf(t → ∞) as a function of h/J.
All results are computed for systems with N = 200 sites.

which tells us how many particles make it across the domain wall. This observable, as well
as the long-time fermion density distribution, reveals the extent to which the fermions are
localized. A similar measurement was used to identify the MBL transition in a 2D cold
atom experiment in Ref. [80], and theoretically as a dynamical measure of localization in
Ref. [105];
(ii) Charge density wave described by fermions in a Fock state with occupation numbers
| · · · 1010 · · ·〉. We will probe the memory of this initial state via the average nearest-
neighbour density imbalance

∆ρ(t) =
1

Ñ

∑
j

|〈Ψ| n̂ j(t) − n̂ j+1(t) |Ψ〉|, (3.2)

where Ñ = N−1,N, for open and periodic boundary conditions, respectively. This measure
was used, e.g., to identify the MBL transition in cold atom experiments, see Ref. [53, 90];
(ii) Fermi-sea at half-filling, i.e., the ground state of the Hamiltonian

ĤFS = −J
∑

j

(
f̂ †j f̂ j+1 + H.c.

)
, (3.3)

which for our polarized state is equivalent to our Hamiltonian (2.4) with h = 0.

Let us first consider the domain wall configuration, the results for which are shown
in Fig. 3.1. We see that there is an initial ballistic spreading of fermions into the empty
half of the system but this eventually halts. The number of particles that make it across
the domain wall, Nhalf, is shown in Fig. 3.1(c) and grows only to a finite value, indicated
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by dashed lines and shown in inset as a function of h/J. The case h/J = 0 is included as
a comparison and shows the ballistic behaviour Nhalf(t) ∝ t. As we increase the effective
disorder strength h/J the number of particles that make it across the domain wall decreases
and the extent of the spreading is reduced, as shown in Fig. 3.1(b). Note that as h/J is
increased we also see oscillations in the fermion density back and forth across the domain
wall. This is a consequence of the binary nature of the disorder, as will be discussed in
detail below.

Next, let us consider the charge density wave initial state. In Fig. 3.2 we see that
the average density imbalance ∆ρ, defined in Eq. (3.2), starts at 1 and decays to a finite
asymptotic value. This should be contrasted with the case h/J = 0, which was discussed in
Section 1.2.1 of the introduction, where we found that ∆ρ(t → ∞) = 0. Here we see that
the asymptotic value ∆ρ(t → ∞) grows monotonically with h/J and is always non-zero.
As the effective disorder strength is increased we also observe larger amplitude and longer
lived fluctuations about this asymptotic value, similar to the oscillations observed for the
quench from a domain wall.

The localization behaviour can also be diagnosed by the spreading of density cor-
relations, shown in Fig. 3.2(b). Here we consider the connected density correlator
〈Ψ| n̂ j(t)n̂k(t) |Ψ〉c, which we introduced in section 1.2.1. For h = 0 we find linear spreading
of correlations with velocity vLR = 4J, see Fig. 1.1. For h/J > 0, we also observe this
linear light-cone behaviour for short times but the spreading eventually halts, as shown in
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Figure 3.2: Time evolution of the fermion subsystem after a global quench from a domain wall
initial state. (a) The neighbouring site density imbalance ∆ρ(t) for various values
of h/J. The dashed lines indicate the long time value ∆ρ(t → ∞). (inset) The long
time value ∆ρ(t → ∞) as a function of h/J. (b) The absolute value of the connected
correlator 〈Ψ| n̂l(t)n̂l+ j(t) |Ψ〉c. The dashed lines indicate the Lieb-Robinson velocity
vLR = 4J and a second signal at v = 2J. The upper panel in (b) shows the long time
limit Jt = 109.
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Fig. 3.2(b) for h/J = 0.2, which is evidence that the fermions are localized. Note that at
short times we are also able to identify a propagating signal at vLR/2.

For both the density profile after quenching from a domain wall and for the density-
correlations starting from a charge density wave, we find that the spreading halts and we
have a stationary form at long times. In both cases this long-time density or correlation
profile has exponential tails (see for example, Fig. 3.4(b)), which are determined by the
single particle localization length, with a proportionality constant of approximately 2. This
is shown in Fig. 3.3 where the single particle localization length is compared with that
extracted from fits to the exponential tails. The single particle localization length λsp is
calculated using the spectral formula [49, 106]

1
λsp

= min
E

∫ ∞

−∞

g(x) log |E − x| dx, (3.4)

where g(x) is the DOS calculated via the kernel polynomial method, see Appendix D.
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Figure 3.3: The localization length. Lengthscales determined from the tails ∼ exp(− j/λ) in the
long-time limit of the density profile after the quench from a domain wall (λdw –
circles), and from the spatial distribution of correlations (λdd – triangles). These are
compared with the single-particle localization length (λsp) [49]. The error bars are
given by 2.5 standard deviations of the numerical exponential fit. For h/J = 0.2, 0.3
we used N = 400, with N = 200 for all others.

Let us now consider the quench from the Fermi-sea initial state. Unlike the domain
wall and charge density wave, this state is homogeneous and we cannot probe localization
using measures of density imbalance. Instead we look at the density correlations, shown
in Fig. 3.4. Here we also see the initial ballistic spreading with the same Lieb-Robinson
velocity vLR = 4J, which again halts and approaches a stationary form. Here we also
find that the long-time exponential tails are determined by the single particle localization
length, as shown in Fig. 3.4(b). This figure also shows long-range density correlations in
the initial state that decay with a power-law in the separation, which were not present for
the CDW. These initial correlations display spatial oscillations which are determined by
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the Fermi-wavelength at half-filling.
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Figure 3.4: Connected density-density correlator after a quench from a translationally invariant
Fermi-sea initial state with h/J = 0.6, N = 200 sites and periodic boundary conditions.
(a) Absolute value of the connected density-density correlator 〈0|n̂l(t)n̂l+ j(t)|0〉c as a
function of separation j and time t. (b) Semi-log plot of the spatial correlator for t = 0
and t = τ = 100/J. The dashed line is the exponential fit exp{− j/(2λsp)}, where λsp is
the single particle localization length. (inset) Same data on a log-log plot.

3.1.1 Spin Subsystem

Let us now turn to the spin subsystem. We first consider the expectation value of the z

component of the bond spins which are initially equal to one for all spins, see Fig. 3.5(a).
This magnetization decays to zero for all values of h , 0. Furthermore, for the explored
range of parameters h/J, we find that this decay is asymptotically a power-law. As was
shown in Section 2.2, the average magnetization can be written as

〈Ψ|σ̂z
jk(t)|Ψ〉 =

1
2N−1

∑′

{qi}=±1

〈ψ|eiĤ(q)te−iĤ jk(q)t|ψ〉, (3.5)

which is a disorder-averaged Loschmidt echo with a local on-site potential quench between
forward and backward evolution. The power-law decay is consistent with the analysis in
Ref. [107], concerning the asymptotic behaviour of the Loschmidt echo in a disordered
system. We find that while the short to intermediate time behaviour is non-universal as
we vary h/J, we observe asymptotic power-law decay at long-times in all cases, even
away from the perturbative regime considered in Ref. [107]. Note that in Fig. 3.5(a) we
have shown the exact results for N = 20 compared with the disorder averaged results for
N = 200 which show a remarkable qualitative agreement. This suggests that the spin
dynamics is dominated by regions of finite size, presumably of the order of the fermion
localization length.
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Figure 3.5: Time evolution of the spin subsystem. (a) The spin average 〈σ̂z(t)〉 of the bond-spin
at h/J = 1 after a quench from an initial half-filled Fermi-sea state, comparing exact
result for N = 20 with disorder averaged result for N = 200. (b) absolute value of the
connected spin-correlator 〈σ̂z

l (t)σ̂
z
l+ j(t)〉c for h/J = 0.3,N = 100.

We also consider the connected equal-time spin correlator 〈Ψ|σ̂z
l (t)σ̂

z
l+ j(t)|Ψ〉c, shown

in Fig. 3.5(b), which exhibits an initial linear ballistic light-cone spreading. After this
initial spreading we find that all spatial correlations decay to zero. The observed decay
of magnetisation and decay of correlations is suggestive of the equilibration of the spin
subsystem.

3.1.2 Spectral Properties

It is instructive to look at the density of states for our model which explains some of
the features seen in the local expectation values and correlators above. In Fig. 3.6 we show
the density of states (DOS) for a range of h/J in a fixed charge sector, shifted so that the
band center is E = 0. The most striking qualitative change as h is increased is how ‘spiky’
the DOS becomes at the band edges, and across the entire bandwidth for h � J. This
spiky behaviour leads to long lived resonances which show up as large fluctuations in the
observables, as we saw in Fig. 3.1(b) and Fig. 3.2(a).

When we take h/J > 1 we also observe that the DOS splits up into two bands centered
on ±2h, each with bandwidth 4J. Note that in the Falicov-Kimball model this corresponds
to the Mott phase [98]. This can be interpreted as the separation of eigenstates into those
living at the top and bottom of the binary potential. This property is due to the binary
nature of the effective disorder and has some striking consequences for the localization
behaviour in higher dimensions which will be discussed in the subsequent sections.
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Figure 3.6: Density of states for the 1D chain (2.22) with fixed random charge configuration. (a)
DOS for different values of h/J. (inset) The DOS for values of h > J (where there is a
gap in the DOS). (b) DOS for a large value of h/J = 500. The energy is offset by 2h
and we focus on one of the two sub-bands that form for large h. The DOS is computed
using the kernel polynomial method (see Appendix D), shown in blue. We compare
this with the DOS constructed using Eq. (3.7), shown in red. (inset) A comparison of
the observed distribution of run lengths n with the corresponding distribution in the
thermodynamic limit ∼ (1/2)n.

3.2 Strong Effective Disorder Limit

As can be seen in the DOS in Fig. 3.6(b), the spectrum changes significantly for large
effective disorder h/J. This behaviour is unique to systems with binary disorder and leads
to several observable effects. See for example Refs. [108, 109] for further discussion of
the differences between binary, higher-order discrete, and continuously sampled disorder.
In the following sections we will also demonstrate that this strong disorder limit can lead
to an effective quantum percolation problem, which can result in the delocalization of the
fermions.

In this section we will pay particular attention to the large h/J limit of our model using
perturbative arguments. For a given charge configuration in this limit the system effectively
splits into a collection of finite-length runs, which are defined to be those connected
sections where the charges have the same sign, see Fig. 3.7. In the thermodynamic limit
N → ∞, the distribution of the length l of the runs is given by the geometric distribution
∼ (1/2)l, as demonstrated in the inset of Fig. 3.6(b). In this limit it becomes natural to
separate the Hamiltonian into Ĥh and ĤJ given by

Ĥh = 2h
∑

i

qi(ĉ
†

i ĉi − 1/2) − J
∑

〈i j〉:qi=q j

(ĉ†i ĉ j + H.c),

ĤJ = −J
∑

〈i j〉:qi=−q j

(ĉ†i ĉ j + H.c).
(3.6)
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Here the sums over nearest-neighbours are only between sites on which the charges are
the same sign in Ĥh, and only between those of differing sign in ĤJ. Note that we omit
an overall energy shift h

∑
i qi which does not affect the results since there are no matrix

elements between different charge sectors. The Hamiltonian Ĥh describes disconnected,
uniform tight-binding chains, and ĤJ corresponds to a hopping between these chains, see
Fig. 3.7(a) Note that the Hamiltonian takes the same form on any lattice in any dimensions
– see Fig. 3.7(b) for a schematic picture of the disconnected region in 2D.

E

V
DOS

(a) (b)

Figure 3.7: Schematics for the strong effective disorder limit for a given charge sector. (a) In
1D the chain splits up into effectively disconnected runs (blue boxes) with opposite
potential, shown in green at the bottom. Within each run of length l there are l single
particle energy levels shown above in red. The combination gives the DOS (right)
shown in Fig. 3.6. (b) Example of disconnected regions in 2D with clear regions
indicating low potential and shaded regions indicating high potential.

In our perturbative arguments we take as our starting point the Hamiltonian Ĥh, that is,
an ensemble of disconnected runs of random length. In each isolated run of length l, we
then have l single particle eigenfunctions and energy levels E. The DOS of the Hamiltonian
Ĥh can be constructed using an ensemble of the energy levels for disconnected chains
weighted by their probability distribution using the following equation

g(ω) ∝ −
1
π

Im lim
δ→0

∞∑
l=1

∑
El

(1/2)l

ω − El + iδ
, (3.7)

where El denote the single-particle eigenvalues of the tight-binding Hamiltonian for a
uniform chain of length l, see Fig. 3.7(a). In order to obtain the DOS numerically we
introduce a cutoff on the sum over l and choose a finite broadening δ = 0.0015. The
spectrum splits into two sub-bands centred at ±2h corresponding to the two types of run
with q = ±1, as seen in inset of Fig. 3.6(a). In Fig. 3.6(b) we compare the exact DOS
centred around one of these sub-bands at E = 2h for a large but finite system with large
h � J, and the DOS constructed from Eq. (3.7), which shows good agreement.

The fact that the DOS splits up into a discrete set of levels, of which only a few carry
the majority of the spectral weight, explains the observed fluctuations in our localization
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diagnostics. These features can be attributed to resonant processes between these few
discrete levels. Fig. 3.6(a) shows that a similar structure persists, to some extent, below
h/J = 1 in 1D. The effect of ĤJ on the DOS appears at second order in perturbation
theory†. This gives rise to the broadening of the spectrum, and provides a time-scale
∼ (h/J)2 which sets the lifetime of the fluctuations in the observables. This time scale will
be particularly evident when we look at the entanglement properties in Chapter 4.

3.3 Localization in 2D

In two dimensions we will study the Hamiltonian (2.1) on a square lattice, see Fig. 2.1.
As in 1D we consider initial states with spins polarized along the z-axis. Here we prepare
the fermions in one of the three following initial configurations, shown schematically in
Fig. 3.8:
(i) Charge density wave with alternating occupation along one of the directions of the
lattice and uniform occupation along the other (stripes), as considered experimentally in
Ref. [90];
(ii) Checkerboard pattern with alternating occupation along both directions of the lattice;
(iii) Domain wall configuration with one half of the system filled, and the other empty,
such as studied in cold-atom experiments, see Ref. [80].

For all diagnostics, we measure correlators only along a 1D cut through the system,
e.g., perpendicular to the domain wall, as shown in Fig. 3.8. We can therefore use density
imbalance measures ∆ρ and Nhalf that we considered in 1D.

As in 1D we find that the average density imbalance ∆ρ(t) saturates at a non-zero value
at long times, see Fig. 3.9(a). However, compared to 1D, the localization length is larger
in 2D (for the same h/J) leading to smaller long-time values for ∆ρ and larger values
for Nhalf. Furthermore, for the values of h/J shown in Fig. 3.9, which are much larger

(a) (b) (c)

Figure 3.8: Initial states for the global quench in 2D: (a) charge density wave, (b) checkerboard, (c)
domain wall. The filled sites are indicated in blue and empty in white. Measurements
are made along the 1D strip indicated by the red box.

†The first order is zero since the overlap of eigenstates between separate runs is zero.
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Figure 3.9: Time evolution of the fermion subsystem in 2D. (a) Density imbalance ∆ρ measured
along a slice through the centre of the system with the initial state described by a
charge density wave, see text. Inset shows the long-time limit for the charge density
wave, and checkerboard initial states. (b-c) Spreading of the domain wall for h/J = 0.5
and h/J = 2, respectively, measured along the slice through the centre of the system.
(d) Number of particles Nhalf along the centre in the initially empty half of the system.
In (a-c) we use a square lattice with N = 32 × 32 sites and in (d) N = 30 × 50. Results
are computed using the determinant method of Appendix B.

than those presented for the 1D case, the amplitude of the fluctuations is much smaller.
In other words, the extra dimensionality produces a damping effect on these fluctuations
which is reflected in the much smoother single-particle DOS, even for h/J > 1, shown
in Fig. 3.10(a). We also find that for the checkerboard initial state, the remaining density
imbalance ∆ρ(t → ∞) is greater than for the charge density wave, as shown in the inset.
Comparison of the corresponding 1D and 2D results shows that the remaining imbalance
is approximately an order of magnitude smaller in 2D than in 1D, which is due to the fact
that localization lengths are much larger in 2D, as shown in Fig. 3.10(b).

Starting from the domain wall initial state, we can again see a linear initial spreading
which is halted due to the effective disorder, see Fig. 3.9(b-c). In this case we do not find
long-lived oscillations for h/J > 1. Our results clearly show that the localization length
is much larger in 2D compared to 1D, which can be seen from the greater extent of the
domain wall spreading in Fig. 3.9. We can also use Nhalf to quantify the domain wall
spreading. This observable approaches a finite value demonstrating the localization of the
fermions, see Fig. 3.9(d).

If we compare the DOS in 2D with that of 1D we notice some important similarities
and differences. First, we see a gap opening in both cases for large values of h. Whereas in
the 1D case this gap appears at h = J, the spectrum is still gapless for h ∼ J in 2D. There
is also an increase in the bandwidth in 2D, both of the total DOS and of the individual
sub-bands that develop in the large h limit, due to the extra dimension. More importantly
we find that the sub-bands remain much smoother than in 1D for a much wider range of
effective disorder strength.

In Fig. 3.10 we show the dependence of the maximum localization length on h/J in
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Figure 3.10: (a) Single-particle density of states for a 2D square lattice for different h/J. The DOS
is computed using the kernel polynomial method, see Appendix D. (b) Localization
length in 1D and 2D. In 1D, localization length is computed using the spectral
formula (3.4) as explained in the main text. In 2D, the localization length is scaled by
a factor of 20 and is computed by the transfer matrix method on a strip of width 100
sites and length 250,000 sites.

1D and 2D. The localization length λ is the characteristic length scale of the exponential
tails of the single-particle wavefunctions defined via e− j/λ. In the 1D case the results are
obtained using the spectral formula [49, 106] in Eq. (3.4) and in the 2D case we used the
transfer matrix method [49], see Appendix E. The 2D results are rescaled by a factor of
20 which demonstrates an order of magnitude difference in localization lengths in 1D
and 2D. However, the localization length as a function of disorder strength shows similar
power-law in 1D as in 2D, see Fig. 3.10(b) inset.

