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Distributed Compressive Sensing in Networked
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Abstract—Compressive sensing (CS), as a new sens-
ing/sampling paradigm, facilitates signal acquisition by reducing
the number of samples required for reconstruction of the original
signal, and thus appears to be a promising technique for
applications where the sampling cost is high, e.g., the Nyquist
rate exceeds the current capabilities of analog-to-digital con-
verters (ADCs). Conventional CS, although effective for dealing
with one signal, only leverages the intra-signal correlation for
reconstruction. This paper develops a decentralized Bayesian
reconstruction algorithm for networked sensing systems to jointly
reconstruct multiple signals based on the distributed compressive
sensing (DCS) model that exploits both intra- and inter-signal
correlations. The proposed approach is able to address networked
sensing system applications with privacy concerns and/or for
a fusion-centre-free scenario, where centralized approaches fail.
Simulation results demonstrate that the proposed decentralized
approaches have good recovery performance and converge rea-
sonably quickly.

I. INTRODUCTION

RECENTLY developed compressed sensing (CS) theory
and principles [2], [3] enable sampling and processing

of analog signals at rates far below the Nyquist rate. Therefore,
it has been proposed for applications where the sampling
cost is high, e.g., wideband spectrum sensing for cognitive
radio [4], [5], multipath channel identification with a high time
resolution [6], super-resolution radar [7], imaging systems [8]–
[10], and air quality monitoring [11].

CS exploits the intra-signal correlation, i.e., the sparse
structure of a signal, to reconstruct the original signal from
a few random measurements. In addition to the intra-signal
correlation, signals in a network may have high spatial
correlation. Such spatial correlation, which represents inter-
signal correlation, has not been considered in the conventional
CS framework. In [12], Quer et al. propose to adaptive-
ly update the sparsifying basis to capture the spatial and
temporal characteristics of the network signal via principal
component analysis (PCA), and reconstruct the signal by CS
under this basis. Another widely used type of approach is
to jointly reconstruct of a group of signals to leverage inter-
signal correlation. For example, considering a cognitive radio
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sensor network application with CS measurements taken at
different positions, one could improve the spectrum detection
accuracy by jointly recovering all the nodes’ spectra. The
most straightforward way for modeling multiple measurement
vectors (MMVs) [13], [14] is to assume that all signals share
a common support, which is however too strict in many
applications. In [15] a method to statistically characterize
real world signals in space and time is provided. As an
extension of CS, distributed compressive sensing (DCS) is
proposed in [16], [17] to model the intra-signal and inter-
signal correlations. In this paper, we consider a particular
signal model, namely the Type-1 joint sparse model (JSM-1),
which is one of the three generative models for joint sparse
signals introduced in the context of DCS [16], [17]. This
DCS model involves a common component and an innovation
component for modelling the global factors and local factors
corresponding to distinct signals, respectively.

For the centralized approach to joint signal reconstruction in
DCS, all the data needs to be communicated to a fusion centre
(FC) for processing. However, this scheme has the following
drawbacks: i) the pressure on storage and computation load
at the FC tends to increase as the number of nodes grows;
ii) sensitive or private local sensor data is exposed to the
FC; iii) it cannot be applied in a fusion-centre-free scenario.
Decentralized processing in networked sensing systems avoids
these drawbacks, and thus is attractive for applications in-
volving sensitive data, those lacking a FC, or for a big data
scenario. While most CS reconstruction algorithms operate in
a centralized manner, some decentralized sparse reconstruction
algorithms [18], [19] have been proposed for CS applications
when a centralized approach is not possible or desirable. A
survey of the state-of-the-art in CS for distributed systems
is given in [20]. However, these decentralized algorithms are
designed for the CS rather than the DCS setting that involves
multiple distinct signals.

In this paper, a decentralized Bayesian algorithm is pro-
posed for joint reconstruction of multiple sensor signals which
follow the JSM-1 DCS model. In contrast to centralized
algorithms where CS measurements are reported to a FC
and the reconstruction is performed at the FC, the proposed
algorithm is performed at each node with some inter-node
communication. To achieve the goal of decentralized process-
ing, we first decouple the common component from innovation
components by applying variational Bayesian approximation.
Then we cast the decoupled reconstruction problem as a set
of decentralized problems with consensus constraints, where
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each node exchanges limited non-sensitive information with its
neighbors and recovers its own innovation component by using
local data. Therefore, in the proposed approach, the innovation
components, that reflect the intra-node correlations of different
nodes, and which can be considered as sensitive data are
not shared, and the common component, which reflects the
inter-node correlation, is jointly reconstructed. For example
consider a distributed air quality monitoring application that
runs on a peer-to-peer network of smartphones. In this case
the sensing cost is high, e.g., nondispersive infrared (NDIR)
or metal oxide based gas sensors consume energy several
orders of magnitude greater than that owing to inter-node
communication, consequently the energy consumption per
node can be reduced using the proposed distributed technique
while also maintaining privacy for the sensitive local data
at each device. Experimental results show that the proposed
decentralized algorithm permits a good reconstruction quality
in comparison to other existing approaches, and exhibits a
good convergence rate.

The rest of the paper is organized as follows: Section II
describes the background of CS and DCS. In Section III, we
develop variational Bayesian inference for JSM-1 DCS. In the
sequel, the proposed decentralized Bayesian DCS approach
is provided in Section IV. Numerical results are presented in
Section V, followed by conclusions in Section VI.

