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1. Introduction

In [LS], Landazuri and Seitz gave lower bounds for irreducible representations
of Chevalley groups in nondefining characteristic (when referring to irreducible
representations for quasi-simple grou@s we will assume that the modules
are nontrivial onF*(G)). See also [SZ,GPPS,HF] for some improvements on
these bounds. These results have proved to be useful in many applications. In
particular, they have been used to classify the maximal subgroups of classical
groups containing an element of prime order acting irreducibly on a subspace
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of large dimension (cf. [GPPS]), and to show that low-dimensional modules in
characteristigp for groups with no normagp-subgroup are semisimple (see [Gu]).

It is also important to identify the modules which have dimension close to the
smallest possible dimension and to prove that there are no irreducible modules
with dimension in a certain range above it. This was done in [GPPS,GT1] for
SL,(¢g). Further improvements were obtained by Brundan and Kleshchev [BrK].
Hiss and Malle [HM] have obtained results similar to [GT1] for unitary groups.

In this paper, we consider the grou@is= Sp,, (¢) with n > 2 andg = p/ odd
andG = SU, (¢) with n > 3. Throughoutthe paperjs a prime not dividing; and
k is algebraically closed of characteristicLandazuri and Seitz [LS] had already
shown that the minimal dimensiahof any irreducible module in the nondefining
characteristie is (¢" — 1)/2 for the symplectic case, ant;” — 1)/(¢g + 1)] for
the unitary case. It was proved in [GPPS] that (aside from some small exceptions)
every irreduciblekG-module in a nondefining characteristic has dimension
d+ 1 or at least dimensiond2 In characteristic 0, Tiep and Zalesskii [TZ1] (using
Deligne—Lusztig theory) obtained much stronger results about the gap between
possible dimensions for all the classical groups. Similar results for complex
representations of exceptional groups were obtained by Libeck [Lu]. Here we
show that a similar result is true in all characteristics other than the defining
characteristic. The gap we obtain is essentially the same as in characteristic 0.
The smallest modules are the Weil modules described below.

The familiesSL,(¢), Sp,,(¢) with ¢ odd, andSU, (¢) all have Weil modules
which are much smaller than the other irreducible modules. The differences
between the small modules and other modules for the other Chevalley groups
are not as dramatic. This makes it much more difficult and requires new methods
to analyze those other groups. In particular, the familggf, (¢) with ¢ even has
recently been handled in [GT2].

The methods we use are different for the two families/ Ifs ak H-module,
we denote byry the Brauer character associatedito Although ty is a priori
only defined on elements whose order is coprime,twe can extendy to H
by declaring thaty (g) = Ty (g’) whereg = g’h = hg’ with g’ of order coprime
to r (clearly, suchg’ is unique). For the symplectic case, our main method is
to analyze modules with various local properties and by restricting to various
families of subgroups which contain a conjugate of every element of the group we
can determine the Brauer character of the module. Thus, we obtain results which
characterize the Weil modules by several different properties (see Section 2 for
statements of the main results and more details). Observe that it is not known
whether the decomposition matrix in this case has unitriangular shape or not.

For the unitary group, we start from the deep results of Hiss and Malle [HM]
which depend on Deligne—Luzstig theory and knowledge of the decomposition
matrices. We can improve their bounds. Indeed, we obtain the correct bound for
the dimension of an irreducible cross characteristic module (other than the Weil
modules) for the unitary groups. We also obtain more detailed information for
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some of the low rank unitary groups which depend upon the results of Broué and
Michel [BM] on unions ofr-blocks and the results of Fong—Srinivasan [FS] on
basic sets of Brauer characters (cf. also [GH]).

The Weil modules for the symplectic grougs= Sp,,(¢) with ¢ odd are
constructed in a very natural way. LEtbe an extra-special group of ordeg?"
of exponentp (i.e. [E, E] = ®(E) = Z(E) has orderp). For each nontrivial
linear charactery of Z(FE), the groupE has a unique irreducible module
of dimensiong™ over any algebraically closed field of characteristig p that
affords theZ(E)-characterg” x. Now G acts faithfully on E and trivially on
Z(E), and one can extend to the semidirect produ@&G. If we restrictM to G,
thenM = [t, M]® Cyp (¢) wherer is the central involution it If » # 2, these are
irreducible modules; if = 2, then[z, M] is irreducible andVf/Cy; (t) >~ [¢, M].

It turns out that there are only two possible isomorphism typesMoas kG-
modules. We call the irreducibleG-modules obtained in such a mannikeil
modules Observe that the modules in characteristic O are just the reductions

of the corresponding characteristic 0 modules (sikcéself is the reduction of
the irreducibleE G-module which as noted is unique given the central character).
If ris odd, there are two irreducible modules of each dimen&jént 1)/2; if

r = 2 we get two irreducible modules of dimensigif — 1)/2.

A similar but slightly more complicated construction [S] leads to the complex
Weil modules of the special unitary groug¥, (¢) (hereq may be even as well);
there is one such a module of dimensiafi + ¢(—1)")/(¢ + 1) andg such of
dimension(¢” — (—1)")/(g + 1). All of them extend tdJ,,(¢) if n > 3, see [TZ2,
Lemma 4.7]. Furthermore, any nontrivial irreducible constituent of the reduction
modulo any cross characteristiof a complex Weil module o§ U, (¢) or U, (¢)
lifts to characteristic 0, cf. for instance [HM]. Abusing language, we will refer to
any such irreducible constituen¥geil modulen characteristic.

There is an extensive literature on the Weil modules. We summarize some of
the known results in Section 5 and give some references in the bibliography.

We will then apply our results to the classification of quadratic modules and to
answer some questions about minimal polynomials of elements of prime order
in cross characteristic representations of Chevalley groups. We also indicate
how one can use our results to find the modulo 2 structure of the rank 3
permutation modulé/ of Sp,,(¢) on 1-spaces of the natural modUH‘é", cf.
Example 10.2M (modr) for r # 2 was considered by Liebeck [Li], and Zalesskii
and Suprunenko [ZS].

The paper is organized as follows. Sections 2 and 3 contain the formulation of
our main theorems. Section 4 collects some general results that we will need in the
sequel. Section 5 describes Weil modules of finite symplectic groups and some of
their properties. In Sections 6 and 7 we study the modules with certain properties
(R1) (cf. Theorem 2.2) and propert{R2) (cf. Theorem 2.3). In Sections 8 and
9 we prove Theorem 2.2 for > 3 andr # 2, respectively = 2. In Section 10
we finish the proof of Theorem 2.2, and give proofs of Theorems 2.1 and 2.3.
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In Sections 11 and 12 we study cross characteristic representations of finite
unitary groups of low dimension, and prove Theorems 2.5-2.7. Theorems 3.1
and 3.2 about the minimal polynomial problem are proved in Section 13. Finally,
Theorem 3.3 is proved in Section 14.

2. Low-dimensional representations of finite symplectic and unitary groups

In this section we state our results about low-dimensional cross characteristic
representations of finite symplectic and unitary groups. Recall that we assume
throughout the paper thatis a prime not dividing; andk is algebraically closed
of characteristie.

Theorem 2.1. Let G = Sp,,(¢) with n > 2 and ¢ = p/ odd. LetV be an
irreducible kG-module of dimension less thag" — 1)(¢" — q)/2(q + 1). Then
V is either the trivial module, or a Weil module of dimensigf + 1)/2.

Observe thatG has a unique irreducible complex characterof degree
(g" — D(@" — q)/2(qg + 1), and p is irreducible modulo-, cf. Lemma 7.4, so
the bound given in this theorem is the best possible.

Theorem 2.2. Let G = Sp2,(¢) with n > 2 and ¢ = p/ odd. LetV be an
irreducible kG-module with property

(R1) a long root subgroup has at mo& — 1)/2 nontrivial linear characters
onv.

ThenV is either trivial or a Weil module.

If V is a Weil module and is a long root subgroup, then the set of nontrivial
linear characters af occurring onV is one of the two set®;, i =1, 2, defined
in Section 5, both of cardinalitgg — 1)/2. AccordinglyV is said to haveypei.

Theorem 2.3. Let G = Sp,,(¢) with n > 3 and ¢ = p/ odd. LetV be an
irreducible kG-module satisfying at least one of the following conditions.

(R2) If Y =Y1 x Yo is a commuting pair ofdistinc)) long root subgroups, then
all nontrivial linear characters ofY on V are of the forma ® 8, where
eithera, B € 21 0ra, B € £2.

(W) For somej with 2 < j < n — 1, the restriction ofV to a standard subgroup
Sp;(¢) involves only irreducible Weil modules and maybe the trivial
modules.
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(Q) Any P,-orbit of nontrivial linear Q,,-characters orV is of length less than
(" —D@" —q)/2(g + D).

ThenV is either trivial or a Weil module.

By a standard subgrougp;(¢) in Sp,(¢) we mean the pointwise stabilizer
of a nondegenerat@n — 2j)-dimensional subspace of the natural module. Also,
P; is the stabilizer of aj-dimensional totally isotropic subspace in the natural
module, and2; = 0, (P;).

Theorem 2.2 immediately yields the following consequence.

Corollary 2.4. Let G = Sp,,(q) with n > 2 and ¢ = p/ odd. LetV be an
irreducible kG-module such that the restriction &f to a standard subgroup
Sly(g) involves only Weil modules of a given type and maybe the trivial module.
ThenV is either trivial or a Weil module.

The exampleG = Sp,, (3) with r = 2 shows that one cannot remove the
words “of a given type” from Corollary 2.4: all irreducible modules $if;(3)
in characteristic 2 are either Weil module or the trivial module.

Throughout the papet/,(¢) stands for the general unitary gro@u, (F2).
By a standard subgroupU;(¢) in SU,(¢g) or U,(q) we mean the pointwise
stabilizer inSU,(¢) of a nondegeneraté: — j)-dimensional subspace of the
natural module. Furthermoré, is the stabilizer infSU,(¢) of a j-dimensional
totally isotropic subspace in the natural module, af¢ = O,(P;). As an
analogue of Theorem 2.3, we have the following results.

Theorem 2.5. Let G = SU,(¢) or U,(q), and letn > 4. Let V be an irreducible
kG-module with the following property

(W) For somej, 3< j < n — 1, the restriction ofV to a standard subgroup
SU;(g) involves only irreducible Weil modules and maybe the trivial
modules.

ThenV is either of dimensiod or a Weil module.

Theorem 2.6. Let S = SU,(¢), n > 5, andm = [n/2]. Suppose thaV is an
irreducible kS-module such that any,,-orbit of nontrivial linear characters of
Z(Qn) onV is of length less thay” — 1)(¢" 1 — ¢)/ (g2 — D)(g + 1) if nis
even, andg” 1 — 1)(¢" 2 —q)/(¢g% — 1)(g + 1) if n is odd. ThenV is either
trivial or a Weil module.
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Theorem 2.6 is also true for=4 and S = Ua(g). If S = SW(g), then we
need to replace the bougdg — 1)(¢2 + 1) by (¢ — 1)(¢>+ 1)/ gcd2,q — 1),
cf. Proposition 11.7.

Hiss and Malle [HM] have shown that any irreducil8&J, (¢g)-moduleV in
cross characteristicis either trivial or a Weil module, if

n—-2 _ 1
dim(V) < ¢"2(q — 1 qi},
V) <q" “(q )[q+l

n > 6 and(n, g) # (6, 3). We will improve this “gap” result by establishing the
following theorem, in which we define

g2n/2 _ 1

KAQJ)Z{]“ f chart) = r divides? 5=

0, otherwise

Theorem 2.7. Let G = SU, (¢) andn > 5. Suppose thathark) =r andV is an
irreducible kG-module of dimension less than

@"—D@"t—q)
(@2—D(@+D
@" =D+
@>—-D@+1

if 2| nandg =2,

1—«,(q,r), if2]nandg > 2,

D(n,q,r) = n 1 n—1 2
(q(q—:—)%(q +_1;] ) —Kkn(q, 1), if n >7is odd
n n—-1_ 2
(¢"+1D(q q)_L T

(@°-D@+1D
ThenV is either trivial or a Weil module.

If n > 6isevenand = 2, thenSU, (¢) has an irreducible complex character
of degree equal to(n, ¢, r), cf. [TZ1, Corollary 4.2]. By Theorem 2.6, (modr)
is irreducible in any characteristic In general, ifn > 5 thenSU,(¢) has an
irreducible complex character of degree

@" = D" '+
@?>-D@+D

@"+D@" - ¢%
(@>=D(g+1

(which is at mosto(n, g, r) + 2), cf. [TZ1, Corollary 4.2]. Ifg is odd, then
the reduction modulo- = 2 of the complex unipotent charactgy,—» 2 of

SU, (¢) labeled by the partition — 2, 2) has an irreducible constituent of degree
o(n,q,r) if n =5, cf. [HM]. More generally, ifn > 5 andr | (¢ + 1), then

, ifn>6isevenand > 2,

, ifn>5isodd
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Xn—2,2) (modr) contains an irreducible constituent of degvée, ¢, r), cf. [ST].
Hence the bount(n, ¢, r) given in Theorem 2.7 is the correct bound.

If G =SW(g) andg > 2, then we need to replace the bound, ¢,r) in
Theorem 2.7 by (see [HM])

@*+D°—g+D

1.
gCC(Z, q— 1)

3. Minimal polynomialsand quadratic modules

In this section we state our results concerningttigimal polynomial problem
and thequadratic modulgoroblem.

If ® is akG-representation angd € G thendg(g) stands for the degree of
the minimal polynomial of® (g); similarly for dy (g) whereV is akG-module.
Forg € G, o(g) is the order ofg moduloZ(G). In generic position one expects
thatdy (g) = o(g); so the minimal polynomial problem is to classify all triples
(G, V,g), wheregG is a finite group,V an irreducibleG-module, andg € G an
elementsuchthat 4 dy(g) < o(g). Thisis a problem with long history, different
instances, and numerous results; for a brief account of it see [Z2].

Important results on the minimal polynomial problem in the case wiikre
is a finite Lie-type group of simply connected type in characterigtig is a
unipotent element of order, andV is an irreducibleG-module in characteristic
r # p, have been proved by Zalesskii [Z1,Z2]. In particular, he has determined
all possible pairgG, g), see Theorem 13.1. It remains to classify the modules
for each of these pair&7, g). This task has been done in [TZ2] in the case 0.
Here we complete the classification of possible modileéa any characteristic

r # p.

Theorem 3.1. Let G be a finite quasi-simple group of Lie type of characteristic
p > 0 of simply connected type, and supp@se G is of order p. Let® be a
nontrivial absolutely irreducible representation 6fin characteristicr £ p such
thatde (g) < p. Thenp > 2 and one of the following holds

(i) G =SUz(p), g is a transvection, an@ is the reduction module of the
(uniqug complex representation of degrgép — 1).

(i) G =Sk(p), and O is either a Weil representation or a representation of
degreep — 1.

(i) G =Sla(p?), and® is a Weil representation.

(iv) G =Sm(p), and® is either a Weil representation, or the unique represen-
tation of degreep(p — 1)2/2.

(V) G=Sp,(p),n >3, gis atransvection, and is a Weil representation.
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Moreover, in each of these cases there exists a representatiand an element
g satisfying the above conditions.

Another interesting instance of the minimal polynomial problem is to study
the case wherég is a finite classical group in characteristicg is a semisimple
element, and/ is an irreducibleG-module in characteristie # p. In this case,
all possible pairsG, g) have been identified by DiMartino and Zalesskii in [DZ],
see Theorem 13.2 (see also [FLZ,Z3] for results on somewhat different but related
configurations of the problem). The possible modutefor each of these pairs
(G, g) in the caser = 0 have been classified in [TZ2]. Here we complete the
classification of possible modul&sin any characteristie # p.

Theorem 3.2. Let G = Sp,,(¢) with n > 1 and (n, q) # (2,3), or G = U, (q)
withn > 2. Lets be a prime not dividing and letg € G be a noncentral element
such thatg belongs to a proper parabolic subgroup@fando(g) is a power ofs.
Let V be a nontrivial absolutely irreducibl&-module in characteristic coprime
to ¢ such thatdy (g) < o(g). ThenV is a Weil module.

In the case(n,q) = (2,3) there exists one more possibility for, cf.
Remark 13.3.

Theorem 3.2 and the following theorem complete the problem of classifying
guadratic modules in characteristifor finite groupsG with F*(G) being quasi-
simple but not of Lie type in the same characteristicSee Section 14 for a
detailed discussion of the quadratic module problem and a classification which
follows from [Ch] and Theorems 3.2, 3.3.

Theorem 3.3. Each of the group2Sp;(2), 29;(2), 2J2,2G2(4), 2Sz, and?2Coq,
has a unique irreducible quadrati€s-moduleV'. In the first two case¥ can be
obtained by reducing the root lattice of ty@g modulo3, and in the last four
casesV can be obtained by reducing the Leech lattice mod@ulo

4. Preliminary resultsand notation

Let k be a field (usually assumed to be algebraically closed for simplicity) of
characteristio- > 0. Let G be a finite group and be a finite-dimensionalG-
module. If H is a subgroup of7, we denote by H, V] the subspace generated
by all elements of the fornh — 1)v with h € H andv € V, and byCy (H) the
subspace oV consisting of all vectors fixed b¥ .

Let soqV) denote the socle oV and consider the socle series Wf Thus
so@(V) =0and sog(V) is defined by saqV)/soG_1(V) =soqV/sog_1(V)).
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Suppose that is a composition factor oV . Let j (S) denote the smallestso
that S is a composition factor of spV). We sayS is alevel j(S) composition
factor of V.

Lemma4.1. Let S be a composition factor of &G-moduleV of levelj = j(S).
Let e denote the multiplicity of in soc; (V). There exists a unique submodule
I’ = I'y (S) of V with the following properties

(i) I'/radI) is a direct sum oé copies ofS;
(i) I € sogG (V).

Proof. We induct on the dimension df. If V is semisimple the result is clear.
Next, I'v (S) = I'w (S) with W = soc; (V) and so we may assunmé= soc; (V).
Similarly, we may assume th&t/ rad'V) involves only the composition factcst
(sinceI"(S) is contained in the preimage of ttlehomogeneous component of
the mapV — V/radV)).

Suppose thatV = A @ B and 0# B does not involves. ThenI4(S) exists by
induction, and any such moduleéis contained iMA (because ith e Hom(I", B),
then kefg) + radl") = I'). So we may assume that every indecomposable
summand o involvesS and modulo its radical involves onB;.

At this point, V satisfies the conditions fof". We claim that no proper
submodule does. If a proper submodule did satisfy the conditions, then
U+radV)=V,whencelU =V. O

We state the next result in more generality than we need. We will be applying
this in the situation wheré is a Levi subgroup (or normal in a Levi subgroup)
andU is the unipotent radical of the corresponding parabolic subgroup gnath
element conjugatin@ to the opposite parabolic.

