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Abstract

The dependence on model-fitting to evaluate particle trajectories makes it difficult for
single particle tracking (SPT) to resolve the heterogeneous molecular motions typical of
cells. We present here a global spatiotemporal sampler for SPT solutions using a
Metropolis-Hastings algorithm. The sampler does not find just the most likely solution
but also assesses its likelihood and presents alternative solutions. This enables the
estimation of the tracking error. Furthermore the algorithm samples the parameters
that govern the tracking process and therefore does not require any tweaking by the
user. We demonstrate the algorithm on synthetic and single molecule data sets. Metrics
for the comparison of SPT are generalised to be applied to a SPT sampler. We
illustrate using the example of the diffusion coefficient how the distribution of the
tracking solutions can be propagated into a distribution of derived quantities. We also
discuss the major challenges that are posed by the realisation of a SPT sampler.

1 Introduction 1

Single molecule imaging is increasingly facilitating high-resolution investigations of 2

molecular motion at the plasma membrane of cells (e.g. [1–4]). Hidden in these data 3

there is crucial information on local environments, transport mechanisms, and the 4

dynamic interactions that regulate protein networks and cell homeostasis. The analysis 5

of particle motion is currently based on fitting trajectories with competing 6

mathematical models, most commonly based on particle mean square displacements 7

(MSD), whose deviations from the linearity characteristic of pure diffusion are 8

interpreted in terms of standard types of particle motion like confined or directed 9

(e.g. [5–9]), but also on hidden Markov calculations [10]. However, the heterogeneity 10

often showed by the trajectories is not easily resolved by model fitting. For the latter to 11

be effective the particles must either maintain the same type motion for multiple 12

consecutive frames (typically >50 frames [8]) and/or display sufficiently long 13

tracks, [5, 10]. This limits SPT to stationary-like conditions or to labelling with 14

quantum dots or fluorescent beads that do not photobleach. 15
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To evaluate particle motion in general one must measure the instantaneous values of 16

motion parameters as they fluctuate along the particle trajectory and ultimately 17

requires single frame sensitivity. The most accurate way to achieve this is from the 18

globally optimal spatiotemporal solution to SPT. In this idealised approach each 19

possible choice of particle reconnections and associated motion parameter values is 20

considered and their consequences compared along the entire length of the tracks, 21

therefore automatically exploiting all the information in the data to output the most 22

likely empirical estimate of reconnections and parameters, and places confidence limits 23

on them. Achieving the globally optimal solution has been the goal of SPT for decades 24

but it has proven to be computationally prohibitive because of the colossal size of the 25

configuration space of particle reconnection possibilities at high particle density, low 26

signal-to-noise ratio (SNR) and fast particle movement typical of single molecule images 27

in cells [11]. A wide range of methods has been developed to address this problem [12]. 28

Näıvely one may deduce that it roughly scales as the factorial of the number of particles 29

(thousands), motion parameters (dozens), and frames (hundreds). To make the problem 30

tractable previous algorithms reduced the size of the configuration space both by 31

imposing a priori narrow bounds on the parameters, from modelling or previous 32

knowledge, and by approaching the globally optimal solution by taking many locally 33

optimal solutions (e.g. [13–16]). This typically produces ‘tracklets’ separated by gaps, 34

after which longer tracks may be recovered, for example, via minimal path techniques 35

(e.g. [17, 18]), or maximum likelihood methods (e.g. [3, 4, 19,20]). Although these 36

algorithms addressed many of the challenges from high particle density and low 37

signal-to-noise, it is difficult to ascertain how sensitive the results are to their choice of 38

parameters [11], and the loss of temporal globality hinders access to the very statistical 39

information one requires to evaluate dynamic motion. 40

Here we present the Biggles tracker, an automatic Bayesian Inference-based, 41

Gibbs-sampler, GLobal EStimator of particle tracks and parameters that converges 42

towards the globally optimal spatiotemporal solution in a computationally time 43

practical for real-world tracking. Biggles allows to estimate the uncertainty in the 44

tracking solution and finds probable alternative solutions. It therefore opens the 45

possibility to propagate the tracking error to the estimation of derived biophysical 46

quantities such as diffusion coefficients. 47

2 Material and Methods 48

Biggles uses some data, Y , which are the spatial and temporal (x, y, t) coordinates of 49

the single particle spots detected in the images (referred to as observations), a 50

hypothesis for the assignment of these observations to tracks, the track partition ω, and 51

some global parametrised model, θ, for the properties of the system. (Full details of the 52

algorithm are in Supporting information S1 Appendix). We write N for the number of 53

observations, T for the number of time points, which in many applications is the 54

number of images taken, and Ω for the set of all valid track partitions. We can fold into 55

the algorithm data for any imaging detector and allow for a set of spurious 56

measurements in each frame. We use a flexible yet simple model for particle motion: a 57

random-walk [21]. Observations that are deemed to be spurious are collectively referred 58

to as clutter. The clutter is treated as part of the track partition in the sense that in 59

any partition each observation is assigned either to exactly one track or to the clutter. 60

A track is defined in terms of the observations assigned to it, which must number at 61

least two, and in terms of its first and last time points, which need not be associated 62

with observations. At any time point a track may have at most one observation. A pair 63

of consecutive observations within a track, which need not occur at consecutive time 64

points, is referred to as a link. Therefore each track has at least one link. 65
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Biggles finds the probability of any given set of tracks and motion parameters given 66

the data. In a Bayesian framework [22], this allows one to explore via sampling the joint 67

track and parameters empirical (or posterior) probability function: 68

P (ω, θ|Y ), (1)

with the aim of identifying the most probable set of tracks and parameters, together 69

with the uncertainties on them. We note that, given that tracks are defined by 70

observation and first and last time points, two different sets of tracks may correspond to 71

the same partitioning of the observations. Although Biggles formally samples tracks, we 72

will usually ignore this distinction in the subsequent discussion and denote them simply 73

by the (track) partition ω. To avoid having to sample from the posterior simultaneously 74

Biggles uses a Gibbs sampler [23], which allows one to draw samples ωi and θi 75

alternately from two conditional distributions: 76

ωi ∼ P (ω|θi−1, Y ), (2)

θi ∼ P (θ|ωi, Y ). (3)

An overview is shown in Fig 1A. We note that the partition sampler (steps À-Â in 77

Fig 1A) draws samples from a probability mass function (PMF), while the parameter 78

sampler (steps Ã & Ä in Fig 1A) draws samples from a probability density function. 79

The parameter space θ has 7 dimensions, while Ω has no intrinsic dimensionality, but is 80

of finite size. While the parameters θ can be sampled directly because their posterior

Fig 1. Algorithm overview. A) Biggles runs two sampling chains with different initial
partitions ω0. Each chain is a Gibbs sampler alternately sampling partitions, steps À-Â,
and parameters, steps Ã-Ä . B) Schematic of sampling and evaluating the proposal
distribution Q(ω∗|ωi−1), step À in panel A. The sampling is realised by descending a
sampling tree; the root of the tree is the current partition ωi−1 and the leaves are the
partitions ω∗ that can be reached, i.e. where Q(ω∗|ωi−1) > 0. Each branch has a
certain probability given the parent branch, so that the probability of a leaf is the
product of the probabilities of the branches traversed during the descent. A descent
down the reduce move branch is sketched. Other move types are executed in a similar
manner, but with different branching operations. C) Cartoon of the move type pairs.
Each move type has a positive probability to undo any modification of its partner, i.e.
Q(ω∗|ωi−1) > 0 if and only if Q(ωi−1|ω∗) > 0. D) Cartoon of the observation likelihood
calculation in step Á in panel A, using the update move example of panel C. The
Kalman filter estimates the particle states (black dots) of the track model; the red line
illustrates a possible course. The likelihood of the observations assigned to the track
(yellow) is calculated using the filter’s observation model. The change in the track
assignment by the update move leads to different state estimates and hence to different
observation likelihoods. For full details see Supplementary Notes.

81

distribution is known and separable, sampling from the track partition is non-trivial, as 82

only a small number of analytical PMFs have known direct sampling algorithms. We 83

therefore use the Metropolis-Hastings algorithm [24], which can draw samples from 84

almost any PMF, and which, on convergence, yields candidate-sets of tracks whose 85

distribution matches the track partition posterior P (ω|θ, Y ). 86

The acceptance probability of the Metropolis-Hastings sampler (Fig.1A step Â) is 87

given by 88

min

(
P (ω∗|θi−1, Y )

P (ωi−1|θi−1, Y )

Q(ωi−1|ω∗)
Q(ω∗|ωi−1)

, 1

)
, (4)
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where the proposed new track partition ω∗ is sampled from the proposal mass function 89

Q(ω∗|ω), Fig 1A step À. The sampling uses a step-by-step approach which can be 90

described as descending a tree, Fig 1B. The root of the tree is the last partition sample 91

ωi−1. The nine move types are the main branches of which one is randomly chosen. 92

Cartoons of the move types are shown in Fig 1C. The further steps depend on the 93

sampled move type. For example, in the execution of a “reduce” move, the track to be 94

shortened is chosen, then the end of the track is sampled (front or back) and finally the 95

time point within the track where the cut happens is sampled, Fig 1B. Each step has a 96

probability that depends on the previous step. The probability to sample the proposal 97

partition is the product of the probability of each step. In the example Q(ω∗|ωi−1) = 98

1/9×1/(number of tracks)×1/2×1/(number of time points in the selected track where 99

the cut is allowed). The sampling structure ensures that 100∑
ω∈Ω

Q(ω|ω′) = 1 for any ω′ ∈ Ω, (5)

which is a necessary condition for Q being a PMF. As already mentioned above, for a 101

valid track we require that it contains observations at a minimum of two time points 102