The following notation is used. Lower-case letters denote
numbers, boldface upper-case letters denote matrices, and
boldface lower-case letters denote column vectors. The super-
scripts (·)T , (·)−1 and (·)† denote the transpose, the inverse
and the pseudoinverse of a matrix, respectively. rank(X)
and |X| denotes the rank and the determinant of matrix X,
respectively. xi denotes the ith element of x and Xi,i denotes
the ith diagonal element of X. diagm(x) and diagv(X)
denote a diagonal matrix corresponding to the vector x and a
vector corresponding to the diagonal matrix X, respectively.
Ep(x)(·) denotes expectation with respect to p(x), i.e., the
distribution of x. N (x;µ,Σ) denotes that x follows the multi-
variate normal distribution with mean vector µ and covariance
matrix Σ. In denotes the n×n identity matrix. The ℓ0 norm,
ℓp norm (0 < p ≤ 1) and the ℓ2 norm of vectors, are denoted
by ∥ · ∥0, ∥ · ∥p and ∥ · ∥2, respectively. The Frobenius norm
of a matrix X is denoted by ∥X∥F .

II. BACKGROUND

In this section, we first briefly introduce the background of
CS and sparse Bayesian learning (SBL) [21], [22], which is
a centralized CS algorithm. Then the JSM-1 DCS model is
presented that is an extension of CS for joint reconstruction
of multiple signals with both sparse structures and inter-signal
correlation.

A. CS Model

For the CS data acquisition, a signal f ∈ Rn is measured
as

y = Φf + e, (1)

where y ∈ Rm is the measurement vector, Φ ∈ Rm×n

denotes the sensing matrix, and e ∈ Rm denotes the noise

term for the measuring process. It is assumed that f has a
sparse representation x ∈ Rn on some basis Ψ ∈ Rn×n, so
that f = Ψx. The basis can be a predefined one, e.g., a wavelet
transform or a Fourier transform, depending upon the signal
characteristics. The signal is said to be sparse over the basis
when ∥x∥0 = s ≪ n. Therefore, we can rewrite (1) by

y = Ax+ e, (2)

where A = ΦΨ ∈ Rm×n denotes the equivalent sensing
matrix.

The CS recovery procedure corresponds to the solution of
the optimization problem given by:

min
x

∥x∥0, s.t. ∥Ax− y∥2 ≤ ϵ, (3)

where ϵk > 0 is an estimate of the measurement noise level.
As solving (3) is NP-hard, the typical signal reconstruction
process behind conventional CS approaches involves solving
the following optimization problem:

min
x

1

2
∥Ax− y∥2 + λ∥x∥p, (4)

where 0 < p ≤ 1, and λ > 0 is a penalty parameter.
When p = 1, the problem in (4) becomes a convex problem,
which is often referred to as the least absolute shrinkage
and selection operator (LASSO). The ℓ1-type regularizer often
achieves suboptimal performance as it is a convex relaxation
of the ℓ0-type one, while the regularizer with p < 1, which
is non-convex but a closer approximation of sparsity, shows
superior performance [23], [24].

SBL formulates the CS problem from a Bayesian perspec-
tive, and its close relationship to a non-convex ℓp-norm (p < 1)
minimization problem is unveiled in [25], [26]. The SBL
framework considers a zero-mean Gaussian prior distribution

p(x;Γ) = N (x;0,Γ) (5)

where Γ ∈ Rn×n is a diagonal matrix composed of n
hyperparameters γi (i = 1, . . . , n). The rationale for the using
this prior to model sparse signals is provided in [21], [22],
[26]. With uniform hyperpriors p(γi) and p(σ2), the value of
these hyperparameters can be inferred by

max
Γ,σ2

log p(Γ, σ2|y) ∝ max
Γ,σ2

log p(y;Γ, σ2)

= max
Γ,σ2

log

∫
p(y|x;σ2)p(x;Γ)dx

∝ min
Γ,σ2

log |Σ|+ yTΣ−1y,

(6)

where Σ = σ2Im + AΓAT . In [21], the expectation-
maximization (EM) algorithm is employed to solve (6). Given
these hyperparameters, x can be inferred by maximizing the
posterior distribution

x = argmax
x

p(x|y;Γ, σ2)

= argmax
x

p(y|x;σ2)p(x;Γ)

= ΓATΣ−1y.

(7)

The effectiveness of SBL for solving sparse reconstruction in
comparison to many other algorithms has been demonstrated
in [22], [26].
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Fig. 1. A generic network structure.

B. DCS Model
We now consider a network with K nodes modeled by an

undirected graph G = (V, E), where V = {1, . . . ,K} is the
set of nodes and E ⊂ V × V is the set of edges that describe
the communication links among the nodes. Each node is able
to process locally stored data and exchange messages with its
neighbors. See Fig. 1 for an example graph.

Assume each node performs sampling based on the CS
principle, and the samples are corrupted by some noise. Then
we have

yk = Akxk + ek, (8)

where yk ∈ Rmk , Ak ∈ Rmk×n, xk ∈ Rn and ek ∈ Rmk

denote the measurement vector, the sensing matrix, the sparse
signal representation, and noise of node k, respectively.

Conventional CS only exploits the intra-signal correlation
that is reflected in the sparse signal structure, while DCS pro-
vides a means to further leverage the inter-signal correlation
and to jointly recover multiple signals. For the JSM-1 DCS
setting, the sparse signal representation xk (k = 1, . . . ,K)
can be decomposed as

xk = zc + zk, (9)

where zc ∈ Rn with ∥zc∥0 = sc ≪ n denotes the common
component of the sparse representation xk, which captures
the inter-signal correlation and is common to all signals, and
zk ∈ Rn (i = 1, . . . ,K) with ∥zk∥0 = sk ≪ n denotes the
innovations component of the sparse representation xk, which
captures the intra-signal correlation and is specific to the signal
k.

In [16], Baron et al. propose to jointly reconstruct multiple
signals with the JSM-1 DCS model by solving the following
optimization problem:

min
z̃

1

2
∥Az̃− ỹ∥2F + λ∥z̃∥1 (10)

where λ > 0, z̃ =
[
zTc zT1 . . . zTK

]T ∈ R(K+1)n is the ex-
tended signal vector, ỹ =

[
yT
1 . . . yT

K

]T ∈ R
∑K

k=1 mk is the
extended measurements vector and A ∈ R

∑K
k=1 mk×(K+1)n is

the extended sensing matrix given by:

A =

A1 A1 0 0 · · · 0
...