Lemma 4.2. Letk be an algebraically closed field of characteristic: 0. Let V
be akG-module withCy (G) = 0. Assume thaP = LU is a subgroup of; with
U a normalr’-subgroup ofP, g € Ng (L) with G = (U, U$). Then the following
statements hotd

() V=I[U,VIeCyU).

(i) If vV isirreducible and[U, V] is a semisimpld.-module, therV is a semi-
simpleL-module

(i) If S is an L-composition factor ofCy (U), then eitherS or s¢ is an
L-composition factor ofU, V1.

(iv) If Sis anL-composition factor o€y (U) of leveli, then eitherS is a com-
position factor of[U, V] of level less thar or s¢ s an L-composition
factor of [U, V] of level at most. In particular, if g centralizesL, thenS is
an L-composition factor ofU, V] of level at most.
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Proof. (i) is clear sincdJ is anr’-group.

(i) since [U, V] is a semisimpleL-module, so isg([U,V]) = [US8, V].
Thus, sog(V) is U- and U$-invariant (as any subspace containifig, V1] is
U-invariant). SinceG = (U, U8), soq.(V) is G-invariant and so is equal t@
by irreducibility.

(i) follows from (iv).

Finally, we prove (iv). Suppose the claim is falseSH " is not anL-compo-
sition factor of{U, V'] of level at most, thensS is not anL-composition factor of
[US8, V] of level at most; it then follows thatly (S) is a submodule of'y (U$).
On the other hand, if is not a composition factor g/, V] of level less thari,
thenI'y (S) N Cy (U) # 0. Thus,

0#Ty(S)NCy(U) SCy(Us)NCy(U)=Cy(G)=0,
a contradiction. O

Lemma 4.3. Let R be aring andV a finite lengthR-module. LetY be a family
of isomorphism classes of simptemodules.

(i) There exists a unique submodMéX’) of V which is maximal with respect
to all composition factors oV (X') belonging toX'.
(i) V(X) is the minimal submodule d&f such thatV (X) has all composition
factors inX andsoqV/V (X)) has no composition factors iit'.
@iy f V=V Vo, thenV(X) =V1(X) ® Vo(X).

Proof. Note that if M1 and M> are submodules involving only composition
factors in X', then so doesM; + M> (since it is a homomorphic image of
M1 ® M>). This shows (i). Clearly, (ii) holds and (iii) follows from (i) and (ii).

Throughout the paper until Section 9, we fix= Sp,,(¢) with » > 1 and
g = p/ for p an odd prime. We assume that4 p andk is an algebraically
closed field of characteristic If n < 2, then all irreduciblé& G-modules are well
known (see [Bu,Wh1,Wh2,Wh3]).

Let B be a Borel subgroup d@¥. We consider the maximal parabolic subgroups
containingB. Let P; denote the stabilizer of a totally isotropjesubspace in
the natural representation 6f. Let Q; = O,(P;) and letZ; = Z(Q;). Let P!
denote the subgroup &; generated by the root subgroupsRf(which is usuaﬁy
the commutator subgroup &%;).

In particular, letZ = Z; = Z(Py), so thatZ is a long root subgroup, say
{xo(®) |t € FZ}, of G, and Py = Ng(Z). Throughout the paper, every long root
subgroup will be considered &sg(7) | € IFZ}; in particular,xg(t) is conjugate
to x4 (¢). Let L; denote a Levi subgroup @f;, soL; = GL;(g) x SBn—j)(@)-
Let L/j denote the subgroup df; generated by the root subgroupsiin (and
soL/j = SLj(q) x Sp—j)(q)). We can identifyZ; with the GL ;(¢)-module of
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symmetricj x j matrices oveff,. Note thatSp,,,_ ;,(¢) acts trivially onZ; and
that Q;/Z; is just the tensor product of the natural modules for the components
of L;. For 1<d <n —1, let Hy >~ Sp,(q) x Sp,_24(q) be the stabilizer of
a nondegenerate/2dimensional subspace of the natural modulé&of

The next result gives a family of subgroups which contain a conjugate of every
element inG. Note thatSLy(¢") naturally embeds irsp,, (¢) by viewing the
natural 2-dimensional module ovEj» as a 2-dimensional vector space ovEy.

Lemma 4.4. If g € G, then a conjugate of is contained in at least one of the
following subgroupsPy, P,, PJ/., H;, and Sk(g™).

Proof. Write g = su, wheres is semisimple and is unipotent ands, u] = 1.
Let V be the natural module fai. SupposéV is an irreducible-submodule of
V of dimensiore. If W is not self-dual, then the homogeneous compoi&iiv)
of V corresponding tdV is totally singular as i (W*). If dim(H(W)) = n,
theng is conjugate to an element &,. Otherwise g stabilizes the nonsingular
subspaceH (W) & H(W*), whenceg is conjugate to an element df; for
d =2dim(H (W)).

So assume every irreducible componentsofs self-dual. ThenH (W) is
nonsingular (sinceéd (W) is orthogonal to all other homogeneous components—
pass to the algebraic closure to see thisf (W) £ V, theng is conjugate to an
element of soméd,;.

Now assume tha¥ = H(W). If V = W, theng =s andg is contained in the
centralizer of a cyclic Sylow-subgroup where is a primitive prime divisor of
g? —1(ifn=1o0r(n,q) = (3,2),this! does not exist, but the result follows by
inspection)—this centralizer has ordgr+ 1 which is the same as the order of the
centralizer inSLy(¢"). Thus, by Sylow’s Theoreny is conjugate to an element
of Sla(g").

Suppose thaW is a proper subspace &f. If W is nonsingular, then is
conjugate to an element éf,. If W is totally singular and-dimensional, then
is conjugate to an element &,. If ¢ < n andW is totally singular, then leaves
invariant a subspace of the forwi @ W’ whereW’ is a complement tév - and
SOs is conjugate to an element éf,. So we have proved the result for the case
g=s.

Thus, we may assume that# 1. Note thatCy (1) N [u, V] is a nontrivial
totally singularg-invariant subspace. So we may assume that it contdingich
is thereforeg-invariant. Thus, we may assurges P,. Leta =det(s|w). As W is
self-duale = £1. If « = 1, then detg|w) = 1 and so a conjugate gflies in P,.

We claim thate = —1 implies thatg stabilizes a maximal totally singular
subspace and spis conjugate to an element &f,. We induct om. If n =1, the
result is clear. Since d@h = 1 = «%*/¢, we see that dividesn. Pass tov-/W.
The inductive hypothesis still holds, whengdeaves invariant a totally singular
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subspacel//W in WL/ W. Then, g stabilizes the maximal totally singular
subspacé/ as desired. O

We will also need the following well-known fact about pairs of long root
subgroups irG. It follows from the fact thatPy = Ng(Z1) and thatG is a rank 3
permutation group on the cosets®f (whenn > 2).

Lemma 4.5. If n > 2 then Sp,(¢) has 2 orbits on pairs of distinct long
root subgroups. Either the long root subgroups commute or they generate an
Sly(g) (which acts trivially on a nondegenerate subspace of codimeridn
particular, any two commuting pairs of distinct long root subgroups are conjugate.

Next we make the following observation about the Jordan canonical form
Jord J; ® J;) of J; ® J;, whereJ; is the Jordan block of sizgwith eigenvalue 1
over a fieldk of characteristic.

Lemma 4.6. (i) Suppose that <s,t <r —1ands +¢ > r. ThenJord J; ® J;)
contains a block of size.

(i) Suppose that =2, lets > 2" — 1 andt > 2. ThenJord J; ® J;) contains
a block of size> 2".

Proof. (i) follows from [F, Theorem 8.2.7].

(ii) It suffices to prove that the minimal polynomial of ® J> has degree
> 2" fors = 2" — 1. Let an operatog act on ak-spaceles, ..., e;), respectively
(f1, f2), via the matrixJ;, respectively/,. Then direct computation shows that
(g — 1% ey ® f2) = e1® f1, and so we are done.0)

The following two lemmas are obvious in characteristic O.

Lemma 4.7. Let V and W be kG-modules with Brauer charactefs ;_; m;¢;
and );_; ni¢;i, wherey; are absolutely irreducible and pairwise different and
m;,n; € Z. ThendimHomg(V, W) < Zlemini.

Proof. Induction on dingW). The statement is obvious W is irreducible (in-
deed, Homg (V, W) = Homgg(V/rad' V), W) and so we are in the semisimple
case). For the induction step, assume tiahas a simple submodulé. From
the exact sequence-8 Honmyg(V,U) — Homgg (V, W) — Homgg(V, W/ U)

it follows that dimHomg (V, W) < dimHomg(V, U) +dimHomg (V, W/ U),
and we may apply the induction hypothesisi

In the notation of Lemma 4.7, we u§g, V] to denoterzlmiz.



R.M. Guralnick et al. / Journal of Algebra 257 (2002) 291-347 303

Lemma 4.8. Let H < G, let V be an irreduciblekG-module andU any kH -
module. Then

dimHomy (U, V) - dimHomy (V| g, U) < dimHom (UC, UY).
Proof. SinceV is irreducible, we have

dimHome (U, U°)
> dimHomg (U, V) - dimHomg (V, U)
= dimHom, gy (U, V|g) - dimHom g (V|g, U). m]
Corollary 4.9. Let H be a subgroup of; and letU, V be kH-modules. For
aeG,let H,=HNaHat, U, =Uly,, Vo= Vly, V¢ the kH,-module

obtained fromV with the actionx o v = (¢ 1xa)(v), and V) =V*py,. Assume
that eithera € Ng(H,) or a® € Ng(H). Then

dimHomg, (V,, Ua) < v/ [Ua, UalH, - [Va. ValH,-

Proof. Observe that ifx € H, thena—txa € H,. (It is so if x € Ng(H,). If
a’ e Ng(H), thenx € HNaHa Y impliesa *xa ea*HaNn H =aHa™1nN
H = H, sincea 2Ha? = H.) Thus the mapc — a~1xa is an automorphism
of H,. From this it follows that[V,, V,1a, = [V, V,1a,. On the other hand,
Lemma 4.7 and the Schwartz inequality imply that dimHamiV,, U,) <
VW, Udln, -1V}, V)14, SO we are done. O

Lemma 4.10. Let G be a finite group with a subgrouff. Let«a and 8 be two
Brauer characters of{ in characteristic other tham, and letg be a p-element
of G. Suppose that either

(i) «=pBono” (H),or
(i) a(h) = pB(h) wheneveh € H and|h| = |g|.

Thena(g) = %(g).
Proof. Clearly, (i) implies (ii). So we assume (ii) holds. In this case

1
oeG<g>—/sG<g>=m Y. (et —Bh)=0
xeG

h=xgx~leH

because of (ii). O
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5. Weil modules

In this section we provide background material concerning Weil modules.
Most of this is well known and is contained in some of the papers listed in the
references. Much can be proved inductively, using the techniques in the next
section.

Let E be a group with the following properties:

@) |El=¢"*" n>1;
(b) Z(E)=[E, E] has ordeg; and
(c) E has exponenp.

Then G = Sp,,(¢) acts onE as a group of automorphisms. Indeed, let
Go = CSp,,(q), the group which preserves up to scalar multiples the alternating
form preserved by;. S0 Go/G is cyclic of orderg — 1 andGC has index 2 in
Go, whereC is the group of scalars. Thefig acts as a group of automorphisms
on E andG is the normal subgroup which centraliZ8gE).

Let H be the semidirect produ@G and Hp = EGo.

Fix a nontrivial irreducible charactey of Z(E). Then E has a unique
irreducible representation overof dimensiong” whereZ(E) acts viay. Since
this character is invariant undéf, it is not difficult to see that we obtain an
irreduciblek H-module M (x) which restricts to the irreducibleE-module as
given. This extensiorM (x) is unique if (n,q) # (1, 3), cf. [Ge]. Moreover,
since EGg permutes théM (x) and has precisely 2 orbits of sizg — 1)/2, we
see that ag G-modules either alM (x) are isomorphic or are of two different
isomorphism types (we will see that in fact the latter holds). Note H@b
interchanges these two orbits. Thus, the two possible isomorphism classes are
interchanged by the outer diagonal automorphisr& of

Note that this moduleM (x) exists and is irreducible for all characteristics
r # p as ak H-module.

We will need the following property of the modul@s(y).

Lemma 5.1. Let k be an algebraically closed field of characteristicz 0. Let
G =Sp,(¢), n > 1, with ¢4 odd and not a multiple of, andH = EG. Let P be
the subgroup of; which is the derived subgroup of the stabilizer oflaspace.
Let x, x’ be any two nontrivial irreducible characters &f(E), and let M (x)

denote the H-module described above.

() M(x) ® M(x)* is a rank one freeE/Z(E)-module and is isomorphic to
k & kS, askG-modulesand
1

(i) Ext},(M(x), M(x"))=0.
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Proof. Observe (ii) is clear in the case # x’, since any such extension splits
uniquely as a module ovet. So assumg = x’ and writeM = M ().

Note thatW = M @ M* =ZHom(M, M) is a free rank on& /Z(E)-module.
This is becausey(x) =0 for all x € E \ Z(E) and sotwy(x) = 0 for all
suchx. SinceZ(E) is trivial on W, this implies thatW is a free module. Since
dim(W) = g% = |E/Z(E)|, it must be of rank one.

Therefore G permutes transitively the nontrivial characters Bf Z(E).
So W =Cw(E) ® [E, W] with [E, W] irreducible for H. Since Cw(E) =
Homg (M, M) = Homgg (M, M), it follows that Cw (E) ~ k as EG-modules.
Now [E, W] is a direct sum of 1-dimensional eigenspacedfdhat are permuted
transitively byG. SinceP; is the stabilizer of a nontrivial character 8f Z(E),
it follows that[E, W] ~ AG asG-modules for some character

If n>2,thenP;is perfect (unlesgr, q) = (2, 3)), and sox is trivial as desired.

fn=1, smcePl has(¢ — 1)/2 nontrivial eigenvalues with multiplicity 2 and
1 trivial eigenvalue onM (), it follows thatCyw (P;) has dimension@2— 1. On
the other hand, ik is nontrivial a straightforward computation (using Frobenius
reciprocity and Mackey’s Theorem) shows that qu, A%l/) is the number of
double cosets?/\G/P; not contained in the normalizer @#;. The number of
such double cosetsds— 1. If (1, g) = (2, 3), one argues similarly. This completes
the proof of (i).

Clearly, HY(H,[E, W]) = 0, since E is a normalr’-subgroup and it has
no fixed points on(E, W]. So HY(H, W) = HY(H, k) = Homy (H, k) = 0. It
follows that Ext, (M (x), M(x)) = HX(H,W)=0. O

We now define the Weil modules. Denate= M(y).

First consider the case # 2. ThenM = Cy(¢) & [t, M] wheret is the
central involution inG = Sp,,,(¢). It is well known that thes& -submodules are
irreducible of dimensiong” + 1)/2. (This also follows from our proof: we will
see by induction om that G has no trivial constituents oW —now apply the
[LS] bound.) We will call these the Weil modules.

As we remarked above, there are either one or two Weil modules for each
dimension. In fact, it also follows by induction that there are precisely two Well
modules for each dimension and that the (Brauer) characters can be distinguished
by their values on long root elements. So fof 2, there are two Weil modules
for each dimension.

The Weil modules are self-dual if and onlyif= 1 (mod 4 (if z is a long root
element inG (a transvection), thepandz ! are conjugate itG precisely when
g =1 (mod 9). If r is odd, it is then straightforward to see that the module of
dimension(¢” 4+ 1)/2 is orthogonal (as &,-module, this Weil module is a direct
sum of 2 irreducible modules, one of dimension 1). It is not too difficult (using
induction to reduce to the case 8fy(¢)) to see that the module is symplectic if
it has dimensiorig” — 1)/2.
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If r =2, then[s, M] < Cy(¢) and is of dimensiong” — 1)/2. We call this
a Weil module. Again, there are two choices interchanged by the outer diagonal
automorphism (we make the same choice as above fo13, n = 1). Note that
M/ Cy(2) is isomorphic tgz, M] (the isomorphism is given by — (r — 1)m).
Thus M has 2 isomorphic composition factors which are Weil modules and a
trivial composition factor (this is also true fdg, n) = (3, 1) given our definition
of Weil modules).

Itis easy to see from what we have said above that the field of definition for the
Weil modules in positive characteristids I, or IF,.. The former holds precisely
whenz is conjugate ta@”. If the module is not self-dual, then this shows that either
it is defined oveif, or is contained in the unitary group.

We need a few more facts about the moduldsy). Keep notation as in
Lemma5.1. Ifr £ 2, then theG-moduleM (x) is a direct sum of 2 different Weil
modules. Ifr = 2, there are 3 composition factors. We need a bit more information
on the structure in this case.

Lemma 5.2. If r = 2, then M(x) is a uniserial G-module with socle series
W, 1, W with W a Weil module.

Proof. It sufficesto showthat’ := M (x) has no trivialG-submodule in its socle
(and by passing to the dual, no trivial quotient). For if we have shown this, then
the socle must be simple and, similarly, modulo the radical the module is simple
(and both simple modules are isomorphic to the same Weil moddIeT hus, the
socle series is as claimed.
It suffices to prove this foBLlo(¢"), becausésp, (¢) containsSly(g™) and if
the subgroup has no fixed points, of course the full group does not either.
Suppose that it did and consid&r:= M(x) ® M(x)*. As we noted above,
M containsW. HenceV containsW* in its G-socle. On the other hand, by
Lemma5.1V =k ® kl(";i' Thus, Hong; (W*, V) >~ Hompl/(W*, k ® k). However,

P] has no fixed points on a Weil module (note that divif) = (4" — 1)/2 since
r = 2) and so this term is 0, a contradiction. Thdg;(G) = 0 as claimed. O

Coroallary 5.3. Suppose that = 2, G = Sp(q), andg + 1=2%. Leth € L, ~
Sly(g) be an element of order + 1. Let V be a Weil module of; of dimension
(g% —1)/2, and consider any;-submodule of typ#/ (x) (of dimensiory)in V.
Thenh has exactly one Jordan blo¢&f sizeq) on M (x).

Proof. Since all M(x) are conjugate, it suffices to prove the claim for any
particular y. Assume the contrary: hast > 2 Jordan blocks o/ := M (),
ofsizek1 > - >k > 1.

Let z = h9+D/2. Thenz is the central involution ofL}. We claim that
dim(Cy(2)) < (¢ + 1)/2. Indeed,Cy(z) is an L -submodule ofM(x). So,
if dim(Cy(2)) > (¢ + 1)/2, then by Lemma 5.2, dit@(z)) = ¢q, i.e. z acts
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trivially on each M(x). Since Cy(Q1) is an irreducible Weil module in
characteristic 2 oL}, z also acts trivially orCy (Q1). Thusz acts trivially onV.
This is a contradiction, sinc€ acts nontrivially onvV andG is generated by all
conjugates of.