3.4 Quantum Percolation

Due to the binary nature of the effective disorder potential in our model, we can make
a connection to quantum percolation. In the large h limit of strong disorder, discussed in
Section 3.2, the lattice is decomposed into parts with sites sitting at the top or bottom of
the binary potential. To the lowest-order, only hopping between sites with the same sign of
the potential is allowed, see Fig. 3.7(b). It is then natural to decompose the Hamiltonian as
in Eq. (3.6). In Ĥh, there will only be hopping terms between neighbouring sites with the
same values of q, which defines a quantum site percolation problem [108], see Fig. 3.11.

In one and two dimensions, arbitrarily weak disorder leads to localized wavefunctions.
However, it is possible to have delocalized states in the case of correlated disorder. A
famous example in 1D is the Aubry-Andre model which has a periodic potential incom-
mensurate with the lattice [89]. In two dimensions we can get delocalized states when
time-reversal symmetry is broken, for example by a magnetic field. Percolation in our
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model provides an alternative mechanism for delocalization in 2D.
Let us consider biasing the distribution of charges q such that q = ±1 with probability

p and 1 − p, respectively. Alternatively, one could impose a stricter global constraint
N−1 ∑

i(q̂i + 1)|Ψ〉 = p|Ψ〉, as in the Falicov-Kimball model [92]. Since the threshold
in the classical site percolation problem is pc ≈ 0.5927, this is consistent with having
localized wavefunctions for all h for our polarized spin state which corresponds to p = 1/2.
However, if we set p > pc, or 1 − p > pc then we might expect percolation in our model
for large h, see Fig. 3.11. Note that if we have delocalized wavefunctions, say at the top
of the potential, then we necessarily have localized wavefunctions at the bottom of the
potential, and vice versa.

(a) (b) (c)

Figure 3.11: Schematic picture of the site percolation problem. (a) A fully connected lattice on
which fermions can hop in the limit h/J = 0. (b-c) When h/J � 1 the fermions are
constrained to hopping only between sites with the same effective potential (filled
sites and bonds) and the other sites become inaccessible (open circles) leading to a
quantum site percolation problem. (b) Connected sites for the bias p = 0.5 showing
the absence of paths (in the thermodynamic limit) that connect opposite sides of
the lattice. (c) Connected site for the bias p = 0.7, which is above the classical
percolation threshold pc ≈ 0.5927, and which has connected paths across the system,
examples of which are shown in red.

In order to understand the effect of percolation we study the time evolution from a
domain wall initial state with changing system size and bias p, as shown in Fig. 3.12(a).
We plot Nhalf(t → ∞)/L, where L is the linear dimension of a square lattice with N = L× L

sites†. If particles are localized then we would expect Nhalf(t → ∞)/L to tend to zero as L is
increased – i.e., Nhalf is finite and independent of L. Whereas, if the particles are delocalized,
we should find that a finite proportion of the particles makes it across the domain wall
and Nhalf(t → ∞)/L → constant. In Fig. 3.12(a) we show the extrapolation from finite

†Note that in our definition of Nhalf we only sum over the initially empty sites in the 1D strip shown in
Fig. 3.8(c).
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Figure 3.12: (a) Total number of particles making it across a domain wall Nhalf for various values
of the charge distribution bias, p. The figure shows the rescaled value Nhalf/L, and
the extrapolated limit L→ ∞, where L is the linear dimension of the system. Error
bars correspond to 2 standard deviations in the linear fit from finite size scaling. Note
that pc ≈ 0.5927 corresponds to the classical site percolation threshold for a square
lattice. (b) Density of states for different values of the bias p and h/J = 20. Inset
shows the corresponding energy-resolved localization length. The results shown in
(a) were obtained using the determinant method (Appendix B). We used the KPM
(Appendix D) for the DOS in (b) and the transfer matrix approach for the localization
length (Appendix E) for a system of 150 × 250, 000 sites.

size scaling which agrees with this expected behaviour in the two limits. Furthermore,
the change in behaviour is observed to happen around the classical percolation threshold
p = pc.

This percolation behaviour is also reflected in the DOS and the energy-resolved lo-
calization length as a function of p, as shown in Fig. 3.12(b). As p is increased past the
critical point we see a clear asymmetry with respect to energy in these results. In the DOS,
one of the sub-bands becomes similar to that of the large h limit of the p = 1/2 problem,
characterized by a discrete set of levels with large spectral weight. The other sub-band
become much smoother and similar to the DOS for a clean 2D system, see Fig. 3.10.
Furthermore, we respectively see a decrease and increase in the localization length in the
these two sub-bands, see inset, which is consistent with percolation of the fermions at
positive potential and localization of those at negative potential.

Because we are studying quantum dynamics, it is not clear that there should be a direct
correspondence with the classical site percolation problem. In particular, given a path
through the system, as in Fig. 3.11(c), we would generally expect quantum fluctuations to
lead to backscattering, which may hinder conductance. However, Refs. [110, 111] showed
using large scale numerics, that there exists a quantum percolation threshold pq

c < 1 –
and we necessarily have pc ≤ pq

c . Furthermore, studies on the Bethe lattice show that
the quantum site percolation threshold agrees with the classical threshold [108], and our
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results are also consistent the with classical site percolation on a square lattice. However,
this point is not yet settled and Ref. [111] find that pq

c > 0.65, which we don’t see in our
results. Furthermore, another group finds that pq

c = 1 [112], and that the system should be
localized for any bias. Because of the modest system sizes used in our calculations, our
results may still show significant finite-size effects.

3.4.1 Localization in 3D

For a 3D cubic lattice Ref. [111] find that pq
c < 0.5. Therefore the 3D version of the

model offers a particularly interesting setting for studying localization. In 3D there is a
critical disorder strength needed to achieve localization. However, based on the results of
Ref. [111], in the large h/J limit we would expect delocalized states to exist for all values
of the bias probability p. This then raises the possibility of delocalized states for both low
and high h/J but localized states for intermediate values. A careful investigation of the 3D
model goes beyond this thesis.
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Entanglement Properties

In this chapter we consider the entanglement properties of our model. In particular we
discuss how our model fits into the recently proposed notion of a quantum disentangled
liquid (QDL) [113]. The QDL was motivated by the heavy-light mixture models [58, 60]
and constitutes a novel phase of matter for multi-component liquids. The loose idea is
that some components ‘thermalize’ while the others are localized. The QDL is defined in
terms of projective measures of entanglement which reveal contrasting behaviours for the
different components of the model. We apply this diagnostic to the long time state of our
model after a quantum quench. We find that these measures are not able to identify the
localization behaviour of the f fermions in our model, but that they can for the c fermions
in the dual language. This demonstrates the subtlety in defining a QDL.

To shed some light on these projective measures of entanglement we deconstruct their
definition. While our investigation does reveal a distinction between species, it does
not provide a conclusive and universal signature for the QDL. We also investigate the
quantum mutual information as an alternative entanglement measure, which successfully
distinguishes the localized behaviour of the fermions from that of the spin subsystems.

4.1 Quantum Disentangled Liquids

The study of heavy-light mixtures [58, 60] brought forward the notion of a quantum
disentangled liquid (QDL) [113]. This is a proposed phase of matter which is defined in
terms of projective measures of entanglement. In a thermalizing system, dynamics after a
quench induces growth of the von Neumann entanglement entropy which saturates with
volume law scaling, whereas in a localized system we have area law entanglement of all
eigenstates. The broad idea of a QDL is that it has multiple subsystems, some of which
‘thermalize’ in this entanglement sense, and importantly, others which do not.

The QDL was defined in the context of multicomponent liquids [113] but we restrict
ourselves to consider only two-components, which is the situation in our model, and for
the heavy-light particle mixtures. The main tools in defining a QDL are the projective

67
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measures of entanglement, which we call the projective bipartitie entanglement entropy
(PBEE), defined in the following section. The QDL phase has eigenstates with volume-law
scaling of the von Neumann entanglement entropy and the PBEE for one of the species,
S α

PBEE, but area-law scaling for the other species S β
PBEE.

4.1.1 Projective Bipartitie Entanglement Entropy (PBEE)

To define and diagnose the QDL phase we need to introduce the PBEE. Consider a two
component system, with the components labelled by α and β, in a pure state |ψ〉. P̂γ

φ is the
projector onto the state |φ〉 of species γ ∈ {α, β}. This projector is related to a measurement
of the single component. We also spatially partition our system into two subsystems A and
B. The algorithm for computing the PBEE for the component α (similarly for β) is then as
follows:

i) Project the state |ψ〉 onto state |φ〉 of species β, i.e. |ψ〉φ = P̂ β
φ |ψ〉

/ √Zα
φ , where

Zα
φ = 〈ψ|P̂ β

φ |ψ〉 normalizes the state;

ii) Define the reduced density matrix with respect to the bipartition ρ
φ
A =

TrB|ψ〉φ〈ψ|φ;

iii) Compute the von Neumann entanglement entropy S α
φ = −TrA[ρφA log ρφA];

iv) The PBEE for the species α with respect to the bipartition is then defined as

S α
PBEE =

∑
|φ〉

Zα
φS α

φ , (4.1)

where the sum over entropies is weighted by the probabilities of the states |ψ〉φ.

In the original paper [113] the authors illustrate the properties of QDL by constructing
particular states, one in the setting of heavy-light mixtures and the other using a Born-
Oppenheimer type approach to construct a wavefunction. They also hypothesise that the
QDL behaviour may be observable in the Hubbard model where instead of a separation
into two particle species we have a separation between charge and spin degrees of freedom.
This idea was investigated further in Refs. [114–116], wherein they conclude that the
low-lying “spin-band” eigenstates indeed satisfy the diagnostic for QDL. Rather than
looking at eigenstates, we will be concerned with the state at long times after our global
quantum quench protocol. Since we observe the localization in the fermion subsystem
and relaxation of the magnetization of the spins, our model would seem to be an ideal
candidate for realizing a QDL state at long times.
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Example

Before we proceed, we will consider an explicit example of a four spin system to aid
the definition of the PBEE. We divide the system equally into two partitions A and B, each
of which contains a spin of each species, and will work in the local z-basis for each spin,
i.e. {|↑〉, | ↓〉}. Let us consider the pure state

|ψ〉 =
1
2

[
(| ↑A↓B〉α + | ↓A↑B〉α) | ↑A↑B〉β + (| ↑A↓B〉α − |↓A↑B〉α) | ↑A↓B〉β

]
. (4.2)

First we will calculate S α
PBEE for the α species. With respect to this basis we have

four projection operators onto states of species β, which are P̂ β

↑↑
, P̂ β

↑↓
, P̂ β

↓↑
and P̂ β

↓↓
, whose

actions on the pure state |ψ〉 are given by

P̂ β

↑↑
|ψ〉 =

1
2

(| ↑A↓B〉α + | ↓A↑B〉α) , P̂ β

↑↓
|ψ〉 =

1
2

(| ↑A↓B〉α − |↓A↑B〉α) , (4.3)

and P̂ β

↓↑
|ψ〉 = P̂ β

↓↓
|ψ〉 = 0. The non-zero probabilities of measuring these states are Zα

↑↑
= 1

2 ,
Zα
↑↓

= 1
2 and the density matrices for these two normalized states are then

ρ↑↑ =


0 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 0

 , ρ↑↓ =


0 0 0 0
0 1

2 −1
2 0

0 −1
2

1
2 0

0 0 0 0

 . (4.4)

Tracing out subsystem B we then get the reduced density matrices

ρ↑↑A =

 1
2 0
0 1

2

 = ρ↑↓A , (4.5)

which are the same as for the EPR state discussed in Section 1.2.3. We thus find that
S α
↑↑

= S α
↑↓

= log 2 and the PBEE is given by

S α
PBEE =

1
2

log 2 +
1
2

log 2 = log 2, (4.6)

which in this case is the same as the von Neumann entanglement entropy of the maximally
entangled EPR pair.

Repeating this procedure for the species β we find that the only non-zero states after
projection are

P̂α
↑↓|ψ〉 =

1
2

(
| ↑A↑B〉β + | ↑A↓B〉β

)
, P̂α

↓↑|ψ〉 =
1
2

(
| ↑A↑B〉β − |↑A↓B〉β

)
. (4.7)
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We therefore have that S β

↑↓
= S β

↓↑
= 0, since these are tensor product states, which further

gives
S β

PBEE = 0, (4.8)

for the species β. Note that unlike this example, we cannot uniquely define an equal
partition of our system because the spins live on the bonds of the lattice. Therefore, taking
an equal partition of the fermion subsystem necessarily means that we have an unequal
partition for the spins because of the spin on the central bond, but this does not affect the
scaling behaviour.

4.1.2 Results

Here we present the results of numerical simulations, which were computed using
exact diagonalization methods for up to N = 12, with open boundary conditions. In all
cases we quench from initial states with z-polarized spins and fermions in a charge density
wave. We begin by looking at the von Neumann entropy for our model after the quench
before comparing the PBEEs for the original f and σ degrees of freedom. We then also
consider these projective measures in the dual language in terms of the c-fermions and
charges q.

In Fig. 4.1(a) we show the bipartite von Neumann entanglement entropy for h/J = 20
after a quench from a charge density wave fermion state and z-polarized spins. The entropy
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Figure 4.1: Time evolution of entanglement entropy after a quench from a charge density wave
state. The results are obtained using exact diagonalization for h/J = 20. (a) The von
Neumann bipartite entanglement entropy S (t) for N = 8, 10, 12. (inset) The time Tarea
for which the area-law plateau persists (dashed line of main plot) as a function of h/J
compared with (h/J)2. (b) Comparison between rescaled PBEEs S f

PBEE(t), S σ
PBEE(t),

and the von Neumann entropy S (t) for N = 12. (inset) The long time-limit S (t → ∞)
(computed at Jt ∼ 1012) as a function of system size. PBEE results are scaled by
factors of 2.7 and 1.95, respectively.
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Figure 4.2: The time evolution of the PBEE, defined in the main text, starting from z-polarized
spins and a charge density wave state for the fermions with h/J = 20, and N = 8, 10, 12,
obtained using exact diagonalization. (a) S c

PBEE(t) for c-fermions. (b) S q
PBEE(t) for the

conserved charges q.

exhibits initial linear growth followed by an area-law plateau which eventually gives way
to the volume-law scaling (note the dependence on the system size). The extent of the
plateau scales as (h/J)2 for h/J > 1, as shown in the inset; it is absent for h/J < 1. This
behaviour can be attributed to a separation of timescales. This was discussed in Section 3.2
where, for h/J � 1, a pair of adjacent sites with opposite values of q j correspond to a high
energy barrier. Traversing such a barrier is a process parametrically suppressed in h/J,
while motion between such barriers takes place on shorter timescales. The latter can only
produce area-law scaling of the entanglement entropy, while the former can act over larger
distances, resulting in equilibration of the spins and a concomitant volume-law scaling
for the entanglement entropy. Note that the same two localization regimes also appear in
the disorder-averaged entanglement entropy of a simple tight-binding model with binary
disorder. It is directly related to PBEE projected onto the charge sectors in our model,
S c

PBEE shown in Fig. 4.2(a), because our choice of spin polarized initial state leads to an
equal weight superposition of all disordered charge configurations.

The PBEEs for the original degrees of freedom, the f -fermions and σ-spins, are shown
in Fig. 4.1(b). The data is scaled to highlight the fact that both PBEEs have the same
qualitative behaviour, and match the von Neumann entanglement entropy of the composite
system. In terms of the f and σ degrees of freedom, the long time limit does not suggest the
QDL behaviour since all three measures develop volume-law scaling (see inset). However,
after the mapping to c-fermions and conserved charges, we do find the phenomenology
of the QDL. As shown in Fig. 4.2, at long times we observed area law scaling of S c

PBEE

and volume law scaling of S q
PBEE. Furthermore, since the localization behaviour persists

for all system sizes [101], and there is a direct relation between the area-law scaling of
S c

PBEE and the localization of fermions, this allows us to infer that this behaviour holds in
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Figure 4.3: The PBEE distributions for h/J = 20 and N = 12. (a) Distribution D f (x, t) for the f -
fermions. The black curve indicates the average value, S f

PBEE. (b) Dσ(x, t) distribution
with S σ

PBEE shown in black. (inset) The same data over a larger range of values. (c-d)
Cuts in the distribution at Jt = 136 and Jt ∼ 5 × 108, shown in red and yellow. These
cuts are indicated in (a) and (b) by dashed lines of the same colour.

the thermodynamic limit.

These contrasting results highlight the subtlety of defining a QDL, most crucially on an
appropriate choice of the measurement basis. While the dynamics of the f and c fermions
is closely related – e.g., all density correlators are the same – they are connected via a
non-linear and non-local transformation with a string of spin operators.

4.1.3 PBEE Distributions

In the context of our model we found some unexpected results for the projective
measure of entanglement used to define the QDL. Particularly, even though we were able
to conclusively demonstrate the complete localization of the f -fermions in the previous
chapters, the PBEE was unable to distinguish this subsystem from that of σ-spins. This
measure is a weighted average, and as such we are not considering all of the information.
In this section we investigate the distribution of the terms appearing within the sum (4.1)
that may shed some more light on the observed behaviour.
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Figure 4.4: The PBEE distributions for h/J = 20 and N = 12. (a) Dc(x, t) distribution with S c
PBEE

shown in black. (inset) The number of values that are in the histogram bin around
zero, see Eq. (4.9). The purple arrow on both the main and inset figures indicate the
time-scale Jt ∼ (h/J)2. (b) Distribution Dq(x, t) for the conserved charges with S q

PBEE
shown in black. (inset) The distribution over a larger range of values. (c) Dc(x, t) for
the c-fermions at fixed values of Jt = 136 and Jt ∼ 5 × 108. These times are indicated
in (a) by dashed lines of the same colour. The black dashed lines in (c) indicate the
observed stripes through the distribution at values (l − 1) ln(2)/2.