. . .
...

AK 0 0 0 · · · AK

 .

In [27], a Fréchet mean approach is proposed for joint recon-
struction of multiple correlated signals with a reduced compu-
tational complexity. Instead of solving (10) with concatenated

measurements ỹ, a crude estimate of the common component
is inferred directly from the measurements, and then those
signals are recovered one by one with the use of the estimate
of the common component. The Fréchet mean of K sparse
signals, i.e., z̃c ∈ Rn, can be obtained from the measurements
as follows:

z̃c = argmin
z̃c

K∑
k=1

λkd
2(Akz̃c,yk), (11)

where λk > 0 denotes the contribution weight of the kth signal
and d(Akx̃,yk) denotes the distance function between the
vector Akz̃c and yk. By using the Euclidean distance function,
the Fréchet mean is given by:

z̃c = (ÂT Â)−1ÂT ŷ, (12)

where the extended sensing matrix Â ∈ R(
∑K

k=1 mk)×n

and the extended measurement vector ŷ ∈ R
∑K

k=1 mk

are given by Â =
[√

λ1A
T
1 , · · · ,

√
λKAT

K

]T
and ŷ =[√

λ1y
T
1 , · · · ,

√
λKyT

K

]T
respectively.

III. VARIATIONAL BAYESIAN INFERENCE FOR DCS

In this section, we develop variational Bayesian inference
for solving the joint reconstruction problem for the JSM-1
DCS setting. This approach decouples the reconstruction of the
common component, that characterizes inter-node correlation,
from the innovation components, that represent intra-node
correlation, and thus facilitate our decentralized algorithm
design, which is presented in Section IV.

A. Variational Sparse Bayesian Inference

Akin to the SBL framework [21], we adopt zero-mean
Gaussian prior distributions for the common component and
innovation components, respectively, which are given as

p(zc;Γc) = N (zc;0,Γc) (13)

and
p(zk;Γk) = N (zk;0,Γk), (14)

where Γc ∈ Rn×n is a diagonal matrix with hyperparameters
γc,i (i = 1, . . . , n), and Γk ∈ Rn×n is a diagonal matrix
with hyperparameters γk,i (k = 1, . . . ,K; i = 1, . . . , n).
Assuming elements of the measurement noise vector ek are
drawn from independent and identically distributed (i.i.d.)
zero-mean Gaussian distributions with variance σ2, we can
write the likelihood function as

p(yk|zc, zk;σ2) = N (yk;Ak(zc + zk), σ
2Imk

). (15)

We now adopt the variational approximation in the Bayesian
formulation of JSM-1 DCS to find separable functions that
approximate the posterior of zc and zk, which facilitates
the development of a decentralized algorithm. The essence
of variational inference is to find some distribution which
usually has a factorized form and closely approximates the
true posterior distribution. Variational approximation provides
a method to bypass the requirement of exactly knowing the
posterior.
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To simplify the notation, here we define Y = {y1, . . . ,yK},
Z = {zc, z1, . . . , zK} and θ = {Γc,Γ1, . . . ,ΓK , σ2}. Our
goal is to estimate the value of the hyperparameters, i.e., θ,
which maximize the following log-likelihood

log p(Y;θ) = F (q(Z),θ) + KL(q(Z)∥p(Z|Y;θ)), (16)

where

F (q(Z),θ) =

∫
q(Z) log

(
p(Z,Y;θ)

q(Z)

)
dZ, (17)

and

KL(q(Z)∥p(Z|Y;θ) = −
∫

q(Z) log

(
p(Z|Y;θ)

q(Z)

)
dZ

(18)

is the Kullback-Leibler (KL) divergence between the true
posterior p(Z|Y;θ) and a variational distribution q(Z). The
KL divergence KL(q(Z)∥p(Z|Y;θ)) ≥ 0 and equality holds
only when q(Z) = p(Z|Y;θ). Therefore, F (q(Z),θ) can be
viewed as a lower bound of the log-likelihood log p(Y;θ).
The maximization of the log-likelihood involves iterations
involving two steps: i) the maximization of the lower bound
F (q(Z),θ) with respect to θ; ii) updating q(Z) so that the
approximation of log p(Y;θ) by F (q(Z),θ) is tight.

For the JSM-1 DCS setting, we can assume q(Z) has a
factorized form:

q(Z) = q(zc)q(z1) . . . q(zK), (19)

which is a common assumption in variational approximation.
By applying similar techniques to that used in [28], to yield a
tight approximation of log p(Y;θ) by F (q(Z),θ), we derive
the following variational distributions:

q(zc) ∝ exp
(
Eq(z1),...,q(zK)

[
ln p(y1, . . . ,yK ,

zc, z1, . . . , zK ;Γc,Γ1, . . . ,ΓK , σ2)
])

∝ exp
(
Eq(z1)

[
ln p(y1|zc, z1, σ2)

]
+ . . .

+Eq(zK)

[
ln p(yK |zc, zK , σ2)

]
+ ln p(zc|Γc)

)
∝ N (zc;µc,Σc),

(20)

where µc = σ−2Σc

K∑
k=1

AT
k (yk − Akµk), Σc =(

K∑
k=1

AT
k Ak

σ2 + Γ−1
c

)−1

and µk = Eq(z1)

[
zk
]
, and

q(zk) ∝ exp
(
Eq(zc),q(zj),j ̸=k

[
ln p(y1, . . . ,yK ,

zc, z1, . . . , zK ;Γc,Γ1, . . . ,ΓK , σ2)
])

∝ exp
(
Eq(zc)

[
ln p(yk|zc, zk, σ2)

]
+ ln p(zk|Γk)

)
∝ N (zk;µk,Σk),

(21)

where µk = σ−2ΣkA
T
k (yk − Akµc) and Σk =(

AT
k Ak

σ2 + Γ−1
k

)−1

.
According to (20) and (21), it can be confirmed that

q(zc) and q(zk) are Gaussian distributions, i.e., q(zc) =
N (zc;µc,Σc) and q(zk) = N (zk;µk,Σk) (k = 1, . . . ,K).