(moves that create tracks with fewer than two observations are not allowed), and we 103

note that two tracks having the same observations and therefore the same links may not 104

be equal, since a track may have unobserved states before the first or after the last 105

observation. To improve the performance of the algorithm, we also limit the maximum 106

speed of the particle (to a value that is larger than any value that can be physiologically 107

expected). 108

It is possible that the execution of a move does not lead to a valid track partition. 109

For instance, at the end of the birth move, the created track may contain no 110

observations purely by chance. In such a case ω∗ is set to ωi−1. Since in such a case 111

accepting and rejecting leads to the same result, ωi = ωi−1, we regard the proposal as 112

identity as opposed to accepted or rejected. It means that Q(ω|ω) > 0 for most ω. We 113

tried to minimise the identity proposals in the move design, e.g. we do not attempt a 114

death move if the partition contains no tracks or we do not attempt to split a track that 115

has only three observations and so on. The occurrence of the identity proposal is not a 116

theoretical novelty. Q(ω|ω) > 0 also occurs if Q is a Gaussian distribution. However 117

since the Gaussian distribution is continuous rather than discrete, it is very unlikely 118

that a proposal sampled from it is equal to the last sample and special considerations of 119

such a case are unnecessary. The distinction only takes effect in the calculation of the 120

acceptance rate, where identity proposals are treated as rejected proposals even though 121

their acceptance probability is equal to one. 122

To evaluate the target distribution, P (ω|θi−1, Y ), of the Metropolis-Hastings 123

sampler, Fig. 1A step Á, we expand it into three different components using Bayes’ 124

theorem, 125

P (ω|θ, Y ) ∝ P (Y |ω, θ)P (ω|θ)P (θ), (6)

where P (θ) are the parameter priors and P (ω|θ) is the probability of the track partition, 126

which takes the assignment of observations to tracks into account but not their physical 127

properties. P (ω|θ) is assumed to depend separably on four parameters in θ, according 128

to closed-form distributions. The likelihood P (Y |ω, θ) is factorised into the likelihood of 129

the clutter observations P (Y 0|k0, θ) and the product of the likelihoods of the 130

observations assigned to tracks,
∏K

i=1 P (Y i|ki, θ), where K is the number of tracks and 131

Y i are the observations assigned to track ki. The likelihood P (Y i|ki, θ) is evaluated 132

using a state space approach [25]. The (unobserved) particle state encompasses position 133

and velocity, X = (x, ẋ, y, ẏ)T . The particle motion is a modelled as random walk in the 134

positions plus a velocity term, where the velocity follows its own random walk. This 135
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Fig 2. Principle of the observation likelihood calculation. The partition sampler has
assigned the observations (yellow) to a track. From those observations, the Kalman
filter estimates the most likely states (black) and the state estimation errors (not shown)
given the model of particle motion. Under this fitted model, each observation assigned
to the tracks has a specific likelihood, which is evaluated from a normal distribution
that is centred in the projection of the state into the observation space and whose
standard deviation is a combination of the observation error and the state estimation
error. When the partition sampler reassigns an observation at time t2 of the track by
executing an update move, the fresh application of the Kalman filter results in new
estimates for all states. That leads in turn to different observation likelihoods even for
those observations whose assignment has not changed.

allows for both directed motion and undirected motion, but also more complicated types 136

of motion. We use the Kalman filter [26] to estimate the states of the particles, both at 137

time points where the track was observed and at time points without observations, e.g. 138

due to fluorophore blinking. To base our estimates on all observations assigned to the 139

track, we apply the Rauch-Tung-Striebel backwards smoothing filter [27]. The 140

observation likelihood is calculated by three principle steps: 141

1. Assigning the observations to tracks (done by the partition sampler), 142

2. Estimating the track’s states from the observations of the track using the Kalman 143

filter (i.e. inferring the model), 144

3. Calculating the likelihood of the observations given the model (i.e. states and the 145

error estimates). 146

An example is depicted in Fig. 2. The figure highlights the change in the observation 147

likelihood caused by an update move. The sample from the proposal distribution 148

contains the track given by four observations in Fig. 2A. A fifth observation at time 149

point t2 is considered clutter. The Kalman filter estimates the particle states from the 150

observations of the track, which are marked by black dots in the state space. The states 151

and their error estimates in turn imply how likely it is to find the observations at their 152

actual positions. The likelihood of the individual observation Y i
j is given by a normal 153

distribution N (Y i
j ;BX̂i

j , Ŝ
i
j), where BX̂i

j is the projection of the state Xi
j that is 154

associated with Y i
j into the observation space and Ŝi

j is the innovation error, which is 155

composed of the observation error R and the state estimation error. The full equations 156

are given in the supplied appendix 5 sections 3.2 and 3.3. In Fig. 2B, the partition 157

sampler has swapped the two observations at time t2; the observation that previously 158

was clutter is now part of the track and the other observation is now considered clutter. 159

The Kalman filter provides new state estimates of all observations of the track, which 160

leads in turn to new observation likelihood estimates. For example the likelihood of the 161

observation at t1 is reduced after the update move, while the likelihood of the 162

observation at t3 is increased. 163

The 2× 2 covariance matrix of the observation noise R that contributes to the 164

innovation covariance is sampled as part of the parameter sampling stage of the Gibbs 165

sampler, Fig. 1A step Ä. The details about the calculation of P (ω|θi−1, Y ) are 166

described in the supplementary notes. 167

In addition to the three parameters that determine R, the further four parameters in 168

θ control the track partitioning. The birth rate λb is the average number of tracks that 169

begin at time point t in a normalised area A. The clutter rate λc is the average number 170

of spurious observations that are found at time t in a normalised area A. We use the 171

symbol “E” for the unit of the rates and set 1E equal to 1 event per frame and 172
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100pixels×100pixels. The observation probability po is the probability that a particle is 173

observed at time t and the survival probability ps is the probability that a track that is 174

present at time t− 1 is also present at time t. We note this implies the assumption that 175

the track length is exponentially distributed with mean 1/(1− ps). This is not a 176

limitation for imaging fluorophores, since it reflects the bleaching behaviour of 177

fluorescent molecules. Quantum dots, which are used in bioimaging as well, do have for 178

practical purposes an infinite life time. The posterior distribution P (θ|ωi, Y ) can be 179

sampled directly and is separable, Fig. 1A step Ã-Ä. In particular, the rates λb, λc and 180

the probabilities, po, ps are assumed to follow Gamma and Beta distributions, 181

respectively, where the parameters for the Gamma and Beta distributions are derived 182

from the current partition sample by counting the number of tracks, their lengths and 183

so on, Fig. 1A step Ã. The observation noise of the Kalman filter, R, is sampled from 184

an inverse Wishart distribution, where the parameters are derived from the track 185

observations and the track model. In summary we have 186

θ = (λb, λc, po, ps, R). (7)

The initial samples θ0 are initialised to some values. In principle we need only specify 187

loose “plausible” bounds of θ0. Our current implementation initialises θ0 to 188

uncontroversial typical values. The rates λb and λc have improper uninformative priors 189

on them being positive, ps and po have uniform priors over (0, 1) and R has an inverse 190

Wishart prior W(Φ, s), see also Supplementary Notes. Following the parameter 191

sampling, the cycle is complete and a new track partition is sampled from the proposal 192

distribution. 193

A Biggles chain is ergodic, which is shown in the supplementary information. The 194

initial part of the sampling before the sampling chain has reached the limiting 195

distribution (the target distribution) is called burn-in phase. In order to assess the 196

convergence to the limiting distribution of the Metropolis-Hastings sampler we run two 197

chains. The first chain starts with the partition without any links, i.e. where all 198

observations are assigned to the clutter. This is the minimum partition, ω0. For the 199

second chain, we use a randomised greedy algorithm to assign as many observations as 200

possible to tracks to create the initial partition. No further links can be added to such a 201

partition, which is therefore referred to as a maximum partition. Usually, Ω has many 202

maximum partitions. The sole purpose of this approach is to get two starting partitions 203

that are far away from each other. To assess the convergence of the two chains we 204

implemented two tests. The first test is based on the similarity of partitions. We 205

consider a track partition as a graph, where the observations are the nodes and the links 206

are the edges. We use the graph edit distance (GED) [28] as similarity measure, where 207

link insertion and link deletion are the graph edit operations. In other words, we define 208

distance between two track partitions as the number of links in which the two partitions 209

differ. For convergence we demand that the average cross-chain GED does not exceed 210

the sum of the averages of the two inner chain GEDs. Second, the 211

Gelman-Rubin [29,30] statistics is implemented for the parameters λb, λc, po and ps. 212

Fig.3 shows example data for the convergence. 213

Fig 3. Convergence. The panels show: the posterior density of the two chains; the
Gelman-Rubin statistics for the four tracking control parameters and the GED criteria,
(average-cross-chain-GED)/(sum-of-average-inner-chain-GEDs).

