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Abstract
We show that an orthogonal root number of a tempered L-parameter ϕ decomposes
as the product of two other numbers: the orthogonal root number of the principal
parameter and the value on a central involution of Langlands’s central character for ϕ.
The formula resolves a conjecture of Gross and Reeder and computes root numbers
of Weil–Deligne representations arising in a conjectural description of the Plancherel
measure.
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1 Introduction

To every representation of the absolute Galois group �k of a local field k, or more
generally, of its Weil–Deligne group WDk , we can attach various local constants,
the γ -, L-, and ε-factors, each a function of a complex parameter s. Of these, the
ε-factor has the simplest description as a function of s: it is an exponential function,
s �→ a · bs−1/2. Understanding this local constant thus amounts to understanding the
base b and constant term a.

The base of the ε-factor (or depending on one’s choice of terminology, its loga-
rithm) is known as the Artin conductor, taken as 1 for k archimedean. This quantity
measures the ramification of the representation. Although the Artin conductor has its
own subtleties, especially in the presence of wild ramification, there are good formu-
las to compute it [1, Chapter VI], formulas that make precise the sense in which the
conductor measures ramification.

The constant term a is known as the root number. We denote it here by ω, an
additive function of Weil–Deligne representations. The choice of exponent s − 1/2
ensures that the root number is a complex number of modulus one, so we can refer to
it informally as the sign of the ε-factor. This sign is much more subtle than the Artin
conductor.

Here is one example of its subtlety. The problem of computing a root number
generalizes the problem of computing the sign of a Gauss sum. For quadratic Gauss
sums, the sign is determined by a congruence condition on the modulus, a classical
result of Gauss and the most difficult of the basic properties of these sums. For cubic
Gauss sums, the situation is much more complicated: there is no congruence condition
to describe the sign, and in fact, the sign is randomly and uniformly distributed on the
unit circle [2].

In other words, for as simple a class of Galois representations as the cubic char-
acters, the root number exhibits great complexity. Fortunately, there is a special class
of Galois representations whose root numbers are more amenable to computation:
the orthogonal representations. After all, the orthogonal characters are precisely the
quadratic characters.

Using formal properties of root numbers, it is easy to see that the root number
of an orthogonal representation is a fourth root of unity, and the square of the root
number can be described in terms of the determinant of the representation. Ultimately,
then, computing an orthogonal root number is a matter of distinguishing between
two square roots. Deligne calculated the distinction by expressing the root number
of an orthogonal representation in terms of the second Stiefel–Whitney class of the
representation [3]. Stiefel–Whitney classes are a notion from algebraic topology, but
they can be reinterpreted purely in terms of group cohomology, as the pullback of a
certain universal cohomology class. In this way, Deligne’s formula reduces computing
the root number of an orthogonal representation to a problem in group cohomology.
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Orthogonal root numbers of tempered parameters

In the Langlands program we generalize the study of Weil–Deligne representations
to the study of L-parameters for a quasi-split reductive k-group G. To extend the
definition of the local constants to this setting we reduce to the case of the general
linear groupby composing an L-parameterWDk → LGwith a complex representation
r : LG → GL(V ) and computing the local constants of the representation r ◦ ϕ.

Deligne’s formula suggests the possibility of computing the root numbers ω(ϕ, r)
def=

ω(r ◦ ϕ) for orthogonal r , which we call the orthogonal root numbers of ϕ. The hope
is a formula for ω(ϕ, r) that incorporates information about the L-parameter ϕ and
the complex orthogonal representation r .

In a 2010 paper, the direct inspiration for this article, Gross and Reeder gave a
conjectural formula for a particular class of orthogonal root numbers and proved
the formula when G is split. Motivated in part by a conjecture of Hiraga, Ichino,
and Ikeda on the formal degree of discrete series [4, Conjecture 1.4], they took the
adjoint representation Ad : LG → GL(ĝ), an orthogonal representation, and set about
computing ω(ϕ,Ad). Their conjectural answer has three factors.

First, there is a recipe, due to Langlands, that constructs from the L-parameter
ϕ a character χϕ of the center of G. At the same time, we can conjecturally assign
to ϕ a finite set �ϕ of smooth irreducible representations of G(k). The set �ϕ is
called the L-packet of ϕ and the assignment ϕ �→ �ϕ is called the local Langlands
correspondence. It is expected that all elements of�ϕ have the same central character,
and further, that this character is χϕ .

Second, Gross and Reeder evaluated this central character on a certain canonical
involution zAd in the center ofG, defined as the value of the sum of the positive coroots
on −1.

Third, when k is nonarchimedean the L-group admits a particular distinguished
parameter called the principal parameter ϕprin : WDk → LG. This parameter is
trivial on the Weil group, and its restriction to the Deligne SL2 corresponds, via the
Jacobson-Morozov theorem, to the sum of elements in a pinning of ̂G, a nilpotent
element of the Lie algebra. The L-packet of the principal parameter captures the
Steinberg representation. When k is archimedean, we define the principal parameter
to be the trivial crossed homomorphism Wk → ̂G.

Conjecture 1 [5, Conjecture 8.3] If k is nonarchimdean of characteristic zero, the
center of G is anisotropic, and the parameter ϕ : WDk → LG is discrete then

ω(ϕ,Ad)

ω(ϕprin,Ad)
= χϕ(zAd).

The goal of this article is to verify Gross and Reeder’s conjecture. Actually, we will
prove a more general version that relaxes the base field to an arbitrary local field, the
adjoint representation to an arbitrary orthogonal representation, and discreteness of the
parameter to temperedness. We generalize Gross and Reeder’s canonical involution
zAd to an involution zr (see Sect. 5.4) that depends only on the restriction of r to ̂G.

The original motivation for our generalization was to compute the adjoint ε-factor
that conjecturally describes the Plancherel measure [4, Conjecture 1.5], of which the
formal degree conjecture that motivated Gross and Reeder is a special case. In the
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more general conjecture, the adjoint representation of LG is replaced by a certain
“relative adjoint representation” of the L-group of a Levi. From this perspective it is
natural, and in the end costs little, to relax the adjoint representation to an arbitrary
orthogonal representation.

Theorem A Let r be an orthogonal representation of LG and ϕ : WDk → LG a
tempered parameter. Then

ω(ϕ, r)

ω(ϕprin, r)
= χϕ(zr ).

The theorem does not fully compute the orthogonal root numberω(ϕ, r): instead, it
disentangles the root number into an automorphic factor, χϕ(zr ), and a Galois factor,
ω(ϕprin, r). If one wanted to use Theorem A to pin down an orthogonal root number
precisely, it seems that the main challenge would be to compute the orthogonal root
number of the principal parameter. In general I expect no better resolution to this
problem than the rough answer provided by Clifford theory, though for special classes
of representations, such as the adjoint representation [5, Equation (21)], it might be
possible to say more.

Although our work is informed by the local Langlands correspondence, everything
here takes place on the Galois side. A stronger version of the theorem would assert
that χϕ(zr ) is actually the value on zr of the central character of the L-packet of ϕ;
this is much more difficult because it requires some knowledge of L-packets. Lapid
proved the stronger version of Theorem A for generic irreducible representations of
certain classical groups [6].

Gross and Reeder proved Conjecture 1 for split G by an argument in group coho-
mology. This article is an outgrowth of an observation that their argument can be
generalized in various directions.

To relax the split assumption in Gross and Reeder’s proof, we generalize, in Lemma
B of Sect. 2, the basic lemma from group cohomology that underlies their proof,
taking into account the Galois action on ̂G. Since the pin extension of a complex
orthogonal group is not topologically split,wemust useBorel cohomologyhere instead
of continuous (group) cohomology.With thismodification, LemmaBproves equal two
particular Borel cohomology classes in H2

Borel(
LG, {±1}). Theorem A then follows

from the equation by pullback along the parameter ϕ, once we properly identify the
factors of the pulled-back equation. Most of this article is devoted to identifying these
factors.

Two of the factors are root numbers, and their recognition as such passes through
Deligne’s theorem.Gross andReeder already reformulated the theorem in the language
of group cohomology for determinant-one orthogonal representations of Galois type,
and it is mostly amatter of collecting definitions from the algebraic topology literature,
in Sect. 3, to extend their reformulation to tempered orthogonal representations.

The third factor of the pulled-back equation is the value of the central character χϕ

on the involution zr . Identifying this factor requires several detours that are surely well
known to experts in the field.
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Any spin representation of a complex reductive group gives rise to a character of its
topological fundamental group. The first detour, in Sect. 4, is to compute this character.
Here we offer a small correction to an exercise of Bourbaki.

The second detour, in Sect. 5, is to compute the second cohomology group of the
Weil groupwith coefficients in the character lattice of a k-torus, generalizing a standard
computation for the absolute Galois group. It turns out that this cohomology group is
the character group of the Harish–Chandra subgroup of the torus. In Sect. 1 we extend
these results, for k nonarchimedean of characteristic zero, to any finite type k-group
of multiplicative type, using a generalization of Tate duality due to Karpuk.

Finally, in the brief Sect. 6 we weave together these disparate threads to prove
Theorem A, and then explain the connection with the conjectures on the Plancherel
measure.

1.1 Notational conventions

Let k be a local field. If k is nonarchimedean, let p denote its residue characteristic.
We assume the characteristic of k is odd because Theorem A is trivially satisfied when
+1 = −1. Let �k be the absolute Galois group of k, let Wk be the Weil group of k,
and let

WDk
def=

{

Wk if k is archimedean

Wk × SL2(C) if not

be the Weil–Deligne group of k. In practice we can immediately forget WDk and
work with Wk because root numbers of orthogonal Weil–Deligne representations are
unaffected by restriction to the Weil group [5, Section 2.3]. For k nonarchimedean,
let Ik ⊂ Wk be the inertia subgroup.

We reserve the letter G for a group, of two kinds: either a reductive group or a
topological group. When G is a topological group, we assume it to be Hausdorff.
When G is a reductive group, we assume it to be connected and quasi-split.