Now given q(zc) and q(zk) (k = 1, . . . ,K), the hyperparame-
ters can be updated by θ = argmax

θ
F (q(Z),θ). Specifically,

we have

γnew
c,i = (Σc)i,i + µ2

c,i, (22a)

γnew
k,i = (Σk)i,i + µ2

k,i, (22b)

(σ2)new =
1

K
∑K

k=1 mk

(
K∑

k=1

∥yk −Ak(µc + µk)∥22+

(σ2)old
K∑

k=1

n∑
i=1

(
1− (γold

k,i)
−1(Σk)i,i

)
+

(σ2)old
n∑

i=1

(
1− (γold

c,i )
−1(Σc)i,i

))
. (22c)

The variational optimization proceeds by iteratively updat-
ing (20), (21) and (22) until convergence to stable hyperpa-
rameters θ. Finally, we can obtain the reconstructed signal by
applying the maximum a posteriori estimation

xk = arg max
zc+zk

p(Z|Y;θ)

= argmax
zc

q(zc) + argmax
zk

q(zk)

= µc + µk.

(23)

The proposed variational Bayesian algorithm for solving the
JSM-1 DCS problem can be summarized by the following
steps:

1) Initialize Γc and Γk (k = 1, . . . ,K) by identity matri-
ces, and µk (k = 1, . . . ,K) by vectors composed of
zero entries;

2) Compute Σc =

(
K∑

k=1

AT
k Ak

σ2 + Γ−1
c

)−1

and µc =

σ−2Σc

K∑
k=1

AT
k (yk −Akµk), i.e., the variational distri-

bution for the common component;

3) Compute Σk =
(

AT
k Ak

σ2 + Γ−1
k

)−1

and µk =

σ−2ΣkA
T
k (yk − Akµc) for k = 1, . . . ,K, i.e., the

variational distributions for the innovation components;
4) Update the hyperparameters as in (22);
5) Iterate steps 2, 3 and 4 until convergence occurs to fixed

hyperparameters;
6) Output xk = µc + µk for k = 1, . . . ,K.
Note that although the proposed variational Bayesian algo-

rithm operates in a centralized manner, it facilitates our design
of a distributed algorithm that we will present in Section IV.

B. Analysis

1) Comparison with the Fréchet mean approach: The pro-
posed variational Bayesian algorithm for JSM-1 DCS is de-
rived directly from a Bayesian perspective, however it exhibits
some similarities to the Fréchet mean approach [27] in the
estimation of the common component. Specifically, in each
iteration of the proposed algorithm, the mean of the common
component is updated by

µc =

(
K∑

k=1

AT
kAk + σ2Γ−1

c

)−1 K∑
k=1

AT
k (yk−Akµk), (24)
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while the Fréchet mean approach using equal weights and
the Euclidean distance function gives a crude estimate of the
common component as

z̃c =

(
K∑

k=1

AT
kAk

)−1 K∑
k=1

AT
k yk. (25)

Comparing (24) (25), we note that the Fréchet mean ap-
proach employs least squares estimation and ignores the im-
pact of innovation components, while the proposed approach
essentially applies minimum mean square error estimation
with previous estimate of innovation components.

Given the estimated mean and covariance of the common
component, the innovation components are updated separately
in the proposed algorithm, which is similar to the process
used by the sparse Bayesian learning and the Fréchet mean
approach.

2) An Iterative Reweighting Algorithm for DCS: While
replacing the ℓ0 norm with the convex ℓ1 norm is well
justified for sparse signal recovery, recent research has been
able to show great advantages from the use of the iterative
reweighting algorithms for sparse signal processing [25], [29].
For conventional CS reconstruction of the kth SN’s signal, the
iterative reweighted ℓ2 minimization algorithm computes

xk = argmin
xk

∥yk −Akxk∥22 + νxT
kWkxk

=
(
AT

kAk + νWk

)−1
AT

k yk

(26)

in each iteration, where Wk is a diagonal weighting matrix
and ν is a tradeoff parameter balancing the two terms. Then
the weighting matrix Wk is updated based on xk in order to
achieve a more accurate estimate of xk in the next iteration.
The motivation behind this approach relates to the fact that
the term xT

kWkxk in (26) is a better approximation to the ℓ0
norm than the ℓ1 norm in (4) because xT

kWkxk ≈ ∥xk∥0 for
a good weighting matrix Wk.

In the previous subsection, the proposed algorithm emerges
from a Bayesian model and a variational Bayesian Inference
for JSM-1 DCS. However, based on its update procedure, it
can also be seen as an extension of the iterative reweighted
ℓ2 minimization algorithm from the CS case to the JSM-1
DCS case. In each iteration of the proposed algorithm, we
update the common component and innovation components
separately, that are given by

zc = argmin
zc

K∑
k=1

∥yk −Akzk −Akzc∥22 + σ2zTc Γ
−1
c zc

=

(
K∑

k=1

AT
kAk + σ2Γ−1

c

)−1 K∑
k=1

AT
k (yk −Akzk),

(27)

and

zk = argmin
zk

∥yk −Akzc −Akzk∥22 + σ2zTkΓ
−1
k zk

=
(
AT

kAk + σ2Γ−1
k

)−1
AT

k (yk −Akzc)
(28)

for k = 1, . . . ,K. Here, Γc and Γk (k = 1, . . . ,K), which
can be seen as weighting matrices, are then updated based on
the value of zc and zk (k = 1, . . . ,K), as given in (22).