By design the Metropolis-Hastings partition sampler will yield correlated samples. 214

That reduces the effective sample size [30] and increases the total number of samples 215

required. On the other hand the number of samples that can be recorded is constrained 216

by the computational resources. Specifically, partition samples can be dozens or 217
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hundreds kB large, depending on the number of observations, N . Therefore we record 1 218

in every n samples, thereby thinning the chain, where n linearly depends on the 219

acceptance rate at the end of the burn-in phase. In the present implementation every 1 220

in 8 samples would be recorded if the acceptance rate were 25%. 221

The burn-in phase is longer than the target distribution sampling phase. Experience 222

shows that the ratio of the number of target distribution samples to the number of 223

burn-in samples has a median of about 3.5% and a mean of 5.5%. The maximal 224

observed value is 25%. 225

At the point of convergence, the Gibbs sampler starts to sample candidate-sets of 226

tracks and parameters whose distribution matches that of the joint posterior 227

distribution. We may therefore interpret results such as the sample mode and sample 228

variance as maximum empirical estimates and experimental errors respectively. The 229

ability of Biggles to directly return a representative sample of tracking results and 230

parameters, and thus to place confidence limits on these, is powerful and, as far as we 231

are aware, it is novel in this field. 232

To demonstrate Biggles we use synthetic and single molecule microscopy (SMM) 233

data sets. For our simulations, we first generate tracks with a given birth rate λ∗b and 234

survival probability p∗s , and the states of the particles at each time point of the tracks is 235

determined by the state dynamics. The tracks of states are referred to as ground truth. 236

Next, track observations are created with probability p∗o from the states using a 237

Gaussian observation model, N (0, R∗), and the clutter observations are created, 238

governed by λ∗c . Finally, the data is cropped to the field of view. This final result is the 239

realisation of the ground truth (GTR). That means we have three stages of ground 240

truth; the parameters, the tracks states simulated from these parameters and the 241

observations created from the states. We enable a range of behaviours in the simulation; 242

random walk, directed motion, a combination of both and track splitting. 243

If not mentioned otherwise, the unit of x and y is pixel, where one pixel is 244

160nm×160nm for the SMM data sets that we present. The unit of time is the frame 245

index. The time lag between two frames is 0.05 seconds for the SMM data sets. 246

3 Results 247

We created synthetic data sets to test the correctness of the Biggles sampling. We 248

simulated two series of 10 data sets each that differ in the birth rate, with λ∗b = 0.1E 249

and λ∗b = 1.6E respectively. To get a similar observation count for both series we 250

reduced the field of view in the series with the higher birth rate. For each birth rate, 251

Fig 4 shows the posterior distribution of λb, λc, po and ps for two of these data sets in 252

comparison with parameter samples given the GTR, P (θ|GTR, Y ). The ground truth 253

value for the parameter is indicated by a vertical line. First we see that the 254

distributions derived from the GTR are are well distributed around the ground truth 255

parameter values, albeit with some bias in the survival probability. Moreover, we 256

observe very good agreement between the Biggles posterior distributions and those 257

derived from the GTR (see also the Q-Q plot in the support material S1 Fig). There are 258

some offsets in the birth rate and the observation probability, and also in the survival 259

probability in the higher crowding case. In other words Biggles has a slight bias to 260

fewer, longer tracks with less observations (i.e. long tracks with many dark states), 261

while the total number of observations in tracks remains equal to that for the GTR. For 262

example, if two short tracks with a temporal gap are merged, then survival rate goes up, 263

the observation rate and the birth rate go down, while the number of observations in 264

tracks remains unaffected. 265

We calculate the frequency with which any two observations have been linked and 266

July 10, 2019 7/17



Fig 4. Recovery of the simulation parameters. The histograms of the parameter
samples for the GTR (black) and the parameter samples created by Biggles (red). A
pair of data sets is shown with low track density (left) and a pair with high track
density. The ground truth parameters for each pair are indicated by black vertical lines.
See Fig 6 for example data sets and supplementary information for Q-Q plots for series
of 10 such data sets.

use it as probability estimate, p̂(l), for the occurrence of a link, l, 267

p̂(l) = (number of records containing l)/(total number of records). (8)

To assess the tracking results we adopted performance measure from [31]. However a 268

direct usage of these measure is not possible since there are not designed for tracking 269

PMF. We adopted the Jaccard similarity coefficient (JSC), in the following way. For a 270

given ratio, pmin, we consider a link, l, as predicted if pmin ≤ p̂(l). We express the 271

results in terms of the confusion matrix as true and false positives and negatives; TP, 272

FP, TN and FN. For example, let pmin = 0.6 and let l occur in the GTR. If p̂(l) = 0.7 273

then l counts towards the number of TP. If p̂(l) = 0.5 then l counts towards the number 274

FN. However, if pmin = 0.5 and p̂(l) = 0.5 then l counts as TP. For any pmin we can 275

calculate JSC = TP/(TP + FP + FN), and also recall = TP/(TP + FN) and precision 276

= TP/(TP + FP). All measures have a range between 0 and 1, where 1 is best and 0 is 277

worst. If pmin = 1 then only links that occur in all records are considered positives. The 278

number of FP is lowest and FN is highest. When pmin is reduced, FP will increase and 279

FN will drop. If pmin = 0 then any link that at least occurred in one sample will be 280

considered as positive, which gives a large number of FP, while ideally the number of 281

FN should go to zero. In other words, if a link is in the GTR then we expect it will at 282

least occur in one sample. The two left panels of Fig 5 show the JSC response for the 283

two series of data sets with λb = 0.1E and λb = 1.6E respectively. We observe that the 284

JSC generally is highest for 0.4 < pmin < 0.6, while it significantly drops for pmin near 285

0 and 1. For the less crowded data set we find higher JSC (between 0.97 and 0.99 at 286

pmin = 0.5) than for more crowded data sets (between 0.92 and 0.98 at pmin = 0.5). 287

The two right panels of Fig 5 show the precision vs. recall plots. The values at 288

pmin = 0.5 are marked with a dot. We observe that with lower pmin the recall increases, 289

i.e. less GTR links are missed, while with higher pmin the precision increases, i.e. less 290

false predictions are made. For the data sets with lower track density we observe recall 291

and precision higher than 0.99 at pmin = 0.5 and for data sets with higher track density 292

we observe recall and precision values of at least 0.96 at pmin = 0.5. For some low track 293

density data sets we observe almost perfect recall at pmin = 0 and almost perfect 294

precision at pmin = 1. However also for the higher density data sets we get recall and 295

precision of at least 0.99 at the extreme ends of pmin. We did not calculate the receiver 296

operating characteristic (ROC) curve, since we did not calculate the number of TN. 297

However, the plot recall versus precision is a similar visualisation; rather than assessing 298

how many negatives have been falsely classified as positive as in ROC, we assess how 299

many of the classified positives are true positives.

Fig 5. Performance of Biggles tracking for data sets with low and high crowding. From
left to right: JSC for less crowded data sets, JSC for more crowded data sets, recall
against precision (lower crowding) and recall against precision (higher crowding). The
dots in the two right panels mark the values at pmin = 0.5.

300

We use the synthetic data of Fig 4 to illustrate the dependency of the posterior 301

distribution on the track density, see Fig 6. The links shown on the left of Fig 6 are 302
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from one of ten data sets with low birth rate (3429 observations) and, on the right is 303

one of the data sets with high birth rate (3558 observations). The histograms in the 304

middle panels shows the percentage of links against their estimated probability of 305

occurrence. The low birth rate data sets have a higher proportion of uncontroversial 306

links, with 7 data sets having 95% or more compared to the data sets with high birth 307

rate with 9 data sets having less than 90% of uncontroversial links. We see more links 308

with low probability. The increase in links with medium probability indicates that we 309

observe an increased uncertainty in our estimate of the tracking result.

Fig 6. Change of the distribution depending on the track density. The left histogram
shows the link probability of 10 data sets with lower birth rate. One of the data sets is
shown in the left 3D plot. The histogram on the right shows the link probability of 10
data sets with higher birth rate. In comparison with the low-birth-rate data sets, the
high-birth-rate data sets have fewer links with very high probabilities, while the number
of links with medium and low probability is increased. This higher uncertainty of some
links is due to the higher crowding.

310

Single molecules show a variety of modes of motion. While we did not fully explore 311

the behaviour of our algorithm under such conditions, we do provide some illustrative 312

tracking examples in the supplementary figures; molecules that change the mode of 313

motion from random walk to direction motion or the other way around (S2 Fig.); a 314

mixture of molecules some of which move in a random walk and some of which have a 315

directed motion (S3 Fig.); a mixture of molecules that move in a random walks with 316

two different diffusion constants (S4 Fig.) and random walks of molecules with different 317

local densities (S5 Fig.). All these synthetic data sets have been analysed without 318

special adjustments of the algorithm. 319

We demonstrate the sampling of a derived quantity using the example of the 320

diffusion rate [32], see Fig 7. We created 100 data sets as before with a birth rate of 321

1.6E . We calculated a single diffusion coefficient, D, for the GTR as well as for every 322

recorded sample. The diffusion coefficient was calculated from the mean squared 323

displacement, 〈r2(τ)〉, for time lag τ . The estimate is calculated from the positions of 324

the observations assigned to the tracks. The mean was taken over all tracks, see 325

Supplementary Notes. Each of the two panels show the data of five realisations of a 326

ground truth partition (GTR), i.e. 5 sets of observations generated from the same 327

ground truth states. The diffusion coefficient of each GTR is shown by a vertical line. 328

They are different for each realisation due to the random nature of the generation. Each 329

set of observations was used as input for Biggles and D was estimated for each recorded 330

sample, 4000 samples per run. The D of the samples are shown as histograms in the 331

same colour as the related D of the GTR. We calculated to each data set confidence 332

intervals (CI) and counted how often it contains the D of the GTR. The CI to 333

confidence level X% is calculated as the smallest interval that contains at least X% of 334

the samples. We found an agreement of 52% for a 70% CI and 75% for a 95% CI. This 335

is a very encouraging result. However the procedure somewhat underestimates the 336

errors. This will be subject to future investigations. 337

We compared Biggles with uTrack [20]. For the comparison we simulated particles at 338

a range of different conditions Fig.8. The track density was simulated by assuming 339

different birth rates with spatially uniformly distributed first observations. The average 340

nearest neighbour (NN) distance of the observed particles was determined from the 341

GTR. It varies roughly from 4px to 12px. Simulated particles moved in a random walk 342

(D = 0.02px2/frame and D = 0.32px2/frame). After the generation of the GT particle 343

trace the observation model was applied. A particle was observed at any time with a 344

given probability, po ∈ {0.9, 0.7, 0.5}. The particle observation was sampled from a 345

normal distribution with the GT particle location as mean. We assumed two different 346
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Fig 7. The distribution of diffusion coefficient, D, calculated from the Biggles samples.
Each panel shows the result from a single GT simulation, i.e simulated particle states
governed by birth rate and the survival probability. From each GT ten GTR have been
created, governed by the observation rate, the observation error and the clutter rate.
The ground truth D = 0.08, D calculated from the GTR is shown as vertical, dashed
lines whose colours correspond to the colour of the histograms. The two numbers
indicate how often the GTR D lies within 1σ and 2σ of the sample average of the
respective Biggles output. Since there are 10 GTR per panel, possible values are
multiples of 10.

localisation errors, 0.1px and 0.4px. The life time of the particle tracks was 347

exponentially distributed. We added uniformly distributed spurious detection which 348

resulted in a density of 0.4±0.1 observations per 100px×100px and frame. The resulting 349

data sets had on average 2003±575 observations.