Now if all k; are at mostq + 1)/2, then by [SS, Lemma 1.3] all Jordan blocks
of zon M (x) are of size 1, and spacts trivially onM (x ), a contradiction. Hence
we may assume thag = (¢ +1)/2+ b with 1 < b < (¢ — 3)/2. By [SS, Lemma
1.3], z hasb Jordan blocks of size 2 andg + 1)/2—b) + (¢ — k1) =q — 2b
blocks of size 1 oM (x). Thus dim(Cy(z)) =b+(q—2b) =g —b > (¢ +3)/2,
again a contradiction. O

Let ¢ = exp2ri/p). If Y ={x,(t) | t € F}} is a long root subgroup of
G = Sp,, (¢), we will denote bys2; the set of linear characters Bfof the form

haixy (1) > gl /Fp (al)
wherea € Fj anda is a square. Similarlys2; is the set of all., wherea € F
anda is any nonsquare. Le¥ be a Weil module foiG. We see (by restricting
to P;) that Z; has precisely(g — 1)/2 nontrivial characters oV. SinceY
is conjugate taZ1, it follows that Spet(Y, W) (the set of all nontrivial linear
characters of that occur or¥) is eithers§21 or £22. From the above discussion it
follows that in characteristic 2, the Weil module is determined by thog which
Sped (Y, W) = £2; and in characteristic not 2 hyand by dimension (or by the
kernel). In this case we will also say thét hastypei. Observe that the Weil
modules occurring in eacM () are of the same type, cf. [TZ2, Lemma 2.6(iii)].
If A=Sp,,(q) is a standard subgroup 6f, then we can also define the type for
Weil modules ofA in a consistent way—i.e. the Weil modules are determined by
the set of nontrivial eigenvalues for a long root subgroug-efsince all the long
root subgroups ar&-conjugate.

Applying this observation to a commuting pair of long root subgroups, we
obtain the following key property of Weil modules 6f

Lemma 5.4. Assume that > 2. Let (Y1, Y>2) be a commuting pair of long root
subgroups. IW is a Weil module o&7, then the only nontrivial linear characters
of Y1 x Y2 occurring on W are of the forma ® B with eithero, 8 € 221 or
o, B € $2o.

(By a nontrivial linear character of we mean a linear character whose
restriction to bothry andY> is nontrivial.)

Lemma 5.5. Assume thain, ¢) # (1, 3). Let X be anykG-module on whictG
acts nontrivially and letM (x) be the abové G-module of dimensiog”. Then
M (x) ® X affords all nontrivial linear characters af ;.
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Proof. Without loss we may assume that Spég M(x)), the set of all linear
characters ofZ1 occurring onM (x), is £21 U {1}. Since(n,q) # (1,3) and G
acts nontrivially onX, we may assume that Sgeq, X) contains either2, or
£22 (and has at least two characters). Now the statement is obvigus 8, 5.
Wheng > 5, the statement boils down to the following:Af", respectivelyF—,
denotes the set of all (nonzero) squares, respectively nonsquargg, then
F:=FtUFT+F$)DFTUF foranye =4+.

First observe that the equatiaf — y2 = ¢ has nonzero solutioné:, y) =
((a+1)/2,(a—1)/2) if a#0,£1. HencelF| > (¢ —3) > (¢ + 1)/2 and we
are done iff = ¢ (mod 4. Supposeg = —e (mod 4. In this case, fixu € F€ and
observe thatix? + 1 # 0 for anyx € Fy. If ax? + 1€ F* for any 0+ x € F,
then the polynomialar? + 1)~1/2 — 1 would haveg distinct roots inF,,
a contradiction. Hence€F ™ + F )N F~ #£@. ThusF N F~ 40, but F O FT
and so we are done.O

6. Spectraof long root subgroups

Let G = Sp,,(¢), n > 2, with ¢ = p/ with p odd. Letk be an algebraically
closed field of characteristic2 p andV a nontrivial irreducibl&cG-module. In
this and the next sections, we consider a few different properties which force the
module to be special. We say théthas propertyR1) if Z; has at most (and
therefore exactlyjg — 1)/2 nontrivial linear characters o#.

Lemma6.1. Let V be any(nontrivial) irreduciblek G-module with propertyR1).
Assume thatn, ¢) # (2, 3). Then

(i) Cy(Z1)=Cv(Q1),and
(ii) the Pj-module[Zy, V] is a direct sum of som& ().

Proof. (i) Assume the contraryt/ := [Q1, Cy(Z1)] # 0. Consider a long root
subgroupZ; inside L} and take any nontrivial linear characterof 01, which
is not fixed by any nontrivial element &f2. Then for any nonzero vectarin
the a-eigenspace o1 on U, v#2 generates the regulai,-moduleR. ThusV
affords all linear characters @f,, contrary to(R1).

(i) Each x-eigenspacéV, of Z; on[Z1, V] has the formM (x) ® X, where
X is a certainL}-module. LetZ be a long root subgroup insidg,. If L} acts
nontrivially on X, then Lemma 5.5 implies that/ () ® X affords all nontrivial
linear characters af2, contrary to(R1). HenceL’1 acts trivially onX, whence
W, is a direct sum of some copies #(x). O

It turns out that the following converse of Lemma 6.1 is true.



R.M. Guralnick et al. / Journal of Algebra 257 (2002) 291-347 309

Lemma 6.2. Let n > 2 and let V be an irreduciblekG-module such that
Cy(Z1) = Cy(Q1) and such that the’;-module[Zy, V] is a direct sum of some
M (x). Then the following statements hold.

(i) V has propertyR1).
(i) If r # 2 anddim(V) > 1, then theL-moduleV is semisimple, with all
irreducible summands being Weil modules.

Proof. (i) By Lemma 4.2, all composition factors of the}-module C :=
Cy (Q1) are Weil modules or are trivial. Denot€ = [Z1, V] and letX; be the
family of simple L’ -modules consisting of Weil modules of typéncluding also
trivial modules ifr = 2).

If » # 2, each simpleP;-moduleM (x) is semisimple as ai}-module and
indeed is a sum of two Weil modules of different dimension but of the same type.
It follows thatW = W1 @ W> whereW;, i =1, 2, is a direct sum of Weil modules
of typei for L. EachW; is P;j-invariant, because this is precisely the sunzef
eigenspaces corresponding to one orbit on the weighitg oAlso, W; = W (X}),
cf. Lemma 4.3.

If r =2 then by Lemma 5.2 we also haw& = W1 & W> where all L}-
composition factors ofW; are trivial modules and Weil modules of type
Moreover, by Lemma 5.2 s¢W;) is a direct sum of Weil modules of typgand
in particular contains no trivial modules). This implies thEt= W (X;). Also,
W; is Pj-invariant, because this module is precisely the surd pkigenspaces
corresponding to one orbit on the weightsAf.

Now V(X)) = W; & C(X;) fori =1, 2. SinceQ acts trivially onC, C(X;)
is Pj-invariant, whenceé/ (&;) is invariant underP;. Clearly, it is also invariant
underCg(L}) ~ Slo(q). SinceG = (P, Sla(q)), it follows thatV = V (4;) for
i =1 or 2 (and the other term is 0). The result follows.

(ii) Consider theL?-submoduleV’ of the socle of’ which consists of Weil
modules. This isP;-invariant, sinceV’ is precisely the direct sum d¥ plus the
corresponding submodule @®. On the other handy’ is clearly invariant under
Cg(L)) =Sla(g), henceV' =V. O

7. Spectraof commuting pairsof long root subgroups

Recall that by a commuting pair of long root subgroups we mean any pair
(YY), whereY = {xg(t) | t € Fy} and Y ={xg(t)|1e Fy}, where(8, B') is
any orthogonal pair of long roots.

In this section we studiG-modulesV with the following property:

(R2) Spe¢(Y xY',V)C{a® B |eithera, B € 21 ora, B € 27}.
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Clearly,(R1) implies(R2). Also, any Weil module satisfig§k,) by Lemma 5.4.

Proposition 7.1. Letn > 3 and letV be any irreduciblékG-module with property
(R2). Then the following statements hold.

() V=Cv(Q1) @[22, V]

(i) TheP;-module[Z3, V] is a direct sum of soma&f ().
(iii) All composition factors of thé’-moduleV are Weil modules or trivial.
(iv) V has propertyR1).

Proof. (i) Assume the contrary/ := [Q1, Cy(Z1)] # 0. Write U = P, Uy,
whereU, is thea-eigenspace foQ; on U. Observe thaL acts transitively on
the nontrivial linear characters @1, hence the sum runs over all nontrivial
Let (e1,...,en, f1,..., fn) be a symplectic basis of the natural module €or
We may assume tha®] fixes e;. Sincen > 3, we may consider the following
commuting product of long root subgroups:

Y = {({) f) \ D =diag0,a,b,0,...,0), a,bqu}.
n

View Q1/Z1 as the additive grouge;, f; | i, j > 1)r, and leta be the character

corresponding to the vectof; + f3. Observe that no nontrivial element of

fixes . Hence, if 0# v € Uy, thenu! generates the regulat-module R. It

follows thatV affords all linear characters af, contrary to(R>).

(i) Consider any nonzer@;-eigenspacé/, of Z; on[Z1,V]. ThenV, ~
M(x) ® X for someL}-moduleX. We need to show thdt acts trivially onX.
Assume the contrary. Pick a long root subgrdtg: L. Then by Lemma 5.5,
SpecY, V,) contains every nontrivial linear characterof Y. Thus V' affords
every character of the formp ® A for the groupZ; x Y, again contrary t@RRy).
Observe that this argument also works wihea 2.

(i) and (iv) follow from (i), (ii), and Lemmas 4.2 and 6.2.00

Lemma 7.2. Assume that: > 2. Then P, acts on the set of nontrivial linear
characters ofQ,, with two orbits of lengtiig” — 1)/2. These two orbits occur in
the restriction of Weil modules of dimensigi' — 1)/2 to Q,,. All other orbits
have length at leadiy” — 1)(¢" — q)/2(g + 1).

Proof. One can identifyQ,, with the space of symmetri@: x n)-matrices over
F,, and then anyA € L, ~ GL,(¢g) acts onQ, via X — "AXA. Any linear
character of2,, now has the form

X 8tr]Fq/]F/7 (Tr(BX))
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for someB € Q. Thus everyL,-orbit on nontrivial linear characters @, is
just an orbit ofL, on Q, \ {1}. If the latter orbit contains a matriX of rank j,
then the stabilizeroX in L, is

(47" "] (0j(9) x GLu—j (@)
So the length of this orbit isg” — 1)/2 if j = 1 (there are exactly two orbits
of this kind; they correspond to squares and nonsquards,)nor at least

G@"—D(q"—q)/2(g+12)if j > 2. The two Weil characters of degreg' — 1)/2
when restricted t@,, give us the orbits of smallest lengthc

Theorem 7.3. Let V be any irreduciblekG-module. Suppose that either> 3
and anyP,-orbit of Q,-characters orV is of length less thaty” — 1)(¢" — gq)/
2(g+1),orn=2anddim(V) < (¢g" —1)(¢" —q)/2(q +1). Then all conclusions
of Proposition7.1 hold; in particular, V has property(R1).

Proof. FirstrestrictV to the parabolic subgroup,. By Lemma 7.2, the condition
onV implies that there is a (formal) sul of Weil and trivial modules o&; such
thatV|g, >~ V'|g,. Sincen > 2, Q, contains a commuting pai#, ¥’) of long
root subgroups. By Lemma 5.4/, and soV, has propertyR2) for the pair
(Y, Y") (and so for any commuting pair as well).

If n > 3, we are done by Proposition 7.1. Assume that2. Then conclusion
(ii) of Proposition 7.1 holds as well, as we have observed in its proof. Thus we
may write[Z1, V] as the sum oMM (x), and eachV () occurs with multiplicity
siif xyef2,i=1,2.

It remains to establish conclusion (i). Assume the contrary, fat=
[Q1,Cy(Z1)] # 0. Consider the commuting produét = Z; x Z», where
Zy < L. Observe that the fixed point subspaceZefon M (x) has dimension 1,
whence the multiplicity of the’-charactery ® 1 onV is s;. On the other hand,
Z acts on nontrivial linear characters ¢f with ¢ — 1 fixed points and; — 1
regular orbits. It follows that the multiplicity of thE-character I xy onV is at
leastg — 1. Since the pair§Z1, Z2) and(Z», Z1) are conjugate iV, we come to
the conclusion that; > g — 1. Thus

dim(V) > dimU) +dim([Z1, V1) > (¢* — 1) + (¢ — Dg(g — 1)
= (¢ +1) (g - D,
contrary to the assumption that dif) < g(¢ — 1)2/2. O
Corollary 7.4. Suppose that > 2. Then the(uniqug irreducible complex

characterp of Sp,,(¢) of degree¢” —1)(¢" — q)/2(q + 1) is irreducible modulo
any primer different fromp.

Proof. The statement is well known for = 2, cf. [Wh1,Wh2,Wh3], hence
we may assume > 3. The existence and uniqueness of sycfollow from
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[TZ1, Theorem 5.2]. Assume that|p, contains more than ong,-orbit of
linear characters ofD,,. By Lemma 7.2, there is a charactgr of G such
that plg, = 1lg, and n is a sum of Weil and trivial characters @f. Thus
o satisfies(R2). By Proposition 7.1,0 satisfies(R1) and (W), contrary to
[TZ2, Theorem 1.1]. Hencg| g, consists of exactly ong, -orbit. By Clifford’s
Theorem(p (modr))|p, isirreducible. O

8. Proof of Theorem 2.2: r #2and n > 2
We keep notation as in Sections 6 and 7.

Theorem 8.1. Assume that # 2 and n > 3. Suppose thaV¥ is a nontrivial
irreducible kG-module such thaZ; has only(¢ — 1)/2 nontrivial characters
onV.ThenV is a Weil moduléand in particular has dimensio(y" &+ 1)/2).

We will prove this result by showing that the Brauer charactenf V is the
same as that of a Weil module. We prove the result in a series of lemmas. For
definiteness we assume that the nontriaicharacters occurring ovi belong
to £21. Let W, and W, denote the 2 Weil modules fa¥ corresponding to the
setf21 of Z1-characters, of dimensiaig” — 1)/2 and(¢" + 1)/2, respectively.

We will use the notationC = A + B to indicate that this is true in the
Grothendieck grougro(X) of a groupX.

By Lemmas 6.1 and 6.3/ = Cy(Q1) ® [Z1,V], [Z1,V]=3s ergl M(x)
asP;-module, andCy (Q1) =aW, ; + bW, | asLj-module, for some integers
a,b,s > 0.

First we observe that=a + b. For, ifr € Z4 is a transvection, then

VAt S L SRS S/
5 +b 5 +sq > ,
wheree = (—1)@~1/2_ On the other hand, for &-conjugater’ of r which is
contained in_j we have

tv(t)=a

-1 n—2 € 1 n—2 € —1 n—2 3
vt =a +q «/q+b +q «/qﬂ(q )q Veq
2 2 2
Sincety () = tv (¢'), we obtains = a + b. Therefore,
V =aW, +bW,” asP;-modules. (1)

We next consider the subgroups := Sp,;(q) x Spy,—q4)(g) Which are the
stabilizer of nondegeneratd-Aubspaces, & d <n — 1. Itis well known that

W, |Hd =W, @W,_4+W; @W,_4
+ - - + oot
Wiy, =W W, +W/ oW,
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We may assume thak := Spy,,_,)(¢) is contained inL}, whence it follows
from (1) that

Vig = (a(q? +1)/2+b(q? —1)/2W,_, + (a(q? — 1)/2
+0(¢? +1)/2W, . 2)
SinceA := Sp,,(¢) is G-conjugate to a subgroup @f;, (1) also implies that

Via = (a(g" " +1)/2+b(¢" ¢ - 1)/2) W,
+(a(g" = 1)/2+b(g" " +1)/2)W;. ©)

Thus all the composition factors df|, are of form W) ® W/ ,, where
i, j =1, 2. Note that the central involutianof G acts as a scalar dn, and it acts
as—e" on W, and as” on W;+, wheree = (—1)~b/2, Matching the action of
z on different composition factors dfl;, we arrive at one of the following two
possibilities:

Vig, = xW; W, ,+yW; @W,_, or 4)
Vin, = xW; W, ,+yW W' . (5)

Suppose we are in the case of (4). Then Egs. (2)—(4) have only one solution
b=0,x =y=a.This meansthat =aW, in Go(P;) andGo(Hy).
Suppose we are in the case of (5) ahg n/2. Suchd exists since: > 3. Then
Egs. (2), (3), and (5) have only one solutier= 0, x = y = b. This means that
V =bW, in Go(P)) and inGo(Hy) for all d #n/2. Now ford =n/2, Egs. (2),
(3), and (5) implyx = y = b as well, since we already know that= 0. Thus
V= bW,fr in Go(Hy) ford =n/2.
So we now have the following lemma.

Lemma 8.2. There is a Weil modul® of G ands € N such thatV = sW for all
the subgroupsd, and P;. In particular, ry (x) = sty (x) for x in a conjugate of
one of these subgroups.

We need to consider the other families of subgroups given in Lemma 4.4.
Lemma8.3. V =sW as Sl(¢")-modules.
Proof. Let H = Sly(¢"). Let Q denote a maximal unipotent subgroup &t
SinceQ < P;, V =sW as Q-modules by Lemma 8.2. Also, since the central
involution z of H is contained inH1, Ty (z) = stw (z). It follows by inspection of

the irreducible modules faif thatV =sW asH-modules. O

Lemma8.4. V =sW as P;-modules.
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Proof. Let x € 21 and letV, andW, denote the,-eigenspaces faf; on V and
W, respectively, and lef be the stabilizer of in P1. ThenJ = C x P{ where
C =Z(G). So by Lemma 8.2V, = sW, asJ-modules. Sinc¢Z1, V] = (Vx)f1
(and similarly for W), it follows that [Z1, V] = s[Z1, W] as Pi;-modules. In
particular, [Z1, V] = s[Z1, W] as Li-modules. ButL; < Sp(gq) x L) = Hy
and V = sW as Hi-modules by Lemma 8.2, henagy (Z1) = sCw(Z1) as
Li-modules. SinceQ; acts trivially onCy(Z1) and Cw(Z1), it follows that
Cy(Z1) =sCw(Z1) asPi-modules. O

We now consideP; for j > 1. We first need the following lemma.
Lemma8.5.V =sW as Q;-modules and’y (Z;) = Cy(Q;).

Proof. If j =1, this has already been proved. Si@e < P, the first statement
holds by Lemma 8.2. Since the second statement hold#{fdhe first statement
implies the second. O

Lemma8.6. V =sW as P;-modules for all;.

Proof. (1) Induction onj. The casej =1 is just Lemma 8.4. For the induction
stepletj > 1. Write L; = A x B, whereA = GL(q) andB = Spy,,_ ,(q)-

Let V,, be a weight space foZ; in [Z;, V]. The weightsx that occur are
precisely those occurring oW. In particular,V, is a direct sum of irreducible
homogeneou® ;-modules andP; is transitive on this collection of weights. Also,
if we identify Z; with the space of symmetriGi x j)-matrices overf,, thena
corresponds to a symmetric matrix of rank 1. Hentes Stakp, («) is contained
in a conjugate of?;_; (and containg); B).