To best align with the statement of the key Lemma Bwework with theWeil form of

the L-group, LG
def= ̂G �Wk . The choice of the Weil form over the Galois form is not

essential because in practice, we can replace the Weil-group factor of this semidirect
product with the Galois group of any extension of k that is large enough to contain the
splitting field of G and to trivialize the L-parameter relevant to the problem at hand.

For us, a representation of the L-group LG is a representation in the sense of
Borel’s Corvallis article [7, (2.6)], that is, a finite-dimensional complex vector space
V together with a continuous homomorphism LG → GL(V ) whose restriction to ̂G
is a morphism of complex algebraic groups. Similarly, a representation of a complex
reductive group is assumed algebraic.

In general, the ε-factor, and hence the root number, depends not only on a Weil–
Deligne representation but also on a nontrivial additive character of k and a Haar
measure on k. Since there are formulas that explain the dependence of these factors
on the character and the measure, nothing is lost in fixing them. We follow Gross
and Reeder in computing ε-factors with respect to the Haar measure that assigns Ok
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measure one and an additive character that is trivial onOk and nontrivial on the inverse
of some uniformizer.

In this article we use three kinds of cohomology: the singular cohomology of a
topological space, denoted by H•

sing; the continuous cohomology of a topological
group, denoted by H•; and the Borel cohomology of a topological group, denoted by
H•
Borel, whose definition we review in Sect. 2.2.
Given any group A of order two, let sgn : A → {±1} denote the canonical isomor-

phism to the group {±1} of order two.

2 Group cohomology

This section collects general facts on group cohomology that inform the rest of this
article. In Sect. 2.1,we review the relationship between extensions and cohomology for
discrete groups. In Sect. 2.2 we explain how the relationship behaves in the presence
of topology. And in Sect. 2.3 we state and prove the main cohomological lemma,
Lemma B, underlying the proof of Theorem A. The remaining sections of the article
will flesh out the connection between Theorem A and Lemma B.

2.1 Group extensions

In this subsection, we work in the category of discrete groups. An extension of the
group G by the group A is an exact sequence

1 A E G 1,

permitting one to identify A with a subgroup of E and G with the quotient of G by
this subgroup. We call A, E , and G, the first, second, and third terms of the extension,
respectively. We always assume that the extension is abelian, in other words, that A is
an abelian group. In fact, in our application all extensions are central, that is, having
A as a central subgroup of G. Since A is abelian, the conjugation action of G on E
descends to an action of G on A: that is, A is a G-module. Conversely, starting from a
G-module A, an extension of G by A is an extension of G by the abelian group A with
the property that the G-action on A induced by the extension agrees with the given
action.

A morphism of extensions is a commutative diagram

1 A E G 1

1 A′ E ′ G ′ 1.

As for extensions, we can speak of the first, second, and third terms of a morphism,
namely, the maps A → A′, E → E ′, andG → G ′, respectively. The isomorphisms in
this category are precisely the morphisms whose terms are all isomorphisms. An easy
diagram chase shows that a morphism is an isomorphism as soon as its first and third
terms are isomorphisms. For this reason,weoften restrict attention to the isomorphisms
whose first and third terms are equalities; we call such an isomorphism an equivalence.
Besides the isomorphisms, there are two kinds of morphisms of interest.
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First, given two G-modules A and A′ and a G-equivariant homomorphism
α : A → A′, we can construct the morphism of extensions

1 A E G 1

1 A′ α∗(E) G 1

α

in which α∗(E) is the cokernel of themap A → A′
�E sending a to α(a)a.We call the

bottom extension (or sometimes, its second term) the pushout of the top extension.1

The pushout morphism is universal in the sense that any morphism with first term
α from the top extension to an extension of G by A′ factors through the pushout
morphism.

Second, given a homomorphism γ : G ′ → G, we can construct the morphism of
extensions

1 A γ ∗(E) G ′ 1

1 A E G 1

γ

in which γ ∗(E) is the pullback (of sets, hence of groups) of the right square. We call
the top extension (or sometimes, its second term) the pullback of the bottom extension.
The pullback morphism is universal in the sense that any morphism with third term
γ from an extension of A by G ′ to the bottom extension factors through the pullback
morphism.

The theory of group extensions is relevant to us because of its connection to group
cohomology, which relates to root numbers, in turn, by Deligne’s theorem.

Given an extension

1 A E G 1,

let s : G → E be a set-theoretic section of E → G. The formula

zs(g, g
′) = s(g)s(g′)s(gg′)−1

defines a 2-cocyle zs ∈ Z2(G, A). The cohomology class of the resulting cocycle
is independent of the choice of section: any two such sections differ by a function
G → A, and the coboundary of this function exhibits a cohomology between the
cocycles.

Conversely, given a 2-cocycle z ∈ Z2(G, A), define the group extension

1 A A �z G G 1

in which A �z G = A × G with multiplication

(a, g) · (a′, g′) = (a · ga′ · z(g, g′), gg′).

1 Our pushout is usually not isomorphic to the pushout in the category of groups. The category-theoretic
pushout is the amalgamated free product.
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The equivalence class of the resulting extension depends only on the cohomology
class of the cocycle: any function G → A whose coboundary exhibits a cohomology
between two different cocycles gives rise to an equivalence of the corresponding
extensions.

In summary, given a group G and a G-module A, we have constructed a canonical
bijection between equivalence classes of extensions of G by A and the cohomol-
ogy group H2(G, A). The bijection is compatible with pushforward and pullback of
cohomology classes and extensions.

The dictionary between extensions and cohomology classes nicely answers, or
rather, reformulates, a natural question in the theory of group extensions: when does
the diagram

1 A E G 1

1 A′ E ′ G ′ 1

α γ

extend to a morphism of extensions? The answer to the question is a special case of
our key lemma, Lemma B, and is also used in the proof of the lemma.

To answer the question, use the universal properties of pullback and pushforward
to extend the candidate morphism to the diagram

1 A E G 1

1 A′ α∗(E) G 1

1 A′ γ ∗(E ′) G 1

1 A′ E ′ G ′ 1

α

γ

It follows that the original diagram can be extended to a morphism if and only if the
middle extensions in the diagram are isomorphic. In other words, letting c ∈ H2(G, A)

and c′ ∈ H2(G ′, A′) denote the cohomology classes classifying the top and bottom
extensions, the original diagram can be extended to a morphism if and only if

α∗(c) = γ ∗(c′) in H2(G, A′).

2.2 Borel cohomology

A sequence of topological groups

1 A E G 1

is a topological extension of G by A if A → E is a closed subgroup and the induced
map from the cokernel of A → E to G, where the source has the quotient topology,
is an isomorphism. The pullback and pushout constructions from Sect. 2.1 work just
as well in this setting, provided all maps in question are continuous.
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Classifying topological extensions is more subtle than classifying extensions of dis-
crete groups, however, because not every continuous surjection of topological spaces
admits a continuous section. If we were to carry out the work of Sect. 2.1 in the cate-
gory of topological groups, where all maps are required to be continuous, we would
find that the continuous cohomology H2(G, A) classifies extensions of G by A that
are topologically split, that is, whose second term is a direct product G × A as a
topological space. The collection of topologically split extensions is much too small
for most purposes. For instance, the universal-cover group extension of a Lie group is
never topologically split, but we need a theory that can see the spin extension of the
special orthogonal group because of its great relevance to the study of Stiefel–Whitney
classes.

To capture the topological extensions that are not topologically split one must
enlarge the continuous cohomology group. The correct enlargement is known as Borel
cohomology,2 a variant of discrete group cohomology in which one requires that
cochains be Borel measurable. I refer the reader to Stasheff’s survey article [8] as well
as Moore’s papers on the subject [9–12] for more information on Borel cohomology.

Theorem 2 Let G and A be separable locally compact groups with A abelian. There
is a canonical natural isomorphism between H2

Borel(G, A) and the set of equivalence
classes of topological extensions of G by A.

Proof Mackey proved this result in his thesis [13]. The same construction as in Sect.
2.1 yields the bijection, with the following additional argument. Given an extension
of G by A, one must find a section whose associated cocycle is Borel measurable.
This is Mackey’s Théorème 3, and its proof shows that the section need only be
Borel-measurable. Conversely, given a Borel-measurable cocycle z : G × G → A,
one must show endow the extension A�z G with a locally compact topology making
it an extension of topological groups. This is Mackey’s Théorème 2. A uniqueness
statement in that theorem ensures that the topology on the extension can be recovered
from any measurable cocycle classifying it. 	

Example 3 Using the fact that C

× is connected and {±1} is discrete, it is easy to show
by direct computation that the continuous cohomology group H2(C×, {±1}) is trivial.
On the other hand, since C

× = WC, we know [3, (4.2)] that H2
Borel(C

×, {±1}) �
{±1}. The nontrivial cohomology class represents the topologically non-split squaring
extension

1 {±1} C
×

C
× 1.

z �→z2

Since Borel cohomology is not widely used in the Langlands program, we point
out several relevant properties.

First, in the nonarchimedean case, the pullback of a Borel cocycle along an
L-parameter is automatically continuous.

Lemma 4 Let W and G be topological groups, let A be a continuous G-module, and
let ϕ : W → G be a continuous homomorphism. If ϕ factors through a discrete

2 Borel cohomology is named after Émile, not Armand. It is sometimes also called Moore cohomology.
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quotient of W then pullback by ϕ induces a map

ϕ∗ : Hi
Borel(G, A) → Hi (W , A).

Proof Pullback along ϕ takes an arbitrary cocycle Gn → A to a cocycle Wn → A
that is constant on cosets of an open subgroup, hence continuous. 	


Second, in the archimedean case, Borel H1 works just as well as continuous H1 in
the local Langlands correspondence.

Lemma 5 Let G and A be separable completely metrizable topological groups, in
other words, Polish groups, and let A carry a continuous G-module structure. The
natural map

H1(G, A) → H1
Borel(G, A)

is an isomorphism.

Results of this kind are known as automatic continuity.

Proof A theorem of Banach and Pettis [14], nicely explained in Rosendal’s overview
of automatic continuity [15, Theorem 2.2], proves the result when the action of
G on A is trivial, in which case H1(G, A) = Homcts(G, A). In general, use their
theorem together with the fact that a crossed homomorphism G → A is the same as
a homomorphism A � G → G that restricts to the identity on G. 	