Fig 8. Comparison between Biggles and uTrack. The uTrack results are shown in blue,
one point per tracking result, the points connected by a line. The Biggles results are
shown as vertical black lines, each line represents a single tracking result connecting the
value of best with the value of the worst sample. The GED to the ground truth
(number of wrong links + number of missed links) is normalised by the number of
observations of the data set.

350

The results where compared with the GTR. The number of links in which the 351

trackers differed from the GTR, the GED, was normalised by the number of 352

observations in the input data. Note that the value can be larger than 1, with 2 being 353

an upper boundary. A value of 0 indicates total agreement. For uTrack a single value 354

per data set is shown in Fig.8 (blue), for Biggles each tracking result is represented by a 355

vertical black line representing the range of all samples (2000 per data set). As 356

expected, both trackers perform well under good conditions and the performance slides 357

if the condition get worse. For a localisation error of 0.1px and high observation 358

probability both trackers perform very well. Biggles remains stable for a low localisation 359

error, even if the observation probability drops. The uTrack tracker on the other hand 360

drops in performance if the observation rate goes down. For a localisation error of 0.4px 361

the tracking results are consistently worse. However, for the highest observation 362

probability the performance of both trackers is still good. As before, with lower 363

observation probability the performance of uTrack drops faster than the performance of 364

Biggles. In general Biggles has a better performance than uTrack. 365

To illustrate Biggles we have chosen a typical SMM data set from our lab, which has 366

been imaged for a co-localisation experiment. The data sets was acquired by total 367

internal reflection fluorescence (TIRF) microscopy using organic dyes (enhanced green 368

fluorescent protein) [33]. We imaged Epidermal Growth Factor (EGF) Dyomics 549-P1 369

on CHO cells stably expressing wild type EGF receptors at a level of about 50000 370

receptors per cell, transiently transfected with PLCd-PH-eGFP. The data set has a 371

16µm×16µm (100pixels×100pixels) field of view, in 30s 600 image frames have been 372

acquired and 9761 observations have been detected using an in-house algorithm [34]. 373

We recorded 4000 tracking samples. The result is shown in Fig 9. In total 8773 links 374

occurred, of which 7923 appear in every sample and can be considered certain. The 375

histogram of the 850 links with p̂ < 1 is shown in Fig 10. The total number of samples 376

drawn in both chains is 34 273 600. 377

The tracking result is plausible. All obvious tracks are found and there are no 378

obviously wrong links with high probability. Biggles considers most of the tracks as 379

uncontroversial. About 10% of the links do not appear in all samples. Most of those 380
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Fig 9. Two views on the tracking result for a SMM data set with 9761 observations.
4000 samples have been recorded. Links that appear in all samples are shown in blue.
The colour of the other links indicates their frequency of occurrence as shown by the
colour bar. Observations that are assigned to the clutter in all samples are shown as
grey dots.

links have either a small probability or a high probability. We found 273 links (3.1%) 381

with 0.2 ≤ p̂ ≤ 0.8, see Fig. 10. Those links may indicate locally high crowding, track 382

splitting or merging, large gaps between two track pieces and more. The final 383

acceptance rate of the Metropolis-Hastings sampler is low, between 0.4% and 1.4% for 384

the different move types (Table 1). Identity moves could be avoided for 5 of the move 385

types. Relatively many identity moves occur for the birth type (5.3%) and the 386

update-type (3.5%). However, for these moves we also observe below-average proposal 387

rejections so that the acceptance rate is not affected.

Fig 10. Histogram of the 850 links with estimated probability less than 1 for the data
set in Fig 9. The number of links with p̂ = 1 is 7923.

Table 1. Statistics of the move types for one sampler chain. Data set SMM–9761.

move type rejected identity accepted total
Birth 94.3% 5.3% 0.4% 1 928 159
Death 99.6% 0.0% 0.4% 1 926 784
Extend 98.8% 0.0% 1.2% 1 927 725
Reduce 98.0% 0.8% 1.2% 1 924 570
Split 99.5% 0.0% 0.5% 1 926 823
Merge 99.1% 0.4% 0.5% 1 926 366
Update 95.1% 3.5% 1.4% 1 928 992
Transfer 98.8% 0.0% 1.2% 1 927 295
Cross-over 99.6% 0.0% 0.4% 1 926 086

388

4 Discussion 389

Biggles expands the concept of the single particle tracker by sampling the posterior 390

distribution of possible tracking solutions and their governing parameters. Therefore, 391

with Biggles we enable the calculation of errors and other descriptive statistics for 392

tracking solutions. The set of all partitions does not come with an canonical distance 393

measure, which is needed for some statistics. There are several possibilities to introduce 394

a distance measure such as: treating the tracking solutions as graphs and employing the 395

GED, or treating tracking solutions as vectors of a high dimensional space where each 396

pair of linkable observations contributes one dimension. We used the GED as part of 397

the convergence assessment. 398

The knowledge of the most likely solution remains of limited use as long as we do 399

not know how certain the solution is and how likely alternative solutions are. With 400

Biggles we have now the means to do what we would do in any other measurement 401

process: evaluate the error on our solution. 402

Biggles does not need to input parameters that control the tracking process. On the 403

contrary these parameters are a part of the solution. We show a example of parameter 404

distributions in Fig 4. There are some slight biases in the recorded parameter samples. 405
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The design of the survival probability, ps, implies a exponential distribution for the 406

track length. However, tracks of length 0 or 1 are not allowed and all tracks are limited 407

to be no longer than the number of imaged frames. The samples stem in fact from a 408

truncated exponential distribution. Since each observation is either explained as clutter 409

or as observed track the biases in the clutter rate, λc and observation probability, po, 410

are opposing. However overall there is a very good agreement of the sampled 411

parameters with those of the GTR, see Fig 4. 412

A direct validation of the Biggles samples is not easy since the ground truth 413

distribution is not known. We treated the GTR links as if they would be certain under 414

the given model, which is not true, since a particle can move in an unlikely manner. 415

However, it should remain the exception that the ground truth is unlikely under the 416

model, since the model shall explain the motion of the particles. In fact, we found very 417

good agreement of the sampled links with the GTR. As expected in the case of higher 418

track density we found more uncertainty in the links. This is not a shortcoming of the 419

algorithm, but its point. In high crowding situations the track assignment is less clear 420

and a higher temporal and spatial resolution would be required to achieve more 421

confidence in a specific tracking solution. With Biggles we quantify our confidence in a 422

specific solution and produce representative samples of alternatives. For the data sets in 423

Fig 5 we found that for the vast majority of the cases links in the GTR and frequent 424

links in recorded samples coincide. If we consider recall and precision as functions of the 425

minimal estimated link probability, Rec(pmin) and Pre(pmin) respectively, we do expect 426

to see Rec(pmin)→ 1 for pmin → 0 and Pre(pmin)→ 1 for pmin → 1. That means, we 427

expect to find any real link in at least in one sample and we expect not to find the same 428

false link in all samples. For the low density in Fig 5 this seems to be the case. For 429

higher density data sets we still find Rec(0) > 0.99 and Pre(1) > 0.99. 430

Even though the definition of a track does not include merging or splitting of tracks, 431

splits and merges are represented in Biggles sampling, see Fig 11 and supplementary 432

figure S6. The data set we used to demonstrate this is composed of straight lines with 433

some added white noise. At time points 5 and 15, there are four points where three 434

lines intersect. At time point 10 there are three intersections of two lines and at time 435

points 0 and 20 there are three points where two lines meet. Track splitting (or 436

merging) events appear as regions with larger uncertainty in the links. In the course of 437

the sampling, the observations at the intersection are assigned to different tracks. Fig 11 438

demonstrates also the tracking of directed tracks including change of direction. We 439

made no special adjustments to track this data set.

Fig 11. Tracking complicated data sets. The left panel shows the link probabilities.
Certain links are in blue, highly probable links are in red, 50-50 links are coloured
orange and unlikely links are in green. The middle panel shows the histogram of the
links that are not certain, i.e. p̂(l) < 1. The right panel shows the maximum posterior
solution.