Ideally, we would like to consider the distribution
∑
|φ〉 δ(x−MZα

φS α
φ(t)), where M is the

number of states |φ〉 for species β. However, because of the broadening that is necessary to
turn this discrete distribution into a continuous function, dealing with this quantity directly
does not give clear results. For this purpose, we consider a more transparent alternative
and define the function

Dα(x, t) =
1
M

∑
|φ〉

Θ
(
∆ − |x − MZα

φS α
φ(t)|

)
, (4.9)

where x takes discrete values, x = ∆(2n − 1), n ∈ N, and Θ(x) is the Heaviside step
function. At a given time t, this function counts the number of states |φ〉 for which the
value MZα

φS α
φ(t) is within a window of width 2∆ centred on x. In other words, it defines a

time dependent histogram, which approximates the distribution we want to consider. We
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normalize this function such that the sum over all x is 1, and we will refer to it as the
distribution of S α

PBEE. In Figs. 4.3 and 4.4, we set ∆ such that the plotted range is split
into 200 windows, e.g., ∆ = 0.01 for Fig. 4.4(a). Note that to reduce the noise in these
figures that is due to the finite size of our systems, the values are smoothed by short ranged
averaging over time, namely, Dα(x, t)→ 2

t2

∫ t

0
dτ τDα(x, τ).

In Fig. 4.3 we show the distributions D f (x, t) and Dσ(x, t), i.e., in the original degrees
of freedom. Unlike the averaged value, there is a clear distinction between the localized
fermion subsystem and the spin subsystem. In the former we see that the distribution is
peaked around the mean value, whereas in the latter we have a very spread out distribution
which is peaked at zero. This behaviour is more clearly seen in Figs. 4.3(c-d), where we
show the distributions for fixed values of time, one at intermediate times Jt = 136 and one
at long times Jt ≈ 5 × 108. We see that for the f fermions the distributions are peaked
around the mean value but that at long times this mean value increases with systems size,
see Fig. 4.3(c). On the other hand, for the spins, the distribution decays from zero with
approximately power-law behaviour, see Fig. 4.3(d), and the volume law scaling is due to
the distribution spreading out with more weight at larger values. This can most clearly be
seen in the inset of Fig. 4.3(b), where the weights are more spread out at longer times than
at short and intermediate – after the time-scale set by (h/J)2. We therefore see that the
volume law scaling observed in the PBEEs S σ

PBEE and S f
PBEE, have very different origins.

Let us now turn to the c and q degrees of freedom, see Fig. 4.4. Here we also see
contrasting behaviour between the c and q degrees of freedom. Furthermore, the behaviour
of Dq(x, t) is similar to that of the spins, namely that the distribution is peaked at zero and
decays with a power-law. However, there is a stark difference between the distributions
for the c and f fermions. In particular, the distribution Dc(x, t) is not peaked around the
average value, and we see clear stripes in the distribution, see Fig. 4.4(a). These stripes
occur between values (l − 1)/2 ln(2), with l ∈ N, and are a consequence of the system
splitting into disconnected runs of length l, see Fig. 4.4(c). The entanglement for the
c fermions comes from the runs that cross the boundary of the partition. We therefore
see overall exponential decay in this distribution reflecting the distribution of run lengths
∼ (1/2)l. Most of the weight is at zero due the most probable configuration being runs
of length 1. The weight at zero decreases at Jt ∼ (h/J)2 and spreads out, as indicated by
the arrow in Fig. 4.4(a) and inset. This is due to the coupling between these runs, which
only becomes appreciable on these time scales. The observed behaviour for Dc(x, t) is then
most likely due to the ‘integrability’ of our model and we might expect these stripes to
disappear with the introduction of interactions.
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4.2 Mutual Information

In this section we investigate an alternative measure of entanglement to distinguish
the two subsystems – the quantum mutual information. We demonstrate that it is able to
distinguish the f and σ degrees of freedom, as well as the c-fermions from the charges q.

4.2.1 Quantum Mutual Information

To define the mutual information we split the system into three partitions†. We take
one of these partitions to be the subsystem corresponding to one of the species, which we
label C, and we divide the other subsystem into A and B. The mutual information between
subsystems A and B is then defined as

I(A : B) =
1
2

(S A + S B − S AB) (4.10)

where S A is the von Neumann entanglement entropy for the reduced density matrix ρA,
and S AB = S A∪B = S C. We will use the notation Iα = Iα(A : B) for the mutual information
when the A and B partitions correspond to species α.

4.2.2 Results

The results of the mutual information for our model are shown in Fig. 4.5. Unlike
the PBEE we have a clear distinction between I f and Iσ, and also between Ic and Iq. We
observe area law scaling for both f and c fermions and volume law for the spins and the
charges.

To understand this behaviour a little further let us separately consider the behaviour of
the von Neumann entanglement entropies appearing in the definition Eq. (4.10). These
obey the scaling behaviours

S γ
A(B) = α

γ
A(B)N + δ

γ
A(B), S AB = 2αABN + δAB, (4.11)

where N is the number of sites, γ ∈ { f , σ} or γ ∈ {c, q}, and S AB = S C is the entanglement
between the two species. These entropies consist of a volume law term ∼ N and a
constant area law term‡, and we have included a factor of two in the definition of S AB since

†The mutual information can also be defined for a bipartite mixed state. For a pure state this definition
reduces to the standard von Neumann entropy. See Refs. [36, 37] for more details about entanglement
measures.

‡Note that the separation between volume and area law scaling is not clear in our setup. The volume
scales with N but so do the boundaries between A and C and between B and C. The boundary between A
and B on the other hand is constant. Here we simply consider the scaling with N plus a constant term.
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Figure 4.5: (a) Mutual information I f (A : B) and Iσ(A : B) for the original f and σ degrees
of freedom with h/J = 20. (b) Ic(A : B) and Iq(A : B) for the c fermions and
conserved charges q. Data is shown for three different system sizes N = 8, 10, 12
which demonstrates area law scaling for I f and Ic and volume law scaling for Iσ and
Iq.

|A ∪ B| = 2|A|. If we now consider the combination that defines the mutual information
then we find that

Iγ(A : B) = (αγA + α
γ
B − 2αAB)N + (δγA + δ

γ
B − δAB), (4.12)

and in particular we only have volume law scaling if there is an incomplete cancellation in
the prefactors. Note that if we had a single species system then we would generally expect
αA = αB = αC resulting in area law scaling of the mutual information, which is consistent
with Ref. [117] for example.

In Fig. 4.6 we consider the behaviour of the α-parameters in the von Neumann entan-
glement entropies, defined in Eq. (4.11). For the f species we find that α f

A
(

= α
f
B
)

and αAB

depend on h/J – that is, on the localization length – in exactly the same way, resulting in
complete cancellation of the volume law prefactor. For the spins on the other hand, ασA is
independent of h/J and the prefactors do not cancel exactly, resulting in the volume law
scaling seen in Fig. 4.5.

4.3 Discussion

Using the projective measures of entanglement defined in Ref. [113] we revealed the
behaviour of a quantum disentangled liquid in the state of our system at long times after
a quantum quench. However, this diagnostic only gave a positive results in the basis of
c-fermions and the conserved charges q. It was unable to distinguish between the localized
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Figure 4.6: The coefficients for scaling with systems size N of the von Neumann entanglement
entropies S AB and S A (see Eq. (4.11)) for both the fermions f and the spins σ that ap-
pear in the definitions of the mutual information I f and Iσ. Data is slightly horizontally
offset to make the data points and error bars more clearly visible.

f -fermions and the spins σ, both of which exhibited volume law scaling of the PBEE.
This indicates the sensitivity of this diagnostic on an appropriate choice of basis, despite
the clear identification of localization physics using local measurements investigated in
previous chapters.

Rather than simply looking at the PBEE we considered the distribution of the quantities
that appear in its definition. These distributions were able to show a distinction between
the different degrees of freedom, even when the mean value was unable to. This suggests
that this distribution may be a better diagnostic, but since our results were only restricted
to a single model and we do not yet have a complete explanation of the results we observe,
we are unable to say what should generally be expected. In particular, we found behaviour
of the c-fermions that is directly related to the presence of conserved charges in our
model, and so would not be expected in more general situations. We propose that further
investigation is warranted and suggest the interacting generalizations of our model, as well
as the heavy-light particle mixture models [58–60] as ideal testing grounds.

We also considered using the mutual information as an alternate diagnostic tool for the
QDL. This measure had some desirable properties and was able to distinguish the localized
from the delocalized degrees of freedom in both choices of basis. The volume law scaling
for the spins and the charges was explained by an incomplete cancellation of the volume
laws of the von Neumann entropies appearing in the definition. While we confirmed this
was due to the different dependences of the volume law coefficients on the localization
length, we do not yet have a complete explanation for this behaviour. Turning this into a
viable measure of a QDL is left for future work.

As a closing remark we would suggest that as well as investigating further the properties



4.3. Discussion 78

of these two measures of entanglement, it would be instructive to consider others. An
example that has different properties to both the von Neumann entropy and the mutual
information is the negativity [37, 118, 119]. It is clear that despite the simplicity and
solubility of our model we can observe non-trivial dynamics and entanglement properties.



5
Out-of-Time-Ordered Correlators

In this chapter we study the so-called out-of-time-ordered correlators (OTOCs) for the
gauge field in our model. OTOCs are defined as

C(t) =
1
2
〈|[Â(t), B̂]|2〉, (5.1)

where Â and B̂ are two operators and [· , ·] is the commutator. The expectation value 〈·〉
can be taken in one of three ways: (i) full trace, corresponding to an infinite temperature
thermal expectation value; (ii) finite temperature expectation value; (iii) expectation value
of a pure quantum state. In this chapter we will only consider the latter, which corresponds
to a global quantum quench protocol, as we have been considering throughout this thesis.

The OTOCs quantify the spreading of operators and ‘operator scrambling’ [120, 121].
If Â and B̂ are spatially separated local operators then initially their commutator is zero. As
the operator Â is evolved in time and its support spreads, this commutator will grow. For
local operators, the infinite temperature OTOC was shown to be bounded and to display a
light-cone causality structure by Lieb and Robinson [31]. Taking the infinite temperature
expectation value, the OTOC equates to the Frobenius norm of the commutator and the
Lieb-Robinson bound can be written as

Tr
(
|[Â(t), B̂]|2

)
≤ c e−

L−vt
ξ , (5.2)

where L is the separation between the local operators Â and B̂, and c, v, ξ are the constant
prefactor, speed and length scale, which are to be determined. We used a corollary of
this bound in Eq. (1.5), which provides a bound for correlators between local operators†.
Depending on the system, we can also have different behaviours within this light cone. In
an integrable system – such as the transverse field Ising model considered in Ref. [122]
– the OTOC of local operators is only non-zero close to the light-cone and decays back
to zero once it has passed. This is similar to the propagation of a coherent wavepacket.

†Note that the constants c, v, ξ for the operator and correlator bounds are not generally the same.
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However, in generic, and particularly thermalizing systems, the OTOC saturates to a
non-zero value within the light-cone and the operator Â(t) is said to be scrambled under
time-evolution [121].

Recently, a motivation for considering OTOCs has been the connection to chaos.
These correlators are a quantum analogue of the classical Poisson bracket and in the
classical chaotic setting the Poisson bracket of the position and momentum {x(t), p} =

∂x(t)
∂x(0)

grows exponentially in time ∼ eλLt, with Lyapunov exponent λL. This exponential growth
quantifies the sensitivity to perturbations in chaotic systems and the exponential growth
of the OTOCs has been considered as a signature of quantum chaotic behaviour. The
Lyapunov exponent for OTOC growth has been shown to be bounded by temperature
λL ≤ 2π/(β~) [123], and the bound is saturated in the Sachdev-Ye-Kitaev model [124,
125]. While this growth behaviour has been established in the large-N and semiclassical
limits [126], it is not clear how this applies more generally. In particular, its observation is
reliant on a hierarchy of time scales that is absent in many quantum models. An alternative
has been recently suggested in Ref. [127], where they consider the growth along light-rays,
that is along lines |x| = vt for different values of v to define a velocity dependent Lyapunov
exponent λL(v).

OTOCs are generally difficult quantities to deal with, both analytically and to simulate
numerically because of the forwards and backwards time evolution. Our model provides
an ideal setting to study OTOCs due to our mapping to free fermions, which allows
us to efficiently simulate these quantities numerically. Notable settings where analytic
progress has been made include Luttinger-liquids [128], the integrable transverse field
Ising model [122], and random unitary circuit models [129–132]. In the latter an effective
hydrodynamic description emerges which is hypothesised to carry over to thermalizing
quantum systems. In localized and MBL systems some numerical progress has also been
made using exact diagonalization methods [133, 134] for systems of L = 11, 12 sites,
which is sufficiently large compared to the localization lengths for the disorder strengths
considered. In Ref. [133] the numerical results are also compared with expected behaviour
deduced from the l-bit representation of the MBL Hamiltonian. We will make reference
and comparison to these works on localized systems in our exposition below.



81

5.1 Definition of the OTOC

The quantities that we will discuss in this chapter are the out-of-time-ordered correlators
for the gauge field

Cαβ(t) =
1
2
〈Ψ| |[σ̂α

jk(t), σ̂
β
lm]|2|Ψ〉 = 1 − Re〈Ψ|σ̂α

jk(t)σ̂
β
lmσ̂

α
jk(t)σ̂

β
lm|Ψ〉, (5.3)

where α, β ∈ {x, z}, and |Ψ〉 is a particular initial state for the fermions and spins. The
equality results from a manipulation of the commutator using the commutation relations of
the Pauli matrices. We will also use the shorthand notation

Fαβ(t) = 〈Ψ|σ̂α
jk(t)σ̂

β
lmσ̂

α
jk(t)σ̂

β
lm|Ψ〉, (5.4)

for the non-trivial contribution to the OTOC, and so Cαβ(t) = 1 − Re Fαβ(t). We will
consider the initial state to be a tensor product |Ψ〉 = |S 〉 ⊗ |ψ〉 of the spins in a z-polarized
state |S 〉 = | · · · ↑↑↑ · · ·〉 and a Fermi-sea Slater determinant for the fermions, i.e., |ψ〉 to be
the half-filled ground state of Hamiltonian ĤFS = −

∑
〈i j〉 ĉ

†

i ĉ j. Our calculation corresponds
to a global quench protocol, as we have considered in the previous chapters.

5.1.1 Mapping to Free Fermions: Double Loschmidt Echo

Similarly to the correlators discussed in the previous chapters, the OTOCs can be
mapped to free fermion correlators. This allows us to compute these quantities efficiently
and also gives us an insight into their properties. Let us consider the non-trivial piece of
the OTOC, Fαβ(t). We can commute the Pauli operators one by one through the unitary
evolution operators so that they act on the initial state to the right. Due to the fact that
these operators do not commute with the Hamiltonian, we will modify the Hamiltonians in
the process. For convenience, let us write down our Hamiltonian again here with slightly
different notation:

Ĥ = −
∑
〈 jk〉

J jkσ̂
z
jk

(
f̂ †j f̂k + H.c.

)
−

∑
i

hi

∏
〈 jk〉∈+i

σ̂x
jk, (5.5)

where we take J jk = J and hi = h. We can therefore see that σ̂z
jk commutes with the

hopping term but anti-commutes with two of the star operators, Â j and Âk. Conversely,
σ̂x

jk commutes with the star operators and anti-commutes with the hopping term. We

can therefore write in shorthand notation σ̂α
jke
±iĤt = e±iĤ(α)

jk tσ̂α
jk, where Ĥ(α)

jk has h j, hk →

−h j,−hk on sites j and k if α = z, and if α = x we have J jk → −J jk on the bond 〈 jk〉. This
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allows us to write

Fαβ(t) = 〈Ψ|eiĤte−iĤ(α)
jk teiĤ(α,β)

jk,lmte−iĤ(β)
lm tσ̂α

jkσ̂
β
lmσ̂

α
jkσ̂

β
lm|Ψ〉 = 〈Ψ|eiĤte−iĤ(α)

jk teiĤ(α,β)
jk,lmte−iĤ(β)

lm t|Ψ〉,

(5.6)
where in the second equality we have used the commutation relations for the Pauli matrices
and that (σ̂α

jk)
2 = 1. To clarify the shorthand notation used in this expression, let us for

concreteness consider α = x, β = z, then Ĥ(α)
jk has J jk → −J jk, Ĥ(α,β)

jk,lm has J jk, hl, hm →

−J jk,−hl,−hm, and Ĥ(β)
lm has hl, hm → −hl,−hm, all relative to Ĥ.

We can use the duality transformation to write Eq. (5.6) as a free-fermion correlator,
namely

Fαβ(t) =
1

2N−1

∑′

{qi}=±1

〈ψ|eiĤ(q)te−iĤ(α)
jk (q)teiĤ(α,β)

jk,lm(q)te−iĤ(β)
lm (q)t|ψ〉, (5.7)

where
Ĥ(q) = −

∑
〈 jk〉

J jk

(
ĉ†j ĉk + H.c.

)
+

∑
j

h jq j(2ĉ†j ĉ j − 1), (5.8)

with q j = ±1 now as classical variables as in Eq. (2.22), see Section 2.2 for more details on
this transformation. The OTOC therefore takes the form of a “double Loschmidt echo” for
free-fermions, averaged over binary disorder, and we compute the correlators appearing in
this sum using determinants of matrices, as explained in Appendix B.

5.2 Results

Here we consider the numerical data for these OTOCs of the gauge field. All results
below will be for N = 60 sites with open boundary conditions, where we fix 〈 jk〉 to be the
central bond and vary 〈lm〉. Both Cαβ(t) and Fαβ(t) are implicit functions of the separation
between these two bonds.