3) Convergence Analysis: As the variational Bayesian ap-
proach is essentially an EM update, the proposed algorithm is
guaranteed to converge [28], i.e., each iteration is guaranteed
to increase the log-likelihood p(Y;θ) until a fixed point
is reached. By comparing the update rule of the proposed
algorithm and the EM update rule for the SBL [22], it is
observed that the solution Γk of the proposed algorithm is
a minima of the following cost function:

L(Γk) = (yk −Akµc)
T (

σ2Imk
+AkΓkA

T
k

)−1
(yk −Akµc)

+ log |σ2Imk
+AkΓkA

T
k |,

(29)

and the solution Γc is a minima of the following cost function:

L̃(Γc) =b̃T
(
σ2I∑K

k=1 mk
+ ÃΓcÃ

T
)−1

b̃ +

log |σ2I∑K
k=1 mk

+ ÃΓcÃ
T |,

(30)

where Ã =
[
AT

1 , · · · ,AT
K

]T and b̃ =[
yT
1 − µT

1 A
T
1 , · · · ,yT

K − µT
KAT

K

]T . Therefore, the
proposed framework involves a multi-objective optimization
problem and the multiple cost functions are linked

via constraints µc = σ−2Σc

K∑
k=1

AT
k (yk − Akµk) and

µk = σ−2ΣkA
T
k (yk −Akµc) (k = 1, . . . ,K).

We have the following result on the global minimum of the
cost functions (29) and (30).

Theorem 1: In the limit as σ2 → 0, assuming sc + sk,
i.e., the sparsity level of the maximally sparse solution x̂k =
ẑc+ ẑk to yk = Akxk, satisfies sc <

∑K
k=1 mk and sk < mk

for ∀k, then {Γ̂k} and Γ̂c, i.e., the global minima of (29)
and (30), respectively, lead to a source estimate that equals
{ẑc, ẑ1, . . . , ẑK}.

Proof: See Appendix A.
This theorem ensures the global minimum of our algo-

rithm is achieved at the most sparse signal representation in
the noiseless case. The global minimum property guarantees
structural correctness, i.e., the proposed algorithm converges
to a minimum (possibly global) with a cost function value
no smaller than the value of the most sparse one, while the
LASSO, a widely used convex optimization algorithm for
sparse signal reconstruction, does not have a guarantee on the
structural correctness.

Now we discuss the local minimum property. Similarly to
the SBL, the cost functions of the proposed algorithm can
potentially have many local minima. For the cost function in
(29), we have the following result, which ensures all local
minima Γk of our algorithm are sparse.

Theorem 2: Every local minimum of the cost function
in (29) with respect to Γk is achieved at a solution with
∥diagv(Γk)∥0 ≤ mk, regardless of the values of σ2 and
Γc.

Proof: See Appendix B.
For the cost function in (30), if

∑K
k=1 mk < n, akin

to Theorem 2 and using the same techniques in Appendix
B, it can be proved that all local minima Γc are sparse. If∑K

k=1 mk ≥ n, solving Γc by minimizing (30) is equivalent
to obtaining sparse solutions in regression problems via the



6

relevance vector machine (RVM) [21] where the size of the
training data is larger than the number of variables, and thus
our algorithm has the same capability as the classic RVM to
converge to a highly sparse Γc.

We note that although the global minima of the cost
functions in (29) and (30) is equivalent to the global minima
of independently solving a sparsity maximization problem
for each task, the entire cost function landscapes are not
identical. We observe that our approach exploits the inter-
signal structure, which could be advantageous in avoiding
distracting local minima.

IV. A DECENTRALIZED BAYESIAN ALGORITHM FOR DCS

In this section, we propose a decentralized Bayesian algo-
rithm for JSM-1 DCS, which exploits the variational Bayesian
inference developed previously. By casting the decoupled
reconstruction problem as a set of decentralized problems with
consensus constraints, the variational Bayesian inference is
carried out in a decentralized way without sharing sensitive
information with respect to the innovation component.

For a centralized scenario, both steps 2) and 3) of the
variational Bayesian inference is carried out at a FC, which
collects all the nodes’ measurements and performs the compu-
tation. However, for a decentralized scenario, we assume all
the computation should be performed at the nodes and that
each node has no knowledge of other nodes’ sensing matrices
and measurements. In view of the fact that the computation
of innovation components (step 3) are decoupled from the
common component in the variational SBL algorithm, the
nodes can work in parallel to execute step 3) and update (22b).
Therefore, we now only need to decentralize the computation
of the common component in step 2) and the update of
hyperparameters in (22a) and (22c).

According to the definition of Σc and µc, we have

σ2

K

(
Σ−1

c − Γ−1
c

)
=

1

K

K∑
k=1

AT
kAk (31)

and

σ2

K
Σ−1

c µc =
1

K

K∑
k=1

AT
k (yk −Akµk), (32)

which are the average of AT
kAk and the average of AT

k (yk−
Akµk) (k = 1, . . . ,K), respectively. The two averages can be
obtained by solving the following couple of average consensus
problems

min
W

K∑
k=1

∥∥W −AT
kAk

∥∥2
F
, (33)

and

min
r

K∑
k=1

∥∥r−AT
k (yk −Akµk)

∥∥2
2
, (34)

respectively.

The optimization problems in (33) can be reformulated into

min
W1,...,WK

K∑
k=1

∥∥Wk −AT
kAk

∥∥2
F

s.t. Wk = Wjk , ∀jk ∈ Nk, ∀k ∈ {1, . . . ,K},

(35)

where Wk denotes the local estimate of W = 1
K

K∑
k=1

AT
kAk

at node k, respectively, and Nk denotes the neighbors of node
k. Two nodes are called as neighbors if they can communicate
with each other to interchange information. Optimization
problems (33) and (35) are equivalent if their neighborhood
relationship can lead to a connected graph. Similarly, the
optimization problems in (34) can be reformulated into

min
r1,...,rK

K∑
k=1

∥∥rk −AT
k (yk −Akµk)

∥∥2
2

s.t. rk = rjk , ∀jk ∈ Nk, ∀k ∈ {1, . . . ,K}.