440

Another approach to verify the results of Biggles uses derived quantities. We 441

demonstrated this with the diffusion coefficient. Our results show that on average 442

Biggles accurately reproduces the diffusion constant of the GTR. However for individual 443

data sets the results may deviate from the GTR, significantly in terms of the sample 444

standard deviation. 445

We have demonstrated in Fig 9 that Biggles can analyse real-world microscopy data 446

sets. For large data sets the sampling process slows down from thousands of samples per 447

second for small data sets to a few samples per second. The final sample rate for the 448

SMM-9761 data set was about 500 samples per seconds using a fast commercial desktop 449

computer. There are moderate improvements possible using faster computers, however 450

software engineering of the code promises the most significant improvement. This 451
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concerns for example the handling of data of significant size, which effects the speed the 452

algorithm and the number of samples that can be held in the chains. The sampling of 453

the moves depends on internal book keeping to get a high efficiency in identifying viable 454

proposals. Solutions for implementation problems are independent from the algorithm 455

development and are not discussed here. 456

There is another possibility to improve performance for large data sets. Our SMM 457

data sets can contain about 500 000 observations. We are developing a chunked version 458

of the algorithm that divides the data into overlapping spatial chunks, tracks the 459

observations in each chunk separately and reconciles the results. This approach will also 460

allow the usage of computing clusters or cloud computing resources. 461

The sampling process still lacks efficiency. On one hand the track partition samples 462

are correlated which reduces the effective sampling size. The correlation between the 463

track samples lies in the nature of the Metropolis-Hastings proposals. The vast majority 464

of links of the proposal will be identical with the links of the last sample. If 465

Qm(ω, ω′) > 0, then the GED between ω and ω′ is at most 6 links, if m is any of the 466

move types merge/split (1 link difference), transfer (6 links), cross-over (4 links), or 467

update (max. 4 links). If the move type m is any of birth/death or extend/reduce then 468

both partitions differ in one track only, with a GED less then T links. All moves at 469

most modify 2 tracks at a time. 470

On the other hand, the acceptance rate of the sample recording of data set 471

SMM–9761 is very low as we showed in Table 1. All moves are likely to propose changes 472

to the partition which have a low target density. In many cases, we have Q(ω|ω′)� 0 473

even if P (ω|θ, Y )� P (ω′|θ, Y ). If for example the update move is applied to a long 474

track, then the update will be attempted at any time point with equal probability. 475

However, often it is the case that there are only very few time points for which the move 476

would produce an acceptable proposal, making the acceptance rate very low. In this 477

regard the proposal mass function is wide in comparison with the target distribution. In 478

the current implementation, Biggles therefore suffers from both a slow exploration speed 479

and a low acceptance rate. Modifications to improve the proposal mass function both 480

increase the complexity of the calculation of the proposal mass ratio and increase the 481

complexity of the proposal creation itself due to the employment of smarter algorithms, 482

extensive internal book keeping and so on. 483

The size of a single partition sample is linear in N . It is therefore not possible to 484

keep a large number of samples in memory. This affects the number of chains that can 485

be kept and their size, but also the number of samples that can be recorded. Especially 486

for multimodal distributions it is important that the chains are long enough to cover the 487

relevant part of Ω. If the chains are too short the assessment of convergence may go 488

wrong. The assessment can go wrong in two ways; the chains have reached the 489

stationary distribution, but are in different parts of it because they are too short to 490

cover the whole support. It is also possible that the chains have not yet reached the 491

stationary distribution, but accidentally it appears as such. The choice of the starting 492

partition is therefore of some importance. Our approach runs two chains with the 493

minimal partition ω0 and a maximal partition ωmax as starting points. 494

The huge size of Ω seems to imply than any practicable sample size is far too small 495

to explore Ω. However, experience shows that the vast majority of links are 496

uncontroversial with p(l) > 0.99. The interesting subset Ω∗ ⊂ Ω is much smaller, and 497

often focuses on small spatio-temporal regions. If such regions are disconnected, they 498

could be sampled separately, which further reduces the size of Ω∗. Still, the size of Ω∗ 499

can be substantial. It is very difficult to say how many samples are required to cover it 500

and it depends on the data set. 501
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5 Conclusion 502

We present in this paper a prototype of a novel approach to single particle tracking 503

(SPT) that samples from the combined probability mass function/probability density 504

function of the track partitions and its governing parameters. This enables not just the 505

estimation of the most likely tracking solution but also provides us with a measure of 506

uncertainty of this solution and likely alternative solutions. Thus Biggles normalises 507

SPT with standard measurements that provide measured value and error estimate. Our 508

approach also has the potential be used to estimate the error on derived quantities as 509

we demonstrated on the diffusion rate. The algorithm can handle different condition 510

without special adjustment, such as random walk, directed motion, change of direction 511

and track branching. We demonstrated that Biggles can analyse data sets with about 512

10 000 observations. The implementation of Biggles is complex. Smarter algorithms, 513

optimised convergence control and sample recording and professional software 514

engineering will improve the performance of the algorithm. We also indicated other 515

potential improvements. Biggles opens a new direction in SPT. 516

Supporting information 517

S1 Fig. Recovering of the simulation parameters. The Q-Q plots of the 518

parameter samples for the GTR and the parameter samples created by Biggles. Shown 519

are a series of ten data sets with low track density(top) and a series of data sets 520

withhigh track density (bottom). 521

S2 Fig. Biggles tracking example. A mixture between directed motion and 522

random walks. Tracks have a chance to change the mode of motion. The grey dots 523

mark the clutter observations. 524

S3 Fig. Biggles tracking example. A mixture between directed motion and 525

random walks. Tracks have a chance to change the mode of motion. The grey dots 526

mark the clutter observations. 527

S4 Fig. Biggles tracking example. A 50-50 mixture between random walks with 528

two different diffusion coefficients, d1 = 0.45pix/fr and d2 = 0.9pix/fr. Each track has 529

one mode of mode of motion. 530

S5 Fig. Biggles tracking example. Random walks with regions of different 531

densities. Each track has one mode of mode of motion. 532

S6 Fig. Alternative views of the complicated data set. Shown are the link 533

probabilities. 534

S7 Fig. Dependency on the process noise. A step length of 1pixel/frame is 535

equivalent to D ≈ 0.26µm2/s at a pixel size of 160nm and a frame rate of 20Hz 536

S8 Fig. Example of observation and estimated states of a track. 537

S1 Appendix. Algorithm notes. Detailed information about the algorithm, 538

discussions of properties of the space of valid track partitions Ω and proof that the 539

partition sampler is ergodic. 540
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Source code https://github.com/fbi-octopus/biggles 541
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1 Observations, tracks and clutter

Single particle tracker track particles such as molecules. The appearance of a particle in
an image (or other measurement) is a feature of that image. Biggles takes as input a set
of features specified as spatial x, y and temporal t coordinates. These correspond to the
output of a feature detector and are collectively called observations, Y = {Yt = [x, y]T },
of a set of particles. We assume that the time lag between images is constant, so that
t ∈ {1, . . . , T}, where T is the number of image frames taken. This is not a limitation of
the algorithm, but it makes implementation easier. Missing frames mean that there are
no observations at the time points in question. The set of observations that have all
been generated by the same particle are called a track. Observations may be deemed to
have arisen spuriously from the feature detector and not from a particle of interest.
Spurious observations are collectively termed the clutter, k0 ≡ Y 0 . The subset of
observations assigned to track ki, i = 1 . . .K, is Y i, We have Y i ∩ Y j = ∅ if i 6= j and
∪Ki=0Y

i = Y . Because of these properties, the set of all tracks and the clutter is termed
a (track) partition, ω = {k0, . . . , kK}, of the input, where ω contains K tracks and the
clutter k0.

Condition 1 A track fulfils the following conditions:

1. a track has at most one observation at each time point,

2. the number of observations of the track is at least 2,

3. the spatial distance of any two observations in a track has a limit that linearly
depends on the time lag between the observations.

A track can be written as
ki = (ti0, t

i
1, Y

i),

where ti0 and ti1 are the first and the last time point of the track respective. This also is
the computational representation of a track. It is allowed that first and last time points
do not have observations. The length of the track is the number of its time points,
ti1 − ti0 + 1. With condition 1.2 follows that the length of any track is in [2, T ]. The
third condition means that a maximum velocity of the particle is assumed.

2 Gibbs sampler

Our aim is to explore the distribution P (ω, θ|Y ), where ω is a partition, θ is a set of
model parameters and Y are the observations. Internally, the parameters θ are
represented by a tuple containing floating point values and one matrix: (λb, λc, ps, po, R)
where

� λb: the mean number of new tracks appearing per frame and area.

� λc: the mean number of clutter observations per frame and area.

� ps: the probability that a track will survive from frame t to t+ 1, i.e. p(“track
present at t+ 1” | “track present at t”).

� po: the probability that a track will generate an observation at a time point.

� R: a 2× 2 matrix giving the assumed covariance of observation error of the
Kalman filter (section 3.2).
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We use a Gibbs sampler to avoid having to sample from P (ω, θ|Y ) directly. We draw a
train of samples ωi, θi by alternately drawing them from the two conditional
distributions:

ωi ∼ P (ω|θi−1, Y ) and then θi ∼ P (θ|ωi, Y ),

where ω0 and θ0 are initialised to some values. In principle we are free to choose ω0 and
θ0. Practically we avoid extreme values for θ0 and fix it to uncontroversial moderate
values. We are running two chains and initialises ω0 in the first chain to a state where
all features are assumed to be spurious detections. The second chain initialises ω0 to a
maximum partition, which is created by a greedy algorithm. The method how the
maximum partition is created is not critical. In principal it works as follows:

1. Group and sort the available observations by time and start with the earliest
group,

2. pick a random observation from the current time group and use it as first
observation of a new track,

3. try to randomly add a new observation to the track from the time group just after
the current last observation of the track, respecting condition 1.2 and allowing a
gap of up to 5 time points,

4. repeat step 3 until its options are exhausted,

5. if the resulting track has more than one observations, save it and remove its
observations from their time groups,

6. go to step 2, if the current time group is empty, pick the next time group, if all
time groups are used, finish,

7. assign all remaining observations to the clutter.