5.2.1 Short-Time Behaviour

First, we consider the short-time behaviour of the OTOCs. In all cases we observe
power-law growth from zero, as shown for a particular correlator in Fig. 5.1. This is
consistent with the analysis in Refs. [122, 128]. This power-law behaviour can be extracted
from the Baker-Cambpell-Haussdorf formula for the time evolution of the operators,
namely

σ̂α
jk(t) =

∞∑
n=0

(it)n

n!
[Ĥ, σ̂α

jk]n, (5.9)
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Figure 5.1: Short-time behaviour of the OTOCs on a log-log scale where r is the separation
between spins in the OTOC. Data shown is for Cxx(t) with h = 0.2J, but we see similar
initial power-law growth for all the OTOCs that we consider. The dashed lines indicate
fits to the short-time asymptotic behaviour with the form ∼ (Jt)2r+2.

where [A, B]n =
[
A, [A, B]n−1

]
is the nested commutator. The leading time dependence

for the OTOC can then be seen to be ∼ t2n/(n!)2, where n is the smallest value for which[
[Ĥ, σ̂α

jk]n, σ̂
β
lm

]
, 0. Since Ĥ is a local Hamiltonian, the operator [Ĥ, σ̂α

jk]n must have
finite support proportional to n, and therefore the lowest-order contribution comes when n

is proportional to the separation between bonds 〈 jk〉 and 〈lm〉. This analysis agrees with
the short-time behaviour that we observe, see Fig. 5.1. Ref. [122] suggests that these
arguments hold for any OTOCs of local operators with local Hamiltonian evolution.

5.2.2 Spreading of Correlations

In Figs. 5.2–5.4 we consider the spreading of correlations in the four distinct OTOCs for
theσ operators, starting with Cxx(t) in Fig. 5.2. For small h = 0.2J, shown in Fig. 5.2(a), we
see a linear light cone for the correlations at short times, which saturates the Lieb-Robinson
bound (5.2) with velocity v = 2J. At longer times we reach a stationary distribution of
spatial correlations, which has an oscillatory structure. This structure is due to our choice
of Fermi-sea initial state, which has long-range correlations and the period of oscillations
is set by the Fermi-wavelength at half filling. This pattern was also seen in Fig. 3.4. For
larger h = 0.8J, the initial linear spreading is very quickly halted and we have only short
ranged correlations at long times, see Fig. 5.2(b). The inset shows the spatial distribution
of the correlations at long times, which decay exponentially with separation. These short
range correlations were also observed for OTOCs in an Anderson localized system in
Ref. [134].

Next we look at the Czz(t) correlator for h = 0.8J in Fig. 5.3. In particular we observe
logarithmic spreading of correlations, which contrasts Cxx(t) and can be seen in Fig. 5.3(a),



5.2. Results 84

-20 -10 0 10 20
separation

100

102

104

106

108

Jt

0

0.2

0.4

0.6

0.8

1

1.2

vLR = 2J

(a)

-20 -10 0 10 20
separation

100

102

104

106

108

Jt

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-20 0 20
separation

10-2

10-1

100

C
xx

(J
t=

10
9 )

(b)

Figure 5.2: Correlation spreading in Cxx(t) starting from a z-polarized spin state and fermions in a
half-filled Fermi-sea. (a) Data for h = 0.2J. Dashed line indicates the linear light-cone
with Lieb-Robinson velocity vLR = 2J (note the logarithmic time scale). (b) Results for
h = 0.8J. (inset) Long time spatial distribution of correlation on a log scale showing
exponential tails. Data is obtained by averaging over 4000 randomly sampled charge
configurations.

which has linear contours on a logarithmic scale. Note that for h = 0.8J the localization
length for the fermions is λ ≈ 2.15, which is much less than the system size and the scale
of correlation spreading. This behaviour is similar to that observed in Ref. [107], where
the authors consider Loschmidt echoes in a localized system. The basic argument that
they use is that due to the localized nature of the eigenstates, a local perturbation to the
Hamiltonian results in modifications of the eigenstates/energies that are exponentially
small in the distance from the quench. This in turn leads to a logarithmic spreading of
correlations. However, the first order perturbative corrections to the energies that are used
in Ref. [107] are cancelled in our double Loschmidt echo, and we leave a more careful
higher-order analysis for future work.

The analysis in Ref. [107] reveals that a Loschmidt echo in a localized system should
decay with a power-law, which is consistent with our results in Fig. 5.3(b) for the OTOC.
Furthermore, in the context of the transverse field Ising model, long-time power-law
behaviour was also observed [122]. Here we also see that the exponent for the power-law
decay is dependent on the separation. Decay that was dependent on the separation between
operators was also observed in Ref. [122] but only when the OTOC contained a mixture of
local and non-local operators.

Next we consider the two inequivalent OTOCs between different types of Pauli oper-
ators σ̂z and σ̂x, namely Czx(t) and Cxz(t). Note that in our definition, the first subscript
corresponds to the fixed bond which is measured at time t, whereas the second subscript is
the bond that is varied and measured at time t = 0.
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Figure 5.3: (a) Data for Czz(t) for h = 0.8J computed averaging over 4000 randomly sampled
charge configurations. (b) Long-time behaviour of Re[Fzz(t)], where r is the separation
between spins in the OTOC.
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Figure 5.4: Correlation spreading with h = 0.8J for: (a) Czx(t); (b) Cxz(t). Data is computed using
the determinant method averaged over 4000 randomly sampled charge configurations,
see text for more details.

For Czx(t), shown in Fig. 5.4(a), we see evidence of localization behaviour for short
separations signified by the approximate time independence of the contours. However,
for larger separations we do see additional spreading of correlations, and this spreading
appears to be sub-logarithmic on these time scales. We also see oscillatory behaviour that
is not seen in the other correlators, except in Fig. 5.2(a), and we suggest this is due to the
correlations in the initial state. In Fig. 5.4(b) we show data for Cxz(t), which also shows a
combination of localized behaviour at short separations and spreading of correlations at
larger separations. Unlike Czx(t), however, the spreading appears to be logarithmic and we
do not observe oscillations.

Combined, these results show the difference in the spreading of the operators σ̂z(t) and
σ̂x(t), both of which display signatures of the localized fermions. Although we observe
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the relaxation of magnetization and correlations for σ̂z in Fig. 3.5, the spin subsystem
clearly exhibits non-thermal behaviour. We observe a wide range of phenomenology which
illustrates the non-trivial dynamics of our model, despite the mapping to free fermions.

5.3 Discussion

We have explored the behaviour of the four distinct OTOCs for the gauge field in
our model, where we revealed a rich phenomenology. In our results we do not see the
exponential growth of the OTOC that has been attributed to chaotic behaviour. Instead we
find power-law growth consistent with that found for the transverse-field Ising model [122]
and Luttinger-liquids [128]. Through the mapping to free fermions we were able to
perform large-scale numerical simulations, which revealed correlation spreading that was
logarithmic or sub-logarithmic, and in some cases found the complete lack of correlation
spreading, as seen in Ref. [134]. The additional spreading of correlations is due to the
disorder-averaged double Loschmidt echo form of the correlator in terms of free-fermions,
in contrast to the standard commutators of fermion creation/annhilation operators [121,
133, 134]. Much of the behaviour that we observe is similar to that in Ref. [107] for the
standard Loschmidt in a disordered system. Extending the perturbative argument therein
may provide an analytic handle on the OTOCs that we have considered, but this is left for
future work.

Our model provides an ideal setting for further study of OTOCs. Due to the mapping
to free fermions we are able to access large systems in numerical simulations, which can
also be performed in the case of thermal or infinite temperature expectation values. We
leave a full investigation of the initial state and temperature dependence of the OTOC for
future work. Away from this free-fermion limit we can make connection to the physics of
MBL, spin confinement, the Falicov-Kimball model and the Hubbard model, as discussed
in previous chapters. Unfortunately, in these cases we are faced with severe limitations on
numerically-accessible system sizes and time scales. Excitingly, there is also the prospect
of simulating OTOCs in experiments [135, 136] and we contribute a proposal for an
experimental protocol in Chapter 7.



6
Interactions

Our model can be modified in a variety of ways to include additional interactions that
take it away from the free fermion limit discussed in previous chapters. Here we consider
a subset of such extensions, focussing on the 1D case because of numerical limitations.
Terms that can be added to the Hamiltonian (2.1) fall into two classes depending on whether
they give dynamics to conserved charges. Away from the free fermion limit it is not possible
to use determinant methods, and instead we have to resort to exact diagonalization and
Krylov subspace methods to calculate the time evolution, see Appendix C.

6.1 Conserved Charges: Many-Body Localization

Let us first consider those additional terms in the Hamiltonian which commute with
the charges q̂ j. The conservation of these charges means that they still play the role of
an effective binary potential for the fermions and we can still make a direct connection
to localization physics. Such terms include fermion density-density interactions, and
longitudinal field terms,

∆
∑
〈 jk〉

n̂ jn̂k, and Bx

∑
j

σ̂x
jk, (6.1)

respectively, where n̂ j = f̂ †j f̂ j. The fact that these commute with the charges q̂ j =

σ̂x
j−1, jσ̂

x
j, j+1(−1)n̂ j follows from the commutation relations [σ̂x

j , σ̂
x
k] = 0 and [n̂ j, n̂k] = 0, for

all j and k.

6.1.1 XXZ Spin Chain

First, we consider adding nearest-neighbour density-density interactions between the
fermions. Up to constant terms, the Hamiltonian can be written as

Ĥ = −J
∑
〈 jk〉

σ̂z
jk f̂ †j f̂k − h

∑
j

σ̂x
j−1, jσ̂

x
j, j+1 + ∆

∑
j

(2n̂ j − 1)(2n̂ j+1 − 1). (6.2)

87
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Figure 6.1: Quantum quench from an initial charge density wave state for h/J = 20. (a) Density
imbalance ∆ρ(t) ∝

∑
j |〈0|n̂ j(t)−n̂ j+1(t)|0〉| and the time-averaged value of 1

t

∫ t
0 dτ∆ρ(τ)

(dashed lines) after the same quench. (b) Von Neumann entanglement entropy com-
puted using ED for N = 12 sites (thin, light) for various values of ∆ shown on a
semi-log scale. The spatial bipartition is taken along the central bond. (inset) The
same data on a linear scale for ∆/J = 0, 0.01. Dashed lines show fitted linear and
logarithmic curves.

Importantly, these density interactions also commute with the plaquette operators B̂p which
means that the duality mapping of the spins (2.5) is still valid. Under the transformation to
c-fermions and charges, the first two terms transform as before and the fermion interactions
have the same form since f̂ †j f̂ j ≡ ĉ†j ĉ j. The Hamiltonian in the dual language then reads

Ĥ = −J
∑

j

(
ĉ†j ĉ j+1 + H.c

)
+ h

∑
j

q̂ j(2n̂ j − 1) + ∆
∑

j

(2n̂ j − 1)(2n̂ j+1 − 1). (6.3)

Note that this Hamiltonian is of exactly the same form as the model for many-body local-
ization presented in Eq. (1.24), with the exception that the potential is here determined by
the conserved charges. We can then use a Jordan-Wigner transformation (see Section 1.3.2)
to cast the Hamiltonian in the form

ĤXXZ = −J
∑

j

(Ŝ +
j Ŝ −j+1 + Ŝ −j Ŝ +

j+1) + h
∑

j

q̂ jŜ z
j + ∆

∑
j

Ŝ z
jŜ

z
j+1, (6.4)

which is an XXZ Hamiltonian describing a spin chain with a binary potential set by the
charge configuration {q j} = ±1. This XXZ Hamiltonian with quenched disorder serves as
one of the paradigmatic models of MBL. Although in the context of MBL this model is
usually studied with uniformly sampled disorder [47, 48], it has also been studied in the
case of binary disorder [137, 138]. Here we observe the behaviour usually found in MBL
phases despite the Hamiltonian (6.2) being disorder-free, as are the initial states that we
consider.

Let us consider the charge density wave initial state which we considered in Section 3.1,
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see Fig. 6.1(a). We find that, as in the non-interacting case, the density imbalance ∆ρ(t)
saturates at a non-zero value indicating the persistent memory of the initial state due to
localization. For small interactions, ∆ = 0.1J, the asymptotic value is close to the value
found in the non-interacting case. As the interaction strength is increased it also acts to
stabilise the charge density wave and leads to an increase of the asymptotic value, as can
already be seen for ∆ = 0.3J. We also observe that the interactions have the effect of
damping the fluctuations around this asymptotic value, which is evident over the time
scales shown in Fig. 6.1(a).
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Figure 6.2: Comparison of entanglement using ED with that obtained using matrix product state
methods, with additional density interactions ∆

∑
〈 jk〉 n̂ jn̂k. The ED results are for a

chain with N = 12 and the matrix product state results for N = 20. Inset shows the
same data on a logarithmic scale.

Next we can consider the von Neumann entanglement entropy, shown in Fig. 6.1(b).
Here we see a qualitative change (compared to the non-interacting case) in the entanglement
entropy growth following the initial area-law plateau. While in the non-interacting case we
have linear growth followed by saturation, in the presence of density-density interactions we
observe earlier but slower logarithmic growth, as shown by the dashed lines in Fig. 6.1(b),
and in the inset. This logarithmic behaviour, which sets in at times ∼ ∆/J, is consistent
with the phenomenology of MBL, whereas the linear growth begins at times ∼ (h/J)2. We
also used a matrix product state numerical method (using iTensor [139]) to compute the
entanglement for a system of N = 20 sites, see Fig. 6.2. Due to the large bond dimension
needed, we could not go to long times but we observed the logarithmic growth over the
time scales that we could access and found agreement with the ED results. This confirms
that during this growth the entanglement entropy is independent of system size.
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6.1.2 Longitudinal Magnetic Field

Let us next consider another term that can be added to the Hamiltonian which commutes
with the charges, namely the longitudinal field. Unfortunately, this term does not commute
with plaquette operators B̂p and thus the duality mapping (2.5) is no longer applicable.
However, we still have the conserved charges q̂ j = σ̂x

j−1, jσ̂
x
j, j+1(−1)n̂ j . In the original spin

picture the effect of this term in the Hamiltonian is to confine spin excitations [140]. To get
a better idea of what this term looks like in terms of fermions and charges we can consider
the recursion relation

σ̂x
j, j+1 = σ̂x

j−1, jq̂ j(−1)n̂ j , (6.5)

which follows from the form of the conserved charges. For a 1D chain with open boundary
conditions we can then write∑

j

σ̂x
j, j+1 = σ̂x

1,2

∑
j

∏
i< j

q̂i+1(1 − 2n̂i+1), (6.6)

that is, the longitudinal field results in effective long range density interactions for the
fermions. Note that the presence of these long range interactions is related to the fact that∑
〈 jk〉 σ̂

x
jk is analogous to E2 in QED, which in the discrete theory leads to the confinement

of charges. Whereas, the Ising coupling
∑

j σ̂
x
j−1, jσ̂

x
j, j+1 corresponds to ∇·E and the charges

are deconfined.
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Figure 6.3: (a) Entanglement entropy after a quantum quench for various values of the longitudinal
field Bx shown on a semi-log scale. A window of the same data for Bx/J = 0.2, 0.5
is given in the inset. Dashed lines correspond to log(t) and log(log(t)) behaviour. (b)
Density imbalance after a quench from a charge density wave. Results obtained using
ED for N = 12 sites.

In Fig. 6.3(a) we present the results for the entanglement entropy with the Hamiltonian
having a longitudinal field term whose strength is controlled by Bx. The results show a rich
behaviour. In particular one can notice two new qualitative features. For small Bx/J = 0.2,
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we observe logarithmic entanglement growth at a time scale set by ∼ Bx/J similar to
the MBL behaviour observed above. However, for larger Bx/J = 0.5 we find a slower
growth, which can be fitted by log(log(t)) as shown in the inset. Similar sub-logarithmic
growth was observed in Ref. [103] where they consider the disorder-free mechanism for
localization in the U(1) lattice Schwinger model. Furthermore, for small h the interactions
generate additional entanglement compared to the non-interacting results, whereas for
larger Bx the entanglement is reduced. Looking at the density imbalance ∆ρ(t) after a
quench from a charge density wave, shown in Fig. 6.3(b), we again see that interactions
have a damping effect on the fluctuations and that a strong enough field stabilises the
charge density wave.

6.2 Dynamical Charges: Quasi-MBL

In the second category, i.e., those terms which do not commute with charges and
generate their dynamics, we consider three types of terms

Bz

∑
j

σ̂z
j, j+1, ε

∑
〈i j〉

f̂ †i f̂ j, hz

∑
j

σ̂z
j−1, jσ̂

z
j, j+1. (6.7)

The localization behaviour studied in previous chapters relied on the presence of static
charges q̂ j, which act as an effective disorder potential. It is therefore a natural question to
ask what happens when these charges have dynamics.
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Figure 6.4: Density imbalance after a quantum quench from a CDW with dynamical charges. We
study a system with N = 10 sites and periodic boundary conditions for h = J. The light
curves correspond to the imbalance ∆ρ(t) and the dark thick lines are the time averaged
value 1

t

∫ t
0 dτ∆ρ(τ). (a) With an additional transverse field Bz

∑
i σ̂

z
i,i+1. (b) Additional

fermion hopping ε
∑
〈i j〉 f̂ †i f̂ j. Dynamics is computed using Krylov subspace methods,

see Appendix C.

Fig. 6.4 shows the effect of these additional interactions on the density imbalance
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Figure 6.5: Finite size scaling of the asymptotic density imbalance in presence of additional Ising
coupling hz

∑
i σ̂

z
j−1, jσ̂

z
j, j+1. We use system sizes N = 6, 8, 10 with hz = 0.1J and

h = J. Light curves correspond to the density imbalance ∆ρ(t) and the dark and thick
curves show the time averaged value of 1

t

∫ t
0 dτ∆ρ(τ). See Appendix C for details of

the Krylov subspace numerical method used.

after a quench from the charge density wave initial state. Figs. 6.4(a-b) clearly show that
the introduction of Bz and ε leads to the decay of this imbalance, and ultimately ∆ρ(t)
vanishes. One can also see that the time scale at which the results significantly deviate from
the Bz = ε = 0 case is determined by B−1

z and ε−1 respectively. A qualitative difference
between these two terms is that the fermion hopping ε to lowest order modifies J. This
effect can be seen as an increase in the frequency of oscillations at ε = 0.1. Beyond this
point, there are only quantitative differences between the two cases, and the time averaged
values look similar to the eye.