Remark 6 It would be interesting to see if Clausen and Scholze’s condensed mathe-
matics [16] can replace Borel cohomology. We will not pursue this idea here.

2.3 The key lemma

The following lemma is the main tool underpinning the proof of Theorem A. There is
nothing essential in its use of Borel cohomology.

Lemma B Let A, A′, E, G, G ′, and W be topological groups with A and A′ abelian.
Assume that either all groups are discrete or all groups are separable and locally
compact. Let the group W act continuously on the groups G and E by group auto-
morphisms, let E → G be a continuous W-equivariant homomorphism, and let

1 A E G 1

1 A′ E ′ G ′ 1

α ε γ

be a morphism of topological extensions. Let f : W → G ′ be a continuous homo-
morphism such that the map γ f : G � W → G ′ is a homomorphism. Consider the
diagram
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1 A E � W G � W 1 (c)

1 A′ E ′ G ′ 1 (c′).
α γ f

with top and bottom extensions classified by the cohomology classes c and c′, respec-
tively, and let p : G � W → W denote the canonical projection. Then

(γ f )∗(c′) = α∗(c) · p∗ f ∗(c′).

The assumption on the topologies of the groups involved implies, by Theorem 2 in
the locally compact case and the discussion of Sect. 2.1 in the discrete case, that the
relevant extensions are classified by Borel cohomology classes.

Proof The proof rests on an understanding of H2
Borel(G � W , A). The semidirect

product fits into a split short exact sequence

1 G G � W W 1i p

s

in which i : G → G�W is the canonical inclusion, p : G�W → W is the canonical
projection, and s : W → G �W is the canonical inclusion. This sequence dualizes to
a split exact sequence of abelian groups

1 H2
Borel(W , A) H2

Borel(G � W , A) H2
Borel(G, A).

p∗ i∗

s∗

The map p∗ realizes H2
Borel(W , A) as a direct summand of H2

Borel(G � W , A)

with a canonical complement, the kernel of s∗. The map p∗s∗ is projection onto
the summand, and the map i∗ identifies its complement, the kernel of s∗, with a
subgroup of H2

Borel(G, A). To prove the lemma, it therefore suffices to show that
s∗(γ f )∗(c′) = f ∗(c′) and that i∗(γ f )∗(c′) = i∗α∗(c). The first equation follows
from the identity f = (γ f ) ◦ s. The second equation amounts to showing that
γ ∗(c′) = α∗i∗(c), and this is a consequence of the existence of ε. 	


Later, in Sect. 5.4, we need the following compatibility condition.

Lemma 7 In the setting of Lemma B, a Borel-measurable crossed homomorphism
ϕ : W → G maps under the coboundary H1

Borel(W ,G) → H2
Borel(W , A) to the pull-

back of c along the homomorphism ϕ · id : W → G � W.

By Lemma 5, we could have written “continuous” instead of “Borel-measurable”.

Proof Let s : G → E be a Borel-measurable section of E → G and let ϕ̃ = s ◦ ϕ be
a lift of ϕ to E . The coboundary of ϕ is given by the formula [17, Chapter I.5.6]

(w,w′) �→ ϕ̃(w) · wϕ̃(w′) · ϕ̃(ww′)−1.

On the other hand, the class c is represented by the 2-cocycle

(g, w; g′, w′) �→ s(g)w · s(g′)w′ · (s(g · wg′)ww′)−1 = s(g) · ws(g′) · s(g · wg′)−1
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corresponding to the section (s, id) : G � W → E � W . Pulling back this function
along ϕ replaces g by ϕ(w) and recovers the coboundary of ϕ. 	


For our application of Lemma B to the proof of TheoremA, the groupW is theWeil
group, the top extension is the universal cover of the dual group, the bottom extension
is the universal cover of a complex orthogonal group, and the morphism between them
arises from the given orthogonal representation r : LG → O(V ):

1 π1(̂G) ̂Guniv ̂G 1

1 {±1} Pin(V ) O(V ) 1 (cpin).

er r |
̂G (1)

Here er is the “spin character”, which we study in Sect. 4, and the class cpin classifies
the bottom extension. Let cG ∈ H2

Borel(
LG, π1(̂G)) classify the extension ̂Guniv �Wk

of LG by π1(̂G), as in the Theorem B.
With this setup, we prove the theorem by pulling back the conclusion of Lemma B

along the given L-parameter. After pullback, the quotient of the cohomology classes
r∗(cpin) and p∗r |∗Wk

(cpin) becomes a quotient of root numbers and the cohomology
class er ,∗(cG) becomes the value of a central character on an involution. The goal of the
remainder of the article is to explain these identifications, thus proving Theorem A.

3 Stiefel–Whitney classes

Deligne’s formula for orthogonal root numbers is a key technical tool supporting the
main results of this article. To use his formula effectively,we need aworkable definition
of the second Stiefel–Whitney class. The goal of this largely expository section is to
explain how to interpret in terms of group cohomology the second Stiefel–Whitney
class of a bounded complex orthogonal representation of a countable discrete group.
In the end, the class is the pullback of a certain pin-group extension.

This interpretation is surely well known to the experts, and special cases have
already appeared in the literature, for instance, in a paper of Gunarwardena, Kahn,
and Thomas on real orthogonal representations of finite groups [18]. We generalize
their results by working with countable discrete groups instead of finite groups and
complex representations instead of real representations.

3.1 Classifying spaces

One way to construct characteristic classes is to pull them back from universal coho-
mology classes of a certain classifying space. In this subsection, we review the theory
of classifying spaces, loosely following Mitchell’s notes on classifying spaces [19]
and Section 6 of Stasheff’s survey article [8].

Let G be a Lie group. We assume G to be second countable but we do not assume
G to be connected. So G could be a complex reductive group or a countable discrete
group.
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Let P → B be a principal G-bundle. Although G is a manifold we do not impose
any smoothness or differentiability assumption onbundles: they are simply continuous.
If P is weakly contractible, that is, having trivial homotopy groups, then we call B
a classifying space for G and P a universal G-bundle. The bundle is universal in
the following sense: for every CW-complex X , the canonical map from the set of
homotopy classes of maps X → B to the set of equivalence classes of principal G-
bundles over X , defined by pulling back the universal G-bundle, is a bijection. As the
universal property makes reference only to homotopy classes of maps, a classifying
space for G is defined uniquely only up to homotopy equivalence.

It turns out, though this is not clear from the definition, that classifying spaces exist
for every G. Often we can construct the classifying space by hand. For example, the
classifying space of a compact orthogonal group of rank n is the Grassmannian of n-
planes in R

⊕N. But for a general group such a geometric construction is difficult, and
we can instead construct the classifying space by simplicial methods [20, Chapter
16, Section 5]. The simplicial construction of classifying spaces makes clear their
functoriality: a homomorphism r : G → H of topological groups gives rise to a map
Br : BG → BH . Functoriality also follows from Yoneda’s Lemma, without needing
to choose a specificmodel for the classifying space: themap Br represents the balanced
product functor P �→ H ×G P from principal G-bundles to principal H -bundles.

The homotopy class of the classifying space BG depends only on homotopy type
of the group G in the following sense: any group homomorphism G → H that is a
homotopy equivalence induces a homotopy equivalence of classifying spaces. At the
same time, a theorem of Iwasawa andMalcev [21, Section 7] implies that the inclusion
into G of a maximal compact subgroup K is a homotopy equivalence. Hence the map
BK → BG is a homotopy equivalence.

Universal characteristic classes live in the singular cohomology of classifying
spaces. To translate characteristic classes into the language of group cohomology,
therefore, we should strive to interpret the singular cohomology of a classifying space
in terms of group cohomology. In his thesis [22], Wigner gave such an interpretation
using Borel cohomology.

Theorem 8 Let A be a discrete abelian group. There is a canonical natural isomor-
phism

Hi
sing(B(·), A) � Hi

Borel(·, A)

of contravariant functors from the category of Lie groups to the category of abelian
groups.

Proof LetG be a Lie group.Wigner defined cohomology groupsH•
Wig(G, A)which he

showed to agreewith theBorel cohomology groupsH•
Borel(G, A).Wigner’s Theorem4

shows that H•(G, A) agrees with the cohomology of the constant sheaf A on the
classifying space BG. Since G is a Lie group, BG is sufficiently nice (homotopy
equivalent to a CW complex, say) that this sheaf cohomology agrees with the singular
cohomology Hi

sing(BG, A) [23]. 	
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3.2 Definition for vector bundles

Let X be a CW complex. The theory of Stiefel–Whitney classes assigns to a rank-n
real vector bundle V over X a family of cohomology classes

wi (V ) ∈ Hi
sing(X , F2), i = 0, 1, . . . , n.

These characteristic classes, along with others like the Chern classes, provide a pow-
erful algebraic framework for computations with vector bundles. The standard source
for the subject is Milnor and Stasheff’s book on characteristic classes [24]; for our
application, Chapters 4 to 9 and 14 are especially relevant.

Stiefel–Whitney classes are characterized abstractly, via a series of axioms: unital-
ity, naturality, multiplicativity of the total class, and nontriviality. To show that these
axioms do indeed define a collection of cohomology classes, and that this collection
is unique, one defines the classes as the pullback of certain universal cohomology
classes on a classifying space. The naturality axiom forces such a description.

The classifying space BGLn(R) is the Grassmannian of n-planes in R
⊕N, topolo-

gized as a direct limit, and the universal bundle over BGLn(R) is just the tautological
bundle over the Grassmannian, whose fiber over a point is the n-plane the point rep-
resents. The F2 singular cohomology ring of this infinite Grassmannian is a graded
polynomial ring with one generator for each i = 1, 2, . . . , n. We call the genera-
tor in degree i the i th universal singular Stiefel–Whitney class. Given a rank-n real
vector bundle V on X classified by the map fV : X → BGLn(R), we define the i th
Stiefel–Whitney class of V as the image under the pullback

f ∗
V : Hi

sing(BGLn(R), F2) → Hi
sing(X , F2)

of the i th universal singular Stiefel–Whitney class.
Since the compact orthogonal group On of rank n is a maximal compact subgroup

of GLn(R), the classifying spaces of the two groups are homotopy equivalent to each
other and real vector bundles are classified by maps to BOn . In the literature one often
works with the classifying spaces of this maximal compact subgroup instead of the
ambient general linear group, as we do here.