Thus the Gibbs sampler alternates between two steps:

1. Sampling from the track partition using the Metropolis-Hastings algorithm
(section 3)

2. Sampling the parameters (section 4)

3 Metropolis-Hastings Sampling from the track
partition

The heart of the current implementation is a Metropolis-Hastings sampler. The target
partition of the sampler is given by P (ω|θ, Y ) and a new partition, ω∗, is sampled from
the proposal partition Q(ω∗|ω). The proposal density Q is given by a set of moves that
transform ω to ω∗ and their probability to be executed.

When proposing ω∗ from ω we choose uniformly from one of seven different types of
move. In the following description, a “no observation” is an item that represents a time
point of a track without observation. All moves enforce the formal constraints for tracks
given in definition 1.

� Birth: Two time points are randomly chosen as first and last time point.
Beginning with the first, for each time point a list of all candidate observations is
assembled each with a weight of 1. A “no observation” is added to the list with
the weight of 1/10. An element of the list is randomly sampled and added to the
track. This moves increases the number of tracks by 1 and reduces the number of
clutter observations by at least 2.
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� Death: a track is chosen uniformly and at random from the partition and is
demoted to the clutter. This move reduces the number of tracks by 1 and
increases the number of clutter observations by at least 2.

� Extend: a track is chosen uniformly and at random from the partition. It is
chosen uniformly and at random in which temporal direction the track is to be
extended and the track is extended as in the birth move. This move increases the
length of the track by at least 1, it may or may not add observations to the track
and hence may or may not reduce the number of clutter observations.

� Reduce: a track is chosen uniformly and at random from the partition. It is
chosen uniformly and at random in which temporal direction the track is to be
truncated and a time point within it is sampled uniformly and at random. The
portion of the track extending from the sampled time point in the sampled
direction is demoted to the clutter. This move will reduce the length of the track
by at least 1, it may or may not reduce the number of observations of the track
and add those observations to the clutter.

� Merge: a pair of nearby but non-temporally-overlapping tracks are sampled
uniformly and at random from all such pairs and are merged into one by simple
concatenation. This move reduces the number of tracks by 1, the clutter remains
unaffected. The length of the new track is larger than or equal to the sum of the
lengths of the tracks merged. The number of observations of the new track is
equal to the sum of the number of observations of the merged tracks.

� Split: a track is chosen uniformly and at random from the partition. An time
point is sampled uniformly and at random from within the track and the track is
split at this point into two new tracks. The earlier track is randomly shortened by
0 or more final time points without observations. This moves increases the
number of tracks by 1, the clutter remains unaffected. The sum of the lengths of
the new tracks is less than or equal to the length of the split track. The sum of
the observations of the new tracks is equal to the number of observations of the
split track.

� Update: a track is chosen uniformly and at random from the partition. A time
point is sampled uniformly and at random from the time span of the track. The
track may or may not have an observation at the sampled time point. A new
observation is sampled uniformly and at random from the set of all spatially
nearby observations plus a “no observation”. The original observation is demoted
to clutter and the sampled observation (if any) is included into the track. This
moves leaves the number of tracks and the length of the updated track unaffected.
The number of observations of the updated track changes by -1 (“drop”), 0
(“swap”) or 1 (“pick-up”), the size of the clutter changes by 1 (drop), 0 (swap), -1
(pick-up). Even in the swap case, the observations of the updated track and the
clutter are changed. Any empty swap is prevented.

� Transfer: a pair of tracks is chosen from the set tracks that permit that move at
one or more time points. One track is the donor the other track is the acceptor. A
time point is uniformly sampled from the set of time points at which a valid
transfer is possible. The observation of the donor at this time point is removed
and added to the acceptor. This move leaves clutter, number of tracks and track
lengths unaffected. The number of observations of the donor is reduced by 1 and
the number of observations of the acceptor is increased by 1.
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� Cross-over: a pair of tracks is chosen from the set tracks that permit that move at
one or more time points. A time point is uniformly sampled from the set of time
points at which a valid cross-over is possible. Both tracks are split into two
branches at the time point so that each branch has at least one observation. Two
new tracks are formed each using one branch of each old track. If the old tracks
are denoted by (a1, a2) and (b1, b2) than the new tracks are denoted by (a1, b2)
and (b1, a2). This move leaves the number of tracks and the clutter unaffected.
The sum of the length of the new tracks is equal to the sum of the lengths of the
old tracks.

There are 6 pairs of moves that can undo each other: birth – death, extend – reduce,
merge – split, update – update, transfer – transfer and cross-over – cross-over. From a
given partition ω any new proposal, ω∗, can be achieved by one move type only, e.g. a
merge move can never have the same result as a extend move or birth move. The moves
were so chosen such that the appropriate proposal density, Q(ω∗|ω), is straightforward
to compute. For example, given a birth move, Q(ω∗|ω) is the likelihood of the birth
that leads from ω to ω∗, while Q(ω|ω∗) is the probability of the death that leads from
ω∗ to ω. In some cases a move does not create a valid partition. Example 1: A birth
move has proposed a track that only contains 1 observation. Example 2: A reduce move
is attempted but all tracks have length 2. Such cases are treated as ω∗ = ω. Hence
Q(ω|ω) > 0. However, efforts have been made to keep Q(ω|ω) small.

We wish to find the mode of the posterior distribution P (ω|θ, Y ). We can re-arrange
this posterior using the law of conditional probability which states
P (ω|θ, Y ) = P (ω, θ|Y )/P (θ|Y ) combined with Bayes’ theorem:

P (ω, θ|Y ) =
P (Y |ω, θ)P (ω, θ)

P (Y )
=
P (Y |ω, θ)P (ω|θ)P (θ)

P (Y )

and hence

P (ω|θ, Y ) =
P (Y |ω, θ)P (ω|θ)P (θ)

P (θ|Y )P (Y )
=
P (Y |ω, θ)P (ω|θ)P (θ)

P (θ, Y )
.

Since we use the Metropolis-Hastings algorithm which requires only a value proportional
to this density. Removing terms independent of ω we obtain:

P (ω|θ, Y ) ∝ P (Y |ω, θ)P (ω|θ)P (θ).

The P (θ) term is simply the prior on the model parameters. The P (ω|θ) term is the
likelihood of the tracks (the grouping of observations), independent of the physical
properties (position, velocity and their errors) of the observations within them. This is
a function of the model parameters and birth and death times for the tracks only. Since
the data is partitioned between tracks and the clutter with no overlap, we may factorise
the data likelihood term as follows:

P (Y |ω, θ) = P (Y 0|k0, θ)

K∏
i=1

P (Y i|ki, θ)

where Y 0 is used to represent the clutter observations and Y 1, ..., Y K are the K sets of
observations corresponding to the K tracks in the partition. P (Y 0|θ) is the likelihood of
having seen the clutter observations, if we have given the parameters. P (Y i|ki, θ) is the
likelihood of track ki having generated the data we saw. Together we have

P (ω|θ, Y ) ∝ P (Y 0|k0, θ)

K∏
i=1

P (Y i|ki, θ)P (ω|θ)P (θ). (1)

July 10, 2019 5/13



Taking logarithms, we obtain the final log density function used within the
Metropolis-Hastings sampler:

`(ω|θ, Y ) = κ+ `(Y 0|k0, θ) +

K∑
i=1

`(Y i|ki, θ) + `(ω|θ) + `(θ) (2)

where `(·) is used to denote the logarithm of probability density function (PDF) and κ
is some arbitrary normalising offset. Thus the PDF has the following components:

� the partition conditional probability P (ω|θ), section 3.1

� the track observations likelihood P (Y i|ki, θ), section 3.3

� the clutter observations likelihood P (Y 0|k0, θ), section 3.4

� the parameter priors P (θ), section 3.5

The calculation of the priors P (θ) is not necessary for the acceptance probability
since they does not depend on the partition and the two occurrences cancel each other.

3.1 Partition conditional probability

In this section we discuss evaluation of P (ω|θ), that is the probability of the track
partition given the model parameters. The physical properties of the observations,
notably their position is not taken into account, only their grouping into tracks and
clutter. We have no reason to assume a specific mutual dependency of the model
parameters, we therefore may factorise the PMF as follows:

P (ω|θ) ∝ P (ω|ps)P (ω|po)P (ω|λb)P (ω|λc).

Note that P (ω) does not depend on R, since R has no bearing on the observation
assignment.

We recall that Ω is the set of all possible partitions. Partitions only differ with each
other in the assignment of observations to tracks and clutter. Each observation has a
label, exchanging observations between tracks will result in a different partition. There
is only one way (if any) to combine a given number of observations to a track.
Reordering the observations in the clutter does not change the partition. Reordering of
tracks does not change the partition. Each track is uniquely identified by the
observations it contains and the first and last time point. The partition probability
given the survival probability is the product of the probability of each survival and
death. It has the general form of a binomial distribution, but does not feature the
binomial coefficient. For a binomial distribution the sequences (0, 1, 1) and (1, 0, 1)
mean both “2 out of 3”, while for a partition it matters which track survived. Similarly,
the partition probability given the observation probability does care about which
observations have been made. It has therefore the same form. The birth rate and
clutter rate dependencies are modelled by Poisson distributions.