A different phenomenology is observed in the case of the z-Ising coupling hz, shown
in Fig. 6.5(a). In this case there is little appreciable deviation in the time averaged value
for hz/J = 0.001, 0.01, other than the damping of the oscillations. When the coupling is
increased to hz = 0.1J we finally see decay of the imbalance, but it does not convincingly
vanish. This behaviour can be understood by considering the (anti-)commutation relations
of σ̂z

j, j+1 with the charges q̂ j, which are

{σ̂z
j, j+1, q̂k} = 0, k = j, j + 1,

[σ̂z
j, j+1, q̂k] = 0, k , j, j + 1.

(6.8)

We can then make an identification with spin operators q̂ j → q̂z
k and σ̂z

j, j+1 → q̂x
j q̂

x
j+1, that

is, the transverse field induces an effective Ising coupling between the charges. For the
transverse field we are then precisely in the framework of heavy-light mixtures which
are generally believed to become ergodic at long-times. However, the Ising coupling
σ̂z

j−1, jσ̂
z
j, j+1 maps to the next-nearest neighbour Ising coupling q̂x

j−1q̂x
j+1 for the charges.



93

Since the lattice is bipartite, the charges interact separately on two disconnected sublattices.
Importantly, this means that the charges – and by extension the effective disorder potential
– on neighbouring sites do not become correlated through direct interaction but only
through higher order processes. This leads to increased persistence of localization seen in
Fig. 6.5(a).

Since we still have a heavy-light mixture with the addition of the z-Ising coupling, we
can ask whether this additional persistence survives in the thermodynamic limit at long
times, which would be in contrast with the standard phenomenology of these systems.
Fig. 6.5(b) shows the density imbalance as a function of the system size, which seems to
suggest that we also lose localization in this case in the thermodynamic limit, consistent
with Ref. [62].





7
Experimental Proposal

Quantum simulators are well-controlled quantum systems used for simulating theoreti-
cal quantum models and hold the promise of studying physics beyond what is accessible
by classical computation. Due to the remarkable recent experimental advances in the
control of isolated quantum systems, they are now becoming a reality, and provide a
powerful setting for studying strongly coupled quantum systems. These advances have
come from a wide range of settings including superconducting chips [83], photonic quan-
tum circuits [82], and notably trapped ions [86, 87]. In this Chapter we focus on optical
lattices in cold atom experiments like those recently used to study many-body localization
phenomena in a large two-dimensional lattice [80].

Until now the quantum simulation of LGT has been restricted to one dimensional
systems because of the strong demand on control (fidelity) and sheer number of qubits
required for these simulations. Here we show a minimal setting for simulating the dyamics
of a LGT in two dimensions. This model provides an ideal candidate for experimental
implementation for three main reasons. Firstly, it can be reduced to free fermions and thus
can be benchmarked against classical simulations. Via duality transformations we show
that dynamical correlation functions of the gauge fields can be directly mapped to local
impurity quenches of free fermionic systems. Secondly, even in the free fermion limit, it has
been shown to display novel phenomenology of disorder-free localization [101, 102, 141],
and can easily be perturbed away from this ‘integrable’ limit where classical computation
is no longer applicable. And thirdly, the measurement of correlators can be implemented
with current technology in cold atomic gases [80] and we provide simple protocols based
on Ramsey interferometry [142–145].

7.1 A Minimal Z2 Lattice Gauge Theory with Fermionic
Matter

A long time goal would be the efficient quantum simulation of interacting quantum
field theories, for example the paradigmatic Hamiltonian of Quantum Electrodynamics

95
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(QED) with minimally coupled fermion fields. Progress towards this goals is already being
made, for instance in the digital simulation of the lattice Schwinger model using 10 trapped
ions [87]. Here we present our model introduced in Eq. (2.1) as an example of a minimal
Z2 lattice gauge theory with fermionic matter. In the setting of cold atom experiments we
propose a protocol for measuring correlations of the gauge field in two-dimensions. The
setup is similar to those studied in the context of MBL [80] and is possible to implement
with current technology.

Let us re-introduce our model from a different perspective. We will start with a slightly
modified version of the U(1) LGT from Eq. (1.48)

Ĥ = −J
∑
〈xy〉

sxy(ψ̂†xÛxyψ̂y+H.c)+m
∑

x

sxψ̂
†
xψ̂x−h

∑
x

cos([∇·Ê]x)−K
∑

p

(Ûp+Û†p). (7.1)

Note the non-standard term cos([∇·Ê]x) which corresponds to (∇·Ê)2 in the continuum. The
discrete divergence for square or cubic lattices is defined to be [∇· Ê]x =

∑
µ(Êx,x+µ− Êx,x−µ),

where µ are lattice vectors. We will then consider only spinless fermions and so we can
drop the sign factors sxy and sx which encode the structure of spinor space. We also replace
the U(1) gauge degrees of freedom with Z2, that is, the gauge fields have eigenvalues
Ûxy = ±1 and Êx,y = 0, 1. Let us then slightly change notation with ψ̂x → f̂ j for the
spinless fermion operators, and Ûxy → σ̂z

jk and eiπÊx,y → σ̂x
jk for the gauge fields, where

now j, k refer to physical sites. The Hamiltonian then becomes

Ĥ = −J
∑
〈i j〉

σ̂z
i j f̂ †i f̂ j + m

∑
j

f̂ †j f̂ j − h
∑

i

Âi − K
∑

p

B̂p, (7.2)

with the star and plaquette operators

Âi =
∏
j∈+i

σ̂x
i j, B̂p =

∏
plaquette p

σ̂z
jk. (7.3)

where the gauge field operators σ̂z
jk and σ̂x

jk are the Pauli matrices and the star operator
corresponds to cos([∇· Ê] j). The conserved quantities are q̂ j = Â j(−1)n̂ j as before, which is
a generalized Gauss’ law, relating the divergence of the gauge field to the fermion density.
See Refs. [19, 70, 71, 93] for more details about this transition from continuum U(1) to
discrete Z2. In the following we will only consider quenches from an initial state |Ψ〉 that
is invariant under the action of plaquette operators, B̂p|Ψ〉 = |Ψ〉, and has fixed fermion
filling. Since the plaquette operators are conserved, the plaquette term is a constant under
the Hamiltonian evolution, as is the mass term due to the fixed fermion number, and so we
drop these terms from the Hamiltonian and return to the model in Eq. (2.1). As before the
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important step in our analysis is a duality transformation of the spins which is valid since
we have fixed B̂p = 1.

In this chapter we will concentrate on the dynamics of the gauge field in two dimensions.
The quantities that we will consider are the time-dependent correlation functions of the
gauge sector

〈σ̂z
jk(t)σ̂

z
lm(t)〉c = 〈σ̂z

jk(t)σ̂
z
lm(t)〉 − 〈σ̂z

jk(t)〉〈σ̂
z
lm(t)〉, (7.4)

after a quantum quench. In the following, we propose a protocol for their quantum
simulation in cold atom experiments and present some numerical results.

7.2 The Quench Protocol

We consider a quench protocol where the spins and fermions are prepared in a particular
initial state with respect to which we wish to calculate the dynamics of correlations of
the form in Eq. (7.4). We prepare our spins and fermions in an initial state which is a
tensor product of the z-polarized spin state and a fermion Slater determinant at half-filling
|Ψ〉 = | ↑↑ · · ·〉 ⊗ |ψ〉. The Slater determinant corresponds to fermions in a Fermi-sea
configuration for the Hamiltonian ĤFS = −

∑
〈i j〉 f̂ †i f̂ j. Importantly, these initial states take

the form
|Ψ〉 =

1
√

2N−1

∑′

{qi}=±1

|q1q2 · · · qN〉 ⊗ |ψ〉, (7.5)

in terms of the charges q̂ and the fermions ĉ, where we note that |ψ〉 f = |ψ〉c, see Section 2.1
for more details.

Let us now consider the calculation of the correlator. One of the simplest components
of the connected spin correlator that we wish to calculate is the average local magnetisation

〈σ̂z
jk(t)〉 = 〈Ψ|eiĤtτ̂x

j τ̂
x
ke−iĤt|Ψ〉. (7.6)

We can then work with the Hamiltonian for a fixed configuration of charges {qi} = ±1,
defined in Eq. (2.22) which we write down again for convenience

Ĥ(q) = −J
∑
〈 jk〉

ĉ†j ĉk + 2h
∑

j

q j(ĉ
†

j ĉ j − 1/2). (7.7)

In terms of these single particle Hamiltonians we can write the expectation value as

〈σ̂z
jk(t)〉 =

1
2N−1

∑′

{qi}=±1

〈ψ|eiĤ(q)te−iĤ jk(q)t|ψ〉, (7.8)
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as we also found earlier in Section 2.2. This is in the form of a disorder-averaged Loschmidt
echo, where the charges at site j, k are flipped between the forward and backward evolution.
Repeating the same arguments we find the expression

〈σ̂z
jk(t)σ̂

z
lm(t)〉 =

1
2N−1

∑′

{qi}=±1

〈ψ|eiĤ(q)te−iĤ jklm(q)t|ψ〉, (7.9)

for the two-point correlator, where we flip the four charges at sites j, k, l,m between forward
and backward evolution. The dynamical correlation function of the gauge field directly
corresponds to a local quantum quench of a (free) fermionic Hamiltonian. In the following
section we discuss how the latter can be efficiently simulated in a system of cold atoms.

Numerically, the free fermion Loschmidt echo appearing in these expressions can be
efficiently computed using determinants, see Appendix B. For our particular setup the
determinants in Eq. (7.8) take the form

〈ψ|eiĤ(q)te−iĤ jk(q)t|ψ〉 = det[V†U†(q)U jk(q)V], (7.10)

where U(q) = e−iH(q)t is the matrix exponential of the single-particle Hamiltonian matrix
H(q), and similarly for U jk(q) and H jk(q). V is a rectangular matrix which has as its
columns the N/2 filled single particle eigenvectors of the Hamiltonian ĤFS = −

∑
〈i j〉 f̂ †i f̂ j.

The determinants for the two-point correlators (7.9) take a similar form but with H jklm(q)
replacing H jk(q).

7.3 Quantum Simulation and Experimental Setup

The experimental setup that we have in mind is shown schematically in Fig. 7.1. We
consider a two dimensional square optical lattice half-filled with fermions which have a
nearest neighbour hopping amplitude between the sites of this lattice. The fermions are
then subjected to a disordered binary potential – similar to the quantum gas microscope set
up used in Ref. [80] – and we have two or four impurity spins which control the potential
flips for the Loschmidt echo we want to calculate [143–145]. These impurities can be
trapped in a potential with depth essentially independent to the one felt by the fermions. It
is possible for the fermions to interact strongly with one of the two spin states | ↑ j〉 and
weakly with the other | ↓ j〉, effectively turning on/off of the potential on that site.

As explained above, the correlators we wish to calculate correspond to Loschmidt
echoes. We implement these using Ramsey interferometry which we now briefly outline.
When the impurities are in the up state they interact with the host fermions which see
a local potential; in the down state they are effectively decoupled. Further details on
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Figure 7.1: Schematic of the experimental protocol. Fermions (purple balls) are trapped in an
optical lattice (blue surface) within which they are able to hop with Hamiltonian
Eq. (7.7) with a predetermined binary potential set by charges {qi} = ±1, except at
particular sites where we have impurity spins (yellow). These impurity spins are
localized in separately controlled, much deeper wells and play the role of the potential
on that site, with spin up being positive and spin down being negative. To calculate
physical spin-spin correlators we must control four impurity spins which are paired
along the bond associated with the physical spin. The correlators are then calculated
using the Loschmidt echo protocol defined in the main text which involves a π/2-
rotation and measurement of these spins.

experimental implementations can be found in [142–145]. Now we introduce a composite
two state system, called the control spin. For the average local magnetisation the impurity
control spin controls two neighbouring charges, i.e. |⇓ 〉 ↔ |↓ j↓k〉, |⇑ 〉 ↔ |↑ j↑k〉, and for
the two point correlator we have two pairs of impurity spins (as shown in Fig. 7.1), i.e.,
|⇓ 〉 ↔ |↓ j↓k↓l↓m〉, |⇑ 〉 ↔ |↑ j↑k↑l↑m〉. Using the average local magnetisation as an explicit
example, the procedure is given by the following steps:

Initialise – We initialise the state of the system so that the fermions are in the
half-filled ground state |ψ〉 of ĤFS = −

∑
〈i j〉 f̂ †i f̂ j and the control spin is in the state

|⇓ 〉.

π/2 pulse – At t = 0 we perform a π/2 pulse on the control spin such that the
state of the system becomes |Ψ〉 = |⇑〉+|⇓〉

√
2
|ψ〉.

Evolve – We let the system evolve, so that the state of the system at time t is
given by

|Ψ(t)〉 =
1
√

2

(
e−iĤ(q)t|⇓ 〉|ψ〉 + e−iĤ jk(q)t|⇑ 〉|ψ〉

)
. (7.11)

π/2 pulse – At time t we perform the reverse π/2 pulse on the control spin so that
we can measure in the natural basis of impurity spins.

Measure – We measure Ŝ z of the control spin. This measurement, once averaged
over experimental realisations gives

〈Ŝ z〉 = Re〈ψ|eiĤ(q)te−iĤ jk(q)t|ψ〉. (7.12)
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This full procedure must then be performed for and averaged over different disorder
realisations. For the two-point correlator the control spin corresponds to two pairs of
impurities which amounts to replacing Ĥ jk(q) by Ĥ jklm(q). These correlators are self-
averaging and therefore it is sufficient to average over a small random subset of disorder
realisations. Because the spin correlators must be real, this procedure amounts precisely to
the calculations we wish to perform in Eq. (7.4).

7.4 Numerical Results

We now show some numerical results for a 15×14 square lattice for h/J = 0.7, 2 where
we have averaged over 1000 random charge configurations. In Fig. 7.2 we show the time
dependence of the connected two-point spin correlator (7.4) as a function of separation
between the two spins along the horizontal and diagonal cuts indicated by dashed lines in
Fig. 7.3. Two main features common to all four plots are the linear light-cone spreading
and the eventual decay of all spatial correlations.

The spreading of correlations is linear in all cases and has velocity v = 2J, which is
the maximal group velocity of the fermions. This light-cone regime is short-lived due to
the overall decay of spatial correlations. A notable difference between the horizontal and
diagonal cuts is that the correlations between the neighbouring spins along the diagonal
grows immediately, leading to a slightly offset light-cone. This is because the spins belong
to the same star operators (see Fig. 7.3) and thus the correlations start growing from t = 0
with a rate set by h, as shown in Fig. 7.3(c). Different behaviour appears when we increase
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Figure 7.2: Absolute value of the connected spin-spin correlator |〈σ̂z
b(t)σ̂z

0(t)〉c| for different cuts
across the system as a function of time and separation between the spin σ̂z

b and the
central bond spin σ̂z

0. Results are shown for two different values of h/J = 0.7, 2. The
horizontal and diagonal cuts are those shown in Fig. 7.3. The blue dashed line indicates
the time slice that is shown in Fig. 7.3. The white dashed line indicates the propagation
of the light-cone with velocity v = 2J.
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h, where we see that the peaks in the correlations get much sharper along this light-cone
and then are followed by decaying oscillations. The spatial pattern of correlations also
changes as shown for a time slice Jt = 1.7 in Fig. 7.3. The extent of the spreading is
greater for lower h. Furthermore, for lower h we can clearly see the asymmetry due to
the fact that the central bond is vertical and we don’t have 90 degree rotational symmetry,
whereas for h = 2J this asymmetry seems to be smaller.

(a) Slice h = 0.7J (b) Slice h = 2J
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Figure 7.3: (a-b) Spatially resolved absolute value of the connected spin-spin correlator
|〈σ̂z

b(t)σ̂z
0(t)〉c|. The spin σ̂z

0 is on the central bond and σ̂z
b is taken on the other

bonds of the 15× 14 lattice for Jt = 1.7 and h/J = 0.7, 2. Superimposed in black is the
lattice on which the fermions sit. The dynamics along the horizontal and diagonal cuts
indicated by dashed lines are shown in Fig. 7.2. (c) Comparison of a nearest neighbour
correlator 〈σ̂z

b(t)σ̂z
0(t)〉c along the diagonal indicated in Fig. 7.3(a-b) with different

numbers of sampled disorder configurations for h = 2J. The blue curve corresponds to
averaging over 1000 random realisations, while the red corresponds to only 50. (Inset)
The absolute discrepency of 50 disorder realisations relative to 1000.

While for an exact simulation of the gauge field we would need to average over all
possible configurations of the potential due to the charges, we require only a tiny fraction
of this total number to obtain accurate results. For h = 0.7J, we see that the results have
the correct symmetry and there is very little random noise. On the other hand, for h = 2J

we see more non-physical correlations, most notably as a stripe in Figs. 7.2(c-d) at around
Jt = 1, which partly obscures the linear light-cone. We can also see a faint non-uniform
random background in Fig. 7.3(b). To remove these features we need to use a larger
number of configurations. Despite this, qualitative results can be obtained with as few as
50 disorder configurations, as shown in Fig. 7.3(c), for the nearest neighbour correlation
along the diagonal with h = 2J. With so few samples we are still able to extract qualitative
properties such as the immediate and sharp growth of correlations and the subsequent
decaying oscillations.
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7.5 Discussion

We have introduced a minimal two-dimensional Z2 lattice gauge theory coupled to
fermionic matter and outlined a protocol for measuring gauge field correlations accessible
with current experimental technology. In cold atom experiments using optical lattices,
such as in Ref. [80], large two-dimensional systems have already been simulated and
the protocol we propose should add minimal extra complication and allow access to the
dynamics of the LGT. Through a duality mapping to free-fermions we are able to perform
efficient numerical computations which allows benchmarking of the experiment. In the
results that we have presented in this Chapter we can see some clear dynamical features,
such as the light-cone spreading of correlations and their long-time decay.