Since P; transitively permutes th&; weight spaces, we see that tHat~
(Va)ff @ Cy(Z;) as Pj-modules. We have noticed that< P;_;. In particular,
this implies by the induction hypothesis tHat = s W, asJ-modules (wheréV,
is the corresponding weight space 61 on W). Thus,[Z;, V] =s[Z;, W] as
P;-modules.

(2) Assumej < n. SinceL; < Sp;(q) X Sp,—j)(q) = Hj, V. =sW asL;-
modules by Lemma 8.2. On the other hapd;, V] =s[Z;, W] asL ;-modules
by the previous paragraph. It follows thé (Z;) = sCw(Z;) asL j-modules and
s0 asP;-modules, since) ; acts trivially onCy (Z;) andCw(Z;) by Lemma 8.5.

(3) Now assume that = n. As we explained in (2), it suffices to show that
V =sW asL,-modules. Letg € L,, be anyr’-element. Consider the (faithful)
action of g on the maximal totally isotropic subspage fixed by P,, and write
g = su, with s the semisimple part and the unipotent part. I fixes a proper
subspace’ # 0 of M, theng lies in a conjugate of; with i = dim(M’) < j,
whenceV = sW as (g)-modules by induction hypothesis. Now assume that
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is irreducible onM. If u # 1, thenCys (1) # O is ag-invariant proper subspace

of M, a contradiction. Hence = 1, andg = s is irreducible onM. If the (g)-
moduleM is not self-dual, therg is contained in a torug ~ Z,»_; of L,, and
moreover one can embddin a standard subgrouply(¢”) of G. According to
Lemma 8.3V = sW as(g)-modules. If the(g)-moduleM is self-dual, then one
can show that is even ang; stabilizes a nondegenerate subspace of dimension
n, whence a conjugate @fis contained inH, > and soV = sW as(g)-modules

by Lemma 8.2. Consequently,= sW asL,-modules. O

This completes the proof of Theorem 8.1.

9. Proof of Theorem2.2: r=2andn > 2

Here we prove Theorem 2.2 for the case of characteristi@ andn > 2. Let
V be an irreduciblé G-module with propertyRR1), say Spet(Z1, V) = §21. We
will denote byW,, the irreducible Weil module in characteristic 2@fsuch that
Sped(Z1, W,) = £21. Lete = (—1)@1D/2 and letZ, be a long root subgroup
insideL] =Sp,_2(q).

By Lemma 6.1,V = Cy(Q1) @ [Z1, V] and [Z1, V] = mzxerle(X) as
Pj-modules for somen € N. By Lemma 4.2,Cy(Q1) =aW,_1+ b -1 as
L’ -modules for some integets b > 0. Thus

Vig,=mg—-1/2-CWy1+D+aW,1+b-1

First we observe that = m. Indeed, lett be a transvection iiX;. Then we
may assume that

Ty (1) = mq"_l(—l + J€q )/2 + a(q”‘l — 1)/2 +b.
Now lett’ € Z» be G-conjugate ta. Then

m(g—1 —1+4qg" 2 /e
(q2 )<1+2 q2 q)—l—a(—l—i—q”_za/eq)/Z—i-b.

Sincery (t) = Ty (¢'), it follows that(m — a)(¢"~t — ¢" 2. /eqg) =0, i.e.a=m,
as stated.

We will prove thatV = mW, + b - 1. The above discussion shows that this
holds forV considered as &;-module.

Next we proceed to prove this equality fdras anH;-module, where X d <
n — 1. First we can view the componeBt:= Sp,,_»,(¢) of H; as a standard
subgroup ofL} and getW,|p = (¢ +1)/2- Wy—a + (¢ = 1)/2- (Wp—a + 1),
(recall thatr = 2). We can get only,,_4, but not its algebraic conjugate, in this
restriction, because of the condition on the spectrum@{@onjugate ofZ; lying
in B. SinceV =mW, +b-1inGo(L}), one has

Vig=mq Wy_q+ (b+m(qg?—1)/2) 1.

ty(t) =



316 R.M. Guralnick et al. / Journal of Algebra 257 (2002) 291-347

On the other hand, the first componehtof H; is G-conjugate to a standard
subgroup of typ&p,,; (¢) insideL’, hence
Via=mg" " Ws+ (b+m(qg" " -1)/2) -1
The shape oV |4 and of V| g implies that
Viaxp =xWag @ Wy_a+y WaQ@1lp+2- 14 @ Wy_g+5 -1,
wherex € Z and
y = mq"*d—x(q"*d—l)/Z, zzqu—x(qd—l)/Z,
s =b+x—2m(¢? —1)(¢" - 1)/4

In order to determiner, we computery (g) in two ways, whereg = 1t”, t €
Z1 < A is the abovementioned transvection, arfde B is L’-conjugate to
t' € Z». The formulaforV|P1/ tells us that

v (g) = mq" 2 Jeq(—1+ Jeq)/2+m(~1+q" 2 \/eq)/2+b
= m(~1+eq" ) /2+0b,

sincer acts scalarly on eadf (x) which is anL};-module of typgW,,_1, 1, W, _1),
and trivially on the rest. On the other hand, the shapg|gf, yieldsty (g) equal
to

x(=1+q471, /eq)(—1+q’1—d—1ﬁ)

4
-1 d-1 -1 n—d—1
n y( +q2 Veéqa) n 2(=1+g¢ ; Veéq) 4

_ xq"A(/eq — q)? N m2q" 1\ /eqg —q" — 1)
4 2

+b.

From this it follows that(x — 2m)q¢"2(,/eq — ¢)> =0, i.e.x = 2m. Hence
y=z=m,s=hb,and so

Vib,=2mWa @ Wy_g+m -Wyg®1p+m-14,QW,_qg+b-1,

i.e.VandmW, + b -1 agree ord,.

Next consider the subgroup = Sly(¢”") of G. Let J be a maximal unipotent
subgroup ofH. SinceJ < P{, V=mW, + b -1 as J-modules. Again by
inspecting the irreducible modules fd{ we see thatV = mW, + b -1 as
H-modules.

It remains to deal withP;. At this point, the argument given in Section 8 as for
the case odd goes through unchanged and thus we have shown:

Theorem 9.1. Assume that = 2 and n > 3. Suppose thaV is a nontrivial
irreducible kG-module such thatZ; has only (¢4 — 1)/2 nontrivial linear
characters onV. ThenV is a Weil modulgland in particular has dimension

(" —1)/2).
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10. Proofsof Main Theoremsfor symplectic groups

Lemma 10.1. Let S = Sp,(¢) with ¢ = p/ odd. Suppose thdt is an irreducible
kS-module in cross characteristicwhich does not lift to zero characteristic. Then
the following statements hold.

(i) V does not have proper§R1).
(i) (p,dim(V)) = 1. In particular, if ¢ = p then Specg, V) > 1 for any
transvectiorg € S.
(i) Letg = p andg € S be a nontrivial product of two commuting transvections.
Thendy (g) = p.

Proof. The r-Brauer characters of are described in [Wh1,Wh2,Wh3]. Using
this description, one can readily check (i) and thatdim(V). If ¢ = p and
Specg, V) # 1 for a transvectiog € S, then we may chooseto be a generator
of Z, and see thaf'y (Z1) = 0, whence the dimension &f = [Z;, V] is divisible
by dim(M(x)) = p, a contradiction.

Under the assumptions in (iii), assume thiatg) < p. The case = 3 can be
checked directly, so we will assume that- 3. Choose = zf where 1~ z € Z3
andr is a transvection i} >~ Slp(p). First observe thaly :=[Q1, Cv(Z1)] =0.
For if U # 0, then since has a regular orbit on the natural module g, it
follows thatr has a regular orbit on the set of line@g-characters occurring di.
Thus U contains a regulak(g)-module, contrary to the conditiosy (g) < p.
Next consider they-eigenspaceM (x) ® X for Z; on V for any nontrivial
linear charactery of Z;. We claim thatL) acts trivially on X. If not, then
Spect, M(x) ® X) contains all nontriviapth rootse’ of unity by Lemma5.5. We
may assume that(z) = €. Thus Speg, V) 2 Specg, M(x) ® X) > € for all
i €{0,1,..., p—1}\{1}. Doing the same thing with anothgr(recall p > 3), we
come to the conclusion that SgecV) ={e' |0<i < p — 1}, i.e.,dv(g) = p,
again a contradiction. Consequentlysatisfies the hypothesis of Lemma 6.2 and
thereforeV has propertyfR1) by that lemma. But this contradicts (i).0

Proof of Theorem 2.2. The case: > 3 has been completed in Sections 8 and 9.
Assume that = 2. If V is liftable to characteristic 0, then the statement follows
from [TZ2]. If V is not liftable, then we may apply Lemma 10.1

Proof of Theorem 2.1. Let V be an irreduciblé&G-module of dimension less
than(¢g" — 1)(¢™ — q)/2(q + 1). By Theorem 7.3y enjoys(R1). It remains to
apply Theorem 2.2. O

Proof of Theorem 2.3. By Lemma 5.4,()V) implies (R2). By Theorem 7.3,
(Q) implies (Ry). Finally, (R2) implies (RR1) by Proposition 7.1, so we are done
by Theorem 2.2. O
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Example 10.2. Let n > 2 andgq be odd. The groufsp,(¢) acts as a rank 3
permutation group on the set of 1-spaces of the natural mo#iffle The
submodule structure of the corresponding permutation madulas determined
by Liebeck in [Li] in any cross characteristic/£ 2; and the composition factors
of M (mod p) were found by Zalesskii and Suprunenko in [ZS]. Using our results
one can also determine the structurespimod 2.

It is known that the character @p,(¢) on M is 1+ «, + B, Wherea,
and g8, are irreducible characters of degrég’ — 1)(¢" + ¢)/2(¢ — 1) and
"+ 1) (q" —q)/2(q — 1), respectively. As we mentioned in the proof of Lemma
7.2, each linear character ¢f, has the form

hop s X b 8T/ (TH(BX))

for some symmetric matriB. Some of P,-orbits on Ir(Q,) are: O1 and O,
of length(¢" — 1)/2 (corresponding to thosk of rank 1),03 andO4 of length
(" —1)(g"—q)/2(qg+ 1), respectivelyg" —1)(¢" — q)/2(q — 1) (corresponding
to thoseB of rank 2, which define a quadratic form of type respectively+).
One can show that

anlg, = P A+ > A+ Z,\

re0; )\602 re0y

:3n|Q,, Z A

reOy

Let n, and7, be the reduction modulo 2 of the two complex irreducible Weil
characters of degre@” — 1)/2. Definex = 1 if n is even and 0 otherwise. We
claim that there is an irreducible Brauer charagtesuch that

oap (Mod2=A+k)+n,+7u+ v, Brn(Mmod2 =k+y.

Indeed, the case = 2 was done in [Wh1l]. Suppose> 3 and lety be the
composition factor of8, (mod 2 whose restriction taQ,, involves O4. Since

Bn (mod 2 — y is trivial on Q,, it is a multiple of 15, . Now L) = SL,(¢) cannot

act trivially on theQ,,-fixed points inside/ (otherwiseP, would have too many
fixed points). Hence the formula f@, (mod 2 follows. One can show that all
composition factors o8, (mod 2 appear inx, (mod 2. Each composition factor

of (e, — B,) (mod 2 restricted toQ,, involves onlyOy, O» (and maybe 3,),
hence it is trivial or a Weil module by Theorem 2.3, whence the formula for
a, (mod 2 follows. Detailed argument will be given in [LST]. Other rank 3
permutation modules of finite classical groups will be handled in [ST].

11. Representationsof small unitary groups

LetG = U,(q),q = p', andk be an algebraically closed field of characteristic
r coprime tog. Weil modules ofG are discussed in detail in [TZ2]. In particular,
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if n > 3 then there ar& + 1)%2 complex modules, with characteY , 0< i, j < g,
whereg,’ is obtained front; = ¢/© via multiplying by a linear character, argg
is calculated in [TZ2, Lemma 4.1]. Reduction modulof complex Weil modules
is discussed in [DT,HM].

Let Py be the first parabolic subgroup 6f, Q1 = 0,(P1), Z1 = Z(Q1). We
may think of P as Stab((E)qu), wheree is a nonzero isotropic vector in the
natural moduléV = IE‘Z2 for G. LetS :=SU,(q), P = Staly(e), P,/ = Staly; (e).
Then P]/_/ = Q1 -L with L ~U,_2(9) and P{ = Q1 - K with K ~ SU,_»(q).
For each nontrivial linear charactgr of Z, there is an irreducible module of
dimensiory”—2 of Q1 whose restriction te1 is " 2x and which extends to an
irreducible moduleM (x) of P/'. Furthermore, ifU is anyk P;-module whose
restriction toZ; involves only x, thenU ~ M(x) ® X for somekL-module
X. The last two claims can be proved using Lemma 2.1 in the preprint version
of [MT].

We say that & S-moduleV has propertyW) if for somek, 3< j <n—1, the
restriction ofV to a standard subgrou§J; (¢) involves only irreducible Weil and
trivial modules. Our argument will particularly rely on analyzing the behavior of
the subgroumRs := O, (P), whereP is the first parabolic subgroup of a standard
subgroupSUs(g) in SU,(g) if n is odd, and the subgrouRs := O,(P), where
P is the second parabolic subgroup of a standard subdstlyfy) in SU,(g) if
n is even. Note thaRsz is of extra-special type of order, and R4 is elementary
abelian of ordeg*. A key role, similar to the role of propert§R>) in the case of
symplectic groups, is played by the following two observations.

Lemma 11.1. Let V be a Weil module or a trivial module of S). Then the
restriction of V to R3 contains no nontrivial linear character ats.

Proof. The claim follows from the formula fo¢! given in [TZ2, Lemma 4.1].
See also Table 3.2 of [Geck].O

Let A = Us(g) andW := (e1, e2, f1, fz)nqu be the natural module of, and

let the hermitian form have the matr(>§)2 15) Let P = Stam((el,ezqu) and
Ry=0,(P).

Lemma 11.2. In the above notationP has two orbits, say0; and O», on

the set of nontrivial linear characters at,, of length(¢* — 1)/(¢ + 1) and
q(qg* — 1)/(q + 1), respectively. The first orbit occurs on any of Weil modules
of A. Furthermore, both?D; - O1 and Oy - O2 intersectO». Finally, O; is also

a P’-orbit, and O2 splits intogcd2, ¢ — 1) P’-orbits of equal length, where
P’ = P NSWUs(q).
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Proof. Fix a nonzero elemerte qu such thap?—1 = —1. Then

L 60X a c¢
R4:{(0 Iz)‘X=<Cq b),a,bqu,cquz}.

Thus we may identifyrR4 with the space of hermitia(® x 2)-matrices ovel ..

Next, P = R4 - C, whereC ~ G L2(g?). Any linear character oR4 now has the
form

X s glFq/ep (THBX))

for someB € R4. Thus everyC-orbit on nontrivial linear characters & is just
aC-orbiton R4 \ {0}. The latter orbits ar€1, that of thoseX of rank 1, andD,
that of rank 2. ClearlyjO1] = (¢* — 1)/(g + 1) and|02| = ¢ (¢* — 1) /(g + 1).
Since the dimension of any Weil moduileis less tharjO;|, O1 occurs onV | g.
The claim about)1 - 01 and 01 - O follows from the observation that one can
find hermitian matriceX, Y, Z € R4, whereX, Y are of rank 1 and is of rank

2 such thatthe rank of + Y and ofX + Z is 2. The last claim of the lemma can
be seen by direct computation

Proposition 11.3. Let G = Us(g) or SUs(¢g) with ¢ = p/ and Q be ap-Sylow
subgroup ofG. Let V be any irreduciblekG-module such that the restriction
V|o contains no nontrivial linear character ap. ThenV is a Weil module or
a module of dimensioh

Proof. (1) Because of the factorizatidis(g) = Ny,(4)(Q) SUs(g) and because
any Weil module ofSUs(g) is extendible toUs(q), it suffices to prove the
proposition for G = Usz(q). Also, the statement is known in the case of
characteristic 0, cf. [Geck, Table 3.2]. Hence we may assumeWthdbes not
lift to characteristic 0. The cage= 2 can be checked directly, so we will assume
g > 2. A theorem of Broué and Michel [BM] asserts

&(G.®):= |J £(G. ) (6)
teCg(s)
t anr-element

is a union ofr-blocks, where € G is a semisimple’-element and (G, (st)) is
the Lusztig series [DM] of irreducible complex charactergoforresponding to
the G-conjugacy class of the semisimple elem&n(Note that we have identified
G with the dual groupz*.) Abusing notation, we also denote BY(G, (s)) the set
of irreducibler-Brauer characters that belong to this union-dflocks. Assume
V belongs tcg, (G, (s)). According to [FS]{x | x € £(G, (s))} forms a basic set
for the Brauer characters i} (G, (s)), wherex denotes the restriction of to
r’-classes. Lep be the Brauer character f, 14 x € Z(Q) andy € O\ Z(Q).
Recall we are assuming thet, contains no nontrivial linear character@f and
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r # p. Sinced (1) + (¢ — 1)O(x) — gb(y) = 0 for anyé < Irr(Q) except for the
cased is a nontrivial linear character, it follows that

(D) + (g —Dex) —ge(y)=0. (7

(2) Now Cg(s) is (U1(9))3, GL1(¢®) x Ui(q), U1(g®), U2(g) x Ui(g), or
s=1.

We claim that in the first three casedifts to characteristic 0. Indeed, a result
of Hiss and Malle [HM, Proposition 1] states that the degree of any Brauer
character ir€, (G, (s)), in particularg(1), is divisible by(G : Cs(s)),. In these
three casesCs(s) is a maximal torus. For any as in (6),s is a power ofst
andt € Cg(s), henceCg(st) = Cg(s). Thus unipotent characters @f;(st)
have degree 1, whence Lusztig’s parameterization [DM] of irreducible complex
characters oz implies thaty (1) = (G : Cg(s)) for any irreducible complex
charactery in &, (G, (s)). Therefore, all irreducible charactersdp(G, (s)), no
matter complex or Brauer, have the same degree. It followsgtkat) for some
irreducible complex character € £, (G, (s)), as stated.

Since we assum¥ does not lift to characteristic 0, none of the first three cases
can occur. In the last case we may weite=a + bp + cx, wherea, b, ¢c € Z and
p, x are unipotent characters 6f of degreey (¢ — 1) andg?, respectively. The
condition (7) implies that = 0. It is well known thats is irreducible, hence the
irreducibility of ¢ implies thaty = 15 or g, and so we are done asis a Welil
character. The fourth case can be treated similanty.

Lemma 11.4. Let A = SUs(g), and letW be an irreducible Weil module of
overk and X anykA-module. Suppose thaW ® X)|g, contains no nontrivial
linear character ofR3. ThenZ(R3) acts trivially onX.