3.3 Definition for representations

It is now clear how to define the Stiefel–Whitney classes of a real representation. Let
wi,univ ∈ Hi

Borel(GLn(R), {±1}) denote the Borel cohomology class corresponding,
via Theorem 8, to the i th universal singular Stiefel–Whitney class. We call wi,univ the

i th universal Stiefel–Whitney class. Set wi,univ
def= 0 if i < 0 or i > n.

Definition 9 Let G be a Lie group. The i th Stiefel–Whitney class of a real representa-
tion r : G → GLn(R) is the cohomology class

wi (r)
def= r∗(wi,univ) ∈ Hi

Borel(G, {±1}).
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This definition is not enough for us, however. Since the relevant representations
of L-groups are complex, not real, we need to define the Stiefel–Whitney classes of
a complex representation, the goal of this subsection. In outline, to make the defini-
tion we simply require that base change from R to C leave Stiefel–Whitney classes
unchanged. This stipulation defines Stiefel–Whitney classes for all complex represen-
tations that descend to R, in particular, the bounded orthogonal representations.

AnR-structure on a complex vector space V is a real subspace V0 ⊆ V such that the
map V0 ⊗R C → V is an isomorphism. An R-structure on a complex representation
(r , V ) is a real representation (r0, V0) such that V0 is an R-structure on V and r
factors through r0. An isomorphism of R-structures on a complex representation is an
isomorphism of the corresponding real representations.

It is not the case that every complex orthogonal representation admits an R-
structure: for instance, the two-dimensional representation of Z that sends 1 to the
diagonalmatrixwith entries (2i,−i/2) is orthogonal but does not admit anR-structure
because its character takes imaginary values. However, if the representation is in addi-
tion bounded, meaning the closure of its image is compact, then it does admit an
R-structure.

Lemma 10 All bounded complex orthogonal representations admit an R-structure.

Proof An exercise in point-set topology shows that the closure of the image of the
representation is again a group, and by hypothesis the closure is compact. Hence the
representation factors through some compact orthogonal group On , where n is the
complex dimension of the representation, because On is a maximal compact subgroup
of the complex orthogonal group. 	


The base change problem appears inmany other settings than representation theory.
For example, we can study the base change of varieties from R to C. In that setting,
it can happen that R-varieties are nonisomorphic but become isomorphic upon base
change to C. In our setting the story is simpler: any two real forms of a (semisimple)
representation must be isomorphic.

Lemma 11 Let G be a group and r : G → GL(V ) a finite-dimensional complex
representation. If r is semisimple then any two of its R-structures are isomorphic.

Proof Since r is semisimple, the group AutG(r) ⊆ GL(V ) of linear G-equivariant
automorphisms of V is a product of complex general linear groups. At the same time,
the isomorphism classes of R-structures on r are classified by the Galois cohomology
set H1(�R,AutG(r)). By Hilbert’s Theorem 90, this cohomology set is trivial. 	


By the lemma, the following definition does not depend on the choice ofR-structure.

Definition 12 Let G be a Lie group and let (r , V ) be a semisimple complex represen-
tation of G that admits an R-structure (r0, V0). The i th Stiefel–Whitney class of (r , V )

is

wi (r)
def= wi (r0) ∈ Hi

Borel(G, {±1}).
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We are most interested in the second Stiefel–Whitney class because of its appear-
ance in Deligne’s theorem on root numbers.

Lemma 13 Let V0 be a real anisotropic quadratic space and let V
def= V0 ⊗R C, a

complex quadratic space. There exists an extensionPin(V ) ofO(V ) by {±1}, called the
(complex) pin group, with the following property: the class cpin ∈ H2

Borel(O(V ), {±1})
that classifies Pin(V ) is the pullback of the second universal Stiefel–Whitney class

w2,univ ∈ H2
Borel(O(V0), {±1}) � H2

Borel(GL(V0), {±1}).

We call the class cpin ∈ H2
Borel(O(V ), {±1}) the pin class.

Proof Let Pin(V0) be the extension of O(V0) by {±1} classified by w2,univ. It is well-
known that Pin(V0) is (the rational points of) the standard (real) algebraic pin group
defined using the Clifford algebra Cl(V0); see, for instance, Appendix I of [25] or the
introduction to [18].

To be specific, the group Pin(V0) is the stabilizer of the subspace V0 ⊆ Cl(V0) under
the conjugation action of the units group Cl(V0)× on Cl(V0). The main anti-involution
of Cl(V0) is the automorphism α induced by the order-reversing automorphism v1 ⊗
· · · ⊗ vd �→ vd ⊗ · · · ⊗ v1 of the tensor algebra on V0. The spinor norm is the
homomorphism Cl(V0) → C

× sending x ∈ Cl(V0) to xα(x). Finally, Pin(V0) is the
kernel of the spinor norm.

It is now clear that we may take as Pin(V ) the complex algebraic group obtained
from (the algebraic group underlying) Pin(V0) by base change from R to C. 	


It follows from the lemma that the second Stiefel–Whitney class of a bounded
complex orthogonal representation r : G → O(V ) is classified by the pullback of
group extensions r∗ Pin(V ). This conclusion is our final reformulation of the second
Stiefel–Whitney class in the language of group cohomology.

Remark 14 There are two variant and non-isomorphic definitions of the pin group,
stemming from the fact that the elements w2,univ and w2

1,univ of H2
Borel(O(V ), {±1})

are distinct. Conrad’s SGA 3 article [26], whose notation for the Pin group agrees with
ours, nicely explains the difference; Remarks C.4.9 and C.5.1 are especially relevant.
The other variant of the pin group, which we do not use here, is due to Atiyah, Bott,
and Shapiro [27], and is denoted by Pin− in Conrad’s article. The definition is similar
to ours but one modifies the spinor norm by a sign twist.

3.4 Deligne’s theorem

We start by defining the Stiefel–Whitney classes of a complex orthogonal representa-
tion of the Weil group. When the field k is archimedean, this task is already complete
because WR and WC are Lie groups. When k is nonarchimedean, we use the fact that
every complex representation of Wk factors through a discrete quotient.
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Definition 15 Let k be nonarchimedean, let V be a complex quadratic space, and
let r : Wk → O(V ) be a complex orthogonal representation of Wk . The i th Stiefel–
Whitney class of (r , V ) is the image of wi (r) under the inflation map

Hi (Wk/ ker r , {±1}) → Hi (Wk, {±1}).

The evident compatibility of Stiefel–Whitney classes with inflation shows that we
are free to replace ker r by any open subgroup ofWk on which r is trivial. We can now
state our reformulation of Deligne’s theorem on root numbers.

Theorem 16 Let r : Wk → O(V ) be a bounded complex orthogonal representation
and let cpin ∈ H2

Borel(O(V ), {±1}) be the pin class of Lemma 13. Then

ω(r)

ω(det r)
= sgn r∗(cpin).

The statement of the theorem uses that the group H2(Wk, {±1}) is cyclic of order
two. The function sgn was defined in Sect. 1.1; it uniquely identifies this group with
the group {±1}.
Proof Applying Deligne’s theorem [3, Proposition 5.2] to the virtual representation

r − det r − (dim r − 1) · triv

of dimension zero and determinant one shows that the lefthand side of the equation
equals sgn(w2(r)). And by Lemma 13, w2(r) = r∗(cpin). 	


4 Spin lifting

Let G be a complex reductive group, identified with its set of C-points. In our applica-
tion G will be the Langlands dual of a reductive k-group, but in this section we restrict
attention to complex groups so there is no need to decorate G with a hat.

Consider an (algebraic, complex) orthogonal representation r : G → O(V ). As
G is (by assumption) connected, the representation r factors through the identity
component SO(V ) of O(V ), and we may without loss of generality replace O(V )

by SO(V ) as the target of r .
The special orthogonal group SO(V ) is not simply connected. Supposing that

dim V > 2, its universal cover p : Spin(V ) → SO(V ), a double cover, is an alge-
braic group called the spin group. We can construct the spin group as a subgroup of
the units group of a Clifford algebra, though for our purposes, we can understand
the group using the combinatorics of root systems alone. When dim V = 2, so that
SO(V ) = Gm is a one-dimensional torus, we define Spin(V ) = Gm with double cover
p : Spin(V ) → SO(V ) the squaring map.

The existence of the spin group creates a dichotomy in the orthogonal represen-
tations r : G → SO(V ) of G: either the representation lifts to the spin group or it
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does not. We can study and refine this lifting question by passing to the universal
cover Guniv of G:

Guniv = z × Gsc

where z is the Lie algebra of the center Z of G and Gsc is the simply-connected cover
of the derived subgroup of G. Standard facts about covering spaces imply that r lifts
to a homomorphism runiv : Guniv → Spin(V ). Restricting runiv to the kernels of the
projections yields the following commutative diagram, which is essentially equivalent
to (1):

1 π1(G) Guniv G 1

1 {±1} Spin(V ) SO(V ) 1.

er runiv r

Then r lifts to the spin group if and only if the character er : π1(G) → {±1}, which
we call the spin character of r , is trivial.

Our goal in this section is to give a formula for the spin character of a representation
in terms of its weights. We start in Sect. 4.1 with a criterion for r to lift to the spin
group. From this criterionwe then deduce, in Sect. 4.3, a formula for the spin character.

All that is new here is our exposition: this calculation forms part of the canon
of the representation theory of compact Lie groups. With that said, there is a small
discrepancy between our answer and Bourbaki’s, which I believe to be an error on
Bourbaki’s part. This discrepancy is discussed in Sect. 4.2.

Given a representation (r , V ) of G and a maximal torus T , let �(V ) ⊆ X∗(T )

denote the set of weights of T on V .

4.1 Lifting criterion

The goal of this subsection is to describe which orthogonal representations of G lift
to the spin group. We start with the essential case where G = T is a torus; the general
case reduces easily to this one.