There may be several practical issues regarding the difference between the experimental
setup and the ideal model that we present but which can easily be accounted for. These
include an effecitve smoothing of the binary potential, the shape of an additional trapping
potential of the fermions, or the incomplete decoupling of the impurity spins. All of these
can be included in the classical simulation and so it can be checked whether they introduce
any additional physics. Furthermore, it is possible numerically to do scaling in both system
size and the number of disorder realisations to pin down the accuracy that can be expected
in such simulations. The results presented here already show that we can expect qualitative
agreement.

While the dynamics of the model in Eq. (2.1) can be efficiently computed classically,
there are several generalisations that render it truly interacting. In particular, there are
terms that can be added to the Hamiltonian that commute with the charges which means
that the above mapping and experimental protocol are still valid. These were discussed in
Section 2.3 and in Chapter 6. These included the nearest-neighbour density interaction∑
〈 jk〉 n̂ jn̂k which has the same form before and after the duality mapping. With this term our

model maps to an XXZ spin chain with a binary disorder potential. Another generalisation
that can be considered is to add a spin degree freedom to the fermions which is related to a
slave-spin description of the Hubbard model [96, 97]. With the addition of interactions,
classical computation can only access system sizes that fall far short of the thermodynamic
limit in two dimensions. In experiment, however, these generalisations should not pose
significant extra difficultly. Our model therefore provides an ideal setting for simulating
LGT dynamics in two-dimensions beyond classical capabilities, with the bonus feature of
a well defined free-fermion limit which can be reliably benchmarked.
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7.5.1 Simulating Out-of-Time-Ordered Correlators

It may also be possible to extend the experimental protocol we have described for
simulating gauge field correlators to OTOCS, as discussed in Chapter 5. The main
measurement technique would similarly be based on Ramsey interferometry but there
would be additional technical difficulties associated with extra evolution backwards and
forwards in time. We will briefly consider this possibility in a bit more detail here.

Let us consider the OTOC Czz(t) for the z-component of spin defined as Czz(t) =

1 − Re Fzz(t), with
Fzz(t) = 〈Ψ|σ̂z

jk(t)σ̂
z
lmσ̂

z
jk(t)σ̂

z
lm|Ψ〉. (7.13)

Using the mapping to free-fermions, in Section 5.1.1 we re-expressed this correlator in
terms of a disorder-averaged double Loschmidt echo, namely

Fzz(t) =
1

2N−1

∑′

{qi}=±1

〈ψ|eiĤ(q)te−iĤ jk(q)teiĤ jklm(q)te−iĤlm(q)t|ψ〉, (7.14)

where Ĥ(q) is the free fermion Hamiltonian defined in Eqs. (2.22) and (7.7) with {qi}

treated as a configuration of classical variables. The subscripts in these Hamiltonians
indicate that the sign of the potential on that site is flipped relative to Ĥ(q).

The remaining free fermion correlators in Eq. (7.14) can be interpreted as the overlap
of the two states

eiĤ jk(q)te−iĤ(q)t|ψ〉, and eiĤ jklm(q)te−iĤlm(q)t|ψ〉. (7.15)

These states differ only in the sign of the potential on sites l and m in the time evolution.
This overlap can then be measured using a similar interferometry experiment as above with
spins on sites l and m which control the potential on those sites. The additional difficulty
to the standard spin correlators is that in both of these states we have evolved forwards and
then backwards again. We would therefore be required to first evolve with Hamiltonian
Ĥ(q) for a time t, then change the Hamiltonian Ĥ(q)→ −Ĥ jk(q), and then evolve with this
Hamiltonian for a further time t.

The main difficulties in the procedure lie with the process of changing Ĥ(q)→ −Ĥ jk(q),
which must be done on sufficiently short time scales without excessively disturbing the
system. The process consists of three main parts: (i) changing the sign of the potential
on all sites except j and k; (ii) flipping the control spins; (iii) changing the sign of the
hopping for the fermion. Changing the sign of the potential on each site is the easiest
of these three processes which can be implemented by modifying the laser configuration
for the quantum gas microscope setup [80]. Flipping the control spins can be done using
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techniques discussed in Ref. [146] for selectively addressing single spins. Changing the
sign of the hopping coefficients is then the remaining and possibly the most problematic
step. This can be achieved using Floquet engineering [147], the downside of which is that
it heats the system [148]. To establish experimental feasibility, the impact of all three of
these processes must be taken into account. We note that a similar interferometry proposal
using control spins was considered in Ref. [135]. Here the authors avoid flipping the
Hamiltonian by instead coupling two copies of the system to the same control spins. The
feasibility of our approach should therefore also be compared to this similar approach.

The possibility of simulating OTOCs for our model in this type of setup is exciting.
There currently exist very few measurements of OTOCs in experiments [136, 149]. With
this type of experiment it should be possible to access large systems in two dimensions.
Interacting generalization of our model can be easily accessed without significant extra ex-
perimental difficultly, and the free fermion limit allows for reliable and efficient numerical
benchmarking.

7.5.2 Other Experiments

While we have presented a protocol for a cold atomic gas experiment, it is not the only
setting in which our model could be simulated. For example the trapped ion experiment
that studied the lattice Schwinger model in Ref. [87] could also be used for our model
in 1D. The benefit of such experiments would be that the charges could be treated as
quantum variables, rather than classical ones that need averaging over. To make a more
direct connection to these experiments let us perform a Jordan-Wigner transformation on
our spinless fermions to cast the Hamiltonian (2.22) in the form of the spin Hamiltonian

Ĥ = −J
∑

j

(
σ̂x

jσ̂
x
j+1 + σ̂

y
jσ̂

y
j+1

)
+ 2h

∑
j

µ̂z
jσ̂

z
j, (7.16)

where we have also written q̂ j = µ̂z
j as a spin operator. Since this Hamiltonian only contains

two point interactions between spin operators, the Trotterized version of the time evolution
can be implemented in a similar trapped ion experiment, using local unitary operations
and the Mølmer-Sørensen gates, as explained in Section 1.6.2.

There are other settings that could potentially be used to simulate our model that
we have not yet fully investigated. One additional example that we will mention is
quantum simulation on superconducting chips [83]. The basic elements of these systems
are circuit-QED qubits, which are essentially LC-oscillators with Josephson junctions as
non-linear inductors. When connected in an array the system can be described by the
lattice Jaynes-Cummings model which is closely related to the Bose-Hubbard model.



8
Conclusions and Outlook

In this thesis we have addressed a long standing question about the dynamics of
quantum systems – is quenched disorder a necessary requirement for localization? We
have answered this question by introducing a family of translationally invariant models
of coupled fermions and spins with a disorder-free mechanism for localization. The
localization behaviour is analytically identified through an exact mapping to an Anderson
localization problem, and is corroborated by large-scale numerical simulations of global
quantum quenches.

We introduced the models in Chapter 2, where we gave details of the exact mapping to
free fermions. Importantly, our model has an extensive set of conserved charges associated
with the local Z2 gauge symmetry. These charges play the role of an effective binary
potential for our fermions and our quench protocol amounts to averaging over these
charge configurations. We also discussed the importance of the gauge symmetry and the
connection to lattice gauge theories, in particular to the toric code.

In Chapter 3 we performed an extensive numerical study of dynamical correlators
after a global quench. Due to the duality mapping we were able to access system sizes
much greater than the localization lengths using the free-fermion methods outlined in the
Appendices. This numerical investigation is most crisp in one dimension where we studied
quench protocols relevant to experiments, such as measuring remaining inhomogeneities
after starting with a domain wall or charge density wave initial fermion configuration.
The long-time distribution of densities and correlations are determined by the localization
length of the single particle problem, which we are able to read off from these dynamical
quantities.

We were also able to numerically study the dynamics of large systems in 2D, where
many of the localization signatures carry over from 1D. The higher-dimensionality, how-
ever, provides an interesting new connection to a quantum site percolation problem. This
connection is unique to the emergent binary disorder potential identified in our model, and
is revealed in the strong effective disorder limit. Our numerical simulations are suggestive
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of a delocalization-by-percolation transition in 2D. This further suggests the possibility of
two localization transitions in 3D, one due to disorder, and the other due to percolation.

In Chapter 4 we studied the entanglement in our system following a quantum quench.
Our investigation was motivated by the proposed quantum disentangled liquid (QDL) phase
of matter and the projective measures of entanglement that are used to define it. These
measures revealed a dependence on the choice of basis. They were unable to distinguish
the localized fermions from the spin subsystem, despite the clear localization behaviour for
the former that we are able to demonstrate using local observables. In the dual language,
however, the long time state does indicate a QDL and the measure reveals the localization
of the c-fermions. By deconstructing the definition of this entanglement measure we were
able to find distinguishing behaviour, but further investigation is needed to understand
this properly and to suggest a more conclusive signature of QDL. We also considered the
quantum mutual information which was able to distinguish the two subsystems, but we are
yet to provide a complete interpretation of these results.

To study information spreading we numerically simulated the out-of-time-ordered
correlators for our gauge field in Chapter 5, which revealed a rich phenomenology. All of
the OTOCs that we considered for the gauge field could be reduced to a “double Loschmidt
echo” for free fermions averaged over disorder. Notably, we found logarithmic spreading
of correlations, even when the localization length was an order of magnitude smaller than
the system size. Similar behaviour was found in Ref. [107] for the standard Loschmidt
echo in an Anderson localized system, but an extension of their arguments is left for future
work. In combination, these OTOCs demonstrate the complex dynamics in our system,
despite the mapping to free fermions.

Disorder-free localization in our models relies heavily on the presence of conserved
charges which play the role of an effective potential. Despite this, there are many terms
that we can add to the Hamiltonian that don’t give dynamics to the charges, but do render
the model interacting, which we consider in Chapter 6. In this setting we make a direct
connection to the phenomenology of many-body localization. One of the characteristic
properties of MBL is the logarithmic growth of entanglement following a quantum quench,
which we also observe in the interacting extensions of our model. By adding a term that
confines the spin excitations we also observe anomalously slow double logarithmic growth
of entanglement, but in all cases we observe the persistent memory of initial states due
to localization. We also numerically investigated the effect of perturbations that give
dynamics to the charges. In this case our model reduces to a heavy-light particle mixture
and we find a time scale after which localization is lost and the model becomes ergodic.

Finally, in Chapter 7 we propose an experiment to simulate the dynamics of the spin
degrees of freedom in a two dimensional version of our model. These spins correspond
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to a gauge field and our model provides a minimal example of Z2 lattice gauge theory
coupled to fermionic matter. We propose an experiment using cold atoms and a protocol
for measuring dynamical gauge field correlations that is feasible with current experimental
capabilities. We also extended this proposal to study out-of-time-ordered correlators, for
which we give some details in Section 7.5.1. The mapping to free-fermions can be used to
numerically benchmark the experiments but the additional interacting perturbations can
also be included in the experiments.

There are many open questions that we have not addressed in this thesis. We will
mention a few of them here that we have already alluded to in the main text. For example, in
Section 2.3.1 we introduced an extension to our model that is closely related to the Hubbard
model. We considered adding a second species of fermions to our model, corresponding to
the opposite spin orientation and the Hamiltonian takes the form

Ĥ = −J
∑

j, α=↑,↓

σ̂z
j, j+1

(
f̂ †j,α f̂ j+1,α + H.c.

)
− h

∑
j

σ̂x
j−1, jσ̂

x
j, j+1, (8.1)

which also has an extensive set of conserved quantities q̂ j = σ̂x
j−1, jσ̂

x
j, j+1(−1)n̂ j↑+n̂ j↓ . After a

duality transformation of the spins, the Hamiltonian can be rewritten as

Ĥ = −J
∑

j,α=↑,↓

(
ĉ†j,αĉ j+1,α + H.c.

)
− 4h

∑
j

q̂ jn̂ j,↑n̂ j,↓ + 2h
∑

j

q̂ j(n̂ j,↑ + n̂ j,↓) − h
∑

j

q̂ j, (8.2)

which is in the form of the Hubbard model with potential and interactions determined
by the conserved charges q. The Hubbard model is a paradigmatic model of strongly
correlated electrons and so this extension of our model is a particularly interesting direction
of future research. This model can also be simulated using an extension of the experimental
protocol that we have outlined in Chapter 7. A constrained version of this model was
considered in Refs. [96, 97] which allowed them to map out the ground state phase diagram
for the Hubbard model. We hope that the Hamiltonian (8.1) may also aid the understanding
of dynamics of the Hubbard model.

As a second example, the entanglement properties of our model also warrant further
investigation. Due to the difficulties of defining a meaningful measure of tripartite entan-
glement, our model provides an important example that can in principle be understood
in terms of free fermions. Even here it remains non-trivial to disentangle the degrees of
freedom and to discuss the entanglement of a particular subsystem. In this thesis we have
made some progress in uncovering the properties of the projective measure of entanglement
used to define the QDL, but our understanding is still incomplete. Further, we have shown
that the quantum mutual information may provide an alternative diagnosis for the QDL.
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We suggest that, for a more complete picture, other entanglement measures should also be
considered. An example that has different properties to both of those considered in this
thesis is the negativity [37, 118, 119], which can be used to distinguish the quantum and
thermal entanglement in mixed states. Our model should provide a controlled setting for
understanding the properties of this measure, which in turn may further shed light to the
complex entanglement between the different degrees of freedom in our model.

Although we have demonstrated for the first time that complete localization is possible
in a disorder-free model, it remains inconclusive whether a disorder-free mechanism for
localization can be robust to generic perturbations. We think some of the most promising
suggestions in this direction are quantum analogues of classically glassy models. In
Ref. [64], the authors consider the quantum East model and find behaviour consistent with
MBL for all times accessible by numerics. However, the authors were unable to conclude
that this behaviour continues indefinitely in the thermodynamic limit. Furthermore, since
these models rely on kinetic constraints, it is unclear to what extent these can be robust to
generic perturbations. These questions are further compounded by the evidence that MBL
induced by quenched disorder is also unstable in higher than one dimension [150, 151].

Finally, we are very excited about the prospect of realising a two-dimensional version
of our system in experiments. We feel that our proposal will push the boundaries for the
simulation of quantum lattice gauge theories, which are so far restricted to one dimension.
Furthermore, our free fermion mapping provides a well controlled numerically accessible
limit for benchmarking, about which the model can be perturbed. Particularly exciting is
the prospect of experimentally measuring out-of-time-ordered correlators in one and two
dimensions. Our proposed protocols are simple enough that they can be performed with
current experimental capabilities, and as we have already shown in this thesis, provide
access to non-trivial quantum dynamics, even in the free fermion limit.

While our understanding has advanced dramatically since the hypothesis of eigenstate
thermalization and establishing the existence of the many-body localized phase, it is clear
that there is still much left to understand about how quantum systems relax. In this thesis
we have unveiled the rich phenomenology of non-equilibrium dynamics in a minimal
setting. Thus, we have discovered a disorder-free mechanism of localization and drawn
connections to paradigmatic models of condensed matter physics. In the future, we expect
our tractable setting to shed further light on non-equilibrium quantum phenomena and the
physics of lattice gauge theories.



A
Free Fermion Correlators

In this appendix we will calculate the connected density-density correlator

Clm(t) = 〈ψ(t)| n̂ln̂m |ψ(t)〉c = 〈ψ(t)| n̂ln̂m |ψ(t)〉 − 〈ψ(t)| n̂l |ψ(t)〉〈ψ(t)| n̂m |ψ(t)〉, (A.1)

where evolution is determined by the free fermion Hamiltonian

Ĥ = −

N∑
j=1

(ĉ†j ĉ j+1 + ĉ†j+1ĉ j), (A.2)

with periodic boundary conditions. The initial state for the fermions that we consider is the
density-wave pattern |ψ(0)〉 = | · · · 101010 · · ·〉, with fermions on odd sites only. We choose
to work in the Heisenberg representation with stationary states and evolving operators. In
this representation the correlator is given by

Clm(t) = 〈ψ| n̂l(t)n̂m(t) |ψ〉c = 〈ψ| n̂l(t)n̂m(t) |ψ〉 − 〈ψ| n̂l(t) |ψ〉〈ψ| n̂m(t) |ψ〉, (A.3)

with |ψ〉 = |ψ(0)〉. In this appendix we derive the analytic results of Eqs. (1.4) and (1.7).

A.1 Diagonalising the Hamiltonian

Due to translation invariance of the Hamiltonian (A.2) it can be diagonalized by Fourier
transform, i.e.,

ĉ j =
1
√

N

∑
k

eik jĉk, ĉk =
1
√

N

∑
j

e−ik jĉ j, (A.4)

where the lattice momenta k = 2πn/N with n ∈ {0, . . . ,N −1}. We will distinguish between
the different operators on either side of the Fourier transform by only using k, q, k′, q′ to
label the lattice momenta. This transforms the Hamiltonian (A.2) to the diagonal form

Ĥ =
∑

k

εkĉ
†

k ĉk, (A.5)
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where εk = −2 cos k. The time dependence of the operators is found via the Heisenberg
equation of motion

d
dt

ĉk(t) = i[Ĥ, ĉk] = −iεkĉk(t) ⇒ ĉk(t) = e−iεktĉk, (A.6)

and the time dependence in the position representation is given by

ĉ j(t) =
1
√

N

∑
k

eik je−iεktĉk. (A.7)

We now proceed to calculate the average on-site density 〈ψ|n̂l(t)|ψ〉 and the density
correlator 〈ψ|n̂l(t)n̂m(t)|ψ〉.