Each of these terms may defined in terms of the following values:

� N t
t : the number of tracks present at t;

� Ns
t : the number of tracks that survive from t− 1 to t ;

� N b
t : the number of tracks that newly appeared at t;

� No
t : the number of observations assigned to a track at t;

� N c
t : the number of observations deemed spurious at t.
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The numbers are counted from ω. The number of track that survive at t is given by:
Ns
t = N t

t −N b
t . Each of the individual parameter PDF terms can be written based on

the definition of the corresponding parameters:

� P (ω|ps) =
∏T
t=2 p

Ns
t

s (1− ps)N
t
t−1−N

s
t ;

� P (ω|po) =
∏T
t=1 p

No
t

o (1− po)N
t
t−N

o
t ;

� P (ω|λb) =
∏T
t=1 P(N b

t ;λb);

� P (ω|λc) =
∏T
t=1 P(N c

t ;λc),

where P(x;λ) is the probability mass function of the Poisson distribution with mean λ
evaluated at x and Ny

t = No
t +N c

t . The corresponding log terms become:

`(ω|ps) =

T∑
t=2

Ns
t log(ps) + (N t

t−1 −Ns
t ) log(1− ps) (3)

`(ω|po) =

T∑
t=1

No
t log(po) + (N t

t −No
t ) log(1− po) (4)

`(ω|λb) =

T∑
t=1

N b
t log(λb)− λb − log(Γ(1 +N b

t )) (5)

`(ω|λc) =

T∑
t=1

N c
t log(λc)− λc − log(Γ(1 +N c

t )) (6)

3.2 Kalman filter as time evolution model

We use a Kalman filter with a Rauch-Tung-Striebel backwards smoothing filter to
estimate the underlying states of the particles which generated the observed features so
that the track posterior may be evaluated.

The state estimation consists of a prediction step that is based on the physical model
followed by an update step that compares the prediction to the observation. In our
system, the state is the position and the instantaneous velocity of a particle:

X = [x, ẋ, y, ẏ]T ,

where

ẋ =
dx

dt
, ẏ =

dy

dt

States evolve using first order dynamics:

Xt = AXt−1 + wt, A =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 ,
where wt ∼ N (0, Q). The observation of the particle is modelled by

Yt = BXt + vt, B =

[
1 0 0 0
0 0 1 0

]
,

where Y ∈ R2 is the vector of the observed position, B is the observation model and
vt ∼ N (0, R) is the observation noise. The covariance matrix R is internally treated as
a part of of the model parameters that are sampled by the Gibbs sampler (see section 4).
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In the prediction step, the current estimate of the hidden state at time index t, X̂t,
is evolved via the state evolution matrix A. In the update step, this estimate is refined
by using any observations made. In this implementation the lack of an observation
causes this update step to be skipped and the refined estimate is assumed to be equal to
the prediction.

The prediction step is represented by the following recurrence relations:

X̂t|t−1 = AX̂t−1|t−1, Pt|t−1 = APt−1|t−1A
T +Q

where X̂t−1|t−1 is the state estimate after the update step at time point t− 1 and

X̂t|t−1 is the state estimate at time t after the prediction step, but before the update
step. Pt|t−1 and Pt|t are, respectively, our prediction of the state estimation error and
our refined prediction of the state estimation error.

The updated state at time t, X̂t|t, is represented by the following recurrence
relations:

X̂t|t = X̂t|t−1 +KtZ̃t, Pt|t = (I −KtB)Pt|t−1

where

Z̃t = Yt −BX̂t|t−1, (Innovation)

Kt = Pt|t−1B
TS−1

t , (Kalman gain)

St = BPt|t−1B
T +R. (Innovation covariance)

Here Yt is the observed position of feature at time t and Z̃t is the residual with
respect to the predicted feature position (innovation). We initialise the filter by choosing
some arbitrary initial state estimate, X̂0|0 , and setting the initial state covariance
matrix, P0|0 , to some sufficiently large multiple of I so as to specify almost no certainty
on the initial estimate. We use the recurrence relations to compute estimates of states
and estimation error covariances up until the last time index for the track.

The covariance matrix of the process noise Q is set to the following by default:

Q =


0.32 0 0 0

0 0.032 0 0
0 0 0.32 0
0 0 0 0.032

 .
It is planned to sample Q in a similar fashion as the sampling of R. Supplementary
figure S7 shows the agreement for the ground truth for random walks with different step
lengths and the chosen positional component of the process noise.

In addition to the Kalman filter, a Rauch-Tung-Striebel backwards smoothing filter
is applied. Once the forward prediction-update step has been completed for a Kalman
filter, we can use a Rauch–Tung–Striebel smoother to refine our earlier state estimates.
This is a backwards step which starts from the final estimated state (i.e. the one which
has been influenced by all observations) and works backwards creating optimal
estimates of the hidden state, X̂t|T , and estimation error covariance, Pt|T . Note that
these estimates have been computed given all observations.

The estimates are computed via the following recurrence relations:

X̂t|T = X̂t|t + Lt(X̂t+1|T − X̂t+1|t), Pt|T = Pt|t + Lt(Pt+1|T − Pt+1|t)L
T
t

where Lt = Pt|tA
TP−1

t+1|t .

Biggles uses these estimates for the evaluation of the log-likelihoods on track
observations.
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3.3 Track observations likelihood

The Kalman smoother outputs, for each candidate track, a set of maximally likely
states. We assume that the evolution of states, beyond first order velocity, is due to the
Gaussian noise process and so it is straightforward to write down the probability density
for an individual observation, Y , corresponding to a predicted state, X̂ by noting that
Ŝ, the innovation covariance or total error in the predicted observation, Ŷ = BX̂, is
given by Ŝ = BP̂BT +R, see section 3.2. We therefore calculate the likelihood of Y
assuming a Gaussian model:

P (Y |X̂, P̂ , R) = N (Y ;BX̂, Ŝ).

The overall log probability density is therefore simply the sum of all the log probability
densities for each observation associated with a track,

`(Y i|ki, θ) =

Ni
o∑

j=1

logP (Y ij |X̂t(j), P̂t(j), R), (7)

where N i
o is the number of observation of track ki (i.e. the size of Y i) and t(j) is the

time point of observation Y ij .

3.4 Clutter observations likelihood

The value of `(Y 0|k0, θ) may be computed by assuming that each clutter observation
arises independently and is uniformly likely over the field of view. Letting V be the
total area (in square pixels) of the field of view, it follows that:

P (Y 0|k0, θ) =

T∏
t=1

(
1

V

)Nc
t

. (8)

3.5 Parameter prior

The `(θ) term is computed as the sum of the (independent) parameter priors where:

� λb and λc have improper uninformative priors on them being positive.

� ps and po have uniform priors over (0, 1).

� R has an inverse Wishart prior W(Φ, s) with parameters Φ = 2I and s = 5.

4 Sampling the parameters

Unlike track configuration, the parameters θ may be sampled directly since their
posterior distribution is known and separable.

Sampling these parameters forms one half of the Gibbs sampler which implements
the Biggles tracking algorithm; we sample a set of model parameters, θ, from the
posterior distribution P (θ|ω, Y ) where ω is the partition and Y is the observed data.

The only parameter which depends directly on the observations is R, the remainder
depend only on the track birth and death times and overall count of clutter
observations. We may thus sample them from known conjugate parameter distributions
for the distributions Specifically:

� P (ps|ω) = fβ(ps; 1 +Ns, 1 +Nd);
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� P (po|ω) = fβ(po; 1 +No, 1 +Ns +N b −No);

� P (Tλb|ω) = fγ(Tλb; 1 +N b, 1);

� P (Tλc|ω) = fγ(Tλc; 1 +N c, 1),

where T is the total frame count, fβ(·) is the PDF of the Beta distribution, fγ(·) is the

PDF of the Gamma distribution, Ns =
∑T
t=1N

s
t and similarly for Nd, No, N b and N c .

Closed form solutions exist to sample from these distributions.
Sampling R is more difficult as it depends on the actual observations. To sample R ,

we first sample the underlying states of the dynamic model using the state estimates
and covariance matrices generated by the Kalman smoother. This provides us with a
state sample, X, drawn from P (X|R,ω, Y ) with ω = {k0, . . . , kK} where k0 is the
clutter. The usual distribution for sampling a covariance matrix is an inverse Wishart
distribution, P (R|X,ω, Y ) =W−1(R; Φ′, s′) whose parameters may be calculated as:

Φ′ = Φ +

K∑
i=1

∑
t∈Ti

(yi,t −Bxi,t)(yi,t −Bxi,t)T , s′ = s+

K∑
i=1

lk

where K is the number of tracks in the current partition, Ti is the set of time indices
with an associated observation in track ki, yi,t is the observation with time index t in
track ki, xi,t is the estimate of state with time index t in track ki, B is the state
observation matrix from the Kalman smoother and li are the number of observations in
track ki. The parameters of the prior are s = 5, Φ = 2I.

5 Notes on partition distances, ergodicity and move
design

Initially we note that whether the acceptance probability of the Metropolis-Hastings
sampler is larger than zero for any two partitions ω′ and ω and therefore if the sampling
chain can move from ω to ω′ only depends on the proposal density Q(ω′|ω) if . The
target distribution for any partition is always larger than zero for most parameter
values, i.e. P (ω|Y ) =

∫
P (ω, θ|Y )dθ > 0 for all ω and data Y . This can be confirmed

from equation (1).

5.1 Distances between partitions

In the following we address two similar questions; what is the maximum graph edit
distance (GED) between any two partitions and what is the number of Biggles moves
required to connect two partitions that are furthest away in terms of the Biggles moves.
If we write d(ω, ω′) for the GED between ω, ω′ and b(ω, ω′) for the minimum number of
Biggles moves required to go from ω to ω′, we are looking for

max
ω,ω′∈Ω

d(ω, ω′)

and
max
ω,ω′∈Ω

b(ω, ω′)

When applying the GED, we identify all tracks that have the same observations, i.e. we
disregard eventual differences in the birth and death time as long as the observations
are the same. The GED measures the distance between two partitions by counting the
number of links in which the partitions differ. To transform one partition ω into
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another ω′ can always be achieved by first deleting all links of ω, which results in the
minimal partition ω0, and then adding all links of ω′. The maximum possible GED in
the set of all partitions, Ω, therefore may occur between two maximal partitions, ω and
ω′, that have no links in common. In the examples presented here, the maximal possible
number of links in a partition is near but less than the number of observations N . That
means the GED can be close to but will always be smaller than 2N . Or more formally:

max
ω,ω′∈Ω

d(ω, ω′) ≤ max
ω∈Ω

d(ω0, ω) + max
ω′∈Ω

d(ω0, ω′) ≤ N +N ≤ 2N.