Let S be a maximal torus of SO(V ) and let˜S ⊆ Spin(V ) be its preimage in the spin
group, again a maximal torus. Any homomorphism T → SO(V ) can be conjugated
to take values in S, after which point the lift to the spin group, if it exists, factors
through ˜S. Passing to character lattices, the lifting question reduces to the algebra
question of whether the homomorphism X∗(S) → X∗(T ) can be extended to the
group X∗(˜S), which contains X∗(S) as an index-two subgroup because ˜S → S is a
double-cover.

˜S

T S

p

r

r̃

X∗(˜S)

X∗(T ) X∗(S)

r̃∗
p∗

r∗
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To solve this extension problem, we need to understand the double cover ˜S → S
as well as the relationship between the homomorphism T → S and the weights of the
original orthogonal representation. Let n be the rank of Spin(V ), so that dim V = 2n
or 2n + 1. Fix a set I of cardinality dim V equipped with an involution i �→ −i that
fixes no element of I when dim V is even and exactly one element of I , which we
denote by 0, when dim V is odd.

First, the double cover. Choose an I -indexed basis e = (ei )i∈I of V for which
〈ei , e j 〉 = [i = − j]; 3 we call such a basis a Witt basis. Let Se denote the group of
s = (si )i∈I ∈ G

I
m such that si · s−i = 1 and such that, when dim V is odd, s0 = 1.

The rank-n torus Se acts on V by

s · ei def= si ei ,

realizing Se as a subgroup of SO(V ). Evidently Se is a maximal torus, and every other
maximal torus of SO(V ) arises from aWitt basis e by this construction. Passing to the
character lattice, describing a basis of X∗(Se) requires a choice of gauge p : I \{0} →
{±1}, that is, a negation-equivariant function. Given p, say i > 0 if p(i) = +1 and
i < 0 if p(i) = −1, for i ∈ I . The characters fi : s �→ si for i > 0 give a basis
for X∗(S).

We can use theClifford-algebra description of Spin(V ), or even easier, theBourbaki
root-system tables [29, Planches], to work out the character lattice of X∗(˜S). Taking
f p = ( fi )i>0 as a basis for X∗(S)Q, the character lattice of X∗(˜S) is the set of elements
of 1

2 X
∗(S) whose coordinates are all integers or all half-integers. In particular, X∗(˜S)

is generated by X∗(S) and the vector f̃ p = 1
2

∑

i>0 fi . It follows that for A an abelian
group, a homomorphism X∗(S) → A extends to a homomorphism X∗(˜S) → A if and
only if, letting ai denote the image of fi , the sum

∑

i>0 ai lies in 2A. If this property
is satisfied then f̃ p can map to any element whose double is

∑

i>0 ai . When A is
2-torsionfree there is at most one such element, hence at most one extension.

Consequently, ˜S can be described as the quotient S/B where B is the group of
(εi )i∈I ∈ {±1}I with εi = ε−i , ε0 = 1, and

∏

i>0 εi = 1. In this description the
twofold cover ˜S → S is induced by the squaring map on S.

Next, the weights. Since V is an orthogonal representation of T , its set of weights
is negation-invariant. Let p : �(V ) \ {0} → {±1} be a gauge. Using the gauge we can
write down an orthogonal decomposition

V = V0 ⊕
⊕

α>0

(Vα ⊕ V−α)

in which Vα is the orthogonal complement of V−α when α �= 0. At this point the
gauge is only a notational convenience since the summands in the decomposition do
not depend on it. Choose a Witt basis (ei )i∈I for V consisting of weight vectors of S
and let αi denote the weight of ei . If dim V is odd then e0 is of weight 0. The map

3 Here [P] is the Iverson bracket popularized by Knuth [28]: it equals 0 if the property P is false and 1 if
P is true.
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X∗(S) → X∗(T ) dual to the homomorphism T → S sends the basis vector fi to the
character αi .

These two analyses combine to a criterion for the map T → S to lift to ˜S. Choose
a gauge p on X∗(T ) and define the element

ρr
def= 1

2

∑

α>0

(dim Vα)α ∈ 1

2
X∗(T ). (2)

Although ρr depends on the choice of gauge, we will only ever use it in a way that
is independent of the choice of gauge. Now our criterion is this: the representation r
lifts to the spin group if and only if ρr ∈ X∗(T ).

When G is no longer abelian, we can reduce the spin-lifting problem to the abelian
case using the observation that all the obstructions to lifting lie in a maximal torus.

Lemma 17 Let f : G → H be a homomorphism of complex reductive groups, T ⊆ G
a split maximal torus of G, and ˜H → H an isogeny. Then f lifts to ˜H if and only if
f |T lifts to ˜H.

The lemma is true over much more general bases than the complex numbers.
Counter to the spirit of SGA 3, we prove it using the analytic topology on G.

Proof Isogenies are covering spaces. This claim follows from the lifting criterion
for covering spaces [30, Proposition 1.33] together with the surjectivity of the map
π1(T ) → π1(G) [31, Section 4.6]. 	


Combining Lemma 17 with our analysis of the abelian case completely solves the
problem of lifting an orthogonal representation to the spin group.

Theorem 18 Let G be a reductive group, T ⊆ G a maximal torus, and (r , V ) an
orthogonal representation. Then r lifts to the spin group if and only if ρr ∈ X∗(T ).

4.2 Comparison with Bourbaki

Our Theorem 18 differs from at least one work in the canon of Lie groups, Chapter 9
of Bourbaki’s Groupes et algèbres de Lie [31]. I believe there is a small error in
Bourbaki’s account of the lifting criterion. In light of the famous scrupulousness with
which the Bourbaki group prepared their treatises, a few words are in order to explain
the discrepancy.

Chapter 9 of Bourbaki’s book studies compact connected Lie groups. Although this
setting is different from ours, the algebraic setting, there is a standard dictionary [32,
Sections VIII.6–7] between the compact and algebraic settings, and this dictionary
gives a comparison between our work and Bourbaki’s. Exercise 7a of Section 7 of
[31] concerns the spin lifting question. The difference between Bourbaki’s answer and
ours, the quantity ρr defined in Eq. (2), is that we take into account the multiplicity
of the weights, in other words, the dimensions of the weight spaces, while Bourbaki’s
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analogue of ρr ,

1

2

∑

0<α∈�(V )

α,

does notweight the sumbymultiplicity. In this subsection,we give an example explain-
ing why Bourbaki’s criterion is incorrect.

Our theory predicts that the double of an orthogonal representation lifts to the
spin group. Here is an independent proof of this prediction. It shows that Bourbaki’s
exercise cannot be correct, as we explain after the proof.

Lemma 19 Let r : G → SO(V ) be an orthogonal representation of a reductive
group G. Then r ⊕ r lifts to the spin group.

Proof It suffices to prove the claim in the case where r is the tautological (identity)
orthogonal representation of G = SO(V ). Consider the following commutative dia-
gram, in which the left horizontal arrows are diagonal inclusions, the right horizontal
arrows are multiplication maps, and the vertical arrows are the canonical projection
from the spin group to the special orthogonal group.

Spin(V ) Spin(V ⊕ 0) × Spin(0 ⊕ V ) Spin(V ⊕ V )

SO(V ) SO(V ⊕ 0) × SO(0 ⊕ V ) SO(V ⊕ V ).

 •

 •

The claim amounts to showing that the bottom horizontal composite arrow lifts to
Spin(V ⊕ V ). Recall that the kernel of Spin(V ) → SO(V ) is negation in the Clifford
algebra, which we denote by −1. The claim is equivalent to the statement that −1 lies
in the kernel of the horizontal top composite arrow. And this statement follows from
the fact that for any isometric embedding W → V of quadratic spaces, the induced
map Spin(W ) → Spin(V ) sends the center to the center. This fact is a consequence
of the Clifford-algebra definition of the spin group: the induced spin-group map is the
restriction of the induced Clifford algebra map Cl(W ) → Cl(V ), and this map is the
identity on the copy of C inside both algebras. 	


It is clear that the tautological orthogonal representation of SO(V ) does not lift to
the spin group: otherwise, the spin cover of SO(V ) would split and Spin(V ) would be
disconnected. On the other hand, since �(V ) = �(V ⊕ V ) and Bourbaki’s criterion
is sensitive only to the set of weights, that criterion, along with Lemma 19, would
imply that the tautological representation does lift.

4.3 Spin character

In this subsection, we build on our work from Sect. 4.1 to give a formula for the spin
character of an orthogonal representation r : G → SO(V ).

First, let’s review the construction of the universal covering projection of a complex
torus T . The universal cover of T can be identified with the Lie algebra t and the uni-
versal covering map t → T is then the exponential map from the theory of Lie groups.
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The universal cover is functorial because formation of Lie algebras is functorial: the
morphism on universal covers induced by a morphism of tori is the differential of the
morphism on the Lie algebras.

For our purposes it is more useful, however, to describe the universal cover t using
cocharacter lattices. The evaluation map X∗(T ) ⊗ C

× → T is an isomorphism,
forming the tensor product over Z. It is conventional to use exponential notation for
these tensors, writing aλ for λ ⊗ a. Similarly, evaluation of the derivative at 1 gives a
canonical isomorphism X∗(T ) ⊗ C → t. In these coordinates, the exponential cover
t → T is simply the map X∗(T ) ⊗ C → X∗(T ) ⊗ C

× induced by the exponential
function

λ ⊗ a �→ exp(2π ia)λ.

The universal cover map identifies its kernel, X∗(T ), with the fundamental group of T .
More concretely, the identification X∗(T ) � π1(T ) is restriction of cocharacters to
the unit circle of C

×. In this tensor product model, functoriality of the universal cover
follows from functoriality of the cocharacter lattice: a homomorphism f : T → S of
tori induces a map f∗ : X∗(T ) → X∗(S), and the induced map funiv : Tuniv → Suniv
is simply

funiv : λ ⊗ a �→ f∗(λ) ⊗ a.

Of particular importance are the isogenies f : T → S, for which funiv relates two
different descriptions of the same universal cover.