A.2 Average Density Correlators

We begin by calculating the average density. We first rewrite the time dependence of
the density operator using Eq. (A.7), i.e.,

〈ψ|n̂l(t)|ψ〉 =
1
N

∑
k,k′

e−i(k−k′)lei(εk−εk′ )t〈ψ|ĉ†k ĉk′ |ψ〉. (A.8)

The remaining expectation value on the right-hand side no longer contains any time
dependence and we Fourier transform it to position space. Doing so we find

〈ψ|ĉ†k ĉk′ |ψ〉 =
1
N

∑
α,β

e−ikαe−ik′β〈ψ|ĉ†αĉβ|ψ〉. (A.9)

The inner products appearing on the right-hand side are now particularly simple, and are
equal to one when α = β and odd, and zero otherwise, due to the form of the initial state.
Thus, we have

〈ψ|ĉ†k ĉk′ |ψ〉 =
1
2

ei(k−k′) 1
N/2

N/2∑
α=1

e2i(k−k′)α =
1
2

(δk,k′ − δk,k′+π), (A.10)

where we note that N must be even for the charge density wave to be consistent with the
periodic boundary conditions. Plugging Eq. (A.10) into Eq. (A.8) we get the expression
for the density expectation value,

〈ψ|n̂l(t)|ψ〉 =
1
2
−

(−1)l

2N

∑
k

e2iεkt. (A.11)
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A.3 Density-Density Correlators

Next consider the density-density correlator. First we pull out the time dependence of
the operators, to get

〈ψ|n̂l(t)n̂m(t)|ψ〉 =
1

N2

∑
k,k′,q,q′

e−i(k−k′)l−i(q−q′)mei(εk−εk′ )t+i(εq−εq′ )t〈ψ|ĉ†k ĉk′ ĉ
†
qĉq′ |ψ〉. (A.12)

We then compute the remaining expectation values by moving to position space using the
Fourier transform, to get

〈ψ|ĉ†k ĉk′ ĉ
†
qĉq′ |ψ〉 =

1
N2

∑
α,β,γ,δ

eikαe−ik′βeiqγe−iq′δ〈ψ|ĉ†αĉβĉ
†
γĉδ|ψ〉. (A.13)

The remaining expectation value on the right-hand side is equal to one if δ = γ, α = β and
all indices are odd, or if α = δ odd and β = γ even, and zero otherwise. We can write this in
the shorthand notation 〈ψ|ĉ†αĉβĉ

†
γĉδ|ψ〉 = δα,β−oddδγ,δ−odd + δα,δ−oddδβ,γ−even. Equation (A.13)

can then be written as

1
N2

∑
α,β−odd

ei(k−k′)αei(q−q′)β +
1

N2

∑
α−odd

∑
β−even

ei(k−q′)αei(q−k′)β. (A.14)

These sums factorise and Eq. (A.14) is simplified by using the following identity:

∑
α−odd

eikα = e−ik
N/2∑
α=1

e2ikα = e−ik N
2

(δk,0 + δk,π) =
N
2

(δk,0 − δk,π). (A.15)

In total, the density correlator (A.12) is given by

〈ψ|n̂l(t)n̂m(t)|ψ〉 =
1

4N2

∑
k,k′,q,q′

e−i(k−k′)le−i(q−q′)mei(εk−εk′ )tei(εq−εq′ )t

×
[
(δk,k′ − δk,k′+π)(δq,q′ − δq,q′+π) + (δk,q′ − δk,q′+π)(δq,k′ + δq,k′+π)

]
.

(A.16)

Performing the sums over k′ and q′, the first half of the square bracket gives1
2
−

(−1)l

2N

∑
k

e2iεkt

 1
2
−

(−1)m

2N

∑
k

e2iεqt

 (A.17)

which cancels the term 〈Ψ|nl(t)|Ψ〉〈Ψ|nm(t)|Ψ〉 in the connected correlator (A.3). Expanding
the second half of the square bracket we get 4 terms which we will work through one-by-
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one. Firstly the δk,q′δq,k′ term gives

1
4N2

∣∣∣∣∣∣∣∑k

e−ik(l−m)

∣∣∣∣∣∣∣
2

=
1
4
δl,m. (A.18)

Next, we look at the δk,q′δq,k′+π term which gives

(−1)l

4N2

∑
k

e−ik(l−m)
∑

q

eiq(l−m)e2iεqt =
(−1)l

4N
δl,m

∑
q

e2iεqt, (A.19)

where we used the fact εk−π = −εk. Next, the −δk,q′+πδq,k′ term gives

−
(−1)m

4N2

∑
q

eiq(l−m)
∑

k

e−ik(l−m)e2iεkt = −
(−1)m

4N
δl,m

∑
k

e2iεkt, (A.20)

which cancels the previous term. Finally, we consider the −δk,q′+πδq,k′+π term which is

−
(−1)(l−m)

4

 1
N

∑
q

eiq(l−m)e−4i cos(q)t


2

(A.21)

Putting this all together we arrive at

〈ψ|n̂l(t)n̂m(t)|ψ〉c =
1
4
δl,m −

(−1)(l−m)

4

 1
N

∑
q

eiq(l−m)e−4i cos(q)t


2

. (A.22)

A.4 Thermodynamic Limit

Our expressions for the density average and density-density correlator involve sums of
the form

1
N

∑
k

eik(l−m)e−4i cos(k)t. (A.23)

It turns out that we can obtain an explicit closed form expression for these sums in
the thermodynamic limit N → ∞. The lattice momenta take values k = 2πn/N for
n ∈ {0, . . . ,N − 1}, and so we can rewrite the sum as

1
N

N−1∑
n=0

e2iπn/N(l−m)e−4i cos(2πn/N)t. (A.24)
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Taking the limit N → ∞ we get

2πn
N
→ x ∈ [0, 1), and

1
N

N−1∑
n=0

→
1

2π

∫ 2π

0
dx, (A.25)

and thus in this limit we find

1
N

∑
k

eik(l−m)e2iεkt −−−−→
N→∞

1
2π

∫ 2π

0
dx eix(l−m)−4i cos(x)t = i(l−m)Jl−m(4t), (A.26)

where Jα(x) are the Bessel functions of the first kind.
In this limit the average density (A.11) is therefore given by

〈ψ|n̂l(t)|ψ〉 =
1
2
−

(−1)l

2
J0(4t). (A.27)

This further means that the average density imbalance of Eq. (1.7) is given by

∆ρ(t) =
1
N

∑
j

|〈ψ|n̂ j(t) − n̂ j+1(t)|ψ〉| = |J0(4t)|, (A.28)

as shown in Fig. 1.1(b).
The connected density correlator of Eq. (1.4) is given by

〈Ψ|nl(t)nm(t)|Ψ〉c =
1
4
δl,m −

1
4

Jm−l(4t)2, (A.29)

and is shown in Fig. 1.1(a).





B
Calculation of Fermion Correlators us-
ing Determinants

In the case of a Hamiltonian that is bilinear in fermion operators, dynamic correlation
functions can be obtained in terms of determinants of single particle matrices. In the main
text we have shown that general correlators for our family of models can be written in terms
of purely fermionic correlators. In the following we explain how the calculation of these
correlators can be reduced to determinants, see e.g. [152]. A mapping to a free-fermion
Hamiltonian dramatically decreases the computational cost compared with ED which
allows us to reach much larger system sizes.

B.1 Derivation of the Determinant Expressions

Generically, we are interested in computing expressions of the form

〈α| exp{i
∑

i j

Ai jĉ
†

i ĉ j}|β〉, (B.1)

where A is a Hermitian matrix, and |α〉 = ĉ†mM · · · ĉ
†
m1 |vac〉 and |β〉 = ĉ†nM · · · ĉ

†
n1 |vac〉 are

fermionic Slater determinants, with M ≤ N, where N is the number of single particle
states. To proceed with the calculation of (B.1) we first use the unitarity of the exponential
operator ÛA ≡ exp{i

∑
i j Ai jĉ

†

i ĉ j} to rewrite (B.1) as

〈vac|ĉm1 · · · ĉmN ÛAĉ†nN
Û†A · · · ÛAĉ†n1

Û†AÛA|vac〉 = 〈vac|ĉm1 · · · ĉmN
ˆ̃c†nN
· · · ˆ̃c†n1

|vac〉, (B.2)

where ˆ̃c†j ≡ ÛAĉ†jÛ
†

A and we used ÛA|vac〉 = |vac〉. With the help of the Baker-Campbell-
Hausdorff formula we obtain

ˆ̃c†i =
∑

j

exp{iAT }i jĉ
†

j ≡
∑

j

UT
A,i jĉ

†

j , (B.3)
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distinguishing between the operator ÛA, and the matrix UA by a hat. Finally, we insert
(B.3) into (B.2), and use the fermionic anti-commutation relations to obtain

〈α|ÛA|β〉 = det D, D jk = [UA]n jmk , (B.4)

with j, k = 1, . . . ,M. In other words we select from the matrix UA those rows and columns
that correspond to occupied states in Slater determinants |β〉, |α〉. For example, if |α〉 = |β〉

is a 1D CDW with fermions on the odd sites, then the matrix D is made by taking only the
odd rows and columns of UA.

This derivation allows for further generalisations. For example, in the case of an
arbitrary number of unitary operators, using repeatedly the Baker-Campbell-Hausdorff
formula we obtain

〈α|ÛAÛB · · · |β〉 = det D, D jk = [UAUB · · · ]n jmk . (B.5)

This equation is suitable for evaluating correlators similar to the one in Eq. (2.23). In case
of the fermion correlators we need to consider expressions of the following form

Ckl = 〈α|ĉ†k exp{i
∑

i j

Ai jĉ
†

i ĉ j}ĉl|β〉. (B.6)

By commuting ĉ†k to the left, and ĉl to the right, we pick up factors (−1)N−p and (−1)N−q,
where mp = k and nq = l and arrive at

Ckl = (−1)p+q〈vac|ĉm1 · · · ĉmp−1 ĉmp+1 · · · ĉmN

× ÛAĉ†nN
· · · ĉ†nq+1

ĉ†nq−1
· · · ĉ†n1

|vac〉.
(B.7)

In this case we need to remove the q-row and the p-column from the matrix D before
taking the determinant and then multiply by the corresponding sign. Specifically we need
the q − p cofactor of D, where D is given in equation (B.4). The final expression of the
fermion correlator (B.6) now can be written in a simple form

Ckl = D−1
lk det D, (B.8)

where D jk = [UA]n jmk , j, k = 1, . . .M.

The free-fermion mapping presented in the main text allows one to extract dynamical
correlators for system sizes far beyond exact diagonalization. We can estimate the size
of the fermionic Hilbert space at half-filling as N−1/22N with the spin degrees of freedom
adding another factor of 2N . Instead of diagonalizing exponentially large matrices the
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identification of conserved charges allows us to sample uniformly from ∼ 2N determinants
of N × N matrices, corresponding to different charge configurations. Finally, finite-size
scaling, as well as exact results (up to N = 20), show that the required number of samples
for a given accuracy scales polynomially with N. Typically we sample over 103 − 104

charge configurations.

B.2 Examples

The expression for fermion correlators in terms of determinants that were derived in
the previous section are sufficient for us to calculate all correlators used in the main text.
In this section we will go through each of the correlators that we use and explicitly derive
their expression in terms of single-particle matrices and determinants. We will assume
the initial state (which is the same as the final) has definite site occupation numbers, i.e.
|ψ〉 = ĉ†nM · · · ĉn1 |vac〉, where M = N f the fermion filling, ni ∈ {1, . . .N}, N is the number
of sites, and ĉ†ni creates a fermion at site ni. For fixed particle number, the initial state can
always be considered as having definite occupation in some basis, and we will consider a
change of basis in Section B.3.

B.2.1 Spin Correlators and OTOCs

In the main text we consider the average magnetization of the z-component of spin,
the two-point equal time correlator for the z-component, and the out-of-time-ordered
correlators for all combinations of x and z Pauli operators. They can all be written as
averages over fermion correlators, and explicitly they take the form

〈Ψ|σ̂z
jk(t)|Ψ〉 =

1
2N−1

∑′

{qi}=±1

〈ψ|eiĤ(q)te−iĤ jk(q)t|ψ〉 (B.9a)

〈Ψ|σ̂z
jk(t)σ̂

z
lm(t)|Ψ〉 =

1
2N−1

∑′

{qi}=±1

〈ψ|eiĤ(q)te−iĤ jklm(q)t|ψ〉 (B.9b)

〈Ψ|σ̂α
jk(t)σ̂

β
lmσ̂

α
jk(t)σ̂

β
lm|Ψ〉 =

1
2N−1

∑′

{qi}=±1

〈ψ|eiĤ(q)te−iĤ(α)
jk (q)teiĤ(α,β)

jk,lm(q)te−iĤ(β)
lm (q)t|ψ〉, (B.9c)

where Ĥ(q) is defined in Eq. (2.22). The subscripts in Eqs. (B.9a-b) indicate that the
potential on the site is flipped, and for the OTOC in Eq. (B.9c) the subscripts indicate
flipped potentials if the indices correspond to σ̂z and a flipped hopping if they correspond
to σ̂x, see Eq. (5.6).

In all four cases the fermion correlators are of the form 〈ψ|eÂeB̂ · · · |ψ〉 = det[UAUB · · · ]nini ,
where UA = exp{A}, and A is the single particle matrix representation of the operator Â.
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The subscripts indicate that we take the determinant of sub-matrix [UAUB · · · ]nini , where ni

indices correspond to filled sites. We will consider the more general case in Section B.3.
Explicitly, this gives

〈ψ|eiĤ(q)te−iĤ jk(q)t|ψ〉 = det[U†HUH jk
]nini (B.10a)

〈ψ|eiĤ(q)te−iĤ jklm(q)t|ψ〉 = det[U†HUH jklm
]nini (B.10b)

〈ψ|eiĤ(q)te−iĤ(α)
jk (q)teiĤ(α,β)

jk,lm(q)te−iĤ(β)
lm (q)t|ψ〉 = det

[
U†HU

H(α)
jk

U†
H(α,β)

jk,lm

U
H(β)

lm

]
nini
, (B.10c)

where UH = exp{−iHt}, UH jk = exp{−iH jkt}, etc.

B.2.2 Average Density

When calculating fermion correlators we need to cast them in the form of Eq. (B.6).
Let us first consider the average on-site density

〈Ψ|n̂ j(t)|Ψ〉 =
1

2N−1

∑′

{qi}=±1

〈ψ|eiĤ(q)tĉ†j ĉ je
−iĤ(q)t|ψ〉, (B.11)

where in this case there are no flipped potentials between forwards and backwards evolution
since f̂ †j f̂ j = ĉ†j ĉ j. To get this in the correct form we need to commute ĉ†j to the left and ĉ j

to the right. Using the Baker-Campbell-Haussdorf formula we have that

Û†ĉ jÛ =
∑

k

U jkĉk, Û†ĉ†jÛ =
∑

k

U∗jkĉ
†

k , (B.12)

where Û = exp{−iĤt} and U = exp{−iHt}, where Ĥ is a Hamiltonian operator and H is
the corresponding single-particle matrix representation. Using these expressions we get

〈ψ|eiĤ(q)tĉ†j ĉ je
−iĤ(q)t|ψ〉 =

∑
lm

U∗jlU jm〈ψ|ĉ
†

l eiĤ(q)te−iĤ(q)tĉm|ψ〉. (B.13)

Using that Û†Û = 1, i.e., that Û is unitary we find that the remaining fermion correlator
takes the form 〈ψ|ĉ†l ĉm|ψ〉 = δlm

∑
q δlnq , where nq are the indices corresponding to filled

single particle basis states in |ψ〉. Finally, we find the neat form

〈ψ|eiĤ(q)tĉ†j ĉ je
−iĤ(q)t|ψ〉 =

∑
nq

U jnq
U†nq j, (B.14)

for the average density for each charge configuration. Note that we are not required to
compute a determinant and so density averages can be computed extremely efficiently.
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B.2.3 Density Correlators

Finally let us consider the density correlator

〈Ψ|n̂ j(t)n̂k(t)|Ψ〉 =
1

2N−1

∑′

{qi}=±1

〈ψ|eiĤ(q)tĉ†j ĉ jĉ
†

k ĉke
−iĤ(q)t|ψ〉. (B.15)

To proceed we first need to get all creation operators on the right, annihilation operators
on the left, and the unitary evolution operators in the middle. The first step is to use the
anti-commutation relations for the fermion operators to get

〈ψ|eiĤ(q)tĉ†j ĉ jĉ
†

k ĉke
−iĤ(q)t|ψ〉

= δ jk〈ψ|eiĤ(q)tĉ†j ĉ je
−iĤ(q)t|ψ〉 + (1 − δ jk)〈ψ|eiĤ(q)tĉ†j ĉ

†

k ĉkĉ je
−iĤ(q)t|ψ〉,

(B.16)

where the first term is the same as for the average density covered in the previous section,
and so we will focus on the second term. Again we make use of the Baker-Campbell-
Haussdorf formula to get

〈ψ|eiĤ(q)tĉ†j ĉ
†

k ĉkĉ je
−iĤ(q)t|ψ〉 =

∑
l,m,r,s

U∗jlU
∗
ksUkrU jm〈ψ|ĉ

†

l ĉ†s ĉrĉm|ψ〉, (B.17)

where the unitary operators have cancelled since Û†Û = 1. Finally, this fermion correlator
is zero unless l = m and s = r, or l = r and s = m. In both cases we need that all indices
correspond to filled states in the state |ψ〉. Furthermore, we pick up a minus sign in the
second case. This can be written as 〈ψ|ĉ†l ĉ†s ĉrĉm|ψ〉 = (δlmδrs − δlrδsm)

∑
nq,np

δlnqδsnp . In
total we find

〈ψ|eiĤ(q)tĉ†j ĉ
†

k ĉkĉ je
−iĤ(q)t|ψ〉 =

∑
nq,np

(
U jnq

U†nq jUknp
U†npk − U jnq

U†nqkUknp
U†np j

)
. (B.18)

The first term is simply the product of the average density on-sites j and k, whereas the
second contains the connected correlations between them. If we consider the connected
correlator, that is 〈n̂ j(t)n̂k(t)〉c = 〈n̂ j(t)n̂k(t)〉 − 〈n̂ j(t)〉〈n̂k(t)〉, then we find

〈Ψ|n̂ j(t)n̂k(t)|Ψ〉c =
1

2N−1

∑′

{qi}=±1


∑

nq,np

[
U jnq

U†nq j −
(
U jnq

U†nq j

)2
]
, j = k,∑

nq,np

[
−U jnq

U†nqkUknp
U†np j

]
, j , k,

(B.19)

where the matrices U have implicit dependence on the charge configuration {qi}.
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B.3 Change of Basis

In the previous section we assumed that the initial state had definite site occupation
numbers. More generally the initial state can have definite occupation in a different
single particle basis. For example, we consider in the main text the half-filled Fermi-sea
which corresponds to having a particle in each of the lowest single particle eigenstates of
ĤFS = −

∑
〈 jk〉 ĉ

†

j ĉk. To use the expressions from the previous sections we must perform a
change of basis.