Proof. Observe thaW|g, contains ally — 1 irreducible characters;, 1 <i <
g — 1, of degreey of R3. Assume thaZ (Rz) acts nontrivially onX. ThenX|g,
containsy; for somei. It follows that (W ® X)|g, containsw;&;, which is the
sum of all linear characters &3, contrary to the assumption.o

Let G = SU,(q) or U, (¢) with n > 4 andV be an irreduciblé G-module. We
say thatV has property(Rz3) if the restrictionV |g, of V to the subgroumRs of
a standard subgroupls(¢) of G does not contain any nontrivial linear character
of R3. Similarly, we say thal’ has property(R4) if the restrictionV|g, of V
to the subgroupR, of a standard subgroupUs(g) of G contains only linear
characters oR4 that belong to the orbiD; (defined in Lemma 11.2) and maybe
the trivial character.

Proposition 11.5. Let S = SU,(q), n > 5, (n,q) # (5,2). Let V be anykS-
module either with propertg)V) or with property(R3). ThenCy (Q1) = Cy(Z1)
and theP;-module[Z1, V] is a direct sum oM (x)’s.
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Proof. The propertyW) for V implies thatV |4 involves only Weil and trivial
modules, whered = SUz(g) is any standard subgroup, and that SpacV)
contains no nontrivial linear characters®f by Lemma 11.1. So we may assume
that(R3) holds.

If W, is the x-eigenspace foZ; on V, where x is any nontrivial linear
character ofZ,, thenW, = M(x) ® X for someK-moduleX. By Lemma 11.4,
Z(R3) acts trivially onX. But the condition orin, ¢) implies thatk = SU,_2(q)
is quasi-simple. Henc& acts trivially onX, and so[Z3, V] is a direct sum of
someM (x).

Next assume thal :=[Q1,Cyv(Z1)] # 0, and consider & -orbit O of
nontrivial linear characters af1 occurring onU. We may identify©® with the
set of all vectors of fixed norm = 0 or 1 in the natural modul@ = F"; 2 for
K.Choose abasi@i, ..., e,_2) of W in which the Gram matrix of the hermitian
formis

0 0 1
diag((O 1 0) , 1,,_5).
1 0O

In the caseu =0, O containsw = te1 + e3, Where O£ ¢ € F,e andr+t7=0.1In

the casqu = 1, O containsx = e2 + e3. Choose a standard subgratip= SUsz(¢)

inside K as the pointwise stabilizer of the subspdes, ...,e,,,z)lpqz, and let
R3 = Staby (e7). Then

1 a b
R3= {diag((o 1 —a‘l>,ln5>
0 0 1

and so no nontrivial element &3 fixeswa. Thus ifv is a nonzerax-eigenvector
for Q1 in U, thenv®s generates a regulamRz-module. In particulary affords
all nontrivial linear characters df3, a contradiction. O

a,belp, aq+1+b+bq:0},

Next we determine thé G-modulesV with property V), (R3), or (R4),
for G = Us(g). We use the notation of [N1] for conjugacy classes and complex
characters o&. For any irreducible-Brauer charactep of G, we define

P[3l= (1) + (¢ — De(x) —qe(y),

¢l4l =91 + (g — Do(x) — qp(2),
where x, respectivelyy, z, is an element of clasd»(0), respectivelyAs(0),
A4(0), of G.

Lemma 11.6. Let G = Us(g) and g € IBr,.(G) be an irreducible character with
(at least one of the propertiggV), (R3), or (R4). Then
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(1) ¢l31=¢l4]=0.
(ii) If ¢ lifts to characteristid) theng is either of degred or a Weil character.

Proof. (1) As we have already mentioned aboyiy) implies (R3). Assume
that ¢ has propertyR3). Consider a subgrouRs inside a standard subgroup
A = SUz(¢g) of G. Since the central nontrivial elements B§ belong to class
A2(0) and noncentral elements belong to clasg0) of G, (R3) implies that
¢[4]=0.

Next we restricty to the parabolic subgroupy = g™ : (Ua(q) x Z,2_1)
of G and letyr be any irreducible constituent gf p,. Assume thaty| g, contains
a nontrivial linear character af1/Z1, where Q1 = 0,(Q1) andZy = Z(Q1).
Observe that; has exactly two orbits on nontrivial linear charactergf/ Z1,
C1 of length(g + 1)(¢2% — 1) andC> of lengthg (¢ — 1)(¢% — 1). Moreover(y is
afforded by the complex charactef(0) of P; (in the notation of [N1]), and: is
afforded byy7(0). By Clifford’s Theorem, we may assume thatp, = y;(0)|o,
with j =4 or 7. Now we may choosR3 to be contained irQ1, with a nontrivial
central element belonging to clasgi2(0) and a noncentral elemenbelonging
to classAg(0) of P1. Since

p(D)+ (g —Dpx) —gp(z) >0 forp=y4(0) andp = y7(0),

we see that/ | g, contains nontrivial linear characters B§, contrary to(R3).

Next assume thal |z, contains the trivial characterzl The result we have
just proved above implies tha®; < Ker(y) in this case. Thug is actually a
representation o1/ Q1. Since allr-modular representations @/ Q1 lift to
characteristic 0, we may assume thjais a complex representation &i/Q1,
i.e. one of the representatiopgk, /) listed in [N1] withi =1, 2, 3, or 8. Choose
an elemeny € Q1 of classA4(0) andz € Q1 of classAg(0) of P1. Theny; (k, 1)
takes the same value atandz for i =1, 2, 3, and 8. Hence (y) = ¥ (2).

Finally, assume that/|z, does not contain 4. Then each irreducible
constituent ofy|p, is of degreey? and vanishes at both andz, as they are
not central inQ1. Thus we again have (y) = ¥ (z).

We have shown that(y) = ¢(z). Note thaty belongs to clasd3(0) of G and
z belongs to clasd 4(0) of G. Henceyp[4] = 0 implies¢[3] = 0.

(2) Assumegp has property(R4). We restricty to the parabolic subgroup
P>=Ry: GLz(qz) of G and letyy be any irreducible constituent ¢f p,. Here
R4 contains some elementfrom classA2(0) of G and some element from
classA3(0) of G. By assumption, eithef| g, is trivial or it yields the short orbit
01 of R4-characters. Sinc@; is afforded by the charactefig(0, 1) of G (in the
notation of [N1]), we easily check tha{3] = 0.

Assume thaty |z, contains the trivial characterg]l. Thenv is actually a
representation of,/R4. Since allr-modular representations df,/R4 lift to
characteristic 0, we may assume thiais a complex representation @/ R4,
i.e. one of the representatiofigk, ) listed in [N1] withi =1, 2, 3, or 8. Choose
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an elemeny € P> of classA4(0) andz € P> of classAs(0) of P>. Theng; (k, )
takes the same value atandz fori =1, 2, 3 and 8. Hence/ (y) = v (z).

Assume thaty| g, yields the orbit01. Theny = 172, wherel is an irreducible
Brauer character of the inertia group= R4([¢?] : (U1(q) x GL1(¢%))) of an
Ra-characterr € O1. Sincel is solvable lifts to characteristic O by the Fong—
Swan Theorem. Hence we may assume tha a complex representation &
yielding only 04, i.e. one of the representatioAgk, /) listed in [N1] withi =4
or 5. One can check th#} (k, 1) takes the same value atandz for i =4 and 5.
Hencey (y) = ¢ (2).

We have shown that(y) = ¢(z). Note thaty belongs to clasd3(0) of G and
z belongs to clasd 4(0) of G. Hencep[3] = 0 implies¢[4] = 0.

(3) Now assume[4] = 0 andg lifts to characteristic 0. Thea is either Weil
or of degree 1, according to [TZ2, Lemma 4.10}1

Proposition 11.7. Let G = Ua(g) or SWs(g) andg € IBr,.(G) be an irreducible
Brauer character with(at least one of the propertig$/V), (R3), or (R4). Then
¢ is either of degred or a Weil character.

Proof. (1) Clearly, it suffices to prove the statementfai(q), so we will assume
that G = Ua(g). The case; = 2 can be checked directly using [Atlas,JLPW],
hence we assumg> 2. By Lemma 11.6, we may assume thé8] = ¢[4] =0
andg does not lift to characteristic 0. Using the result of Broué and Michel [BM],
we assume thap belongs to&, (G, (s)), wheres is a semisimple-’-element.
Again according to [FS]{x | x € £(G, (s))} forms a basic set for the Brauer
characters i€, (G, (s)).

(2) Arguing as in part (2) of the proof of Proposition 11.3, one can show
that if Cg(s) is any of the toriGL1(¢%), (GL1(¢%)?, GL1(¢%) x (U1(q))?
U1(q) x U1(g®), and(U1(g))%, theng lifts to characteristic 0. So we may assume
thatCg(s) is none of those tori.

Assume thatCg (s) is GL2(q?), GL1(g?) x Ua(q), or Ua(g) x (U1(g))?. In
each of these cases, we can find two characiefse £(G, (s)) anda,b € Z
such thaty = a@ + bB. The equationg[3] = ¢[4] = 0 imply thata = b =0,

a contradiction.

Suppose thaCg(s) = (Ua(¢))2. In this case, we can choose 4 characters
a, B,v,8 € E(G, (s)) (they are certainy; (k,1) with i =22, 21, 21, and 20,
respectively, in the notation of [N1]), and b, ¢, d € Z, such thatp = a& + b +
¢y +d$. The condition®[3] = ¢[4] = 0 imply thata = —d andb+c = d(1—q).
Sincep(1) =d(g°+ 1)(g% — g + 1)(g — 1), we haved > 0. But in this case the
multiplicity of 1, in ¢|g, is —d(¢?+ 1)(¢ — 1) < 0, a contradiction.

Suppose that' (s) = Us(g) x U1(g). In this case, we can choose 3 characters
a, B,y € £(G, (s)) (they are certairy; (k, [) with i =19, 17, and 18, respectively,
in the notation of [N1]), ands, b, ¢ € Z, such thaty = a& + b + c¢. The
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conditionsp[3] = ¢[4] = 0 imply thatb = ¢ = 0. Sincea is a Weil character
andg = ad, ¢ is also a Weil character.

(3) Finally, suppose that = 1, i.e., ¢ belongs to a unipotent block. The
decomposition matrix

1
a; 1
D=]a» by 1

az bz c¢3 1

as bs c4 ds 1
of the block (in the standard ordering of the unipotent characters, which are
xi (0), with i =1, 14, 12, 13, and 11, respectively, in the notation of [N1]), is
approximated by

D=]2 1
11

1114 1

cf. [HM, Proposition 6]. Writingy as aZ-combination ofx; (0) and using the
condition ¢[3] = ¢[4] = 0, we see thatr must be a linear character, a Welil
character, or the last Brauer character in the block. In the first two cases we are
done. In the third case[3] = ¢*(¢2 — ca — da(g — ¢3)) > 0, as can be seen using

the above approximationdd. 0O

oORr R

Proposition 11.8. Let G = Us(g) or SUs(¢) and g € IBr,.(G) be an irreducible
Brauer character with(at least one of the propertig$V), (R3), or (R4). Then
¢ is either of degred or a Weil character.

Proof. (1) Clearly, it suffices to prove the statementa(q), so we will assume
that G = Us(g). The case; = 2 can be checked directly from [Atlas,JLPW],
hence we assumg> 2.

Note that(R4) implies(W). For, if ¢ has propertyR4), then every constituent
¥ of p|4 also satisfiegRR4), whereA ~ SUy(g) is a standard subgroup 6f. By
Proposition 11.7y is either trivial or Weil character, whengesatisfies V).

Let V be akG-module affordingy and ¢ as in the proposition. By
Proposition 11.5Y = Cy(Q1) @ [Z1, V], and theP;-module[Z1, V] is a direct
sum of M(x). Here Q1 = ¢11%, Z; = Z(Q1). Let s be ther'-part of ¢ + 1.
By Lemma 4.2, every constituent @fy (Q1) is either trivial or a Weil module
for L] = SUs(g). According to [DT, Theorem 7.2], there are some integers
a, b;, c € Z such that

s—1

elpp=a Y MGO+Y bith+c-1p. (8)
12175)(€|BU(Z;|_) i=0
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Here ¢!, 0<i < ¢, are Weil characters 08U, (¢). In particular, ¢(1) =
(q°> —q +1) — ;0. Letr € Z; be a transvection. Then (8) yields
s—1
o) =—aq®+ (4> —q)bo+ (¢* —q+1) Y _bi+c.
i=1
Next, let’ € L be a transvection. Then
s—1
o(t)=—ag’(q—1) —qbo— (@ — 1Y bi+c,
i=1

cf. [TZ2, Lemma 4.1]. Since and:” are conjugate ifG, ¢(¢) = ¢(t’), whence

s—1
a = Z bl’. (9)
i=0
On the other hand, branching formula for Weil characters [T1] yields
Glg= ) MO+ (10)

1z,#x€lBr (Z1)

Altogether (8)—(10) imply that the restrictions<pfand2f;l1 bicé +cto P{,and
so to ap-Sylow subgrouf¥” of G, are the same.

(2) Fori=1,...,7, letx; € T be an element of classy;(0) in G (in the
notation of [N2]). For any Brauer charactgiof G, let

d(x1)+ (g —Do(x2) —gp(xj), j=3,4,
oljl= {¢(X2)+(q—1)¢(X3)—q¢(xj), Jj=5,6,
¢ (xa)+ (g — Do (xe) —qp(x7), j=T7.

Observe thatgé[j] =0 for anyi and j and clearlyp[;j] = O for the trivial
charactep. Hence the result of part (1) implies that

plj1=0, 3<j<T7. (11)

If ¢ lifts to characteristic 0, then already the two relati@i8] = ¢[4] =0
imply thatg is either of degree 1 or Well, cf. [TZ2, Lemma 4.10]. Therefore we
will assume thap does not lift to characteristic 0.

(3) Assume thap belongs tc€, (G, (s)), wheres is a semisimple’-element.
We may also assume th@g; (s) is none of the toriU1(¢°), GL1(¢g*% x U1(q),
(GL1(g%)* x U1(q), GL1(¢® x Ui(g®), GL1(¢? x (U1(9))3 Ui(g® x
(U1(¢))?, and(U1(¢))®, since in any of these casgsvould lift to characteristic 0,
as one can see by arguing as in part (2) of the proof of Proposition 11.3.

Assume thaCe (s) is GL2(¢%) x U1(q), GL1(q?) x U2(g) x U1(q), U1(¢®) x
U2(q), U2(q) x (U1())%, GL1(¢®) x Us(g), Us(q) x (U1(g))?, or (U2(g))* x
Ui(q). In each of these cases, we can find 2, 3, or 4 characterg, € £(G, (s))
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anday € Z such thap = > _; axéx. Equations (11) imply that; = O for all k,
a contradiction.

Assume thatCg(s) is Us(g) x U2(g). In this case we may writep =
Z,f:lakﬁk for certain characterg; € £(G, (s)) (they are labeled adz; (i, j)
in [N2], with 1 < k£ < 6) anday € Z. Equations (11) imply that; = ag =0 and
—az = a3z = a4 = as, Whencep(1l) = 0, a contradiction.

Assume thatCg(s) is Ua(g) x Ui(g). In this case we may writep =
Z,leak)?k for certain characterg, € £(G, (s)) (they are labeled ad (i, j)
in [N2], with 1 < k < 5) anday € Z. Equations (11) imply thai; = 0 for k < 4,
whencep(1) = asys. Sinceys is a Weil charactek is a Weil character.

Finally, assume that= 1, i.e.¢ is a unipotent block. In this case we may write
¢ = ZIZ:l axdy for certain unipotent charactess (they are labeled as 14 (i, j)
in [N2], with 1 < k < 7) anday, € Z. Equations (11) imply that;, = 0 for k < 5,
whencegp(1l) = aede + a787. Sinceds is a Weil character andy is the trivial
character, we are done

12. Representationsof largeunitary groups

First we give an upper bound for the dimension of any modusatisfying the
conclusion of Proposition 11.5.

Lemma 12.1. Let S = SU,(¢), n > 6, and M := M (x) be the afore described
irreducible k P;-module of dimension”~2. Then

2¢%+3¢3+3¢2—g—2, ifn>6isodd
q*+3¢3+4q°—q -2, ifn>6iseven
¢*+3¢3+44°—q—2, ifn=6but2|q,
q*+3¢3+5¢2+q—1, ifn=6and2tq.

dimHoms (M5, M%) <

Proof. To ease the notation, dendte= P;. Let A be a set of representatives of
H\S/H. For anya € A, defineH,, M,, M, as in Corollary 4.9. By Frobenius
reciprocity and Mackey’s Theorem,

Hom ()] M) = Homa (D(v1,)" 1)

acA

Homys (M5, M)

12

~ @HomkH((M"Z)H,M) (sinceM is irreducible)
acA

~ @ Homyy, (M), My).
acA

The dimension of each hom-space in the latter sum will be bounded using
Corollary 4.9.
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Let W =F", be the natural module fd, with hermitian formu o v and a basis
(e1, ..., e,) with Gram matrix

ol (§ )2 3 -)

Then we may assume thdf = Staly(e1). The double cosets off in §
correspond tq2¢2 — 1) H-orbits on nonzero isotropic vectors W, which are
{re1},{ve W |etov=A,vov=0},and{0#£v e W |vov=e10v =0}, where
rE ]Fzz.

For the first kind of double cosets, we may choesediag(x, 19, I,_3, A9~ 1)
(in the chosen basis), and observe thatormalizesH, = H. SinceM, is irre-
ducible in this casgM,, M,]n, = 1.

For the second kind, choose

—-q
a= diag((g AO ) 3, —)ﬂ‘1> ,

and note that normalizesH, = K = Staly(e1, ¢2) >~ SU,_2(¢). The character
of M, is Y0_y¢i . From [DT, §7] it follows tha{ M., M,lu, < (g + 1%+ ¢?
if nis odd, and< 1+ (g + 1)?if n is even.