(36)

We employ the alternating direction method of multipliers
(ADMM) [30] to solve (35) and (36) in a decentralized
manner. Note that (35) only needs to be solved for consensus
once, while (36) needs to be performed in each iteration of
the variational SBL when µk (k = 1, . . . ,K) are updated.
According to [18], the simplified ADMM form of (35) consists
of the following iterations

(Pk
w)

new = (Pk
w)

old + ρ
∑

jk∈Nk

(
(Wk)old − (Wjk)old) ,

(Wk)new =
1

2 + 2ρ|Nk|

(
2AT

kAk − (Pk
w)

new+

ρ
∑

jk∈Nk

(
(Wk)old + (Wjk)old))

(37)

for ∀k ∈ {1, . . . ,K}, where ρ > 0 is a preselected penalty
coefficient. Note that nodes can execute (37) in parallel with
the information concerning Wjk passed from their neighbors.
In addition, it has been proved that iteratively executing the
steps in (37) will converge to the global solution W for any
ρ > 0 [18]. Similarly, the ADMM form of (36) consists of the
following iterations

(pk
r )

new = (pk
r )

old + ρ
∑

jk∈Nk

(
(rk)old − (rjk)old) ,

(rk)new =
1

2 + 2ρ|Nk|

(
2AT

k (yk −Akµk)− (pk
r )

new+

ρ
∑

jk∈Nk

(
(rk)old + (rjk)old)).

(38)

Given Wk and rk, according to (31) and (32), each node
can execute step 2 of the variational SBL by computing

Σc =

(
K

σ2
Wk + Γ−1

c

)−1

(39)

and
µc = σ−2Σcrk, (40)
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Algorithm 1 A Decentralized Bayesian Algorithm for DCS
Input: A set of signals {xi} (i = 1, . . . , L), a dictionary Ψ

and a positive value β.
Output: The common component zc and the innovation

components zi (i = 1, . . . , L).
Process: Do

1) Initialize Γc and Γk (k = 1, . . . ,K) by identity
matrices, and µk (k = 1, . . . ,K) by 0;

2) Initialize Pk
w, and Wk (k = 1, . . . ,K) by 0, and

iteratively compute (37) in parallel at each node until
a predefined stopping criterion is satisfied;

3) Initialize pk
r and rk (k = 1, . . . ,K) by 0, and

iteratively compute (38) in parallel at each node until
a predefined stopping criterion is satisfied;

4) Compute (39) and (40) at each node;

5) Compute Σk =
(

AT
k Ak

σ2 + Γ−1
k

)−1

and µk =

σ−2ΣkA
T
k (yk −Akµc) in parallel at each node;

6) Compute (22a) and (22b) in parallel at each node;
7) Compute (22c) in a distributed manner until a prede-

fined stopping criterion is satisfied;
8) If halting condition is true, return zc and zi (i =

1, . . . , L); otherwise go to step 3;

which directly enable the update of the hyperparameter in
(22a) locally at each node. The hyperparameter in (22c)
can also be computed in a distributed manner using the
same ADMM technique. The pseudo-code of the proposed
decentralized variational SBL algorithm is given in Algorithm
1.

V. NUMERICAL SIMULATIONS

In this section, we compare the performance of the proposed
decentralized Baysian algorithm for DCS reconstruction with
other existing approaches by experiments with synthetic sig-
nals and real temperature signals.

The following approaches are compared:
1) Decentralized Proposal: signals are reconstructed at

each node in a decentralized manner by the proposed
algorithm, which exploits both intra- and inter-signal
correlations;

2) Independent SBL: signals are reconstructed indepen-
dently at each node by SBL, which only exploits the
intra-signal sparse structure;

3) Centralized SBL: signals are jointly reconstructed at a
FC by SBL, and both intra- and inter-signal correlations
are exploited;

4) Centralized Fréchet mean approach: Joint signal re-
construction by the Fréchet mean approach [27] at a
FC, where both intra- and inter-signal correlations are
exploited.

For the Fréchet mean approach, we use CVX, a package
for specifying and solving convex programs [31]. Note that
the independent SBL considers the CS setting and acts as a
baseline, while the other three approaches consider the JSM-1
DCS setting.
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Fig. 2. Reconstruction quality vs. number of measurements (n = 50, K =
10, sc = 8 and Harary graph model with L = 3).

In the comparison, the reconstruction quality is measured
by averaged relative error, which is defined as the average of∑K

k=1 ∥x̂k−xk∥2
2∑K

k=1 ∥xk∥2
2

, where x̂k denotes the reconstructed signal k.
We conduct 100 trials for each experiment setting and provide
the averaged result.

In addition, two different networks are considered. The first
network is an L-connected Harary graph, where each node is
only available to communicate with L adjacent neighbors to
exchange information. For the other network, the Erdös-Rényi
model [32] is applied to generate the neighborhood relation-
ship, where the probability of any two nodes being connected
is p. In the proposed decentralized algorithm, parameter ρ of
the ADMM step is set to 0.3 in our simulations.

A. Experiments With Synthetic Data

We consider a set of K correlated signals following the
JSM-1 DCS model. Without loss of generality, we let m = mk

(k = 1, . . . ,K), i.e., all signals have the same number
of measurements, and sI = sk (k = 1, . . . ,K), i.e., the
innovation components of different signals have the same
sparsity level. We first generate the sparse common component
zc randomly for all signals and then generate the sparse
innovation component zk (k = 1, . . . ,K) randomly for each of
the signals independently, where the non-zero components of
both zc and zk are drawn from i.i.d. Gaussian distributions
N (0, 1). The sensing matrices Ak are generated randomly
for different signals, where the elements are drawn from the
i.i.d. Gaussian distribution N (0, 1), followed by a column
normalization. The received measurements are corrupted by
additive zero-mean Gaussian noise to yield signal noise ratio
(SNR), i.e., ∥Akxk∥2

2

∥ek∥2
2

, of 20dB.
The reconstruction quality for different approaches is given

in Fig. 2 and 3, where we have compared the averaged
relative error against the number of measurements and the
innovation component sparsity level, respectively. Our numer-
ical simulation results confirm that joint signal reconstruction
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Fig. 3. Reconstruction quality vs. innovation component sparsity level (n =
50, m = 25, K = 10, sc = 8 and Harary graph model with L = 3).