Let c̃ j be the operators with respect to which the state |ψ〉 has definite occupation.
These are related to real space basis operators through

c̃ j =
∑

k

V†jkĉk, (B.20)

where the columns of the matrix V are the single particle eigenstates corresponding to the
state c̃ j|vac〉.

We can then use all of the above expressions for the correlators by using the matrix V to
transform to the correct basis. For example, in the density average we use the replacement

U jnq
→

∑
l

U jlVlnq
, U†nq j →

∑
l

V†nqlU
†

l j (B.21)

to get
〈ψ|eiĤ(q)tĉ†j ĉ je

−iĤ(q)t|ψ〉 =
∑
nq,l,m

U jlVlnq
V†nqmU†m j. (B.22)

As another example, the determinant for the average magnetization we need to perform a
similarity transformation U → V†UV to get

〈ψ|eiĤ(q)te−iĤ jk(q)t|ψ〉 = det[V†U†U jkV ]nini . (B.23)

In a similar way all correlators can be computed using single-particle matrix product and
determinants in the appropriate basis.



C
Krylov Subspace Decomposition

A major bottleneck for computing dynamics using exact diagonalization is the memory
requirement for storing many-body wave functions. Although this can be drastically
reduced if the model has conserved quantities, memory is still the limiting factor due to
exponential growth of the Hilbert space dimension. A way around this for computing
dynamical quantities is to use a smaller set of basis states to perform the time evolution
via short time steps. An optimal basis of states for this method can be identified with the
Krylov subspace generated by the Hamiltonian. In this Appendix we provide an outline of
this method.

Our goal is to efficiently calculate the time evolution of a quantum state |Ψ(t)〉 =

e−iĤt|Ψ〉 for which we use the Krylov subspace

KR = span{|Ψ〉, Ĥ|Ψ〉, Ĥ2|Ψ〉, . . . , ĤR−1|Ψ〉}, (C.1)

where Ĥ is our Hamiltonian, |Ψ〉 is an initial state, and R is the chosen number of states
in Krylov subspace. The idea is that at short enough times the state |Ψ(t)〉 will be pre-
dominantly in this subspace as can be seen from a Taylor expansion of the unitary time
evolution

|Ψ(t)〉 =

∞∑
n=0

(−iĤt)n

n!
|Ψ〉. (C.2)

Given a basis for the Krylov space {|vi〉}, the best approximation to the unitary time
evolution is given by e−iĤt with

Ĥ =
∑

i j

|vi〉〈vi|Ĥ|v j〉〈v j|. (C.3)

Therefore, we need to diagonalize a matrix of dimension R with matrix elements Hi j =

〈vi|Ĥ|v j〉. For a Hermitian operator the reduced Hamiltonian H takes a simpler tridiagonal
form which can be efficiently diagonalized.

One of the main practical considerations is the accuracy of the Krylov subspace method
and the orthogonality between Krylov basis vectors. Due to limited numerical precision, the
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computed Krylov eigenvectors will diverge from the true ones as more of them are included.
A way around this is to orthogonalize each new vector to the previous set. However, the
numerical errors which arise in this procedure make it also problematic, and eventually
orthogonality will be lost. To get around these issues, after roughly 25 applications of
matrix multiplications (the number is chosen empirically) we orthonormalize the entire set
of vectors using efficient QR decomposition before proceeding further.

The accuracy of this approximation can be kept below a prescribed threshold only
for a finite value of t which is set by the size of the basis dimension R. To study time
evolution on longer timescales we use a ‘restarted evolution method’ which computes
the time evolution up to a certain time δt and then repeats with the new starting state
|Ψ(t + δt)〉 until the desired time is reached. To check the accuracy of the method we then
perform the reverse time evolution and check the difference between the values on the
forward and backwards pass, which provides a good estimate of the deviation from the
true value [153, 154].

The method described in this Appendix is limited by the memory required to store
the Hamiltonian matrix H and the Krylov basis states. Since the Hamiltonian is typically
sparse and has O(αN) non-zero values, the memory requirement scales as O((R + α)N)
compared with O(N2) for exact diagonalization. In our calculations we take R = 50, and
δt = 1.2 and compute values for dt = 0.2 which we find gives acceptable errors of only 1-2
orders of magnitude above machine precision on the scale of the full time evolution. We
note that the computational cost also scales linearly with the number of time steps.



D
Kernel Polynomial Method

The Kernel Polynomial Method (KPM) of Ref. [104] is a efficient numerical technique
for computing spectral quantities. In this thesis it is used to compute the single-particle
density of states, where it allows us to access systems sizes much greater than possible
with more direct methods. In 1D we also use the density of states obtained by the method
to compute the energy resolved localization length, see Eq. (3.4).

The KPM expands a function with finite support into Chebyshev polynomials with
modifications to the coefficients to both damp Gibbs oscillations and to increase the
accuracy of the approximation. The benefit of the KPM is that calculations can be reduced
to repeated multiplications of the Hamiltonian matrix, which is very efficient for sparse
matrices. We will briefly describe the basic procedure, also see Ref. [104] for more details
and examples.

D.1 Chebyshev Expansion and Modified Moments

Chebyshev polynomials are defined on the interval [−1, 1] and form an orthogonal basis
with respect to inner products defined on this interval with a special weight function. For
Chebyshev polynomials of the first kind Tn(x) this weight function is w(x) = (π

√
1 − x2)−1,

so that the inner product reads,

〈 f |g〉1 =

∫ 1

−1
dx

f (x)g(x)

π
√

1 − x2
, 〈Tn|Tm〉1 =

1 + δn,0

2
δn,m. (D.1)

Chebyshev polynomials of the second kind Un(x) are defined with respect to the weight
function w(x) = π

√
1 − x2, i.e.

〈 f |g〉2 =

∫ 1

−1
dx π

√
1 − x2 f (x)g(x), 〈Un|Um〉2 =

π2

2
δn,m. (D.2)
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These polynomials obey the useful recursion relations

Tn+1(x) = 2xTn(x) − Tn−1(x),

Un+1(x) = 2xUn(x) − Un−1(x),
(D.3)

where T0(x) = 1, T1(x) = x and U0(x) = 1, U−1(x) = 0. We will also use the explicit form
Tn(x) = cos(n arccos(x)) for the polynomials of the first kind.

Given an orthogonal basis together with the inner product, we can expand a function
defined on the interval [−1, 1] as

f (x) = α0 + 2
∞∑

n=1

αnTn(x), (D.4)

where the moments, αn, are given by

αn = 〈 f |Tn〉1 =

∫ 1

−1
dx

f (x)Tn(x)

π
√

1 − x2
. (D.5)

However, the numerical integration in Eq. (D.5) is problematic due to the square root
appearing in the denominator. To get around this we instead define the functions

φn(x) =
Tn(x)

π
√

1 − x2
, (D.6)

which have the property 〈φn|φm〉2 = 〈Tn|Tm〉1, and thus we can instead write the expansion
as

f (x) =
1

π
√

1 − x2

µ0 + 2
∞∑

n=1

µnTn(x)

 , (D.7)

where the moments µn are given by

µn = 〈 f |φn〉2 =

∫ 1

−1
dx f (x)Tn(x). (D.8)

We now have to discretize the function argument and truncate the infinite sum. To
make use of the properties of Chebyshev functions we choose a set of K points, xk =

cos(π(k + 1/2)/K), for k = 0, . . . ,K − 1. With this choice the expansion takes the form

f (xk) ≈
1

π
√

1 − x2
k

µ0 + 2
M−1∑
n=1

µn cos
(
πn(k + 1/2)

K

) , (D.9)

where we truncated the sum, retaining the first M terms of the expansion. Here we have
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used the explicit closed form for the Chebyshev polynomials, Tn(x) = cos(n arccos(x)).

D.1.1 Rescaling

To use this expansion in terms of Chebyshev polynomials we must first rescale the
energies and the Hamiltonian so that the bandwidth lies in the interval [−1, 1]. We thus
define the rescaled Hamiltonian and energies

H̃ = (H − b)/a, Ẽ = (E − b)/a, (D.10)

where a = (Emax − Emin)/(2 − ε) and b = (Emax + Emin)/2. We include a small factor ε > 0
to avoid stability problems near ±1. In practice we can use analytically obtained bounds on
Emax/min to avoid computing them explicitly. One could also compute Emax/min for smaller
system sizes, add a margin of error and use these for the bounds.

D.1.2 Modified Moments: Gibbs Oscillations

Since we are expanding in periodic functions, the truncation of the sums leads to Gibbs
oscillations. If we keep the first M terms in the sum, then to remove these oscillations we
introduce a Kernel of order M

KM(x, y) = g0φ0(x)φ0(y) + 2
M−1∑
m=1

gmφm(x)φm(y), (D.11)

which we use to define

fKPM(x) =

∫ 1

−1
dy π

√
1 − y2KM(x, y) f (y). (D.12)

We can then determine the coefficients gm in the Kernel by demanding that fKPM is as close
as possible to the true function f (x). Closeness can be defined in a number of different
ways each of which leads to different set of coefficients. In our calculations we use the
Jackson Kernel† defined by coefficients

gm =
1

M + 1

[
(M − m + 1) cos

(
πm

M + 1

)
+ sin

(
πm

M + 1

)
cot

(
π

M + 1

) ]
. (D.13)

See Ref. [104] for the derivation of these coefficients and discussions of other choices of
kernel. Kernel coefficients are then used to modify the moments in our expansion, and we

†The Jackson Kernel is derived by trying to impose uniform convergence on a restricted interval
[−1 + ε, 1 − ε] for any ε, i.e., maxx∈(−1+ε,1−ε) | f (x) − fKPM(x)| → 0 as M → ∞, while also trying to optimize
the rate at which g j → 1 as M → ∞.
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arrive to the expression

f (xk) ≈
1

π
√

1 − x2
k

g0µ0 + 2
M−1∑
m=1

gmµm cos
(
πm(k + 1/2)

K

) . (D.14)

D.2 Calculation of the Moments

The moments that appear in our expansion are typically of the form 〈β|ATn(H)|α〉,
where H is the N × N Hamiltonian matrix, A is a matrix representing an operator and |α〉
and |β〉 are two states. We need to compute |αn〉 ≡ Tn(H)|α〉 which can be done using the
recursion relation

|αn+1〉 = 2H|αn〉 − |αn−1〉, (D.15)

with |α0〉 = |α〉 and |α1〉 = H|α〉. If β = α and A = I we can use a property of Chebyshev
polynomials, specifically 2Tm(x)Tn(x) = Tm+n(x) + Tm−n(x), to get

µ2n = 2〈αn|αn〉 − µ0, µ2n+1 = 〈αn+1|αn〉 − µ1, (D.16)

which reduces the number of matrix operations by approximately half.

We also need to compute moments that involve a trace over states. The latter can be
computed efficiently using

Tr[ATn(H)] ≈
1
R

R−1∑
n=1

〈r|ATn(H)|r〉, (D.17)

where N is the size of the matrix H, and R � N is the number of chosen random vectors
|r〉, which are defined through random variables εri

|r〉 =

N−1∑
i=0

εri|i〉, (D.18)

where |i〉 are the basis vectors with an identity in the ith entry. The random variables must
satisfy

εri = 0, εriεr′ j = δrr′δi j, (D.19)

that is, they are uncorrelated with zero mean, and have unit mean for their absolute value.
In all of our calculations we take R = 30.
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D.3 Density of States

As an example of the application of the method let us consider the calculation of the
density of states, which is defined as

g(E) =
1
N

N−1∑
k=0

δ(E − Ek). (D.20)

The coefficients of the Chebyshev expansion are then given by

µn =

∫ 1

−1
dE ρ(E)Tn(E) =

1
N

N−1∑
k=1

Tn(Ek)

=
1
N

N−1∑
k=1

〈k|Tn(H)|k〉

=
1
N

Tr[Tn(H)],

(D.21)

which we can compute using the statistical trace and the expectation values as explained
above.

In the main text we use the following parameters for the figures:
Fig. 3.6(a)← N = 106,M = 1500,K = 2M,R = 30;
Fig. 3.6(b)← N = 106,M = 7500,K = 3M,R = 30;
Fig. 3.10(a)← N = (103)2,M = 1500,K = 2M,R = 30;
Fig. 3.12(b)← N = (103)2,M = 2500,K = 2M,R = 30;
where N is the number of sites, M is the number of moments included in the expansion, K

is the number of discretization points, and R is the number of random states used in the
statistical trace.





E
Transfer Matrix Method

The transfer matrix method is an iterative numerical technique for calculating localiza-
tion lengths in disordered single-particle models. It uses a limiting result about random
matrices that allows us to compute Lyapunov exponents for energy eigenstates in the
thermodynamic limit. These Lyapunov exponents are related to the localization length and
quantify the exponential decay of the localized wavefunctions.

The application of the transfer matrix approach in the calculations of the localization
length proceeds by considering a system which is cut up into slices, with slices connected
via transfer matrices [49]. From these we can extract the eigenvalues of a limiting matrix
that gives the Lyapunov exponents for our system. For instance, consider a 1D chain with
the Hamiltonian

Ĥ = −J
∑

j

(ĉ†j ĉ j+1 + H.c) −
∑

j

hiĉ
†

j ĉ j. (E.1)

The action of this Hamiltonian on an eigenstate |ψ〉 =
∑

i ψi|i〉, where |i〉 is the state localized
on site i gives the relation

Eψi = −Jψi+1 − Jψi−1 − hiψi, (E.2)

where E is the eigenvalue of the state |ψ〉. This equation can be written in a compact form
by introducing a transfer matrix ψi+1

ψi

 =

 − 1
J (E + hi) −1

1 0

  ψi

ψi−1

 . (E.3)

In higher dimensions these equations have to be modified slightly, in particular we get

Eψi = −Jψi+1 − Jψi−1 − Hperpψi, (E.4)

where ψi is now a vector of the values of the wavefunction within the slice i, and Hperp is
the matrix representation of the Hamiltonian within the slice. The transfer matrix equation
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assumes the form  ψi+1

ψi

 =

 − 1
J (E + Hperp) −1

1 0

  ψi

ψi−1

 . (E.5)

Given the transfer matrix we can compute the product along a long chain of length L,

QL =

L∏
i=1

Ti, (E.6)

where Ti is the transfer matrix for slice i. Oseledec’s theorem states that there exists a
limiting matrix

Γ = lim
L→∞

(QLQ†L)1/2L, (E.7)

with eigenvalues exp(γi), where γi are the Lyapunov exponents of the matrix QL. The small-
est Lyapunov exponent describes the slowest growth of the wavefunction and corresponds
to the inverse of the localization length λ.

More intuitively, we can consider QL as the transfer matrix between the extreme ends
of the chain  ψL+1

ψL

 = QL

 ψ2

ψ1

 , (E.8)

so the eigenvalues of QL describe the growth of the wavefunction along the length of the
system. We can then take the smallest eigenvalue, q, of the matrix QL, and compute the
localization length via

λ =
L

log(q)
. (E.9)

The procedure of computing a matrix product of a large number of matrices is numer-
ically unstable since the matrix elements diverge or vanish exponentially. We therefore
must orthonormalize the product after a few steps. The numerical procedure is as follows:
we iteratively construct the product matrix Q by applying randomly generated transfer
matrices T . After the number of applications exceeds a predefined limit or the amplitude
of the elements of the matrix exceed a threshold, we store the logarithm of the eigenvalues
and orthonormalize the matrix Q, which can be done efficiently using QR-decomposition.
We continue applying T , storing eigenvalues and orthonormalizing until we have reached
the length of the chain L. See below a pseudo-code of the algorithm for computing the
localization length λ:
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Q← Id

l← 1
while l ≤ L do

count ← 1
while max(abs(Q)) ≤ theshold or count ≤ limit do

Initialise random T for slice
Q← T Q

l++
count++

end
b← eig(Q)
c← c + log(b)
Q← orthonormal(Q)

end
b← eig(Q)
c← c + log(b)
lambda← max(L/c)
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microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature
462, 74–77 (2009).

http://dx.doi.org/10.1080/14786435.2011.609152
http://dx.doi.org/10.1080/14786435.2011.609152
https://global.oup.com/academic/product/topological-aspects-of-condensed-matter-physics-9780198785781?cc=gb&lang=en&
https://global.oup.com/academic/product/topological-aspects-of-condensed-matter-physics-9780198785781?cc=gb&lang=en&
http://dx.doi.org/10.1002/andp.201300104
http://dx.doi.org/10.1088/0034-4885/79/1/014401
http://dx.doi.org/10.1103/PhysRevA.90.042305
http://dx.doi.org/ 10.1103/PhysRevD.11.395
http://dx.doi.org/ http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/ http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1063/1.1665530
http://dx.doi.org/ 10.1103/RevModPhys.51.659
http://dx.doi.org/ 10.1103/RevModPhys.51.659
http://dx.doi.org/ 10.1126/science.269.5221.198
http://dx.doi.org/ 10.1126/science.269.5221.198
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482


139

[80] J.-y. Choi, S. Hild, J. Zeiher, P. Schauss, A. Rubio-Abadal, T. Yefsah, V. Khe-
mani, D. A. Huse, I. Bloch, and C. Gross, “Exploring the many-body localization
transition in two dimensions,” Science (80-. ). 352, 1547–1552 (2016).

[81] R. P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys. 21, 467–
488 (1982).

[82] A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8,
285–291 (2012).
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