For the last orbit, choose

00 1
000 1],
100 o] "*)
0100

a =diag

and observe thai? = 1. Here H, = Staby(e1, e3). We consider the subgroup
J := Staly(e1, e2, e3) of H,, which plays the réle oP; for K = Staly (e, e2) =~
SU,_2(¢). The character ofM|x has just been described above. Next, the
restriction of;! , to J is the sum of¢! , (a Weil character o58U,_4(¢) < J
inflated toJ), and (¢ — 1) pairwise distinct irreducible modules, which are the
analogues oM (x) for J. It follows that

(@+D?+q%+(q—D(g+D? ifnisodd

(g+1D?°+1+(q—1D(g+1? ifeithern>6iseven
orn =6 butg is even

20 +1°4+1+(q—-1D(g+1? ifn=6andgisodd

[Ma’ Ma]Ha S

As we have mentioned above, the chosen representatisaiisfy the hypothesis
of Corollary 4.9, whence dimHopg, (M), M) < [Ma, MglH,. Thus

dimHoms(M®, M) < [Ma, My14,

acA
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q*+3¢3+44°—qg—-2 ifn>6isevenor
if n =6 butg is even

q*+3¢%+54°+¢g—1 ifn=6andgis odd

2¢*+3¢%+34°2—q—2 ifn>6isodd

Corollary 12.2. Let G = U,(¢q) or SU,(¢q) withn > 6. Let V be an irreducible
kG-module such thaCy(Z1) = Cy(Q1) and that theP;-module[Zy, V] is

a direct sum of somé/(x). Then for any composition factdv’ of the kS-

moduleV, whereS = SU,(¢), we havedim(V’) < 2¢"~2(q — 1)k, where

| (¢*+3¢3+492— g —2Y2|, ifn>6isevenor
if n = 6 but2| g,
€S Lg% +343+5¢2+g - DY2],  ifn=6and2tq,

| (2¢*+3¢%+392—q —2Y/?|, ifn>6isodd

Proof. If G = U,(q), we still haveV’ = Cy/(Q1) & [Z1, V'], and thek P;-
module[Z1, V'] is a direct sum of somé/(x), since P < S. Let W, be the
x-eigenspace foZ; on V’/, where x is a nontrivial linear character of1.
Then W, is a direct sum of sayx copies of M(x). By Lemma 4.8k2 <
dimHoms (M (x)3, M (x)5), whence the bound anfollows from Lemma 12.1.
This is true for anyy, hence dindV’) < 2dim([Z1, V']) < 2¢"%(g — Dk. O

Theorem 12.3. Let G = U,(g) or SU,(¢g) with n > 3. Let V be an irreducible
kG-module such thaCy(Z1) = Cy(Q1) and that theP;-module[Zy, V] is

a direct sum of somé/(x). ThenV is either a Weil module or a module of
dimensionl.

Proof. (1) If n <5 then we may choose a subgraRpinside 01 and containing
Z(Q1), hence the assumption ovi implies (R3), and so we are done by
Propositions 11.3, 11.7, and 11.8. So we may assurmpes. First we assume,
in addition, that(n, q) # (6, 2), (6, 3), (7, 2). Let V' be any composition factor of
the SU, (¢)-moduleV . The statement is clear if difi’) = 1, so we assume that
dim(V") > 1. Then Corollary 12.2 and the assumption(ang) imply that

o 4" 2(q"2—q)(g-1/(g+1) ifnisodd
dim(V’) < Y o
" 2(q"?-1)(g-1/(g+1) ifniseven

where chaik) = r. By [HM], V' is an irreducible Weil module of. Since any
Weil module is extendible t&/,, (¢) and sinceV is irreducible, we conclude that
V =V’ andV is a Weil module.

(2) Suppose thatn, g) = (6, 2). The assumptiol€'y (Z1) = Cy(Q1) implies
that V|, does not contain any nontrivial linear characterf = 218, Hence
(@) + ¢(2))/2 = ¢(x) = ¢(y), whereg is the Brauer character df, z is
the central involution ofQ; (of class 24 of G, in the notation of [Atlas]),
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x € Q1 \ Z(Q1) is of order 2 (of class B of G), andy € Q1 \ Z(Q1) is of
order 4 (of class 4 of G). Inspecting the-Brauer character table @t [JLPW]
with r # 2, we see that the only irreducible Brauer characters satisfying this last
condition are Weil or trivial.

For the remaining cases we may assume that U,(g) and denoteS =
SU,(¢). We will identify G with G* and use some results of [HM].

(3) Suppose that:, ¢) = (7, 2). SinceG >~ S x Zz, any irreducibleG-module
restricts irreducibly toS. By Corollary 12.2, dingV) < 520. Thus dingV) is
less than the third (nontrivial) complex degree®f which is 860 according to
[TZ1, Table V]. Hence [HM, Proposition 1] implies th&tbelongs tc, (G, (s)),
wheres = 1 or s is such thatCs (s) = U,—1(¢) x Ui(g). The assumption ol
also implies thatV satisfies the conclusion of [HM, Lemma 10], therefore we
may apply [HM, Lemma 14] td/. ThusV is a modular constituent of either a
unipotent charactey; labeled by the partition = (6, 1), (4, 3), (4,2, 1), (4, 13)
of 7, or a complex charactey; , labeled bys # 1 andx = (6), (5,1), (4,2),
(4,1%), (3,3), (3,2,1). In the former case, the fragment of the decomposition
matrix of the principal--block of G corresponding to all partitions of 7 which
are larger or equal t@4, 1%) is approximated by [HM, Proposition 8]. This
information is enough to show that either divi) > 858 or V is Weil. In the
latter case, the fragment of the decompaosition matrixXf@r, (s)) corresponding
to all partitions of 6 which are larger or equal t8,2,1) is approximated
by [HM, Proposition 7]. Again, this information allows us to show that either
dim(V) > 43- 21 orV is Weil. Thus we conclude that is a Weil module.

(4) Finally, assume thatz, g) = (6, 3). Let V' be an irreducible constituent
of the S-module V. By Corollary 12.2, diniV’) < 4536. Observe that the third
complex degree of is 5551 (cf. [TZ1, Table V]), and the complex characters
of the first two degrees extend 6. Hence, an easy argument using [HM,
Proposition 1] shows that belongs tcf, (G, (s)), wheres = 1 ors is such that
Ci(s) = Un_1(q) x U1(q). SinceG =~ (S x Z(G)) - Zz, dim(V) < 2dim(V’) <
9072. The assumption 0w also implies that/ satisfies the conclusion of [HM,
Lemma 10], therefore we may apply [HM, Lemma 14MoThusV is a modular
constituent of either a unipotent characgerlabeled by the partition = (5, 1),
(3,3), (3,2, 1), (3,13 of 6, or a complex charactey; , labeled bys # 1 and
r=(5), (4,1), (3,2), (3,19, (2,2, 1), (2,13). In the former case, the fragment
of the decomposition matrix of the principalblock of G corresponding to all
partitions of 6 which are larger or equal t8, 1%) is approximated by [HM,
Proposition 7]. Using this, we can show that either dim> 10735, orV is
Weil, or V is labeled by(4, 2). But in the last case dif¥) > 5547 andV|g
is irreducible, as shown in the proof of Theorem 16 of [HM], so dith) =
dim(V) > 5547, a contradiction. Suppogdeé € &, (G, (s)) with s # 1. In this
case, the fragment of the decomposition matrix §66, (s)) corresponding to
all partitions of 5 which are larger or equal (8, 1%) is approximated by [HM,
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Proposition 6]. Again, this information allows us to show that either(dfm>
182- 60 orV is Weil. Thus we conclude that is a Weil module. O

Proof of Theorem 2.5. It follows from Propositions 11.7, 11.8 when= 4, 5,
and from Proposition 11.5 and Theorem 12.3 when5.

This theorem yields the following surprising consequence.

Corollary 12.4. Let G = SU, (¢) or U, (g), n > 3, andV be an irreduciblekG-
module such thaV|p, contains no nontrivial linear character a@;. ThenV is
either of degred. or a Weil module.

Proof. We may embed a subgrowgy in such a way thaZ (R3) = Z(Q1). The
assumption or¥ now implies thatV|g, contains no nontrivial linear character
of Rz, that isV has property(R3). Let A >~ SUz(¢) be a standard subgroup
containing R3. By Proposition 11.3, all composition factors ©fl4 are trivial
or Weil, whenceV has property}V) and soV is either of degree 1 or Weil by
Theorem 2.5. O

If n =2m, thenQ,, is abelian. Ifn = 2m + 1, then we may identifyQ,, with
the set

{(X.al| X e My(F2). ae . X +'XD 4a.'a'? =0},

with the group operatiopX, a]- [Y,b]=[X +Y —a-'b@, a+b]. ThenZ(Q,,)
consists of all elements of the forfi, 0].

Lemma 12.5. Let § = SU,(¢) with n > 5. Setm = [n/2]. ThenP,, acts on the
set of nontrivial linear characters o (Q,,) with one orbit of lengthig?” — 1)/
(g + 1), and one orbit of lengthy := (¢2" — 1)(¢?" 1 —¢)/(¢®>— 1) (g + 1). The
first orbit occurs on any Weil module 6t All the remaining orbits have length
greater than(g®” — 1)(¢®"~*+ 1)/(¢> — D(g + D).

Proof. One can identifyZ(Q,,) with the space of skew-hermitiafm x m)-
matrices ovetf 2, and then the action of,, on Z(Q,,) reduces to the action
of Ly := GLy(¢?) if n is odd, andL,, := SL,(¢?) - Z,—1 if n is even, via
X+~ 'AWXA for X € Z(Q,) and A € L,,. Here@ is thegth Frobenius map.
Any linear character oZ(Q,,) now has the forn¥ > ¢"a/# (MEX) for some
B € Z(Q). Thus evenyl,,-orbit on nontrivial linear characters @f(Q,,) is just
an orbit of L,, on Z(Q,,) \ {1}. Assume the latter orbit contains a matpixof
rank j. If j =m > 3 then theSL,, (¢2)-orbit of X has length equal t¢SL,, (¢?) :
U (g)), which is clearly larger thag?" — 1)(¢?" 1+ 1)/(¢g% — 1) (g + 1). If
j=m=2thenn =5 is odd, and ifj <m — 1 then theSL, (¢)-orbit and the
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G L,,(¢?)-orbit of X are the same. Thus in the remaining cases we may assume
that L,, = GL,,(¢%). Then the stabilizer oX in L,, is [¢%/ ™= )]- (U,(q) x
GLm_j(qz)). So the length of this orbit igg?” — 1)/(qg + 1) if j =1 (there is
exactly one orbit of this kindYg2” — 1)(¢?" 1 —¢)/(¢>—= 1) (g + 1) if j =2, or
larger than(g?” — 1)(¢?" 1+ 1)/(¢g% — 1)(¢ + 1) if j > 3. The Weil characters

of S when restricted t@, give us the orbit of smallest lengtho

Lemma 12.6. Letn = 2m + 1 and¢ be an irreducible character of),,,. Suppose
thate|z(o,, contains alinear charactex corresponding to a matri® of rank j
(in the notation of the proof of Lemni&.5) Theng (1) =g¢’.

Proof. Again we identify Z(Q,,) with the skew-hermitianm x m)-matrices
overF 2. LetN ={X € Z(Qn) | TH(BX) = 0}. ThenN < Q,, sinceN < Z(Qn),
andN < Ker(a) < Ker(¢). Moreover,Q,,/N >~ C1 x C2, where(Cy is of extra-
special type of ordeg+2/ with Z(Cy) ¢ Ker(a), andC; is elementary abelian
of orderg?" =2/, Hence the claim follows. O

Proof of Theorem 2.6 (evenn).

(1) Assume that: = 2m > 6 andV as in the theorem. By Lemma 12.5,
there is a formal sun¥’’ of Weil modules and maybe trivial modules 6f
such thatV|g, = V'|g,. Let W := (e1, ..., en, f1, ...,fm>]Fq2 be the natural

module ofS, and let the hermitian form have the mat(i}%m 16’). We may assume
P, = Staky({ex, ..., em)[ng) andP; = Stabg((emqu).

Consider the standard subgrodp~ SU(g) as the pointwise stabilizer of
(ej, fi13<j < m)[ng. Adding a torus of ordeg + 1 to A’, we get a subgroup
A >~ Uy(g) of S that induces the full unitary group ofa1, e2, f1, fz)qu. Then
the afore defined subgroupy := Staly (e1, e2) of A is contained inQ,,. Since
V’|4 involves only Weil and trivial modules oft, Lemma 11.2 implies that
SpecR4, V) contains only(g* — 1)/(g + 1) nontrivial linear characters aRy
(namely, the ones i®;).

(2) Here we show that the]-module[Z1, V] is a direct sum of soma/ (x).
Again, if x is a nontrivial linear character d¢f1, then they -eigenspace of; on
Vis M(x) ® X for someK-moduleX, whereK ~ SU,_2(g). By Lemma 11.2,
SpecR4, M(x)) D O1. If R4 acts nontrivially onX, then the last statement
of Lemma 11.2 implies that SpeR4, V) contains a nontrivial linear character
from Oy, contrary to the conclusion of part (1). HenRa acts trivially on X,
whencekK also acts trivially onX, sinceK = SU,_2(g) is quasi-simple.

(3) Next we show thatCy(Z1) = Cy(Q1). Assume the contrarylU :=
[Q1,Cyv(Z1)] # 0, and consider & -orbit © on nontrivial linearQ1-characters
occurring onU. Then we may identifyO either with the set of all nonzero
isotropic vectors inW’ := (e;, f; | 1 < j < m — 1) ,, or with the set of all
vectors of norm, say, 1 iW’. In the former case, choosee O to be f1. In the
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latter case, choosec O to bere1 + f1, wherer € qu andr + 9 = 1. In either
case,R := Stalg,(«) is of orderg. Let U, be thex-eigenspace af; onU. Since
R fixesU,, R fixes an 1-subspade); in U. Let A be the character a® on this
1-subspace. Thenhas exactly;® different extensions t&4, and the sum of them
is exactlyr®4. Sincear®s is the character of theR4-submodule generated by
we have shown thal/ affords at least;? distinct linear characters at4. This
contradicts the conclusion of part (2), becagde- 1> (¢* — 1)/(g + 1).

From parts (2) and (3) and Lemma 4.2 it follows thdf involves only Weil
and trivial modules ofKk = SU,_2(¢). We will need this consequence for the
proof of the theorem in the cageis odd.

(4) The results of parts (2) and (3) imply thHt satisfies the hypothesis of
Theorem 12.3, and so we are donel

Proof of Theorem 2.6 (oddn).

Assume thatt =2m + 1 > 5 andV as in the theorem. By Lemma 12.5,
there is a formal sun¥’ of Weil modules and maybe trivial modules &fsuch
thatVizco,) = V'lz0,)- LetW:=(e1,....em, f1...., fm, g)qu be the natural
module ofS, and let the hermitian form have the matrix

0O I, O
(Im 6 o).
0O 0 1

We may assume,, = Staky({es, ..., em)qu) and P1 = Stab;((emqu). Then
Z(Q,) = Staly(es, ..., ey, g) and so it plays the réle of the subgrogy, for

T := Staly(g) ~ SUy,(g). Since the restriction o¥’’ to T involves only Weil

and trivial modules of", we see that every composition factor of themodule

V satisfies the hypothesis and therefore also the conclusion of part (1) of the proof
of Theorem 2.6 for evem (as we mentioned at the end of the proof of Theorem 2.6
for evenn, the restriction oV to the standard subgrowg := SU,_3(g) involves

only Weil and trivial modules o). ThusV has property}V), and so we are
done by Theorem 2.5.0

To prove Theorem 2.7, we compare the Brauer character in question to an
irreducible complex character of degree(¢” — 1)(¢" 1+ 1)/(qg + 1) (g% — 1)
if nis even, andig"” + 1(¢"t — ¢ /(q + 1)(¢°> — 1) if n is odd. Such a
character exists by [TZ1, Corollary 4.2]. As shown in [T2],is a constituent
of the permutation characterof SU,(¢) on the natural modulEZz.

For a finite group of Lie typd., let d.(L) be the smallest degree 1 of an
irreducible representation df in cross characteristic. We letm = [rn/2] and
consider the subgroup,, = Q,, : L}, of P,, whereL/, ~ SL,, (q?.

Lemma 12.7. Let S = SU,(q) with n > 4. Let w be the above permutation
character ofS. Then the multiplicity ol p; in w|p; is at mosy? +¢q + 1.
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Proof. The multiplicity in question is exactly the number @t -orbits on
the vectors of the natural modubé. First assume that = 2m and consider
a symplectic basi¢es, ..., ey, f1,..., fm) of V. ThenP,, may be identified with
Staky(U), whereU = (eq, ..., emqu. Clearly, L], acts transitively on nonzero
elements oV andV /U, and Q,, acts on the cosef; + U with g orbits. Thus
the number ofP, -orbits onV is at mostg + 2. Next assume: = 2m + 1.
Then we may writeV = {(e1, ..., fu, g)[ng, with g orthogonal to alk;, f;. Let

U =le1,...,em, g)qu. Clearly, L], acts transitively on nonzero elementstof

andV/U’. FurthermoreQ,, acts on the cosety + U’ with ¢ orbits, andL/, acts
transitively on the coseg + U. Thus the number oP,,-orbits onV is at most
1414+g+(@?*-D=¢?’4+q+1. O

Proof of Theorem 2.7 (evenn).

Let V be as in the theorem and= 2m > 6. If ¢ = 2 or if all P,-orbits
of nontrivial linear characters of),, occurring onV are of length less than
o :=(¢" — 1)(¢g" 1 —¢)/(g + 1)(g? — 1), then the statement follows directly
from Theorem 2.6. Hence we will assume that 2 and at least one a?,,-orbit
of Q,.-characters onV has length at leask. Since din{V) < o(n,q,r) <
(¢" —D(g"T+1)/(g +1)(g%2— 1), this orbit is exactly the (unique,,-orbit of
lengthl; by Lemma 12.5. Since ditW) — 2 < (¢" — 1) /(¢ + 1), all the remaining
Qm-Characters oV are trivial. LetW be the complex module of affording
the charactefr. The same argument as above but appliedVtehows that the
0O-moduleW yields the above’,;-orbit of lengthl> and dim{W) — [, times the
trivial character. Thus we may write

VlQm = Vl @ CV(Qm)7 WlQm - Wl @ CW(Qm)v (12)

whereV; and W, afford the same&),,-character.

Let = be the Brauer character &f. Let g € L ~ SL, (¢?) be a transvection
(in L.)). Theng is U,(¢?)-conjugate to an elemegt € Q,, (one may choosg’
to have the matri>(’(’)” IX) in some symplectic basis of the natural module, where
X € My (F,2) is diagonal skew-hermitian of rank 2). Sinee> 3, we see that
Cu,q»(&) - S=Uy, (¢%), whenceg’ andg are S-conjugate. From (12) it now
follows that

1(9) —¥(g) =1(g) — ¥(g") =dim(V) —dim(W) =z(1) — 9(1). (13)

Clearly, L), acts onVy andWy, with (Brauer) characters say and#1. Since
m > 3, the proof of Lemma 12.5 shows thaf}, acts transitively on the linear
characters of),, occurring onV; and Wy, with stabilizer

H = [q*""2]- (SUx(q) x SLu-2(¢?)) - Zg+1.

Thusty = al» andy, = gL» for some linear (Brauer) charactersandg of H.
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Claim thatH /H’ is a p’-group, whereH’ = [H, H]. For, if m > 4 then the
normal subgroup? := [¢%""~2] of H is the sum of two natural modules for
SL,_2(¢?). If m = 3 thenQ is the sum of two natural modules f&Uy(g) ~
Sla(g). In either case, we then have < H'. Next, SL,,_»(¢?) is perfect. Also,
SW(g) is perfect ifg > 4 andSUx(3)/[SU2(3), SU(3)] ~ Z3. Hence the claim
follows.