algorithms have better performance than independent signal
reconstruction, i.e., independent SBL that neglects inter-signal
correlation. The proposed decentralized approach outperforms
the centralized Fréchet mean approach, which can be explained
by our analysis regarding the comparison between the two
approaches, i.e., the Fréchet mean approach ignores the im-
pact of innovation components in the estimation of common
component. In Fig. 3, it is noted that the reconstruction quality
of the proposed decentralized approach is slightly degraded in
comparison with the centralized SBL. This behaviour is caused
by the fact that the proposed decentralized algorithm employs
variational Bayesian approximations to facilitate decentralized
computation, while the centralized SBL employs EM updates.
However, the decentralized approach avoids sharing sensitive
or private local data and is more robust to attacks, since if
the FC is compromised, the entire centralized system will fail.
More performance comparisons with various settings are given
in Table I, which further confirms our observations.

Fig. 4 illustrates the convergence rates of the proposed
algorithm with different network settings for a single instance,
and Fig. 5 shows the convergence of the inner consensus loop,
i.e., iteratively solving optimization problem (35) by ADMM.
It is observed that for all the three different network settings,
both the outer loop and the inner loop of the algorithm exhibit
reasonably fast convergence. In particular, the algorithm has
converged after 30 outer loop iterations with 20 inner loop
consensus iterations. In addition, the communication costs of
the consensus loop in a single instance for different network
settings are provided in Table II, where the numeric val-
ue indicates the number of transmissions of a single node.
Considering the communication cost, the proposed approach
potentially can be beneficial for the following two scenarios: i)
the Nyquist rate of the signal exceeds the current capabilities
of analog-to-digital converters (ADCs) so that the main bot-
tleneck of the system is in the sampling rate and the commu-
nication cost introduced by the proposed distributed algorithm
can be tolerated; ii) the cost of sampling is much higher than
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Fig. 4. Convergence rate of the outer loop (variational Bayesian inference
loop) of proposed algorithm for a single instance. (n = 50, m = 25, sc = 8
and sI = 2).
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Fig. 5. Convergence rate of inner consensus loop (ADMM loop) in the
proposed algorithm for a single instance.

communication. For example, vibrating wire strain-gauges that
are used in civil engineering applications, and NDIR or metal
oxide sensors that are used to measure the concentration
of a gas or gasses of interest in the atmosphere, consume
energy several orders of magnitude greater than that required
for communication. For instance, it is indicated in [33] that
metal oxide based sensors for measuring ozone concentration
typically consume in excess of 90 mW.

B. Experiments With Real Data

We now investigate the effectiveness of the proposed de-
centralized algorithm with real signals which could be nearly
sparse rather than exactly sparse as in the synthetic data exper-
iment. To do this, we use the temperature signals obtained the
Intel Berkeley Research lab [34]. In the following evaluations,
we use the discrete cosine transform (DCT) as the sparsifying
domain. Instead of uniform sampling, we assume each SN
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TABLE I
THE COMPARISON OF AVERAGED RELATIVE ERROR WITH DIFFERENT SETTINGS. (n = 100, sc = 8 AND sI = 2)

K = 20 K = 20 K = 20 K = 50 K = 50 K = 50

m = 10 m = 15 m = 20 m = 10 m = 15 m = 20

Independent SBL 0.8925 0.8046 0.6182 0.8746 0.8017 0.6006
Centralized SBL 0.1862 0.0556 0.0100 0.1921 0.0506 0.0072

Centralized Fréchet mean approach 0.5635 0.3385 0.2253 0.5242 0.3470 0.2078
Proposed decentralized algorithm,

Harary graph model (L=5) 0.2185 0.0663 0.0212 0.2153 0.0517 0.0152
Proposed decentralized algorithm,

Erdös-Rényi model (p=0.25) 0.1815 0.0467 0.0194 0.2037 0.0491 0.0148

TABLE II
THE COMMUNICATION COST OF THE CONSENSUS LOOP (ADMM LOOP) IN THE PROPOSED ALGORITHM. (n = 50, sc = 8 AND sI = 2)

K = 20 K = 20 K = 20 K = 50 K = 50

m = 15 m = 20 m = 25 m = 15 m = 25

Harary graph model (L=2) 136 130 121 192 168
Harary graph model (L=4), 54 43 46 159 130
Erdös-Rényi model (p=0.3) 18 23 16 28 28
Erdös-Rényi model (p=0.5) 20 20 20 39 41
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Fig. 6. Environmental temperature signal detected by one node and
reconstruction results. (m = 50, K = 10 and Harary graph model with
L = 5).

independently and randomly collects a small portion of the
original samples. Therefore, the sensing matrices Ak become
random partial DCT matrices. All the signals we employ in
the following study have a length of n = 256.

Fig. 6 demonstrates the effectiveness of the proposed ap-
proach by comparing the original temperature signal with the
reconstructed results for one of the nodes. In this experiment,
the temperature signals from K = 10 nodes are reconstructed
by different algorithms, and one of these signals and its
reconstruction results are shown in the figure. It is observed
that both the proposed decentralized Bayesian algorithm and
the centralized SBL successfully recover the temperature sig-
nals with only 50 measurements, while the independent SBL
and the centralized Fréchet mean approach have significant

visible errors in the reconstructed results. We report that
the reconstructed temperature signals of other nodes show a
similar result. For the centralized SBL, all the nodes’ samples
needs to be gathered at a FC for joint reconstruction, while the
proposed decentralized algorithm enables joint reconstruction
without a FC and in addition the reconstructed signal at a
particular node is only available to that node itself. Table III
gives more performance comparisons with different settings,
and similar trends are observed.