We first work out the character er in the case where G = T is a torus; the general
case follows immediately from this special case. Choose a gauge on X∗(T ) \ {0} so
that we may speak of positive and negative characters. Retain the notation from Sect.
4.1, so that I indexes a Witt basis (ei )i∈I of V of weight vectors, S is the maximal
torus of SO(V ) corresponding to the basis, and˜S is its double cover in Spin(V ). Here
X∗(S) = ker(ZI → Z

I/±), a basis for X∗(S) is ( fi − f−i )i>0 where ( fi )∈I is the
standard basis ofZ

I , and X∗(˜S) is the set of elements of 1
2 X∗(S)whose fi -coefficients

are either all integers or all half-integers. Now consider the following diagram, where
S′ = S and the dashed arrow is squaring.

Tuniv T

Suniv S′
˜S S

runiv r2

The map X∗(S′) = X∗(S) → X∗(S) induced by squaring is multiplication by 2.
Therefore, under the identification Suniv = X∗(S) ⊗ C, the map Suniv → X∗(S′) ⊗
C

× = S′ is

λ ⊗ a �→ exp(2π ia/2)λ λ ∈ X∗(S).
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At the same time, our work in Sect. 4.1 shows that the map r∗ : X∗(T ) → X∗(S) is

r∗ : λ �→
∑

i>0

〈λ, αi 〉( fi − f−i ).

As α−i = α−1
i , it follows that the map X∗(T ) → ˜S is given by the formula

λ �→ (

exp(π i〈λ, αi 〉)
)

i∈I ,

where the target element is interpreted as a coset in S following the discussion in Sect.
4.1. Belying the notational complexity of this formula, every component of the tuple
is ±1. We know that the image in ˜S of this tuple lies in the center of Spin(V ), an
order-two subgroup of ˜S. To identify the image as +1 or −1, we take the product of
the elements of the tuple with positive index i . The final formula, therefore, is

er (λ) =
∏

i>0

exp
(

π i〈λ, αi 〉
) = exp

(

π i〈λ, 2ρr 〉
) = (−1)〈λ,2ρr 〉

where λ ∈ X∗(T ) � π1(T )

When G is not a torus, we choose a split maximal torus T in G and use the fact
that the inclusion i : T → G induces a surjection π1(T ) → π1(G). A diagram chase
shows that the spin character er◦i for the restriction of r to T factors through er . In
this way we reduce to the case where G is a torus.

Theorem 20 Let G be a complex reductive group, let T ⊆ G be a maximal torus, and
let r : G → SO(V ) be an orthogonal representation. The spin character er : π1(G) →
{±1} induced by r is given by the formula

er (λ) = (−1)〈λ,2ρr 〉,

where λ ∈ X∗(T ) � π1(G) and ρr is defined in (2).

5 Central characters andWeil cohomology

To apply Lemma B to prove Theorem A, we need to interpret the image of the class
ϕ∗(cG) under the map

er ,∗ : H2(Wk, π1(̂G)) → H2(Wk, {±1}).

It turns out thatϕ∗(cG) corresponds toLanglands’s central characterχϕ – conjecturally,
the central character of the L-packet of ϕ – and that the map er ,∗ corresponds to
evaluation of the character on a certain involution zr . The goal of this section is to justify
and explain these claims, and ultimately, in Theorem 28, to show that er ,∗ϕ∗(cG) =
χϕ(zr ).
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Let Z be the center of the quasi-split reductive group G. The main difficulty is to
interpret the cohomology group

H2(Wk, X
∗(Z)).

After reviewing the general setting in which the cohomology of the Weil group is
computed, in Sect. 5.1, we show in Sect. 5.2 that when Z is connected, this group is the
character group of the Harish–Chandra subgroup Z(k)1 of Z(k).When char k = 0 and
k is nonarchimedean this identification exists even for Z disconnected, as we explain
in Sect. 1. Although the center of G need not be connected in general, Langlands’s
definition of χϕ permits us to reduce, in Sect. 5.3, to the connected-center case. We
conclude in Sect. 5.4 by defining the involution zr and proving Theorem 28.

In what follows, we use continuous cohomology for the Weil group of a nonar-
chimedean field and Borel cohomology for the Weil group of an archimedean field.
The difference is sometimes elided in the notation to avoid overburdening the reader.

5.1 Cohomology of theWeil group

What kind of group cohomology should we use to study the Weil group? Over an
archimedean field the right answer is Borel cohomology, as Example 3 shows. Over
a nonarchimedean field, one 4 right answer is continuous cohomology. Some care is
required, however, because the Weil group is not profinite, only locally profinite. For
profinite groups we can easily reduce most foundational problems to the setting of
finite groups, where topology is irrelevant, but this is no longer the case for locally
profinite groups.

Fortunately, Flach has written a nice article [34] that addresses technical concerns
in the continuous cohomology of the Weil group. Flach first situates this cohomology
in a general topos-theoretic setting, using theory from SGA 4, and then shows that this
general theory recovers the usual definition of continuous cohomology by continuous
cochains. One particularly useful consequence of his work is the existence of the
usual long exact sequence for any short exact sequence of topological modules whose
quotient map locally admits continuous sections [34, Lemma 6]. Another useful
consequence is the following lemma.

Lemma 21 Let V be a discrete Wk-module. Suppose the underlying abelian group of
V is uniquely divisible, in other words, a Q-vector space.

1. If k is nonarchimedean then Hi (Wk, V ) = 0 for i ≥ 2.
2. If k is archimedean then Hi

Borel(Wk, V ) = 0 for i odd.

Proof First, assume k is nonarchimedean. There is a Hochschild–Serre spectral
sequence

Hi (Z,H j (Ik, V )) �⇒ Hi+ j (Wk, V )

4 Lichtenbaum remarked that Borel and continuous cohomology agree in many cases, in particular, when
the coefficient group is discrete and countable [33, Remark 2.2]. We will not use this result, though it would
slightly simplify the exposition.
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coming from the short exact sequence 1 → Ik → Wk → Z → 1. This spectral
sequence is an instance of a more general spectral sequence that Flach constructed
[34, Corollary 6]. In the more general sequence, the group H j (Ik, V ) is replaced by a
sheaf which may or may not be representable. But since V is discrete andWk is locally
profinite, this sheaf is representable [34, Proposition 9.2] and there are no technical
problems.

Since V is uniquely divisible and Ik is profinite, H j (Ik, V ) = 0 for j ≥ 1 [35,
Proposition 1.6.2]. Since Z has cohomological dimension one, Hi (Z,−) vanishes for
i ≥ 2. So all entries on the starting page of the spectral sequence vanish except possibly
those in positions (0, 0) and (1, 0).

Next, suppose k is archimedean. If k = C then WC = C
× = S1 × R>0 has

classifying space the infinite-dimensional complex projective space. Its integral, hence
rational, cohomology is known to be concentrated in even degrees. If k = R then use
the Hochschild–Serre spectral sequence in Borel cohomology [11, Theorem 9] for
the short exact sequence 1 → C

× → WR → �R → 1 together with the vanishing
of H≥1(�R,−) on uniquely divisible groups to show that the map Hi

Borel(WR, V ) →
Hi
Borel(C

×, V )�R is an isomorphism for i ≥ 2. 	


5.2 Harish–Chandra subgroup

Recall that G is a quasi-split reductive k-group. Define the pairing

G(k) ⊗ Homk−gp(G, Gm) → R

by 〈g, α〉 = ordk(α(g)), where ordk : k× → R is the absolute value for k archimedean
and the discrete valuation for k nonarchimedean. Currying yields a map

θG : G(k) → Hom(Homk-gp(G, Gm), R).

In particular, if G = T is a torus then the target of θG is X∗(T )
�k
R
. A character of G(k)

is unramified if it is inflated along θG .

Definition 22 Let G be a k-group. The Harish–Chandra subgroup G(k)1 of G(k) is
the kernel of the homomorphism θG .

For example, ifG is finite thenG(k)1 = G(k) because roots of unity have valuation
zero. IfG = T is a torus then the group T (k)1 is compact, hence profinite. TheHarish–
Chandra subgroup is relevant because its character group is exactly the cohomology
group of interest to us, as we now explain.

Lemma 23 Let T be a k-torus. The image of the composite map (taken in Borel coho-
mology if k is archimedean)

H1(Wk, X∗(T )C) H1(Wk, ̂T ) Homcts(T (k), C
×),

LLC

in which the second map is the local Langlands correspondence for tori, is the group
of unramified characters of T (k).
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Proof When T = Gm the claim is clear, and Shapiro’s lemma then proves the claim
for any induced torus. In general, embed T in an induced torus S. Using the diagram

H1(Wk, X∗(S)C) H1(Wk,̂S) Homcts(S(k), C
×)

H1(Wk, X∗(T )C) H1(Wk, ̂T ) Homcts(T (k), C
×)

LLC

LLC

and the fact that the left vertical arrow is a surjection by Lemma 21, it suffices to show
that the unramified characters of T (k) are precisely the restrictions of the unramified
characters of S(k). Clearly restriction preserves unramification, and every unramified
character of T (k) extends to an unramified character of S(k) because X∗(T )�k is a
summand of X∗(S)�k . 	


The universal cover exact sequence for ̂T expands, by Lemma 21, to the exact
sequence

H1(Wk, X∗(T )C) H1(Wk, ̂T ) H2(Wk, X∗(T )) 0.

At the same time, there is a canonical identification

coker
(

Hom(X∗(T )
�k
R

, C
×) → Homcts(T (k), C

×)
) � Homcts(T (k)1, C

×).

Combining these two facts yields a cohomological description of the character group
of T (k)1.

Corollary 24 Let T be a k-torus. The local Langlands correspondence and universal
cover coboundary furnish an isomorphism (in Borel cohomology if k is archimedean)

H2(Wk, X
∗(T )) � Homcts(T (k)1, C

×).

5.3 Evaluation at an involution

Let T be a k-torus. Every Galois-equivariant homomorphism X∗(T ) → {±1} induces
a map

H2(Wk, X
∗(T )) → H2(Wk, {±1}).