Now we haveO? (H) < H', and sax = 8 on O” (H). By Lemma 4.10,

t1(8) = 91(g). (14)

Let 12, respectivelyd,, be the L -character ofCy(Q,), respectively of
Cw(Qnm). From (13) and (14) it follows that

12(g) — V2(g) = 12(1) — ¥2(D). (15)
Observe that
. qg"—1
72(1) = dim(V) —la <0(n,q,r) — 2= —1—x,(q,r)

g?—1
= dr(L:n)a

since L), = SL,(¢% andm > 3, ¢ > 3, cf. [GT1]. It follows that L, acts
trivially on Cy(Q,), whencerz(g) = 72(1). But in this case (15) implies
that 92(g) = ¥2(1). Since L), is generated by transvections, we come to the
conclusion thaL), acts trivially onCw (Q.,). ThusCw (P,,) equalCw (Q,,) and

so has dimensio@” —1)/(¢%>—1) > ¢q*+¢?+ 1. This last inequality contradicts
Lemma 12.7, sincé is a constituentoh 0.

The proof of Theorem 2.7 in the odd case is slightly more complicated. We
begin with the following lemma, in whicli is the stabilizer of a linear character
of Z(Q,,) from the P, -orbit of lengthl, cf. Lemma 12.5. We are particularly
interested in irreducible-representations which extend a given irreducible
representation of degreé of Q,,, cf. Lemma 12.6.

Lemma 12.8. Let § = SUs(2) and «, 8 be two irreduciblekI-representations,
which both extend a given irreducible representatgoof degree4 of Q,,. Then
a(x) = B(x) for all involutionsx € I.

Proof. Recall that’ = Q,, : U2(2) and Q,, = 2*+4. This group and its character
table can be constructed using GAP. In particulahas 6 involution classes,

3 irreducible complex characters of degree 2 and 15 of degree 4. Since the
statement is obviously true for € Q, we only need to look at the involutions
outside ofQ. Observe that all involutiong € I \ Q form a single conjugacy class

in 1. (Indeed, consider an irreducible complex charactérqP) of degree 2 and
inflate it to a character, say, of I. Clearly, «(y) = 0. Inspecting the character
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table of I, we see thati takes value 2 at 5 involution classes and vanishes at the
last class. Thus the last class consists of the involutong \ Q.)

One can show that = o ® A, wherex is a linear character df2(2). In order
to provea(y) = B(y), it is therefore enough to show thaty) = 0. Since¢ is
irreducible and lifts to a complex representation®fwe see thatx also lifts to
a complex representation éf Without loss we may assume thais a complex
representation. It is clear that vanishes at some involutions @f, and so the
same is true for. Inspecting the character table bfwe see that this property
eliminates six characters of degree 4/¢ofand all the nine others vanish on the
involutionsy e I\ Q. O

Next we extend Lemma 12.8 to the general case.

Lemma12.9. LetS =SU,(¢),n =2m + 1> 5, and«, 8 be two irreduciblek I -
representations, which both extend a given irreducible representatafrdegree
g2 of 0,,. Thena(x) = B(x) for all elements € I of order p.

Proof. (1) Fix a basiges, ..., en, f1,..., fm, g) of the natural module of, in
which the Gram matrix of the hermitian form is

0O I, O
(1m 6 o).
0 0 1

Then we may choose
P, = Stabg((el, e em)qu), O, = Staly (e, ..., en).

One can identifyZ(Q,,) = Staly(eq, ..., en, g) With the skew-hermitiargm x
m)-matrices oveF 2. According to Lemma 12.6, we may assume $higig,,) =
g%, where the charactér corresponds to the matriX = diag(a, «, 0,0, ..., 0)
with 0#a € F 2 anda + a? = 0. Then! = Stakp,, (1) = O : J, WhereJ =
[q*" =2 (U2(q) x GLm—2(q%)).

(2) Let K := Ker(a). In the proof of Lemma 12.6 we defined a certain
subgroupN of Z(Q,,) and showed thatv < Ker(¢) and Q,,/N = C1 x Co,
where(y is of extra-special type of order!t* andC; is elementary abelian of
orderg?"—4. Note that/ normalizesN, whenceN < I. Clearly, N < K. Next,
C2 is also J-stable, and direct computation shows that the oflstable linear
character ofCs is the trivial one. ButC; centralizesC; and¢|c, is irreducible,
henceCy < K.

(3) We have shown that is actually an irreducible representation®f - J.
The same holds fog, anda|c, = Blc, is irreducible. In this casef = o @ u,
whereu is a linear representation df (inflated to7). Observe that the normal
subgroupRr := [¢*"~2)] of J is the sum of two copies of the natural module for
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the subgroud := GL,,_2(¢?) of J. SinceT acts transitively on the nontrivial
elements of each copy, we hal® R] = R, whenceR < J'.

Now assume thay > 3. Since GL,,_2(¢%) = Slyu—_2(¢% and Ux(g) =
SUWUx(g), we see that’/J’ is a p’-group. Therefore, ifc € I is of orderp then
u(x) =1, whencex(x) = (x) and we are done in the cage> 3.

(4) From now on we assume that= 2. Observe thaRT centralizesCy
(modulo C3). Hence by Schur's LemmBT acts scalarly on. If m > 4, then
T’ = SL,_2(¢?) also acts transitively on the nontrivial elements of each copy of
its natural module iR, whence R, T'] = R, RT is perfect, and sRT < Ker(a).

If m =2 thenRT = 1. Assumen = 3. ThenT’ = 1. In this case, the subgroup
U := Ux(q) acts onR (of orderg?) as on its natural module. Hence the only
U-stable linear character @ is the trivial one. Thust < Ker(x) in this case as
well.

We have shown thaRT is contained in the kernel af and 8. Let M be
the subgroup ofl generated byN, C, R, and T’. Then M < Ker(x), and
0% (I/M) ~ C1U’ = 2114 SUy(2).

(5) Consider the standard subgroup

S* = Staly(es, ..., em, f3 -, fu) = SUs(2)

of S. For any subgrouX of §, let X* = X N §*. Then one can show thdt,
0y, andM* play respectively the réles df, Q,,, andM for $*, and, moreover,
02 (1/M) ~ 02 (I*/M*). Consequently, the lemma in the case- 2 follows
from Lemma 12.8. O

Proof of Theorem 2.7 (oddn).

Let V be as in the theorem and = 2m + 1 > 5. If all P,-orbits of
nontrivial linear characters af (Q,,) occurring onV are of length less than
lo:=(¢g""1—1)(¢" 2 —q)/(qg + 1) (g% — 1), then the statement follows directly
from Theorem 2.6. Hence we will assume that at least org,ebrbit of Z(Q,,)-
characters oV has length > I». If we identify Z(Q,,) and its linear characters
with skew-hermitian(m x m)-matrices overf 2, then each character from
this orbit corresponds to some matrix of rank= 2 by Lemma 12.5. I is an
irreducible character of,, such thatp|zp,, containse, theng(1) = ¢’ and
®lz(0,) = q’a by Lemma 12.6. This is true for eaeh hence dintV) > ¢/1.
Since

dim(V) <o, q,7) <¢*(@" - 1)(¢" %2+ 1) /(g + D(¢* - 1),

we havej =2 and/ = I, i.e., this orbit is exactly the (unique?,,-orbit of
lengthiy, cf. Lemma 12.5. Since

dim(V) — g% < (¢" - 4?) /(4> - 1),

all the remainingZ(Q,,)-characters oV are trivial. Observe tha,,/Z(Q)
is the natural module foP,,/ Q,, ~ GL,,(¢%). Hence anyP,,-orbit on nontrivial



338 R.M. Guralnick et al. / Journal of Algebra 257 (2002) 291-347

linear characters of,,/Z(Q,,) has length at leasy” 1 — 1)/(¢g% — 1). This in
turn implies thatQ,,, acts trivially onCy (Z(Q,,)). Let W be the complex module
of S affording the charactef. The same argument as above but appliedVto
shows that the),,,-moduleW yields the aboveP,,-orbit of lengthlz (of Z(Q,,)-
characters) and dii’) — ¢2I» times the trivial character. Thus we may write

whereV; and Wy afford the same&),,-character.

Let r be the Brauer character df. Letg € L,, ~ GL,,(¢%) be a transvection
(in L,). Theng is U, (¢?)-conjugate to an elemept € Z(Q,,) (one may choose
g’ to have the matrix

I, X O
(o I o>
0 0 1

in some basis of the natural module that we used in the proof of Lemma 12.9,
whereX € M,, (IE‘qz) is diagonal skew-hermitian of rank 2). Sinee= 5, we see
thatCy, ,2(8") - S = Un (¢%), whenceg’ andg areS-conjugate. From (16) it now
follows that

7(g) — ¥ (g) =1(¢) — 9 (¢") =dim(V) —dim(W) = (1) — 9(1). (17)

Clearly, P,, acts onV; and W1, with (Brauer) characters say andv;. By
Lemma 12.5pP,, acts transitively on the linear characterszfQ,,) occurring on
V1 and W1, with stabilizerl = Q,, : J, and

7 =[g*"2] (U2(q) x GLm-2(q?)).

Thus r; = P and 9y = g for some (Brauer) charactets and g of I of
degree;2. Also note thatr|g,, = Blo,, is irreducible.

By Lemma 12.9¢(x) = B(x) on every element € I of orderp. Hence, we
may apply Lemma 4.10 to conclude that

11(8) = 91(8). (18)

Let 1o, respectivelyy,, be theP,,-character o€y (Q,,), respectively oCw (Q,).
From (17) and (18) it follows that

12(g) — P2(g) = 12(1) — ¥2(D). (19)
Observe that ifn > 3 then
qn—l 2

2(1) = dim(V) — g%z <o(n,q,r) — ¢%la = S

_Kn(qu)
= dr(Lm)

since L, = GLm(qz), cf. [GT1]. The same is true fom = 2, with «,(q,r)
replaced by 1. From this it follows thdt, = SL.(¢?) acts trivially onCy (Q.),
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whencetz(g) = 12(1). But in this case (19) implies thatx(g) = 92(1). Since
L), is generated by transvections, we come to the conclusion fthagcts
trivially on Cw(Qm). Thus Cw(P;,) equalsCw(Q,) and so has dimension
@" - 4%/(@? - 1. If m >3, then clearly dinCw (P),)) > ¢* + ¢ + 1,
contrary to Lemma 12.7, sinakeis a constituent of.

Assume thain = 2. It is shown in [T2] thatw contains } (with multiplicity
g +1),9, and some irreducible characjeof degree;3(¢2 +1)(¢42— ¢+ 1) (and
some other characters). Since 4w (P),)) = g2, it follows from Lemma 12.7
that p|p: does not contain the trivial charactep,1 On the other hand, one
can show using [N2] thap is an irreducible constituent aflp, )5 and sop
contains % , again a contradiction. 0

m?

13. Minimal polynomial problem

As we mentioned in Section 3, the following theorem concerning the minimal
polynomial problem for unipotent elements of finite groups of Lie type was
proved by Zalesskii.

Theorem 13.1 [Z1,22]. Let G be a universal quasi-simple finite group of Lie
type of characteristicy > 0, and supposeg € G is of order p. Let ® be a
nontrivial absolutely irreducible representation 6fin characteristic # p such
thatde (g) < p. Thenp > 2 and one of the following holds.

(i) G =SUs(p) andg is a transvection.
(i) G =SL(p?.
(iii) G =Sp(p).
(iv) G =Sp,(p),n =1, gis atransvection.

Proof of Theorem 3.1. According to Theorem 13.1G, g) has to be as listed
in (i)—(v). Furthermore, the emergir@ in the case: = 0 have been classified in
[TZ2, Theorem 3.2]. Here we complete the case0.

(1) First we consider the case (i = SUs(p), g is a transvection and
1 <dy(g) < p. Observe thatQ = 0,(Cg(g)) is extra-special of ordep?®.
The conditionde (g) < p implies thatg does not have eigenvalue 1 @,
whence®|o contains no nontrivial linear character ¢f. Now we may apply
Proposition 11.3.

(2) The cases (ii) and (iii) follow easily by inspecting the Brauer characters of
SLa(p) andSLa(p?).

(3) Suppose we are in case (I(§:= Sp(p) andde (g) < p. Because of [TZ2,
Theorem 3.2], we may assume th@tis not liftable to zero characteristic. }f
is a transvection, then eithé has propertyR1) or 1 ¢ Spedg, ®), and both
cases are impossible by Lemma 10.1(i), (ii)glfs not a transvection, thepis
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a nontrivial product of two commuting transvections (cf. [Z2]), and so we may
apply Lemma 10.1(iii).

(4) Consider the main case (W: = Sp,,,(p) andg is a transvection. By [Z2,
Theorem 3],0(g) does not have eigenvalue 1. Hence the conditiglg) < p
implies thatde (g) = (p — 1)/2, i.e. ® satisfies conditior{R1). It remains to
apply Theorem 2.2. O

The following result concerning the minimal polynomial problem for semi-
simple elements of finite classical groups has been proved by DiMartino and Za-
lesskii.

Theorem 13.2[DZ]. Let G be a finite classical group in characteristicwith G’
being quasi-simple. Lat# p be a prime andg; € G be a noncentral element such
that g belongs to a proper parabolic subgroupGfando(g) is a power ofs. Let

V be any absolutely irreducible module 6fof dimension> 1 over a fieldk of
characteristicr # p. Then eitherdy (g) = o(g) or dy(g) = o(g) — 1. Moreover,

if dy(g) = o0(g) — 1, then for some € Z(G) one of the following holds.

() G=Sm,(p), p>2,n>20(g)=p+1 andrankg —z) = 2.
(i) G<Uyp),p>2,n>20()=p+1 andrankg —z) = 1.
(i) G<Un(g),p=2,n>2,0(8)=s=¢g+1 andrankg —z)=1.
(V) G <U,(8),n>2,0(g)=9 andrankig —z) = 1.

(V) G<Uy(2),n>4,0(g) =9, andrankg — z) = 3.

If » =0 (andG # Sy (3)), then it is shown in [TZ2, Theorem 5.2] th&t
is @ Weil module ofG. The rest of this section is to prove Theorem 3.2, which
produces a similar result in cross characteristic case.

Proof of Theorem 3.2 (the symplectic group case). Lét= Sp,,(g) # Sx(3)
and (V, g) satisfy the hypotheses of Theorem 3.2. Applying Theorem 13.2 and
replacingg by gz, we may assume thatis an element of order+ 1 in a standard
subgrouBla(g) of L} and letA = (g).

(1) First we show thatCy(Z1) = Cy(Q1). Assume the contraryU :=
[Q1,Cy(Z1)] #0. ThenU =} .o Uy is the direct sum ofQ;-eigenspaces,
andQ is the set of all nontrivial linear characters @f. As usual, the action of
L ~ Spy,_»(g) on O is similar to the action of.; onF2"~2\ {0}. Choosingg
to be contained i}, we see tha®) contains a regulad-orbit. It follows thatU
contains a regularA-orbit, contrary to the conditiody (g) < g.

(2) Here we consider the case# 2. Consider they-eigenspacé/(x) ® X
of Z1 on[Z1, V]. Then direct computation shows that Sged/ (x)) contains
all (¢ + 1)th roots of unity but-1. Therefore, ifg has more than one eigenvalue
on X, then Spet, M(x) ® X) contains all(g + 1)th roots of unity, contrary to
the conditiondy (g) < ¢. Thusg acts scalarly orX, which implies thatL} acts
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trivially on X (sincel) = Sp,,_»(q) and(n, q) # (2, 3)). By Lemma 6.2V has
property(R1), and soV is a Weil module by Theorem 2.2.

(3) Finally we consider the case= 2.

First assume that =2 if ¢ >3 andn =3 if ¢ = 3. If n = 2, then by
Corollary 5.3,¢ has a single Jordan block, on M(x). If n = 3, then by
Corollary 5.3,¢ has a Jordan block of size= 3 on at least one of the composition
factors of M(x), so g has a Jordan block of size at legsbn M(x). If g acts
nontrivially on X, theng has a block/; with # > 2 on X. In this caseg has
a block of sizeg + 1 on M(x) ® X due to Lemma 4.6, which contradicts the
conditiondy (g) < ¢. Henceg acts trivially onX, and so doed ;. Now we may
apply Lemma 6.2 and Theorem 2.2 to conclude thag a Weil module.

In the case where > 3 and(n, ¢) # (3, 3), the result we have just proved
shows that the restriction df to any standard subgroup of tySgu(q) if ¢ > 3
and of typeSp;(3) if ¢ = 3 involves only Weil and trivial modules. Hend&has
property(WV) and soV is a Weil module by Theorem 2.3.0

Remark 13.3. Let (G, V, g) be as in Theorem 3.2, and assume thaty) =
(2,3). ThenV is either a Weil module, or the (unique) unipotent representation
of degree 6 (this additional possibility fét was missing in [TZ2, Theorem 3.4]).
Indeed, ifr # 2 then we can verify the claim just by looking at Spgap) of
the elemenfg (of class 4, in the notation of [Atlas]) for any € IBr,(G). If

r =2, then part (1) of the above proof of Theorem 3.2 shows ¥gt, contains
no nontrivial linear characters @ = sz. This implies that, ifp is the Brauer
character oV andy = ¢ + ¢, theny (1) + 2y (z) — 3y (x) = 0, wherez € Z(Q1)

is an element of order 3 (of class1Df G), andx € Q1 \ Z(Q1) (of class D
of G). Checking the 2-Brauer characterg®for this property using [JLPW], we
see that/ is one of the listed modules.

Next we proceed to consider the case of unitary groups. Fix an eleéneehf-
of orderg + 1. By a pseudoreflectionn U,(¢) we mean an elemery with
matrix diagé, 1, ..., 1) in an orthonormal basis of the natural module &rg).
Replacingg by gz~1, we see that the elemengsmentioned in case (ii)—(iv)
of Theorem 13.2 are pseudoreflections. Edbe a primitive(¢ + 1)th root of
unity in C. Also, we letG = U,(¢) andk be an algebraically closed field of
characteristio: coprime tog, and keep the notatioR;, L, K as in Section 11.
We begin with the following observation.

Lemma 13.4. Let n > 3, and assume thaj + 1 is a prime power. LetV be
any kG-module such thatly (g) < ¢ for any pseudoreflectiog € G. Then
Cv(Q1) =Cy(Z1).

Proof. Consider a pseudoreflectighe L = U,,_2(q) and letA = (g’). Assume
thatU :=[Q1, Cy(Z1)] # 0. LetU, be a nonzero eigenspace @i on U, and
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let O be theL-orbit of «. We may identify© either with the set of nonzero
isotropic vectors of the natural modul®’ = IF;;Z for L, or with the set of

vectors of a fixed nonzero norm ifii’. ThenO has a regulan-orbit. From this
it follows thatU contains the regularA-module, contrary to the assumption that
dy(g') <q.ThusCy(Z1) =Cy(Q1). O

Proof of Theorem 3.2 (the unitary group case). Assume th@at= U,(¢) and
(V, g) satisfies the hypothesis of Theorem 3.2. Applying Theorem 13.2 and
replacingg by gz~1, we arrive at the following two cases.