VI. CONCLUSION

In this paper, we propose a decentralized Bayesian DC-
S algorithm to efficiently reconstruct multiple signals in a
networked sensing system. Both the intra- and inter-signal
correlations are exploited by the proposed approach with the
JSM-1 DCS model, and thus it possess advantages beyond
conventional independent CS algorithms, that neglect inter-
signal correlations. The decentralized characteristics of the
proposed algorithm make it suitable for applications needing
enhanced privacy and for those that require fusion-centre-
free operation. Experimental results demonstrate good recov-
ery performance and convergence properties of the proposed
decentralized algorithm.

APPENDIX A
PROOF OF THE THEOREM 1

As the proposed variational sparse Bayesian framework
extends the SBL framework to the JSM-1 DCS model, many
of the following proofs are based on the theoretic work in [22].
However, some essential modifications are required.

According to the formulations of the cost functions in (29)
and (30), the minimum occurs when

|σ2Imk
+AkΓkA

T
k | = 0, |σ2I∑K

k=1 mk
+ ÃΓcÃ

T | = 0,
(41)
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TABLE III
THE AVERAGED RELATIVE ERROR OF THE RECONSTRUCTED ENVIRONMENTAL TEMPERATURE SIGNAL FOR DIFFERENT APPROACHES.

m = 50 m = 40 m = 50 m = 40 m = 50

K = 10 K = 10 K = 6 K = 6 K = 15

Independent SBL 1.4 ∗ 10−3 3.6 ∗ 10−3 6.2 ∗ 10−4 1.4 ∗ 10−3 2.3 ∗ 10−3

Centralized SBL 7.4 ∗ 10−4 9.8 ∗ 10−4 1.2 ∗ 10−4 1.9 ∗ 10−4 8.7 ∗ 10−4

Centralized Fréchet mean approach 1.2 ∗ 10−3 3.4 ∗ 10−3 1.1 ∗ 10−3 4.4 ∗ 10−3 1.1 ∗ 10−3

Proposed decentralized algorithm,
Harary graph model (L=5) 1.1 ∗ 10−3 2.4 ∗ 10−4 4.6 ∗ 10−4 7.8 ∗ 10−4 1.9 ∗ 10−3

Proposed decentralized algorithm,
Erdös-Rényi model (p=0.5) 1.0 ∗ 10−3 2.1 ∗ 10−3 5.1 ∗ 10−4 1.2 ∗ 10−3 1.6 ∗ 10−3

and

(yk −Akzc)
T
(σ2Imk

+AkΓkA
T
k )

−1 (yk −Akzc) ≤ ρ

b̃T
(
σ2I∑K

k=1 mk
+ ÃΓcÃ

T
)−1

b̃ ≤ ρ,

(42)

for k = 1, . . . ,K, where ρ > 0 denotes some finite bound.
Now, all that is required is to prove that the solutions, which
lead to accurate signal reconstruction, satisfy these conditions.

When σ2 = 0, following results from linear algebra as given
in [22], the solutions of the cost functions (29) and (30) lead
to the estimate such that

ẑk = Γ̂
1/2

k (AΓ̂
1/2

k )†(yk −Aẑc), (43)

and

ẑc =
1

K
Γ̂
1/2

c (ÃΓ̂
1/2

c )†b̃, (44)

which suggests that the support of ẑc is the same as the support
associated with Γ̂c, and the support of ẑk is the same as the
support associated with Γ̂k. Since sc <

∑K
k=1 mk and sk <

mk, the conditions in (41) are satisfied. In addition, we have

lim
σ2→0

(yk −Aẑc)
T
(σ2Im +AΓkA

T )−1 (yk −Aẑc)

= lim
σ2→0

ẑTk Γ̂
−1/2

k Γ̂
1/2

k AT (σ2Im +AΓkA
T )−1AΓ̂

1/2

k Γ̂
−1/2

k ẑk

=ẑTk Γ̂
−1

k ẑk ≤ 1

δ
∥ẑk∥22,

(45)

where δ > 0 is the minimum nonzero entry of Γ̂k.
Using the same procedures, we can also prove that

b̃T
(
σ2I∑K

k=1 mk
+ ÃΓcÃ

T
)−1

b̃ is bounded, which com-
plete the proof.

APPENDIX B
PROOF OF THE THEOREM 2

Now before discussing the local minimum property, we
provide two lemmas, which are given in [22] and are needed
in proving our results.

Lemma 1: log |σ2Imk
+AkΓkA

T
k | is concave with respect

to Γk.
This lemma can be proved by the composition property of

concave functions [35].

Lemma 2: Let rk = yk − Akµc. Then
rTk
(
σ2Imk

+AkΓkA
T
k

)−1
rk equals a constant ck when Γk

satisfies the linear constraints

b = Gdiagv(Γk), (46)

with

b , rk − σ2vk

G , Akdiagm(A
T
k vk),

(47)

where vk is any fixed vector such that (yk −Akµc)
T
vk =

ck.
This lemma can be proved by rewriting the equation

rTk
(
σ2Imk

+AkΓkA
T
k

)−1
rk = ck with rTk vk = ck, where

vk =
(
σ2Imk

+AkΓkA
T
k

)−1
rk. Then we have

rk − σ2vk = AkΓkA
T
k vk

= Akdiagm(A
T
k vk)diagv(Γk).

(48)

The proof of the Theorem 2 follows along the line of
Theorem 2 in [22] with the use of the above two lemmas.
Consider the following optimization problem:

min
Γk

log |σ2Imk
+AkΓkA

T
k |

s.t. b = Gdiagv(Γk)

diagv(Γk) ≥ 0,

(49)

where b and G are defined in Lemma 2. According to Lemma
1 and Lemma 2, the optimization problem (49) optimizes a
concave function over a closed, bounded convex polytope.
From the Theorem 7.5.3 in [36], the minimum of (49) is
achieved at an extreme point. In addition, the Theorem 2.5
in [36] suggests that the extreme point is a basis feasible
solution to b = Gdiagv(Γk) and diagv(Γk) ≥ 0, which
indicates ∥diagv(Γk)∥0 ≤ mk.
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