The source is the character group of T (k)1 and the target is a group of order two. It
follows by Pontryagin duality that this map is evaluation of characters at an involution.
The goal of this subsection is to show that when T = Gm and the map X∗(T ) = Z →
{±1} is nontrivial, this involution is nontrivial. Although the claim is quite weak, it is
all that is needed for our computation of er ,∗ϕ∗(cG).

When k is nonarchimedean of characteristic zero we can describe H2(Wk, X∗(T ))

using the cup-product pairing of Tate duality, as in Sect. 1, and the claim follows imme-
diately from the naturality of that pairing. But in general there is no such naturality
statement compatible with our coboundary description of H2(Wk, X∗(T )). Instead,
we prove nontriviality using an argument with long exact sequences that rests on the
following computation.
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Lemma 25 Let A be a Wk-module which is finitely generated as an abelian group.

1. If k is archimedean then H3
Borel(Wk, A) is torsionfree.

2. If k is nonarchimedean then H3(Wk, A) is a p-group.

Recall that in the nonarchimedean case, p is the residue characteristic of k. A
(possibly infinite) group is a p-group if each of its elements has order a power of p.

Proof When k is archimedean, we can argue as in the proof of Lemma 21. For k = C

we conclude that H3
Borel(WC, A) = 0 and for k = Rwe conclude, using the calculation

on page 310 of [3], that H3
Borel(WR, A) is a free Z-module of finite type.

Next, assume k is nonarchimedean. When char k = 0, Karpuk proved [36, Sec-
tion 3.2] the stronger statement that Hi (Wk, A) = 0 for all i ≥ 3. A slight modification
of his argument, which we outline below, proves the Lemma 25.

The Hochschild–Serre spectral sequence, mentioned in the proof of Lemma 21,
gives the vanishing for i ≥ 4 and can be used to show, for i = 3, that H2(Wk, P) �
H3(Wk, M), where P

def= MQ/M . Let P[n] denote the n-torsion subgroup of P . The
cohomology of Wk in P can be computed as a direct limit of the cohomologies in the
torsion subgroups:

H2(Wk, P) � lim−→
n

H2(Wk, P[n]).

Since P[n] decomposes as a direct sum of its Sylow subgroups, we can rewrite the
direct limit as

H2(Wk, P) � H2(Wk, P[p∞]) ⊕ lim−→
p�n

H2(Wk, P[n])

where P[p∞] def= ⋃

n≥0 P[pn]. Since the group P[p∞] is a p-group, the cohomology
group H2(Wk, P[p∞]) is a p-group as well. It therefore suffices to show that the
second summand above vanishes.

By Tate duality (see Theorem 30), if n is prime to p then H2(Wk, P[n]) is dual to
HomWk (P[n], μ)whereμ is the group of roots of unity in k̄. It follows that the second
term above, lim−→p�n

H2(Wk, P[n]), is dual to

HomWk (P/P[p∞], μ).

Since P[p∞] is a summand of P , it suffices to show that HomWk (P, μ) = 0. Karpuk
has an argument for the vanishing that works just as well when char k > 0. 	


Lemma 25 together with a long exact sequence argument proves our desired non-
triviality.

Corollary 26 Let � be a finite separable extension of k, let M = Ind�/k Z, and let
f : M → {±1} be the unique nontrivial homomorphism. If char k �= 2 then the
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induced map

f∗ : H2(Wk, M) → H2(Wk, {±1})

(taken in Borel cohomology if k is archimedean) is nontrivial.

Proof Since f factors through the augmentation map M → Z, it suffices to prove the
corollary in the case where � = k and M = Z. The long exact sequence for the short

exact sequence 1 → Z
2−→ Z → {±1} → 1 yields a coboundary map

H2(Wk, {±1}) → H3(Wk, Z)

whose cokernel measures the failure of surjectivity. But by Lemma 25 the coboundary
map must be trivial: there are no nontrivial homomorphisms between {±1} and a
torsionfree group or a p-group with p �= 2. 	


5.4 Involutions from representations of L-groups

In this subsection, we explain how to construct from an orthogonal representation r
of LG a central involution zr ∈ Z(k), generalizing Gross and Reeder’s canonical
involution. We then relate this involution to our description of the character group
of Z(k)1.

The involution zr depends only on the restriction of r to ̂G. This restriction is an
algebraic representation of a complex reductive group and can thus be understood
through its weights. We compute the weights of the representation with respect to a
fixed, Galois-stable maximal torus ̂T of ̂G, which is dual to a minimal Levi T of the
quasi-split group G. Since r |

̂G is the restriction of a representation of the L-group, the
multiset of its weights is Galois-stable. Moreover, each weight can be interpreted as a
coweight of T .

Let m : X∗(T ) → N be a Galois-invariant multiset of weights. In our application
m will be the multiset of weights of a representation of LG, but the greater generality
is convenient for some proofs. As in Sect. 4.1, choose a gauge X∗(̂T ) \ {0} → {±1}.
This time we require the gauge to be Galois-invariant, and the requirement can be met
because the Galois action preserves some pinning containing ̂T . Define

zm
def=

∏

0<�∈X∗(T )

�(−1)m(�).

The involution zm is independent of the choice of gauge. For r a representation of LG

we set zr
def= zm where m(�) is the multiplicity of � in r |

̂T .
In this setting, the generalization of the spin character of Sect. 4.3 is the character

em : π1(̂G) � X∗(T ) → {±1} defined by the formula

em(λ) =
∏

0<�∈X∗(T )

(−1)m(�)〈λ,� 〉.
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Lemma 27 Let m : X∗(T ) → N be a Galois-invariant multiset of weights. If G has
connected center then the composite map

Homcts(Z(k)1, C
×) H2(Wk, π1(̂G)) H2(Wk, {±1}) {±1}� em,∗ sgn

(taken in Borel cohomology if k is archimedean) is evaluation at zm.

Proof By additivity it suffices to consider the case where m is a (multiplicity-one)
Galois orbit �. After choosing a gauge, we can factor em : X∗(T ) → {±1} as the
composition

X∗(T ) Z[�] {±1}
of the map

λ �→
∑

�∈�

〈λ,� 〉[� ]

and the mod-two augmentation map Z[�] → {±1}.
Apply the functor H2(Wk,−) to this composition. By naturality of the coboundary,

the image of the first map is isomorphic to the restriction map

Homcts(T (k)1, C
×) → Homcts(S(k)1, C

×)

where S is the k-torus with character group Z[�]. The image of the second map is a
homomorphism

Homcts(S(k)1, C
×) → {±1}

which is nontrivial by Corollary 26. And by Pontryagin duality this map must be
evaluation at an element of order two. Since S(k) � �× where � is the fixed field of
any element of �, the group S(k) has a unique element of order two, namely −1. The
lemma follows. 	


Let χϕ denote Langlands’s central character, the construction of which is summa-
rized in Borel’s Corvallis article [7, 10.1],

Theorem 28 Let ϕ : Wk → LG be an L-parameter, let r : LG → O(V ) be a complex
representation of LG, and let cG ∈ H2

Borel(
LG, π1(̂G)) classify the extension ̂Guniv �

Wk. Then

sgn(er ,∗ϕ∗(cG)) = χϕ(zr ).

Proof First, assume the center of G is connected. Let ϕ0 : Wk → ̂G denote the 1-
cocycle corresponding to ϕ, so that ϕ(w) = ϕ0(w)w. The morphism of short exact
sequences
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1 π1(̂G) ̂Guniv ̂G 1

1 X∗(Z) ẑ ̂Z 1

�

gives rise to a commutative square

H1(Wk, ̂G) H1(Wk, ̂Z)

H2(Wk, π1(̂G)) H2(Wk, X∗(Z)).
�

Pass ϕ0 around this square. By Lemma 7, the left arrow maps ϕ0 to ϕ∗(cG). The top
arrow maps ϕ0 to the cocycle representing Langlands’s character χϕ : Z(k) → C

×,
and the image of this cocycle under the right arrow corresponds to the restriction of χϕ

to Z(k)1. Hence this restriction corresponds to ϕ∗(cG). The Lemma now follows from
Lemma 27.

For a general G, whose center need not be connected, Langlands’s construction
of χϕ starts with a choice of embedding of G into a group G1 whose center Z1 is
connected. It turns out that every L-parameter ϕ : Wk → LG lifts to an L-parameter
ϕ1 : Wk → LG1 [37, Théorème 7.1]. One then defines χϕ as the restriction to Z(k)
of the character χϕ1 of Z1(k). The resulting character χϕ is independent of the choice
of lift and the choice of G1.

The projection ̂G1 → ̂G induces the diagram

π1(G1) ̂G1,univ � Wk
LG1 (c1)

{±1} Wk

π1(G) ̂Guniv � Wk
LG (cG)

f

er◦h

g h

ϕ1

ϕer

with exact rows. Let c1
def= cG1 ∈ H2(LG1, π1(G1)) classify the upper extension.

On the one hand, the existence of g implies that h∗(cG) = f∗(c1), from which we
conclude that

er ,∗ϕ∗(cG) = er ,∗ϕ∗
1 h

∗(cG) = er ,∗ϕ∗
1 f∗(c1) = er◦h,∗ϕ∗

1 (c1).

On the other hand, its easy to see from the definition of zr that

χϕ(zr ) = χϕ1(zr◦h).

These calculations reduce the general case to the previous one. 	


6 Synthesis

In this section, we complete the proof of Theorem A and explain its relationship to
the Plancherel measure.
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6.1 Proof of Theorem A

LetG be a quasi-split reductive k-group, let ϕ : WDk → LG be a tempered parameter,
and let r : LG → O(V ) be a complex orthogonal representation. Since root numbers
of orthogonal Weil–Deligne representations are unaffected by semisimplification, we
replace ϕ by its restriction ϕ : Wk → LG to the Weil group. The natural action of
the Weil group on ̂G lifts to an action on its universal cover. Using this action, apply
Lemma B to the diagram

1 π1(̂G) ̂Guniv ̂G 1

1 {±1} Pin(V ) O(V ) 1 (cpin),

er r |
̂G

takingW = Wk . Here cpin ∈ H2
Borel(O(V ), {±1}) classifies the (bottom) pin extension

and cG ∈ H2
Borel(

LG, π1(̂G)) classifies the extension ̂Guniv � Wk . We conclude from
the lemma that

r∗(cpin) = er ,∗(cG) · p∗r |∗Wk
(cpin) (3)

where p : LG → W is the projection. Hence

ϕ∗r∗(cpin) = ϕ∗er ,∗(cG) · ϕ∗ p∗r |∗Wk
(cpin),

taking values in H2(Wk, {±1}) for k nonarchimedean and in H2
Borel(Wk, {±1}) for k

archimedean. By our formulation of Deligne’s theorem, Theorem 16,

ω(ϕ, r)

ω(ϕ, det r)
= sgn

(

ϕ∗r∗(cpin)
)

.