What is the maximum of the Biggles distance, b(ω, ω′)? The shortest chain from the
minimum partition ω0 to any other partition has as many moves as the number of
tracks in the target partition, since no move can change the number of tracks by more
than one and the birth move can create any valid track. The maximum number of
tracks occurs in such partitions where all tracks have at most 3 observations, since a
track with 4 observation could be split into two, removing one link. Roughly speaking,
the maximum possible number of tracks is near but always less than N/2 (depending on
the data set), i.e. b(ω0, ω) < N/2 for any ω. Since we can always move between any two
partitions via the minimum partition, not more than N moves are needed to go from
any partition to any other partition,

max
ω,ω′∈Ω

b(ω, ω′) < N

.

5.2 Distance based on Biggles moves

A proposal mass function Q could be constructed on the basis of graph edit operations.
In our case we would get two moves that add or remove a single link, respectively. On
the other hand any Q may imply a distance measure on Ω, if some weak assumptions
are fulfilled. The Biggles proposal moves correspond to a distance measure on Ω, i.e.
b(ω, ω′), the minimum number of moves required to go from ω to ω′, can be used as a
distance function. We will see that the condition

Q(ω|ω′) > 0 ⇐⇒ Q(ω′|ω) > 0

is key for that. Biggles moves are defined via Q. If Q(ω′|ω) > 0 then it is possible that
the Markov chain continues with the ω′ given that the last sample was ω. Or, if the
minimum number of Biggles moves required to go from ω to ω′ is one, then it must be
possible to directly draw ω′ from Q given that the last sample is ω. We therefore have

b(ω, ω′) = 1 =⇒ Q(ω′|ω) > 0 .

However, in the current implementation of Biggles it is possible that the move
construction does not lead to a new partition and the original partition is returned,
hence

b(ω, ω′) = 0 =⇒ Q(ω′|ω) > 0 .

If the minimum number of Biggles moves that is required to go from one partition to
another is larger than one, then the proposal density is zero otherwise the partitions in
question could be connected with a single move:

b(ω, ω′) > 1 =⇒ Q(ω′|ω) = 0 .

Therefore

Q(ω′|ω) > 0 ⇐⇒ b(ω, ω′) ≤ 1 . (9)

To be a distance function b(ω, ω′) needs to fulfil four conditions:
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1. b(ω, ω′) ≥ 0 for all ω, ω′ ∈ Ω. This follows immediate from the definition of b (the
minimum number of Biggles move to go from any partition ω to any other
partition ω′ is always zero or larger of course).

2. b(ω, ω′) = 0 ⇐⇒ ω = ω′. This follows immediately from the definition of b too
(if the minimum number of Biggles moves to go from ω to ω′ is zero, then ω is ω′

and if ω is ω′, then there are no moves required to go from ω to ω′).

3. b(ω, ω′) = b(ω′, ω) (symmetry). Since Q is designed such that
Q(ω|ω′) > 0 ⇐⇒ Q(ω′|ω) > 0, it follows with equation (9) that
b(ω, ω′) ≤ 1 ⇐⇒ b(ω′, ω) ≤ 1 and with condition 2 that
b(ω, ω′) = 0 ⇐⇒ b(ω′, ω) = 0. Therefore b(ω, ω′) = 1 ⇐⇒ b(ω′, ω) = 1. If
(ωi)

k
i=0 is a partition sequence from ω0 to ωk, with b(ωi, ωi+1) = 1 for

i = 0 . . . k − 1, then the reverse sequence from ωk to ω0 fulfils b(ωi+1, ωi) = 1 for
i = 0 . . . k − 1. If one sequence is a shortest of such sequences (there can be more
than one shortest sequence), then its reverse sequence is a shortest sequence as
well and we have b(ω0, ωk) = b(ωk, ω0) = k. Therefore, b(ω, ω′) is symmetric.

4. b(ω, ω′′) ≤ b(ω, ω′) + b(ω′, ω′′) (subadditivity). Let (ωi)
k
i=0 with ω0 = ω and

ωk = ω′ be a shortest move sequence from ω to ω′ and let (ωi)
k+l
i=k, with

ωk+l = ω′′ be a shortest move sequence from ω′ to ω′′. Then (ωi)
k+l
i=0 is a (not

necessarily shortest) move sequence from ω to ω′′ of length b(ω, ω′) +
b(ω′, ω′′) = k + l. Therefore b(ω, ω′′), the length of a shortest move sequence from
ω to ω′′, is at most b(ω, ω′) + b(ω′, ω′′).

However, a distance measure based on the Biggles move is more complicated to
implement and less general, therefore we didn’t apply it. Biggles moves include all
possibilities to add or remove a single link. Adding a single link can by accomplished by
the birth move, if both observations are clutter, by the extend move, if one observation
is clutter and the other at the end of the track and the merge move, if both observations
are part of a track. In other words, if ω and ω′ only differ in 1 link, then it always holds
Q(ω|ω′) > 0. It always holds that

b(ω, ω′) ≤ d(ω, ω′)

for all ω, ω′ ∈ Ω.

5.3 Ergodicity

We prove that the partition sampler is ergodic by following the argument by K.
Murphy [1]. In order to show that the limiting distribution exists, we need to show that
biggles chains are irreducible and aperiodic. A chain is irreducible if we can get from
any partition to any other partitions, which we have shown above. A chain is aperiodic,
if at least one partition in this chain is aperiodic, which in turn means there are two
move sequences with length l1 and l2 that start and end in this partition so that the
greatest common divisor of l1 and l2 is 1. Lets take a track with three observations.
The following two sequences are always possible: death-birth with a length of 2 and
reduce-death-birth with a length of 3. Therefore Biggles chains are aperiodic and the
limiting distribution exists. Since Ω is finite and Biggles chains are irreducible, all ω are
recurrent and non-null. Therefore Biggles chains are ergodic.

5.4 Number of modes of the target distribution and move
design

Our first implementation of the algorithm did not include the transfer move and the
cross-over move. To do a cross-over from ω to ω′ without a special move requires two
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split moves and two merge moves, i.e. it requires to remove two links and to add two
different links, creating intermediate partitions ω1, ω2 and ω3. While it may be that
P (ω|θ, Y ) ≈ P (ω′|θ, Y ), we may find P (ω1|θ, Y )� P (ω|θ, Y ) and therefore the
proposal ω1 is likely to be rejected and it may take a large number of samples to reach
ω′. The absence of the cross-over move creates a probability mass trench between ω and
ω′. In other words, without the cross-over move the target distribution may have two
modes that merge into one mode if the cross-over move is added. Hence, the
modification of the proposal moves changes the number of local extrema of the target
distribution. The value of target density of any partition remains unaffected, of course.

The design of the moves requires great care. For example during the execution of the
birth move, rather than sampling the death time we could continuously sample
observation until this fails, using a Poisson distribution to determine the time gaps
between observations. However, the probability of sampling such a track would contain
not just the probabilities of sampling the observations, but also the probability of failing
to sample any observation at the end of the track. This fail probability is practically
difficult to determine.

The design of the proposal mass function is critical for the performance of Biggles.
While a short maximum distance between any two partitions is favourable, more
important is the reduction of the number of modes and the reduction of Q(ω|ω′) for less
acceptable proposals ω given ω′.

6 Technical Notes

6.1 Diffusion coefficient

We calculated the mean squared displacement 〈r2(τ)〉 for a partition ω as

〈r2(τ)〉 =
1

K

K∑
i=1

1

N i
o − τ

Ni
o−τ∑
j=1

d(Y ij+τ , Y
i
j )2 .

As before, K is the number of tracks, N i
o is the number of observations of track ki and

d(Y ij+τ , Y
i
j ) is the Euclidean distance between observations Y ij+τ and Y ij . For

readability, this equation assumes that there are no observation gaps in the tracks. The
actual calculation skips expressions where the track has no pair of observations with
time lag τ and the scaling factor N i

o − τ is reduced accordingly. The diffusion coefficient
D was estimated from

〈r2(τ)〉 = 4Dτ , τ ∈ {1, 2}.

The estimation uses the slope yielded by linear regression.
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1 S1 Figure

Figure 1: Recovering of the simulation parameters. The Q-Q plots of the parameter
samples for the GTR and the parameter samples created by Biggles. Shown are a
series of ten data sets with low track density (top) and a series of data sets with
high track density (bottom).
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2 S2 Figure

Figure 2: Biggles tracking example. A mixture between directed motion and ran-
dom walks. Tracks have a chance to change the mode of motion. The grey dots
mark the clutter observations.
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3 S3 Figure

Figure 3: Biggles tracking example. A 50-50 mixture between directed motion and
random walks. Each track has one mode of mode of motion.
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4 S4 Figure

Figure 4: Biggles tracking example. A 50-50 mixture between random walks with
two different diffusion coefficients, d1 = 0.45pix/fr and d2 = 0.9pix/fr. Each
track has one mode of mode of motion.
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5 S5 Figure

Figure 5: Biggles tracking example. Random walks with regions of different den-
sities. Each track has one mode of mode of motion.
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6 S6 Figure

Figure 6: Alternative views of the complicated data set. Shown are the link proba-
bilities.
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7 S7 Figure

Figure 7: Dependency on the process noise. A step length of 1pixel/frame is
equivalent to D ≈ 0.26µm2/s at a pixel size of 160nm and a frame rate of 20Hz
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8 S8 Figure

Figure 8: Example of observation and estimated states of a track.
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