(1) o(g) = ¢ + 1 is a prime power, ang; is a pseudoreflection. Then
Lemma 13.4 implies thaV satisfies the hypothesis of Corollary 12.4, whence
V is a Weil module.

(2) g =2,0(g) =9, andg belongs to a standard subgrolig(2).

First we consider the cage= 5. We may assume thate L < P;, L >~ U3(2).
Observe thatg) acts regularly on the nonzero vectors of the natural moEﬁne
of L and on the nontrivial linear characters@f as well. Sincely (g) < |g] =9,
it follows thatCy (Q1) = Cy (Z1). By Corollary 12.4)V is a Weil module.

The above argument shows that the restrictio db any standard subgroup
SUs(2) involves only Weil or trivial modules. Thu¥ has property()V). By
Theorem 2.5y is a Weil module. O

14. Quadratic modulesin characteristic 3

Let G = U,(g) and(V, g) be as in Theorem 3.2. =2 andr = o0(g) =3
then V is a quadratic modulein characteristic 3, i.eG is generated by the
set of all elementg € G for which [g, g, V] = 0. Quadratic pairsG, V) with
F*(G) being quasi-simple were studied by Thompson and Ho, cf. [Th,Ho2,Ho1]
(without using the classification of finite simple groups). The graGisimitting
a gquadratic module have been classified by Timmesfeld [Ti] under certain mild
conditions. Using the classification of finite simple groups, Meierfrankenfeld
(private communication) and Chermak [Ch] showed the following result.

Theorem 14.1 [Ch]. Let G be a finite group withF*(G) quasi-simples > 2 a
prime, and letV be a faithful irreducibleF;G-module. Suppose that there is an
elementary abelian-subgroupA such thatG = (A®) and[A, A, V] = 0. Then
one of the following holds.

(8) F*(G)/Z(F*(G)) is a group of Lie type in characteristic
(b) s =3,]A| =3, and either

() G=PU(D,n =5

(i) G=2A,,n>5n#6;o0r
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(i) Z(G) is a nontrivial 2-group andG/Z(G) is Sg(2), Qg(Z), Ga(4),
Coy, Sz,/0.

We are interested in classifyinthe modulesV for the groups listed in the
theorem. The case (a) was considered by Premet and Suprunenko in [PS]. The
case (b)(ii) was completed by Meierfrankenfeld in [Me], where he showedthat
is a basic spin module af.

In the case (b)(i), if £ h € A then|h| = 3. By [Ch, Lemma 5.8]4# lifts to
an elemenf of order 3 inU,(2). Multiplying g by a suitable central element
of U,(2), we may assume that fixes a 2-dimensional subspace (in the natural
module) pointwise, whengefixes a nonzero isotropic vector. Thgsatisfies the
hypothesis of Theorem 13.2 and thereférés a Weil module by Theorem 3.2.

Finally, we classify the quadratic modules emerging in the case (b)(iii) of
Theorem 14.1 by proving Theorem 3.3.

Proof of Theorem 3.3. One can check that the above groups act faithfully
on the root lattice of typeEg, respectively the Leech latticdos. If x is the
corresponding character, then one can find an elemesft order 3 such that
x(g) = —x(1)/2. It follows thatg? + g + 1 = 0 on the lattice, whence the lattice
reduced modulo 3 is a (faithful) quadratig-module.

From now on we assume thatis an algebraically closed field of character-
istic 3, G is one of the above groupg, is a faithful irreduciblekG-module, for
which there is an elemegte G of order 3 such thaftg, g, V] = 0. We keep the
notation for conjugate classes 6fas in [Atlas], and refer to irreducible Brauer
characters as given in [JLPW]. Observe tBais quasi-simple. In what follows,
“irreducible” means absolutely irreducible, and any modular representation is in
characteristic 3 (exceptin part (2)). Lete the Brauer character &f.

We will frequently use the following observation: X is any insoluble
subgroup ofG that contains a conjugate gf thenX has an irreducible quadratic
k-module of dimension- 1; moreover, any composition factor of tlemodule
V is quadratic.

(1) First we consider the cage= 2Sp(2).

First observe thag cannot be of classB in G. Otherwise a conjugate @f
is contained in a subgroup := 2G»(3) of G, but one can check thdt has no
irreducible quadrati€-modules of dimensios 1.

Next, note thatG contains a subgroufl := Sp(3). Since(G : H) = 28, we
may assume thag € H. Since elements of classd3and 3B of H belong to
class B in G, g has to be of class@or 3D in H. In turn, H has a subgroup
K ~ SL»(9), which meets the classe€ &and 3D of H. Thus we may assume that
gek.

Since H and K both contain the central involution @, any constituent of
o|u, respectively ofp|k, is faithful. Lety be a constituent op|y. It is easy
to show thatk has only two faithful irreducible quadraticmodules, both of
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dimension 2. Now ify (1) # 4, theny (1) = 16 or 40, in which caseg |k

has constituents of dimension 6, a contradiction. Hefade the unique faithful
irreducible Brauer character of degree 4 Bt In particular, ifx € H is of

order 5, theny (h) = —yr(1)/4. This is true for any constituent ¢f ;, therefore

¢(h) = —p(1)/4. G has only one irreducible Brauer character satisfying the last
equality, namely the one of degree 8, and this one can be obtained by reducing
the root lattice of typetg modulo 3.

(2) Here we consider the caée= 2!2;{(2).

It is more convenient to work with the full covering gro@:: 22. G of
G := 2§ (2). Let p be the Brauer character of the natural mod#lle= F§ of G.
ThenG has 5 classes of elements of order 3, aridkes value 5-4, —4, —1, 2,
on these five classes, respectively, and the triality automorphisgnmérmutes
the first three classes. Hence, without loss of generality, we may assume that
0(g) > —1, whereg is the image ofg in G. This implies that the fixed point
subspace of on W has dimension: 2, whenceg fixes a nonisotropic vector of
W and sog belongsto a subgroup~ Sp;(2) of G. Let A be the complete inverse
image of A in G and letB = A, SinceSpy(2) has no nontrivial quadratic
modules, cf. [Ch]B = 2Sp;(2). Restrictingy to B and using the result of part (1),
we see thap(x) = —¢(1)/4 for some element e G of order 5. This property
excludes all but the 3-Brauer character of degree 8 .of

(3) Next we consider the cage=2J5.

G has a subgrouff = SU3(3) of index 200, hence we may assume that H .
Observe thag belongs to class8 of H, for otherwise a conjugate gfwould be
contained in a Frobenius subgroup of order 2Hotontrary to [Ch, Lemma 3.1].
Thusg is a root element oH. Let ¢ be any constituent op|y. Then we can
lift ¢ to a representatiow of H := Slg(k), and¥ (k) is quadratic for any root
element: € H. Let the highest weight o beaw1 + bwy, Wherew1, wy are the
fundamental weights dff and 0< a, b < 2. If a = 2 for instance, then by Smith’s
Theorem the restriction aF to the first fundamental subgro&b, (k) has a direct
summand of dimension 3, which is the basic Steinberg moduBtgk) and on
which root elements o0ELy (k) act freely; a contradiction. ThusQa,b < 1,
ie.y (1) =1, 3, 3,or 7. It follows thai) (1) — 79 (x) — 8% (y) + 144(z) = O
wherex, respectivelyy, z, is an element of class( respectively A, 8A, of
H andy = ¢ + v. One can show that, respectivelyy, z, belongs to classA4,
respectively A, 84, in J>. This implies that)(1) — 7¢(x) — 8¢ (y) + 14p(z) =0
wheregp = ¢ + @. The only faithful irreducible 3-Brauer characters®fvith this
property are the 2 characters of degree 6, and the one of degree 14. The first two
occur in the reduction modulo 3 of the Leech lattice. The restriction of the last
one to H contains constituents of degree 6 which are not quadratic as we have
already shown, so we are done.

(4) Here we consider the caée= 2G2(4).

G has a subgroug = 2J> of index 416, hence we may assume tpat J.

Let ¢ be any constituent gf| ;. The result of part (3) shows thét(1) = 6, and
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Q) = Q(V/5). Let y* be the conjugate ofr under the Galois automorphism
of Q(+/5), and letyr = y + y*. Then 2/ (1) — 7y (x) + 5y (y) = 0, wherex,
respectivelyy, is an element of class& respectively A, of J. It follows that
20(1) — 7¢(x) + 5¢(y) = 0, whereg = ¢ + ¢*. The only faithful irreducible
3-Brauer characters a@& with this property is the (unique) character of degree
12, and this one occurs in the reduction modulo 3 of the Leech lattice.

(5) Here we consider the caée= 2Sz

According to [Ch],Cs(g) has a composition factor isomorphic RS (3).
Henceg is of class 3t in G and so a conjugate @f is contained in a subgroup
M =~ 2G2(4) of G. We will assume thag € M. Lety be any constituent af| ;.

The result of part (4) shows thgt(1) = 12, and (1) — 7y (x) + 5¢ (y) =
where x, respectivelyy, is an element of class4 respectively A, of M. It
follows that 2p(1) — 7¢(x) 4+ 5¢(y) = 0. The only faithful irreducible 3-Brauer
characters o& with this property is the (unique) character of degree 12, and this
one occurs in the reduction modulo 3 of the Leech lattice.

(6) Finally, letG = 2Co;s.

Observe thatG has a subgroug = 6- Sz - 2. The result of part (5) implies
thate|s involves only the two irreducible 3-Brauer charactersaff degree 12.
Based on partial information available at present about 3-Brauer charact@rs of
Hiss and Muiller (private communication) have been able to show that there is
exactly onep satisfying this condition; namely, the one obtained by reducing the
Leech lattice modulo 3. O

Acknowledgments

Part of this paper was written while the authors were participating in the special
program on Galois groups and fundamental groups at the Mathematical Sciences
Research Institute (Berkeley). Itis a pleasure to thank the institute for its generous
hospitality and support.

The authors are grateful to M. Geck, G. Hiss, G. Malle, and J. Miller for
helpful discussions. They are also thankful to the referee for helpful comments on
the paper.

The first author and the fourth author acknowledge the support of the NSF, and
the second author acknowledges the support of the NSA. The fourth author was
also supported in part by a research award from the College of Liberal Arts and
Sciences, University of Florida.

References

[Atlas] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, An ATLAS of Finite
Groups, Clarendon Press, Oxford, 1985.



346

[BM]
[BrK]
[Bu]
[Ch]
[DM]

[DZ]

[DT]

[F]
[FS]

[FLZ]
[Geck]
[GH]

[Ge]
[Go]

[Gr]
[Gu]

R.M. Guralnick et al. / Journal of Algebra 257 (2002) 291-347

M. Broué, J. Michel, Blocs et séries de Lusztig dans un groupe réductif fini, J. reine angew.
Math. 395 (1989) 56-67.

J. Brundan, A.S. Kleshchev, Lower bounds for the degrees of irreducible Brauer characters
of finite general linear groups, J. Algebra 223 (2000) 615-629.

R. Burkhardt, Die Zerlegungsmatrizen der GrupSi(2, p/), J. Algebra 40 (1976) 75-96.

A. Chermak, Quadratic groups in odd characteristic, to appear.

F. Digne, J. Michel, Representations of Finite Groups of Lie Type, in: London Math. Soc.
Stud. Texts, Vol. 21, Cambridge University Press, 1991.

L. DiMartino, A.E. Zalesskii, Minimal polynomials and lower bounds for eigenvalue multi-
plicities of prime-power order elements in representations of classical groups, J. Algebra 243
(2001) 228-263.

N. Dummigan, P.H. Tiep, Lower bounds for the minima of certain symplectic and unitary
group lattices, Amer. J. Math. 121 (1999) 899-918.

W. Feit, The Representation Theory of Finite Groups, North-Holland, Amsterdam, 1982.

P. Fong, B. Srinivasan, The blocks of finite general linear and unitary groups, Invent. Math. 69
(1982) 109-153.

P. Fleischmann, W. Lempken, A.E. Zalesskii, Linear groups ovetZ5Fgenerated by a
conjugacy class of a fixed point free element of order 3, J. Algebra 244 (2001) 631-663.

M. Geck, Irreducible Brauer characters of the 3-dimensional special unitary groups in non-
describing characteristic, Comm. Algebra 18 (1990) 563-584.

M. Geck, G. Hiss, Basic sets of Brauer characters of finite groups of Lie type, J. reine angew.
Math. 418 (1991) 173-188.

P. Gérardin, Weil representations associated to finite fields, J. Algebra 46 (1977) 54-101.

R. Gow, Even unimodular lattices associated with the Weil representations of the finite
symplectic group, J. Algebra 122 (1989) 510-519.

B.H. Gross, Group representations and lattices, J. Amer. Math. Soc. 3 (1990) 929-960.

R. Guralnick, Small representations are completely reducible, J. Algebra 220 (1999) 531-
541.

[GPPS] R.M. Guralnick, T. Penttila, C. Praeger, J. Saxl, Linear groups with orders having certain

[GT1]
[GT2]
[Hiss]
[HM]

[Ho1]
[Ho2]

[HF]
[Hw]

1s]

large prime divisors, Proc. London Math. Soc. 78 (1999) 167-214.

R.M. Guralnick, P.H. Tiep, Low-dimensional representations of special linear groups in cross
characteristic, Proc. London Math. Soc. 78 (1999) 116-138.

R.M. Guralnick, P.H. Tiep, Cross characteristic representations of even characteristic
symplectic groups, submitted.

G. Hiss, Regular and semisimple blocks of finite reductive groups, J. London Math. Soc. 41
(1990) 63-68.

G. Hiss, G. Malle, Low dimensional representations of special unitary groups, J. Algebra 236
(2001) 745-767.

C.Y. Ho, On the quadratic pairs, J. Algebra 43 (1976) 338—358.

C.Y. Ho, Chevalley groups of odd characteristic as quadratic pairs, J. Algebra 41 (1979) 202—
211.

C. Hoffman, Cross characteristic projective representations for some classical groups,
J. Algebra 229 (2000) 666—677.

R. Howe, On the characters of Weil's representations, Trans. Amer. Math. Soc. 177 (1973)
287-298.

I.M. Isaacs, Characters of solvable and symplectic groups, Amer. J. Math. 95 (1973) 594—
635.

[JLPW] C. Jansen, K. Lux, R.A. Parker, R.A. Wilson, An ATLAS of Brauer Characters, Oxford

[LS]

University Press, Oxford, 1995.
V. Landazuri, G. Seitz, On the minimal degrees of projective representations of the finite
Chevalley groups, J. Algebra 32 (1974) 418-443.



[LST]
[Li]
[Lu]

MT]

[Me]
(N1]
IN2]
[PS]
[SS]

[S]
[s2]

[ST]
(Th]

[T1]
[T2]
[Tz1]
[TZ2]
[Ti]
[Wa]
[We]
[Wh1]
[Wh2]
[Wh3]
[21]
[22]

(23]

(23]

R.M. Guralnick et al. / Journal of Algebra 257 (2002) 291-347 347

J.M. Lataille, P. Sin, P.H. Tiep, The modulo 2 structure of rank 3 permutation modules for
odd characteristic symplectic groups, J. Algebra, in press.

M.W. Liebeck, Permutation modules for rank 3 symplectic and orthogonal groups, J. Alge-
bra 92 (1985) 9-15.

F. Lubeck, Smallest degrees of complex characters of exceptional groups of Lie type, Comm.
Algebra 29 (2001) 2147-2169.

K. Magaard, P.H. Tiep, Irreducible tensor products of representations of quasi-simple finite
groups of Lie type, in: M.J. Collins, B.J. Parshall, L.L. Scott (Eds.), Modular Representation
Theory of Finite Groups, de Gruyter, Berlin, 2001, pp. 239-262.

U. Meierfrankenfeld, A characterization of the spin module foA2, Arch. Math. 57 (1991)
238-246.

S. Nozawa, On the characters of the finite general unitary gLO(upqz), J. Fac. Sci. Univ.
Tokyo Sect. |IA 19 (1972) 257-295.

S. Nozawa, Characters of the finite general unitary grop, ¢2), J. Fac. Sci. Univ. Tokyo
Sect. IA 23 (1976) 23-74.

A.A. Premet, |.D. Suprunenko, Quadratic modules for Chevalley groups over fields of odd
characteristics, Math. Nachr. 110 (1983) 65—-96.

J. Saxl, G. Seitz, Subgroups of algebraic groups containing regular unipotent elements,
J. London Math. Soc. 55 (1997) 370-386.

G. Seitz, Some representations of classical groups, J. London Math. Soc. 10 (1975) 115-120.
G. Seitz, A.E. Zalesskii, On the minimal degrees of projective representations of the finite
Chevalley groups, Il, J. Algebra 158 (1993) 233-243.

P. Sin, Pham Huu Tiep, Rank 3 permutation modules of finite classical groups, in preparation.
J.G. Thompson, Quadratic pairs, in: Actes du Congres International des Mathématiciens,
Nice, 1970, Tome 1, Gauthier-Villars, Paris, 1971, pp. 375-376.

P.H. Tiep, Weil representations as globally irreducible representations, Math. Nachr. 184
(1997) 313-327.

P.H. Tiep, Dual pairs and low-dimensional representations of finite classical groups, in
preparation.

P.H. Tiep, A.E. Zalesskii, Minimal characters of the finite classical groups, Comm.
Algebra 24 (1996) 2093-2167.

P.H. Tiep, A.E. Zalesskii, Some characterizations of the Weil representations of the
symplectic and unitary groups, J. Algebra 192 (1997) 130-165.

F.G. Timmesfeld, Abstract root subgroups and quadratic action, Adv. Math. 142 (1999) 1-
150.

H.N. Ward, Representations of symplectic groups, J. Algebra 20 (1972) 182—-195.

A. Weil, Sur certaines groupes d’opérateurs unitaires, Acta Math. 111 (1964) 143-211.

D. White, The 2-decomposition numbers3y4, ¢), ¢ odd, J. Algebra 131 (1990) 703-725.

D. White, Decomposition nhumbers 6p (4, ¢) for primes dividingg + 1, J. Algebra 132
(1990) 488-500.

D. White, Brauer trees ofp(4, ¢), Comm. Algebra 20 (1992) 645-653.

A.E. Zalesskii, Spectra of elements of orgein complex representations of finite Chevalley
groups of characteristip, Vests Akad. Navuk Belorus. SSR, Senz~Mat. Navuk 6 (1986)
20-25, in Russian.

A.E. Zalesskii, Eigenvalues of matrices of complex representations of finite groups of Lie
type, in: Lecture Notes in Math., Vol. 1352, Springer, Berlin, 1988, pp. 206—-218.

A.E. Zalesskii, Minimal polynomials and eigenvalues pfelements in representations of
quasi-simple groups with a cyclic Syloprsubgroup, J. London Math. Soc. 59 (1999) 845—
866.

A.E. Zalesskii, |.D. Suprunenko, Permutation representations and a fragment of the
decomposition matrix of symplectic and special linear groups over a finite field, Siberian
Math. J. 31 (1990) 744-755.