At the same time, letting ϕprin : WDk → LG denote the principal parameter, the
composition r |Wk ◦ p ◦ ϕ is the restriction of r ◦ ϕprin to the Weil group. Deligne’s
theorem again implies that

ω(ϕprin, r)

ω(ϕprin, det r)
= sgn

(

ϕ∗ p∗r |∗Wk
(cpin)

)

.

Since ̂G is connected and r is orthogonal, det r restricts trivially to ̂G. Hence

ω(ϕprin, det r) = ω(ϕ, det r).

All in all, then, (3) simplifies to

ω(ϕ, r)

ω(ϕprin, r)
= sgn

(

ϕ∗er ,∗(cG)
)

.

Finally, Theorem 28 identifies the righthand side with χϕ(zr ).
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6.2 Application to Plancherel measure

Let G be a reductive k-group and let M be a Levi subgroup of G. From this data we
can form an orthogonal representation rG,M of LM which one might call the relative
adjoint representation for G ⊇ M , namely, the representation

Lie(̂G)/Lie(Z( ̂M)�k ).

The set of nonzero weights of this ̂M-representation is the root system of ̂G.
Now let ϕ : WDk → LM be a tempered discrete L-parameter for M and π a

representation of G(k) in the L-packet of ϕ. It is expected that the Weil–Deligne rep-
resentation rG,M ◦ ϕ encodes in its adjoint γ -factor the Plancherel measure on the
part of the tempered dual of G(k) coming from parabolic inductions of unramified
twists of π . This expectation is recorded in Hiraga, Ichino, and Ikeda’s article on
formal degrees [4, Conjecture 1.5] but originates in Harish–Chandra’s description
of the Plancherel measure and Langlands’s conjecture on normalization of intertwin-
ing operators. Theorem A largely computes the root number of this Weil–Deligne
representation:

ω(ϕ, rG,M ) = ω(ϕprin, rG,M ) · π(zAd)

where zAd is Gross and Reeder’s canonical involution for G (not M).
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Appendix A: Characters via Weil–Tate duality

Let T be afinite type k-groupofmultiplicative type.Our description ofH2(Wk, X∗(T ))

in Sect. 5 when T is a torus brings to mind a related and more classical result, Tate
duality, which in this case describes H2(�k, X∗(T )) as the character group of the
profinite completion T (k)pro of T (k). This conclusion holds more generally whenever
T is reduced. By analogy, one would hope that our description of H2(Wk, X∗(T ))

from Sect. 5.2 as the character group of T (k)1 could be strengthened by relaxing the
hypothesis that T is a torus to the hypothesis that T is reduced.
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In this appendix we provide partial evidence, in Theorem 30, for this hope by giving
such a description in two cases, both for nonarchimedean k: when char k is arbitrary
and T is finite and reduced, andwhen char k = 0 and T is arbitrary.Our starting point is
Karpuk’s thesis [36], which constructs a cup-product pairing generalizing Tate duality
to the Weil group, provided that char k = 0. After explaining how this works, we will
have two identifications of H2(Wk, X∗(T )) with a character group when T is a torus,
one by coboundary and one by cup product. We then show that the two identifications
are inverses of each other.

To compare the Harish–Chandra subgroup with Karpuk’s formulation ofWeil–Tate
duality, we need a small lemma on (metric) completions. Let � = k̆ be the completion
of the maximal unramified extension of k and let �̄ be a separable closure of �. By
Krasner’s lemma, �� = Ik .

Lemma 29 An element a ∈ �̄ is algebraic over k if and only if its Galois orbit is finite.

Proof The forward implication is clear. For the reverse implication, consider the poly-
nomial f (x) ∈ �̄[x] whose set of roots is the Galois orbit of a. Since the coefficients
of f are Galois-invariant, it suffices to show that k is the set of Galois-invariant ele-
ments of �̄. This claim is a theorem of Tate [38, Theorem 1] which holds also when
char k > 0 [1, Chapter XIII, Sect. 5, Lemma 1]. 	

Theorem 30 Let T be a finite type k-group of multiplicative type. If char k = 0 or T
is finite and reduced then the cup-product pairing

H2(Wk, X
∗(T )) ⊗ H0(Wk,Hom(X∗(T ),O×

�̄
)
) → Q/Z

induces a canonical identification

H2(Wk, X
∗(T )) � Homcts(T (k)1, C

×).

Herewe interpretQ/Z as a subgroupofC× via the exponentialmap t �→ exp(2π i t).

Proof Let k̄ be the separable closure of k in �̄. First, assume char k = 0.Karpuk showed
that the topological groups H2(Wk, X∗(T )) and Hom(X∗(T ),O×

�̄
)Wk are Pontryagin

dual to each other [36, Proposition 3.3.5]. The split short exact sequence for the
valuation on �̄× gives rise to an exact sequence describing Karpuk’s group as a kernel:

1 Hom(X∗(T ),O×
�̄

)Wk Hom(X∗(T ), �̄×)Wk Hom(X∗(T ), Z)Wk .

Since the action ofWk on X∗(T ) has finite orbits, anyWk-equivariant homomorphism
X∗(T ) → �̄× factors through k̄× by Theorem 29. Hence we may rewrite the sequence
as

1 Hom(X∗(T ),O×
�̄

)Wk T (k) X∗(T ).

So the lefthand group is the Harish–Chandra subgroup of T (k).
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When T is finite and reduced, the fact [3, Lemma 4.2.1] that the inflation map

H2(�k, X
∗(T )) → H2(Wk, X

∗(T ))

is an isomorphism reduces the problem to Tate duality for finite modules. 	

Our next goal is to compare the description of Theorem30with our earlier cobound-

ary description when T is a torus. Tate duality is the intermediary in the comparison.
Let T (k)pro denote the profinite completion of T (k). Since T (k)1 is compact, it is a
subgroup of T (k)pro.

Lemma 31 Let T be a k-torus. The following square commutes, where the horizontal
arrows are the cup-product pairings and the vertical arrows are restriction.

H2(�k, X∗(T )) Homcts(T (k)pro, C
×)

H2(Wk, X∗(T )) Homcts(T (k)1, C
×).

�

�

Proof It suffices to observe that the subgroup inclusion T (k)1 ↪→ T (k)pro can be
identified with the map

H0(Wk,Hom(X∗(T ),O×
�̄

)) → H0(�k,Hom(X∗(T ), �̄×))

induced by inclusion O×
�̄

↪→ �̄×. Lemma 29 identifies the righthand group
with T (k). 	


Tate duality describes H2(�k, X∗(T )) as the character group of T (k)pro. Moreover,
the extension of Artin reciprocity to tori describes H1(�k, ̂T ) as the same character
group. The two comparisons are related by the coboundary map for the exponential
exact sequence

1 X∗(T ) X∗(T )C
̂T 1.

There is a twist, however: the composite isomorphism below is inversion [5, Sec-
tion 8.2].

Homcts(T (k)pro) � H1(�k, ̂T ) → H2(�k, X
∗(T )) � Homcts(T (k)pro)

Lemma 32 Let T be a k-torus. The following square anticommutes, where the top
arrow is the (profinitely completed) Langlands correspondence, the bottom arrow is
from Theorem 30, the left arrow is the exponential coboundary, and the right arrow is
restriction.

H1(Wk, ̂T ) Homcts(T (k), C
×)

H2(Wk, X∗(T )) Homcts(T (k)1, C
×).

�

(−1)
�
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Proof Consider the following extension of the given diagram in which the left square
commutes by the compatibility of inflation and coboundary.

H1(�k, ̂T ) H1(Wk, ̂T ) Homcts(T (k), C
×)

H2(�k, X∗(T )) H2(Wk, X∗(T )) Homcts(T (k)1, C
×).

�

�

By Lemma 31 and the compatibility between Tate duality and the local Langlands
correspondence, the right square becomes commutative after restriction along the
upper left arrow. We’ll use this to deduce commutativity of the right square by a
diagram chase.

The bottom left arrow is surjective by Lemma 31 and exactness of Pontryagin
duality. Starting with an element c ∈ H1(Wk, ̂T ), move it clockwise around the left
square, choosing a lift along the bottom left arrow. We thereby produce an element
c′ ∈ H1(Wk, ̂T ) in the image of H1(�k, ̂T ). The elements c and c′ have the same
image in H2(Wk, X∗(T )), hence differ by an element in the kernel of the middle
vertical arrow, or in other words, by an element in the image of H1(Wk, X∗(T )C). To
prove commutativity of the right square, it therefore suffices to show that the following
composition fT : H1(Wk, X∗(T )) → Homcts(T (k)1, C

×) vanishes:

H1(Wk , X∗(T )C) H1(Wk , ̂T ) Homcts(T (k), C
×) Homcts(T (k)1, C

×).
�

For this, we use the same strategy as in the proof of Lemma 23. When T = Gm, the
image of the first map in Homcts(k×, C

×) is the group of unramified characters and
the claim is clear. It follows from Shapiro’s lemma that fT vanishes for any torus T
that is induced, in other words, a product ofWeil restrictions of split tori. For a general
torus T , choose an embedding T ↪→ S into an induced torus S and let R denote the
cokernel, a third torus. This embedding yields the commutative square

H1(Wk, X∗(S)C) Homcts(S(k)1, C
×)

H1(Wk, X∗(T )C) Homcts(T (k)1, C
×).

fS

fT

Since H2(Wk, X∗(R)C) = 0 by Lemma 21, the left arrow is surjective. We can thus
deduce the vanishing of fT from the vanishing of fS . 	
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